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The shape of hyperbolic Dehn surgery space

CRAIG D HODGSON

STEVEN P KERCKHOFF

In this paper we develop a new theory of infinitesimal harmonic deformations for
compact hyperbolic 3–manifolds with “tubular boundary”. In particular, this applies
to complements of tubes of radius at least R0 D arctanh.1=

p
3/� 0:65848 around

the singular set of hyperbolic cone manifolds, removing the previous restrictions on
cone angles.

We then apply this to obtain a new quantitative version of Thurston’s hyperbolic Dehn
surgery theorem, showing that all generalized Dehn surgery coefficients outside a disc
of “uniform” size yield hyperbolic structures. Here the size of a surgery coefficient is
measured using the Euclidean metric on a horospherical cross section to a cusp in the
complete hyperbolic metric, rescaled to have area 1. We also obtain good estimates
on the change in geometry (eg volumes and core geodesic lengths) during hyperbolic
Dehn filling.

This new harmonic deformation theory has also been used by Bromberg and his
coworkers in their proofs of the Bers Density Conjecture for Kleinian groups.

57M50; 57N10

Dedicated to Bill Thurston on his 60th birthday

1 Introduction

Let X be a compact, orientable 3–manifold with a finite number of torus boundary
components and suppose its interior admits a complete, finite volume hyperbolic metric.
For each torus, there are an infinite number of topologically distinct ways to attach a
solid torus, corresponding to the homotopy class of the nontrivial simple closed curve
on the boundary torus that bounds a disk in the solid torus. The set of nontrivial simple
closed curves on a torus is parametrized by pairs of relatively prime integers, once
a basis for the fundamental group of the torus is chosen. If each torus is filled, the
resulting manifold is closed. A fundamental theorem of Thurston [16] states that, for
all but a finite number of filling curves on each boundary component, the resulting
closed 3–manifold has a hyperbolic structure. Those that don’t result in a hyperbolic
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structure are called exceptional curves. In [11] we showed that there is a universal
bound to the number of curves that must be excluded from each boundary component;
in particular, when there is one boundary component, there are at most 60 exceptional
curves and when there are multiple boundary components, at most 114 curves from
each component need to be excluded.

The proof of this result uses the harmonic deformation theory we developed in [9]
to deform the finite volume complete hyperbolic structure on the interior of X . The
deformation consists of a family of singular hyperbolic metrics on the filled manifolds
where the singularities lie along geodesics isotopic to the cores of the attached solid
tori. The metrics on discs perpendicular to the geodesics have a single cone point at
the geodesic with a cone angle ˛ which is constant along each component. We call
such structures hyperbolic cone manifolds. At the complete structure the cone angles
are considered to be equal to 0 and if the deformation reaches cone angles 2� on each
component, this is a smooth hyperbolic structure on the filled manifold.

For the analytic techniques in [9] to work, it is necessary to restrict all the cone angles
to be at most 2� . While this is adequate for the Dehn filling problem, there are other
situations where it is important to be able to deal with larger cone angles or with
a more general type of singularity. In particular, in his proof of the Bers Density
Conjecture, Bromberg [5; 4] (and then Brock–Bromberg [3] for more general versions
of the Density Conjecture) needs to deform cone angles equal to 4� back to 2� . In
order to have a similar deformation theory in this type of situation, a new analytic
technique is necessary. One of the primary goals of this paper is to provide such a
technique. To this end, the previous analysis, which developed an L2 Hodge theory
for the incomplete smooth metric on the complement of the singular locus, is replaced
by a Hodge theory on the compact hyperbolic manifold with boundary obtained by
removing an open tubular neighborhood of the singular locus.

We will now give a brief outline of this theory and some of its applications, as they are
presented in the body of this paper.

If one removes an equidistant tubular neighborhood of each component of the singular
locus of a 3–dimensional cone manifold, one obtains a smooth hyperbolic manifold with
torus boundary components. The boundary tori have intrinsic flat metrics. Furthermore,
the principal normal curvatures are constant on each component, equal to �; 1=� (where
we assume that � � 1). If � ¤ 1 the lines of curvature are geodesics in the flat metric
corresponding to the meridional and longitudinal directions. The normal curvatures
and the tube radius, R, are related by coth RD � so they determine each other. We
call tori with these curvature properties tubular.
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We say that an orientable hyperbolic 3–manifold M has tubular boundary if its
boundary components are flat tori with constant principal normal curvatures as above.
The interior of M is known to also admit a complete finite volume hyperbolic metric
[11, Lemma 3.8]. Associated to M is a filled hyperbolic manifold �M . It is canonically
obtained from M by extending the hyperbolic structures on the boundary tori normally
as far as possible. Each added component is topologically a torus crossed with R
and is foliated by tubular tori whose radii go to zero. Then �M is homeomorphic to
the interior of M and has a (typically incomplete) hyperbolic structure. The original
manifold with tubular boundary M is a subset of �M obtained by truncating the ends
of �M along the appropriate tubular tori. Note that �M contains many other manifolds
with tubular boundary obtained by choosing other truncations.

The geometry of the ends of the filled manifold �M is completely determined by the
geometry of the tubular boundary tori of M . In particular, if, for a particular boundary
component, the lines of curvature for the larger curvature � > 1 are parallel closed
curves, the completion of that end of �M will have the structure of a hyperbolic cone
manifold with those curves as meridians around the singular locus. The resulting
cone angles can be read off from the geometry of the boundary and can be arbitrarily
large. In general, these lines of curvature merely determine a foliation on the boundary
torus where the leaves are geodesic in the flat metric on the torus. There is still a
canonical way to extend the structure of the boundary torus in this case but the singular
set for the completion will be a single point with a complicated neighborhood. The
resulting structure obtained by completing �M , including both cone manifolds and this
more general type of singularity, is called a hyperbolic structure with Dehn surgery
singularities. (See Thurston [16] for details.)

Fix a component T of the boundary of a hyperbolic 3–manifold M with tubular
boundary and consider the holonomy group of the fundamental group of that boundary
torus. Assume that � > 1; then each element in the holonomy group will have an
invariant axis. Since the group is abelian, all of the elements fix a common axis in H3 .
Choose a direction along the axis. Then, associated to each element is a complex length
whose real part is the signed translation distance along the axis and whose imaginary
part is the total rotation around the axis. The amount of rotation is a well-defined
real number whose sign is determined by the right hand rule. The map sending an
element of �1.T / D H1.T IZ/ to its complex length is linear and can be extended
canonically to a linear map LW H1.T IR/ ! C . The resulting value L.c/ for any
element c 2H1.T IR/ will be called the complex length of c .

When the complex length of a simple closed curve 
 on T equals 2� i , this implies
that the end of the filled manifold �M corresponding to T completes to a smooth
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structure on the manifold M.
 / obtained from M by Dehn filling with filling curve

 . More generally, if the complex length of 
 equals ˛i , the end completes to a
hyperbolic cone structure on M.
 / with cone angle ˛ . Now assume that the map
LW H1.T IR/!C is a (real) isomorphism. (This holds whenever the complex lengths
of two generators of H1.T IZ/ are linearly independent over the reals, a condition
that holds whenever M has tubular boundary with � > 1 on T .) Then there will be a
unique element c 2H1.T IR/ so that L.c/D 2� i ; we say that c is the Dehn surgery
coefficient of the boundary component T . When c 2H1.T IZ/ is a primitive element,
it corresponds to a simple closed curve and the completion of the end is smooth. When
it is in H1.T IQ/, the completed end has a cone singularity along a core geodesic.

Suppose, for simplicity, that M has a single boundary component T and denote by
X the underlying smooth manifold with boundary. Then the subset of H1.T IR/
consisting of Dehn surgery coefficients of hyperbolic structures with tubular boundary
on X is called the hyperbolic Dehn surgery space for X and will be denoted by
HDS.X /. (Note: In [16] hyperbolic Dehn surgery space is equivalently defined in
terms of the filled in structures.) Thurston’s theorem about the finiteness of exceptional
curves is actually a corollary of his theorem that HDS.X / contains a neighborhood
of infinity (infinity here corresponds to the complete finite volume structure on the
interior of X ). Hence, it contains all but a finite number of points of the integral
lattice H1.T IZ/�H1.T IR/. Similar statements are proved when there are multiple
boundary components.

Thurston’s proof is not effective; it gives no information about the size or shape of
hyperbolic Dehn surgery space which is why there is no information from his proof
about the number of exceptional curves in his finiteness theorem. Note that the vast
majority of the points with integral entries are “near” infinity and thus that the statement
that HDS.X / contains a neighborhood of infinity is really a much stronger statement
than the finiteness of exceptional fillings.

One of the main goals of this paper is to provide an effective proof of Thurston’s
result, one that will guarantee that HDS.X / contains a neighborhood of infinity of
a “uniform” size and shape. To simplify the description of this uniform region, it is
useful to put a metric on H1.T IR/. One way to do this is to consider the complete
structure on the interior of X and take a horospherical torus T embedded in its end.
This torus inherits a flat metric which is well-defined up to scale. The homology group
H1.T IR/ can be canonically identified with the universal cover of T . So the flat
metric on T , normalized to have area 1, induces a flat metric on H1.T IR/ Š R2 .
Note that under this identification, the distance from the origin to point c 2H1.T IZ/
is just the geodesic length of the corresponding closed curve 
 on T measured with
respect to the flat metric on T , normalized to have area 1. This is called the normalized
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length of 
 on T . As with complex length this notion of length can be extended
naturally to define a map yLW H1.T IR/!R; the value yL.c/; c 2H1.T IR/ is called
the normalized length of c .

The theorem below says that, using this metric on the plane, HDS.X / always contains
the complement of a disk of uniform radius around the origin, independent of X .

Theorem 1.1 Consider a complete, finite volume hyperbolic structure on the interior
of a compact, orientable 3–manifold X with one torus boundary component. Let
T be a horospherical torus which is embedded as a cross-section to the cusp of the
complete structure. Consider HDS.X / as a subset of H1.T IR/ŠR2 where the latter
is endowed with the Euclidean metric induced from the universal cover of T with its
flat metric scaled to have unit area. Then HDS.X / contains the complement of a
disk of radius 7:5832, centered at the origin. Equivalently, any c 2H1.T IR/ whose
normalized length yL.c/ is bigger than 7:5832 is in HDS.X /.

In [11] we showed that any simple closed curve 
 on T , viewed as an element of
H1.T IZ/, whose normalized length is at least 7:515 is in HDS.M /. Thus, except
for the slight change in constant (which is due to the tube radius condition required for
the Hodge theorem, as discussed below), Theorem 1.1 is a direct generalization of that
result. The normalized length condition translates easily into an upper bound on the
number of exceptional fillings.

The proof of Theorem 1.1, like the proof of the uniform bound on exceptional fillings,
involves two main steps. First, it is necessary to show that one can deform a given
structure towards the desired structure. For example, in the cone manifold case, one
needs to show that the cone angles can always be increased a small amount. This
step depends on proving a local parametrization theorem, showing that, locally, the
deformations are parametrized by their Dehn surgery coefficients. In order to find
such a local parametrization, one proves a local rigidity theorem which says that
it is impossible to deform the hyperbolic structure while keeping the Dehn surgery
coefficients fixed. The local parametrization then follows by an application of the
implicit function theorem.

The second step is to show that, under certain initial conditions, it is always possible to
deform the complete structure on the interior of X , through hyperbolic structures with
tubular boundary, to one with the desired Dehn surgery coefficient before there is any
degeneration of the hyperbolic structure. This step requires one to control the change
in geometry under the deformation and depends on the analysis in the proof of local
rigidity.
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The proofs of the local rigidity and local parametrization theorems require new analytic
techniques and occupy the next three sections. Once these are established, the arguments
to establish uniform bounds closely follow those in [11]. However, the use of manifolds
with tubular boundary, as opposed to cone manifolds, leads to subtly different estimates
when there are multiple boundary components.

For a compact, orientable, 3–manifold X with multiple torus boundary components
T1; � � � ;Tk , the Dehn surgery space is a subset of

L
i H1.Ti IR/ and the Dehn surgery

coefficient c D .c1; c2; � � � ; ck/ is determined by the Dehn surgery coefficients ci 2

H1.Ti IR/ for each torus. For ci 2H1.Ti IR/ the normalized length yL.ci/ is computed
on a horospherical torus corresponding to Ti in the complete structure on the interior
of X as described above. In this case we prove the following uniform statement:

Theorem 1.2 Consider a complete, finite volume hyperbolic structure on the interior
of a compact, orientable 3–manifold X with k � 1 torus boundary components. Let
T1; � � � ;Tk be horospherical tori which are embedded as cross-sections to the cusps of
the complete structure. Consider HDS.X / as a subset of

L
i H1.Ti IR/. Then there

exists a universal constant C D 7:5832 such that c D .c1; c2; � � � ; ck/ is in HDS.X /
provided the normalized lengths yLi D

yL.ci/ satisfyX
i

1

yL2
i

<
1

C 2
:

When kD 1 this is precisely the same statement as that of Theorem 1.1. In the multiple
cusp case, it again gives a uniform upper bound on the number of exceptional simple
closed curves that need to be excluded from each boundary component so that the
remaining Dehn filled manifolds are necessarily hyperbolic.

However, it should be noted that the bound depends on the number of boundary
components. This is in contrast to Theorem 5.12 in [11] which provides a uniform
bound independent of the number of cusps. The reason for this difference is that in
the previous paper we allow the possibility of increasing the cone angles at varying
rates. Once a cone angle of 2� is attained on one component of the singular locus, it
is no longer changed, while the other angles are increased. We no longer keep track
of the geometry in a neighborhood of the smooth core geodesics. (Indeed, a geodesic
could become nonsimple and change isotopy class.) This was not adequately explained
in [11]; for a discussion of this and other subtler issues that arise in the multiple cusp
case, the reader may consult Purcell [14].

In the current paper, we require a lower bound on the tube radius of all the tubular
boundary components throughout the deformation. This is because, even at the final
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Dehn surgery coefficient, the filled manifold may still have singularities, and thus we
no longer have the luxury of ignoring the tube radius around a component once its
desired surgery coefficient is attained. We always move radially in HDS.X / from
the complete structure to the desired Dehn surgery coefficients (which, when all the
coefficients correspond to simple closed curves, amounts to increasing the cone angles
at equal rates). This provides weaker estimates in the case of multiple cusps. It does,
however, have the advantage in the case of smooth Dehn filling (or cone manifolds) that
the isotopy class of the union of the core geodesics will necessarily remain unchanged.

We also obtain good control on the change in geometry during generalized hyperbolic
Dehn filling. Theorem 5.12 gives explicit upper and lower bounds for the volume and
core geodesic length, with the asymptotic behavior given by Neumann–Zagier in [13].
These bounds are illustrated in Figures 2 and 3 at the end of the paper. For example,
we obtain the following numerical bound.

Theorem 1.3 Let X be a compact, orientable 3–manifold as in Theorem 1.2, and
let V1 denote the volume of the complete hyperbolic structure on the interior of X .
Let c D .c1; : : : ; ck/ 2 H1.@X IR/ be a surgery coefficient with normalized lengths
yLi D

yL.ci/ satisfying X
i

1

yL2
i

<
1

C 2
where C D 7:5832;

and let M.c/ be the filled hyperbolic manifold with Dehn surgery coefficient c . Then
the decrease in volume �V D V1 � vol.M.c// during hyperbolic Dehn filling is at
most 0:198.

We now briefly explain how the use of manifolds with tubular boundary allows us to
avoid the analytic issues that led to the cone angle restriction in [11].

The original local rigidity theory in [9] applies only to hyperbolic 3–manifolds with
conical singularities along a geodesic link where the cone angles are restricted to be
at most 2� . The argument involves finding, for any infinitesimal deformation of the
hyperbolic cone structure, a harmonic representative and then utilizing a Weitzenböck
formula for such harmonic infinitesimal deformations. The analysis using this formula
involves an integration by parts on the complement of a tubular neighborhood of the
singular locus, resulting in a term from the boundary of the tubular neighborhood. Any
deformation for which this boundary term goes to zero as the radius of the tube goes
to zero is seen to be trivial. The main step in [9] is to show that, for any infinitesimal
deformation where all the cone angles are held constant, the boundary term does,
indeed, go to zero as long as the cone angles are at most 2� . The fact that the analysis
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involves arbitrarily small neighborhoods of the singular locus means that it depends
on the asymptotic behavior of harmonic deformations near the singular locus. This
behavior is strongly governed by the value of the cone angle along the singular locus.

To avoid a dependence on the local behavior near the singular locus, it is necessary to
work on the complement of a tubular neighborhood whose tube radius is bounded below.
Again, one must find a harmonic representative for the infinitesimal deformation of the
hyperbolic structure with tubular boundary. Since these infinitesimal deformations can
be viewed as cohomology classes, this can be viewed as Hodge theory on a manifold
with boundary. In this case, when one uses the Weitzenböck formula and integration
by parts, one wants to end up with a boundary term with an appropriate sign. When
such a boundary term is obtained, the conclusion is again that the deformation is trivial,
implying a local rigidity theorem as before.

Thus, a Hodge theory must be developed with the boundary term from the Weitzenböck
formula in mind. To this end, we find a formula for this term in Section 2. The formula
derived there is quite general and is valid for any hyperbolic 3–manifold with boundary,
not just those with tubular boundary. As a result, it should have applications in other
contexts and may be of independent interest.

The form of this Weitzenböck boundary term motivates the specific boundary conditions
we require for our Hodge representative when the manifold has tubular boundary. The
proof that the corresponding boundary value problem can always be uniquely solved
is contained in Section 4. This result requires a universal lower bound on the tube
radius of the tubular boundary components. By definition the tube radius R of a
tubular boundary component is determined by the formula coth RD � , where � � 1

is the larger of the two principal curvatures on that component. When � D 1 (which
corresponds to a horospherical torus), the tube radius is said to be infinite.

Once the required Hodge theorem is proved, similar arguments to those in [9] imply
the following local rigidity and local parametrization result. The previous cone angle
restriction has been removed and is replaced by a mild restriction on the tube radius.
For simplicity, we also assume that all tube radii are finite.

Theorem 1.4 Let M be a compact, orientable hyperbolic 3–manifold with tubular
boundary and suppose that the tube radius of each boundary component is finite and at
least R0Darctanh.1=

p
3/�0:65848: Then there are no deformations of the hyperbolic

structure fixing the Dehn surgery coefficient of M . Furthermore, the nearby hyperbolic
structures with tubular boundary are parametrized by their Dehn surgery coefficients.
In particular, a finite volume hyperbolic cone-manifold with singularities along a link
and tube radii at least R0 has no deformations of the hyperbolic structure keeping the

Geometry & Topology, Volume 12 (2008)



The shape of hyperbolic Dehn surgery space 1041

cone angles fixed, and the nearby hyperbolic cone-manifold structures are parametrized
by their cone angles.

Once this analytic theory for hyperbolic manifolds with tubular boundary is developed
and the above local rigidity theorem is proved, the arguments in [11] go through with
minor changes. Indeed, much of that paper was written in the context of manifolds with
tubular boundary, once the necessary analytic and geometric control was derived. These
arguments are recalled in Section 5, where they are then applied to prove Theorems 1.1
and 1.2 and other results.

Acknowledgements The research of the first author was partially supported by grants
from the ARC. The research of the second author was partially supported by grants
from the NSF.

2 Preliminary material

In this section we recall the basic setup for the harmonic deformation theory of hyper-
bolic structures on 3–manifolds. The reader is referred to the papers [9] and [11] for
details, and to [10] for a survey of the theory and its applications.

An infinitesimal deformation of a hyperbolic structure on a hyperbolic 3–manifold M

is given by a cohomology class in H 1.M IE/ where is E is the bundle of (germs of)
infinitesimal isometries of H3 . By viewing this cohomology group in terms of de Rham
cohomology, such a cohomology class can be represented by a 1–form with values
in E . The 1–form will be closed with respect to the E–valued exterior derivative
which we denote by dE . A representative for a cohomology class can be altered
by a coboundary without changing its cohomology class. An E–valued 1–form is
a coboundary precisely when it can be expressed as dEs , where s is an E–valued
0–form, ie a global section of E .

A standard method for choosing a particularly nice representative in a cohomology
class is to find a harmonic representative: one that is co-closed as well as closed.
On a closed manifold such a harmonic representative is unique. When the manifold
is noncompact or has boundary, it is necessary to choose asymptotic or boundary
conditions to guarantee existence and uniqueness.

When M is a hyperbolic 3–manifold with tubular boundary, one can begin with
a representative y! 2 H 1.M IE/ that has a special form in a neighborhood of the
boundary. In [9], when M is a hyperbolic cone manifold, specific closed E–valued
1–forms, which we call standard forms, are defined in a neighborhood of the singular
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locus. The same forms are defined in the neighborhood of the boundary components of
a general hyperbolic manifold with tubular boundary. They have the property that any
possible infinitesimal change in the holonomy representation of the fundamental group
of a boundary torus can be induced by one of these forms. As a result, by standard
cohomology theory, for any infinitesimal deformation of the hyperbolic cone manifold
structure, it is possible to find a closed E–valued 1–form y! on M which equals one
of these standard forms in a neighborhood of each torus boundary.

The standard forms are harmonic so the E–valued 1–form y! will be harmonic in
a neighborhood of the boundary but not generally harmonic on all of M . Since
it represents a cohomology class in H 1.M IE/, it will be closed as an E–valued
1–form, but it won’t generally be co-closed. If we denote by ıE the adjoint of
the exterior derivative, dE , on E–valued forms, then this means that dE y! D 0, but
ıE y!¤0 in general. Finding a harmonic (ie dE closed and ıE co-closed) representative
cohomologous to y! is equivalent to finding a global section s such that

ıEdEs D �ıE y!:(1)

Then, ! D y! C dEs satisfies ıE! D 0; dE! D 0; so it is a closed and co-closed
representative in the same cohomology class as y! .

The fibers of the bundle E are all isomorphic to the Lie algebra g of the Lie group
of isometries of hyperbolic space. One special feature of the 3–dimensional case
is the complex structure on the Lie algebra g Š sl2C . The infinitesimal rotations
fixing a point p 2 H3 can be identified with su.2/ Š so.3/, and the infinitesimal
pure translations at p correspond to i su.2/ Š TpH3 . Geometrically, if t 2 TpH3

represents an infinitesimal translation, then i t represents an infinitesimal rotation with
axis in the direction of t . Thus, on a hyperbolic 3–manifold M we can identify the
bundle E with the complexified tangent bundle TM ˝C . At each point, the fiber
decomposes into a real and imaginary part, representing an infinitesimal translation
and an infinitesimal rotation, respectively, and we can speak of the real and imaginary
parts of an E–valued form.

In [9] it was shown that in order to solve Equation (1) for E–valued sections, it suffices
to solve the real part of the equation. The real part of a section s of E is just a (real)
section of the tangent bundle of M ; ie, it is a vector field, which we denote by u. The
real part of ıEdEs equals .r�rC2/u, where r denotes the (Riemannian) covariant
derivative and r� is its adjoint. The composition r�r is sometimes called the “rough
Laplacian” or the “connection Laplacian”.

To solve the real part of the Equation (1), we find that the computations are somewhat
easier if we replace vector fields by their dual real-valued 1–forms. We take the real part
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of �ıE y! , considered as a vector field, and denote its dual 1–form by � . The operator
.r�r C 2/ on vector fields becomes y4C 4 on dual 1–forms, where y4D ydyıCyı yd is
the usual Laplacian on real-valued 1–forms and we are denoting the exterior derivative
and its adjoint on M by yd and yı , respectively. We must then solve the equation

. y4C 4/ � D �;(2)

for a globally defined real-valued 1–form � on M , which will be dual to the vector
field u.

For a manifold with boundary it is necessary to prescribe boundary conditions on
� for this problem to have a unique solution. The boundary conditions we choose
are nonstandard and very specific to our hyperbolic deformation theory context. In
particular, the local rigidity results that we seek depend on a Weitzenböck formula for
harmonic E–valued 1–forms. This formula contains a boundary term whose sign is
crucial to the argument. The harmonic form ! 2H 1.M IE/ is obtained by solving
(2), which, in turn, gives us a solution to (1). Since ! D y!C dEs and y! is standard
in a neighborhood of the boundary, our boundary term will have a contribution from
the standard form, which is quite explicit, and from the correction term dEs . The
behavior of the latter depends on our choice of boundary condition when solving (2).
A major consideration when choosing a boundary condition is that the contribution to
the Weitzenböck boundary term from the correction term dEs be nonpositive.

In Section 2 we compute a formula for this contribution for a general hyperbolic 3–
manifold with boundary. We then specialize to our current situation of a hyperbolic
manifold with tubular boundary and choose boundary conditions specific to this case.
In Section 4 we prove that the problem of solving (2) with these boundary conditions
always has a unique solution.

We now recall the Weitzenböck formula for harmonic E–valued 1–forms, referring to
[9] and [11] for details and proofs.

We can decompose any ! 2H 1.M;E/ into its real and imaginary parts ! D �C iz�,
where � and z� are vector field valued 1–forms on M which we can view as elements
of Hom.TM;TM / at each point of M . The real symmetric part of ! , viewed as a
symmetric 2–tensor, describes the infinitesimal change in the metric induced by the
infinitesimal deformation corresponding to ! .

One can always choose a representative for a cohomology class where � is symmetric,
when viewed as a section of the bundle Hom.TM;TM /. To do this, one notes that,
since ! is dE –closed, it is the image of a locally defined section. Then � is symmetric
if the local section has the property that its imaginary part equals 1

2
of the curl of the

real part, where both the real and imaginary parts are viewed as locally defined vector
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fields. It is shown in [9] that such a choice of local section is always possible; in that
paper, such a local section was called a canonical lift of the real part. (Note, however,
that the definition of curl in that paper differs from the standard one, which is the one
used here, by a sign and a factor of 2).

If ! is harmonic then � satisfies the equation

.D�DCDD�/� C � D 0

where D denotes the exterior covariant derivative on vector valued 1–forms and D� is
its adjoint. If � is also traceless then it satisfies D��D 0; hence, it satisfies the simpler
equation

D�D� C � D 0:(3)

In this case we have that z�D y�D�, where y� is the Hodge star operator on forms in
M and takes the vector valued 2–form D� to a vector valued 1–form. It is also true
in this case that y�D� is symmetric and traceless. Thus, we can write

! D � C z� D � C i y�D�;(4)

where both � and y�D� are symmetric and traceless.

Let M be a hyperbolic 3–manifold with tubular boundary, whose boundary components
are tori of tube radii R1; : : : ;Rk . The boundary components will always be oriented
by the inward normal for M . For any TM –valued 1–forms ˛; ˇ we define

bR.˛; ˇ/D

Z
@M

y�D˛^ˇ;(5)

where R denotes the vector .R1; : : : ;Rk/.

In this integral, y�D˛ ^ˇ denotes the real valued 2–form obtained using the wedge
product of the form parts, and the geometrically defined inner product on the vector-
valued parts of the TM –valued 1–forms y�D˛ and ˇ .

Returning to Equation (3), we take the L2 inner product on M of this equation with
� and integrate by parts. We then obtain the following Weitzenböck formula with
boundary for any harmonic infinitesimal deformation ! of the form (4):

jjD�jj2 C jj�jj2 D bR.�; �/:(6)

In particular, for a nontrivial infinitesimal deformation, the boundary term bR.�; �/ must
be positive. The proof in [9] that there are no infinitesimal deformations of hyperbolic
cone manifolds (with cone angles at most 2� ) fixing the cone angles amounts to
showing that, for a deformation fixing the cone angles, a harmonic representative !
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can be found so that this boundary term goes to 0 as the tube radius goes to zero. The
results in the current paper depend on showing that when the Dehn surgery coefficients
are all preserved (and the tube radii are all bigger than a universal constant), a harmonic
representative can be found so that this boundary term is nonpositive.

Recall that the harmonic form ! will be found by starting with a representative y!
which equals a standard form !0 in a neighborhood of the boundary, hence is harmonic
in that neighborhood, but not globally harmonic. Solving Equation (1) provides a
correction term dEs that is added to y! to make it globally harmonic. We denote the
correction term in a neighborhood of the boundary by !c and decompose the harmonic
representative ! as !D!0C!c in that neighborhood. Note that, since !0 is harmonic,
the correction term !c will also be harmonic in that neighborhood.

The standard forms are all of the form (4) and their real parts satisfy Equation (3). Thus,
being able to write ! in this form is equivalent to being able to solve (1) in such a way
that !c can be written in this form. Then, in a neighborhood of the boundary, we write
the real part of ! as the sum of the real part of !0 and that of !c , �D �0C �c . Both
�0 and �c satisfy Equation (3) in that neighborhood.

Using this decomposition of � on the boundary, we can try to compute the boundary
term bR.�; �/. In [11] we saw that the cross-terms vanish so that the boundary term is
simply the sum of two boundary terms:

bR.�; �/D bR.�0; �0/C bR.�c ; �c/:(7)

Since the standard forms are quite explicit, it is fairly easy to find conditions under
which the term bR.�0; �0/ is nonpositive and to estimate its value in general. Thus,
we finally come to the boundary value problem we wish to solve:

Boundary Value Problem Find boundary conditions on the real-valued 1–form �

so that there is always a unique solution to Equation (2) when � is smooth on all
of M , including the boundary. Furthermore, these boundary conditions must ensure
that !c satisfies (4), hence that �c satisfies Equation (3). Finally, the boundary term,
bR.�c ; �c/, in the Weitzenböck formula (7) must always be nonpositive.

3 The Weitzenböck correction term

In this section we derive a general formula for a boundary integral (see (10) below),
which we refer to as the Weitzenböck correction term, that arises in the Weitzenböck for-
mula (6) for harmonic infinitesimal deformations of a compact hyperbolic 3–manifold
with boundary. We then specialize to the special case of interest in this paper, when
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the boundary is tubular. We further compute the boundary term in this case under the
hypothesis of specific boundary conditions. In the next section we show that such
boundary conditions can always be realized.

Let M be an oriented compact hyperbolic 3–manifold with boundary @M and let
E be the bundle of (germs of) infinitesimal isometries on M . We denote by dE

the coboundary operator on smooth E–valued i –forms on M ; the latter are denoted
by �i.M IE/. This operator satisfies the equation d2

E
D 0 and H 1.M IE/, the

first cohomology of M with coefficients in E , is defined to be the dE –closed E–
valued 1–forms modulo those of the form dEs where s is an E–valued 0–form; ie, a
global section of E . This cohomology group represents the (scheme of) infinitesimal
hyperbolic deformations of M .

As discussed in the previous section, a boundary integral, bR.�; �/, occurs in the
Weitzenböck formula that holds for a class of harmonic (dE –closed and co-closed) E–
valued 1–forms. In the case when M has tubular boundary, these harmonic forms are
constructed by adding a coboundary of the form dEs to a representative in H 1.M IE/

which is in a standard form near the boundary. In particular, we are interested in
the contribution to the boundary integral coming from this coboundary. Because of
the decomposition (7) of the boundary integral, this contribution can be computed as
a boundary integral involving only the E–valued 1–form dEs . In this section we
compute this boundary integral, on a general compact hyperbolic 3–manifold with
boundary, for any E–valued 1–form that is of the form dEs .

In the previous section we observed that the bundle E can be identified with the
complexified tangent bundle TM ˝C . Then, a global section s of E can be written
as sD uCzu i where u; zu are global vector fields on M . Similarly we can decompose
dEs 2�1.M IE/ into its real and imaginary parts dEs D �c C z�ci . Both �c and z�c

are vector field valued 1–forms; ie, elements of �1.M ITM /. They can equivalently
be viewed as elements of Hom.TM;TM /. In [9] we computed that

dEs D �c C z�ci D .Du� rot zu/C .DzuC rot u/i(8)

where Du 2�1.M ITM / is the covariant derivative of the vector field u and rot u 2

Hom.TM;TM / at any point p 2M is the infinitesimal rotation determined by the
tangent vector u.p/ 2 TpM . Thus for each tangent vector X 2 TM ,

Du.X /DrX u and rot u.X /D u�X;(9)

where � denotes the cross product defined by the Riemannian metric and orientation
on M .
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We now define the boundary integral of interest to us. For any element dEsD�cCz�ci 2

�1.M IE/ we define the Weitzenböck correction term by

(10) b D

Z
@M

�c ^ z�c ;

where the boundary is oriented with respect to the inward normal. Of course, this
integral can be defined for any element of �1.M IE/, decomposed into its real and
imaginary part. However, we will only be interested in this section in computing it
for those elements which are coboundaries; hence, the name “correction term”. Much
of our computation is valid for any such element, but we will then specialize to the
case where both �c and z�c are symmetric which is the case that will arise during the
process of finding a harmonic representative discussed in the previous section. In that
situation we will also have the relation z�c D y�D�c from which it follows immediately
that the Weitzenböck correction term equals � bR.�c ; �c/, where bR is defined by (5).
As discussed in the previous section, because of the Weitzenböck formula (6) and its
decomposition (7) we will be interested in finding boundary conditions on s that will
guarantee that bR.�c ; �c/ is nonpositive. Thus, we will be interested in conditions that
will imply that the Weitzenböck correction term is nonnegative.

In order to compute this boundary integral, it is useful to decompose sections and forms
into their tangential and normal parts near the boundary. Specifically, the surfaces
equidistant from @M give a foliation in a neighborhood of @M in M , and there is a
unit vector field n consisting of normal vectors to these equidistant surfaces pointing
inwards from @M . The vector field u on M can be decomposed near @M as

uD vC hn

where v is the component tangent to the equidistant surfaces and h D u � n is the
component in direction of the normal n. (We use � to denote the Riemannian inner
product on M .) Similarly, we write

zuD zvC zhn:

As in (8) above we write dEs D �c C z�ci where s D uC zui is a global section,
decomposing both s and dEs into their real and imaginary parts. We are only interested
in the values of �c and z�c restricted to @M . Viewed as a TM –valued 1–form there,
for each X 2 Tp.@M / we decompose �c.X / into a tangential part G.X / and normal
part F.X /. We can then write

�c.X /DG.X /CF.X /n; where G.X / 2 Tp.@M /; F.X / 2R:

Similarly we decompose z�c.X / into a tangential part zG.X / and a normal part zF .X /.
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Finally, let S W T .@M /! T .@M / denote the shape operator defined by S.X /DrX n

where n is the inward unit normal to @M . Then S is a self-adjoint operator whose
eigenvalues are the principal curvatures of @M , tr S D H is the mean curvature of
@M and det.S/ D Kext is the extrinsic curvature of @M . (Note that with our sign
convention for S , the principal curvatures are positive when @M is concave.)

With this notation established, we make the following computation:

Lemma 3.1 Let �; z� be the 1–forms on @M dual to the vector fields v; zv on @M .
Then, using the notation above, G; zGW Tp.@M /! Tp.@M / and F; zF W Tp.@M /!R
are given by

G D xDvC hS � zhJ; zG D xDzvC zhS C hJ

F D dh�S� ��z�; zF D d zh�Sz� C��and

where xD is the exterior covariant derivative on @M , S is defined on 1–forms � by
S�.X /D Sv �X D �.SX /, and J W T .@M /! T .@M / is the rotation by �=2 given
by JX D n�X (so J 2 D�identity).

Proof For X 2 T .@M / we have, using equations (8) and (9),

�c.X /DrX u� zu�X

DrX .vC hn/� .zvC zhn/�X

DrX vC hrX nCX.h/n� zv�X � zhn�X:

Thus the tangential part GW Tp.@M /! Tp.@M / is given by

G.X /D xrX vC hS.X /� zhn�X D . xDvC hS � zhJ /.X /

where xr; xD denote the Riemannian connection and exterior covariant derivative on
@M . Further the normal component F W T .@M /!R is given by

F.X /D �c.X / � nDX.h/� zv�X � nC .rX v/ � n

D grad h �X � n� zv �X � v � rX n

D .grad h�J zv�S.v// �X

D .dh��z� �S�/.X /:

Similarly, we find z�cDDzuCrot u has tangential part zGW Tp.@M/! Tp.@M/ given by

zG.X /D xrX zvC zhS.X /C hn�X D . xDzvC zhS C hJ /.X /

and normal part zF W T .@M /!R given by

zF .X /DX.zh/C v�X � nC .rX zv/ � nD .d zhC�� �Sz�/.X /:
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We can view F; zF and G; zG as real-valued and vector-valued 1–forms on @M . It
is then possible to define the wedge products F ^ zF and G ^ zG , where in the latter
case we also use the dot product on TM from the hyperbolic metric on M to obtain a
real-valued 2–form. Then our boundary term can be expressed in terms of these wedge
products as

b D

Z
@M

�c ^ z�c D

Z
@M

F ^ zF CG ^ zG:

We will now compute the two summands in this expression separately. First recall
that if ! is a 1–form on a Riemannian 3–manifold M , then its exterior derivative d!

satisfies
d!.X;Y /DX!.Y /�Y!.X /�!.ŒX;Y �/

for all vector fields X;Y on M . We can also rewrite this using covariant derivatives:

(11) d!.X;Y /DrX! .Y /�rY ! .X /

since rX Y �rY X D ŒX;Y �.

To analyze the boundary term
R
@M G ^ zG we will use the following.

Lemma 3.2 Let v; zv be vector fields on @M with dual 1–forms �; z� , and let dA

denote the area 2–form on @M . Denote by ı the adjoint of the exterior derivative on
@M . Then

(1) J ^S D tr S dADH dA where H is the mean curvature of @M ,

(2) J ^ xDv D�� ı� ,

(3) xDv^S D d.S�/,

(4) S ^S D 0,

(5) J ^J D 0,

(6)
R
@M
xDv^ xDzvD hK�;�z�i, where K is the Gaussian curvature of @M and h�; �i

is the L2 inner product on @M .

Proof Let e1; e2 be an oriented orthonormal basis for Tp.@M /. Then for any linear
operator LW Tp.@M /! Tp.@M / we have

.J ^L/.e1; e2/D J.e1/ �L.e2/�J.e2/ �L.e1/

D e2 �L.e2/C e1 �L.e1/D tr L:

Hence J ^S D tr S dADH dA and J ^ xDv D tr xDv dAD div v dAD�� ı� .
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Next we prove part (3). For X;Y 2 Tp.@M / we have

. xDv^X /.X;Y /DrX v �S.Y /�rY v �S.X /

D II.rX v;Y /� II.rY v;X /

DXII.v;Y /� II.v;rX Y /� .rX II/.v;Y /

� .YII.v;X /� II.v;rY X /� .rY II/.v;X //

where II.X;Y / D S.X / � Y D X � S.Y / is the second fundamental form. But
.rX II/.v;Y /D .rY II/.v;X / by the Codazzi–Mainardi equations for a space of con-
stant curvature (see, for example, Spivak [15, Chapter 1, Theorem 11 and Corollary 12]).
Hence

. xDv^S/.X;Y /DXII.v;Y /�YII.v;X /� II.v; ŒX;Y �/

DX.Sv �Y /�Y .Sv �X /�Sv � ŒX;Y �

DX.S�.Y //�Y .S�.X //�S�.ŒX;Y �/

D d.S�/.X;Y /:

Finally, we have S ^ S D 0 and J ^ J D 0 by the skew-symmetry of the wedge
product, and for vector fields X;Y on @M we have

D2v.X;Y /D xrX
xrY v� xrY

xrX v� xrŒX ;Y �v D xR.X;Y /v;

where xR is the Riemann curvature tensor on @M . But xR.e1; e2/ is infinitesimal
rotation by �K , hence D2v D�KJv dA where dA is the area 2–form on @M andZ

@M

xDv^ xDzv D

Z
@M

d.v^ xDzv/� v^D2
zv D

Z
@M

Kv �J zv dAD hK�;�z�i

by Stokes’ theorem. This completes the proof of the Lemma.

Using this result and Lemma 3.1 we obtain:

Lemma 3.3Z
@M

G ^ zG D hzh;�dS�i � hh;�dSz�iC hh; ı�iC hzh; ız�i

� .hHh; hiC hH zh; zhi/ChK�;�z�i;

where h˛; ˇi D
R
@M ˛^�ˇ denotes the L2 inner product on @M .

Next we study the boundary term
R
@M F ^ zF D�hF;� zFi. From Lemma 3.1 we have

F D dh�S� ��z� and zF D d zh�Sz� C��:

Geometry & Topology, Volume 12 (2008)



The shape of hyperbolic Dehn surgery space 1051

Using this we obtainZ
@M

F ^ zF D�hdh�S� ��z�;�d zh��Sz� � �i

D �hdh;�d zhiC hdh;�Sz� C �i

C hS� C�z�;�d zhi � hS� C�z�;�Sz� C �i:

But the first term vanishes since

�hdh;�d zhi D

Z
@M

dh^ d zhD

Z
@M

d.h^ d zh/D 0;

so we obtain:

Lemma 3.4Z
@M

F ^ zF D hdh;�Sz� C �iC hS� C�z�;�d zhi � hS� C�z�;�Sz� C �i:

Combining the previous results gives the following:

Theorem 3.5 Let s D uC i zu be a section of the bundle E and let dEs D �c C iz�c

denote its image under the coboundary operator dEs . Suppose that u D v C hn,
zuD zvC zhn are the decompositions into tangential and normal parts of the vector fields
u; zu. Denote by �; z� the 1–forms on that are dual on @M to the vector fields v; zv ,
respectively. Then the Weitzenböck boundary term equals

b D

Z
@M

�c ^ z�c D 2.hh; ı�iC hzh; ız�i/� hS� C�z�;�Sz� C �i

�.hHh; hiC hH zh; zhi/ChK�;�z�i:

Proof From the previous lemmas we haveZ
@M

�c ^ z�c D

Z
@M

F ^ zF CG ^ zG

D hdh;�Sz�iC hdh; �iC hS�;�d zhiC h � z�;�d zhi

�hS� C�z�;�Sz� C �i

�hh;�dSz�iC hh; ı�iC hzh;�dS�iC hzh; ız�i

�.hHh; hiC hH zh; zhi/ChK�;�z�i:

We can simplify this sum by noting that hdh; �i D hh; ı�i, h � z�;�d zhi D hzh; ız�i,
hdh;�Sz�i�hh;�dSz�iD 0, and hS�;�d zhiChzh;�dS�iD 0. This gives the result.
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The computation of the boundary term in Theorem 3.5 is valid for general elements
�c ; z�c 2�

1.M ITM / that are of the form dEs D �cC z�ci . However, this boundary
term is primarily of interest when it comes from the Weitzenböck formula (6), as
discussed in the previous section. Specifically, we are interested in the case when, in a
neighborhood of the boundary, both �c ; z�c are symmetric and traceless when viewed
as elements of Hom.TM;TM /. Writing s D uC i zu as before, the condition that �c

and z�c are symmetric is equivalent to the equations (derived in [9, Section 2]):

(12) 2zuD curl u; 2uD�curl zu

Here we view the curl of a vector field in 3–dimensions as itself being a vector field.
Then, on the boundary of M , the normal component of the 3–dimensional curl of u is
just the (scalar) 2–dimensional curl of v , the tangential part of u. A similar statement
holds for the normal component of curl zu. Since the normal components of u; zu equal
h; zh, respectively, we obtain:

(13) 2zhD curl v D �d� and 2hD�curl zv D�� dz�;

where �; z� are the 1–forms on @M dual to v; zv , respectively, and d denotes the
exterior derivative operating on forms on @M .

Note that the equations (12) only hold in a neighborhood of the boundary. However,
since all our computations are local to the boundary, this will suffice. It turns out that
(12) also implies that �c and z�c are traceless (using div curl D 0), but we will not use
this in our computations.

Using (13) we can rewrite b in terms of � and z� . We compute

2hh; ı�i D �h � dz�; ı�i D �hı.�z�/; ı�i D �h � z�; dı�i;

2hzh; ız�i D h � d�; ız�i D �hd�; d.�z�/i D �hıd�;�z�i;

and note that

h � dz�;�dz�i D hı.�z�/; ı.�z�/i; h � d�;�d�i D hd�; d�i:

Then we obtain

b D�h� z�; dı� C ıd�i � hS� C�z�;�Sz� C �i(14)

�
1

4
.hH ı.�z�/; ı.�z�/iC hHd�; d�i/ChK�;�z�i:

Equations (12) provide relations between u and zu, equations (13) coming from the
normal component of those relations. Similarly, the tangential component of (12)
implies that zv , hence z� , can be expressed in terms of u and its derivatives in a
neighborhood of the boundary. In the next section we will define boundary conditions
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that will allow us to express z� on @M purely in terms of � and its tangential derivatives.
In particular, the expression will not involve the normal component h or normal
derivatives of � .

There are many possible boundary conditions of this sort and we denote by A a general
linear differential operator on 1–forms on @M . Then, as a simplifying notational
device, we can express the relation between z� and � on @M as:

(15) z� D �A�

Finally, it is useful to define a linear operator yS on 1–forms by yS D��S�, so that
�Sz� D yS � z� . It is easy to check that this operator satisfies

ySS D det.S/I DKextI;

where Kext is the extrinsic curvature of @M . It follows, since the curvature of the
ambient hyperbolic manifold equals �1, that

ySS � I D .Kext� 1/I DKintI DKI:

As before K denotes the intrinsic Gaussian curvature of @M .

Rewriting Equation (14) using the operators yS and A we find

b D hA�;��iC h.A�S/�; .I � ySA/�i

�
1

4
.hH ıA�; ıA�iC hHd�; d�i/� hK�;A�i:

Hence we obtain:

Theorem 3.6 If 2zh D curl v D �d� , 2h D �curl zv D � � dz� , yS D � � S� and
z� D �A� , then the Weitzenböck boundary term is given by

(16) b D h.A�S/�; .I� ySA/�iChA�; .��K/�i�
1

4
.hH ıA�; ıA�iChHd�; d�i/:

We observe that the expression for the boundary term in Theorem 3.6 can be viewed
as a quadratic form on 1–forms � . Except for the operator A, the basic terms in this
quadratic form come from the geometry of the boundary of M . In particular, S;K;H

are the shape operator, Gaussian curvature and mean curvature of @M . So, given the
manifold M with its boundary @M , the only flexibility we have on this quadratic form
is the tangential operator A. We can attempt to control this operator by our choice of
boundary conditions when solving Equation (2). Recall that the 1–form � in (2) is
dual to the vector field u which in turn determines zu by (12).
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Our goal is to find boundary conditions which determine an operator A with the
property that this quadratic form is positive semi-definite; ie, so that the boundary term
(16) is nonnegative for all � .

We now specialize to the case when M has tubular boundary. Then each boundary
component is topologically a torus, and the principal curvatures k1; k2 are constant
so that the mean curvature H D k1 C k2 is constant. The extrinsic curvature is
KextD k1k2D 1 and the intrinsic curvature is KD 0; ie, the torus is flat. The operator
yS equals S�1 in this case and both S and yS are parallel. Then the boundary term
simplifies to

b D h.A�S/�; .I � ySA/�iC hA�;��i �
H

4
.hıA�; ıA�iC hd�; d�i/:(17)

If we denote by A0 the 0–th order part of the operator A (ie, the part that involves
taking no derivatives), then the 0–th order part of this quadratic form is simply

h.A0�S/�; .I � ySA0/�i D �h.A0�S/�;S�1.A0�S/�i;

where we have used that fact that yS D S�1 to obtain the second expression. Since
S�1 is a positive operator this quantity is nonpositive. Our only hope of having a
nonnegative quadratic form is to choose A so that A0 D S .

The computations below show that the choice of ADS in fact does lead to a nonnegative
quadratic form. However, as will be discussed in the next section, we have been unable
to find an elliptic boundary value problem that leads to this value of A. Nevertheless,
we are able to find such a boundary value problem that leads to a slightly perturbed
value of A that still defines a nonnegative quadratic form.

Suppose the tangential operator A equals

(18) AD S C
"

2
ıd;

where " > 0 is a constant. Thus, in the above Weitzenböck boundary term we have
A�S D ."=2/ıd and I � ySAD I � ySS � ."=2/ ySıd D�."=2/ ySıd:

In the next section we will show that it is always possible to solve Equation (2) in
such a way that the 1–forms �; z� arising from the solution satisfy the relation (15)
with this value of A. For now, we will assume that this can be done and complete the
computation of the boundary term with this value of A.
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Now ıA D ıS C "
2
ııd D ıS and hıd�; dı�i D hd�; ddı�i D 0, so Equation (17)

becomes

b D

Z
@M

�c ^ z�c D hS�;��i �
H

4
.hıS�; ıS�iC hd�; d�i/

�

�"
2

�2

hıd�; ySıd�iC
"

2
hıd�; ıd�i;

and we want to find geometric conditions on @M guaranteeing that this boundary term
is nonnegative.

First we consider hıS�; ıS�iC hd�; d�i and hS�;��i. Since the metric on @M is
Euclidean, we can choose a parallel orthonormal frame field e1; e2 on @M consisting
of eigenvectors of S with eigenvalues k1; k2 at every point. Let �1; �2 be the dual
1–forms on @M and write � D �1�1C �2�2 . Now, using Equation (11),

d� D .r1�2�r2�1/ dA and � ı.S�/D .k1r1�1C k2r2�2/ dA

where ri D xrei
for i D 1; 2. Hence

.�ıS�/2C .�d�/2 D k2
1 .r1�1/

2
C k2

2 .r2�2/
2
C .r1�2/

2
C .r2�1/

2

C2 .k1k2.r1�1/.r2�2/� .r1�2/.r2�1// :

Since k1k2 D 1 the bracketed terms become

r1�1r2�2�r1�2r2�1 D d�1 ^ d�2.e1; e2/;

and their integral over @M isZ
@M

d�1 ^ d�2 D

Z
@M

d.�1 ^ d�2/D 0:

Hence

kıS�k2Ckd�k2 D k2
1kr1�1k

2
C k2

2kr2�2k
2
Ckr1�2k

2
Ckr2�1k

2

where k � k is the L2 –norm on @M . Using integration by parts,

hS�;��i D

Z
@M

2X
iD1

ki�i��i D

2X
iD1

kik grad �ik
2
D

2X
i;jD1

kikrj�ik
2:
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Combining the last two equations and using k1k2 D 1 we obtain

4hS�;��i �H.kıS�k2Ckd�k2/

D .3� k2
1 /k1kr1�1k

2
C .3k1� k2/kr2�1k

2

C .3k2� k1/kr1�2k
2
C .3� k2

2 /k2kr2�2k
2

D

2X
i;jD1

.3� k2
i /kjkri�jk

2

To examine the other terms, write ıd� D a1�1C a2�2 . Then

ySıd� D k2a1�1C k1a2�2

since yS D S�1 and k1k2 D 1. Hence

"

2
hıd�; ıd�i �

�"
2

�2

hıd�; ySıd�i D
"

2

Z
@M

�
.a2

1C a2
2/�

"

2
.k2a2

1C k1a2
2/
�

dA

D
"

2

Z
@M

�
.1�

"

2
k2/a

2
1C .1�

"

2
k1/a

2
2

�
dA:

This will be nonnegative provided "=2� 1=k2 D k1 and "=2� 1=k1 D k2 , that is, if
0� "=2�min.k1; k2/.

This gives our final conclusion:

Theorem 3.7 Let M be a hyperbolic 3–manifold with tubular boundary and let AD

SC ."=2/ıd where " > 0 is a constant. If 2zhD curl vD�d� , 2hD�curl zvD��dz�

and z� D �A� , then the Weitzenböck correction term b D
R
@M �c ^ z�c is

1

4

2X
i;jD1

.3� k2
i /kjkri�jk

2
C
"

2

Z
@M

�
.k2�

"

2
/a2

1C .k1�
"

2
/a2

2

�
dA:

Hence the boundary term is nonnegative if the principal curvatures k1; k2 satisfy

1
p

3
� k1 � k2 �

p
3

and "� 2k1 .

4 Boundary values

In this section we will describe a boundary value problem that will allow us to find
harmonic representatives for infinitesimal deformations of hyperbolic 3–manifolds with
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tubular boundary whose boundary values are of the form discussed in the previous sec-
tion. This will allow us to make statements about the boundary term in the Weitzenböck
formula which, in turn, will lead to local rigidity results for such 3–manifolds. Those
results and other applications will be discussed in Section 5.

In Section 2 we saw that finding a harmonic representative ! for an infinitesimal
deformation amounts to finding a real-valued 1–form � which is a solution to the
equation . y4C4/� D � . Here, � is a smooth, real-valued 1–form which equals zero in
a neighborhood of the boundary and y4 is the usual Laplacian on real-valued 1–forms
on M . The 1–form � is dual to a vector field u on M which is the real part of
an E–valued section s and the coboundary dE s is added to the original E–valued
1–form in order to make it globally harmonic. The boundary behavior of � determines
that of s and hence of dE s; providing information about the boundary values of ! .

In order to have any control over the behavior of � near the boundary, it is necessary to
put restrictions on the domain of the operator . y4C 4/. However, the restrictions must
still allow the above problem to be solvable. Below, we will define boundary data that
the real-valued 1–form � must satisfy which make this operator elliptic, self-adjoint
with trivial kernel. Standard theory (Chapter X in Hörmander [12]) then implies that
the above problem is uniquely solvable; when � is smooth, as it is in our situation, the
solution � will be smooth.

There are many choices for such boundary conditions. Standard examples include
prescribing that either the value or the normal derivative of � be zero, analogous to
Dirichlet and Neumann conditions for the Laplacian on real-valued functions. However,
our choice is motivated by the further condition that the resulting Weitzenböck correction
term b defined in (10) be positive. None of the more standard choices of boundary
data have this property.

In order to describe our boundary conditions we first need to establish some notation.

The above Laplacian on 1–forms, y4, equals

yd yıCyı yd

where yd is exterior differentiation on M and yı its adjoint. We will denote by d and
ı the corresponding operators on @M . Similarly, we use the notation y� to denote
the 3–dimensional Hodge star operator on forms, reserving the notation � for the
corresponding operator on the boundary.

It is also useful to define operators dS DSd and ıS D ıS operating on functions on the
boundary and on tangential 1–forms respectively. Here S is the second fundamental
form or shape operator on the boundary, with normal chosen so that, in our situation
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with concave boundary, S is positive definite. We also define �S D ıdCdSıS , which
acts on tangential 1–forms.

Recall the basic setup from Section 2: We begin with an E–valued 1–form y! which
represents the cohomology class in H 1.M IE/ determined by our infinitesimal de-
formation. It satisfies dE y! D 0, but, in general, ıE y! ¤ 0. To find a harmonic
representative we must find a globally defined E–valued section s satisfying the
equation ıEdEs D �ıE y!: Then ! D y!C dEs is a harmonic representative in the
same cohomology class as y! .

Decomposing s into its real and imaginary parts, we write s D uC i zu where u and zu
can be viewed as vector fields on M . We can assume that 2zuD curl u (by choosing s

to be a canonical lift; see Section 2 of [9]. As discussed in Section 3 of the current
paper, this is equivalent to the real part of dEs being symmetric.) Thus, it suffices
to find u. This is equivalent to solving the equation . y4C 4/� D � where � is the
1–form dual to the real part of the E–valued section �ıE y! and � is the 1–form dual
to u. The equation 2zuD curl u is equivalent to the equation 2z� D y�yd� , where z� is
the 1–form dual to zu.

As we have done before, we can decompose 1–forms on (a neighborhood of) the
boundary into their normal and tangential parts. In particular we write

(19) � D h dr C � and 2z� D y�yd� D 2.zh dr C z�/;

where dr denotes the 1–form dual to the inward pointing unit normal and �; z� are
tangential 1–forms.

We now describe a 1–parameter family of boundary conditions, parametrized by a
parameter ". It is assumed that " > 0 and is a constant. Using the notation established
above, the boundary conditions can be expressed as:

yı� � 2".ıS� � 2h/D 0(20)

2z� ��.2S� C ".4S� � 2dSh//D 0:(21)

At the end of this section we will show that the boundary value problem of solving
. y4C 4/� D � subject to these boundary conditions is elliptic and that the operator is
positive, self-adjoint. This implies that there will be a unique solution and that the
solution will be smooth on the entire manifold with boundary.

However, in order to provide some motivation for choosing these fairly complicated
boundary conditions, we will first assume the existence of such a solution and analyze
the properties of the harmonic E–valued 1–form ! that we obtain from � .
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Note that ! is dE closed and, hence, is the image under dE of a locally defined section
of E whose real part is a locally defined vector field. The divergence of this vector
field is just the trace of the real part of ! , viewed as an element of Hom.TM;TM /.
Thus, although the vector field is only locally defined, its divergence is a globally
well-defined function. By abuse of language we will refer to this as the “divergence of
!”.

The main step is to show that when � satisfies the above boundary conditions, the
resulting harmonic E–valued 1–form ! has divergence identically zero. This will
imply that the stronger harmonicity equations (3) and (4) hold and, thus, that the results
from Section 2 and the computations from Section 3 all apply. It will also show that �
in fact satisfies boundary conditions that are stronger and simpler than (20) and (21).

Proposition 4.1 Let ! D y!C dEs be a harmonic E–valued 1–form on a compact
hyperbolic 3–manifold with tubular boundary, where y! is in standard form near the
boundary and s D uC i zu is a global section of E . Let �; z� be the 1–forms dual to the
vector fields u; zu, respectively. If � and z� are decomposed as in (19) and satisfy the
boundary conditions (20) and (21), then the divergence of ! is identically zero.

Proof We denote by tr the divergence of the harmonic deformation ! . Harmonicity
of ! implies (see [9, Lemma 2.4)] that

.yı yd C 4/ trD 0:

This equation holds on all of M and, taking the L2 dot product on M of tr with this
equation, we conclude that h.yı yd C 4/ tr; tri D 0: Integrating by parts gives

h yd tr; yd triC 4htr; triC
Z
@M

tr^y�yd tr D 0

where the boundary is oriented using the inward normal. If we show that the boundary
integral Z

@M

tr^y�yd tr

is nonnegative, it will follow that trD 0 and yd trD 0 on all of M . In particular, we
will have shown that ! is divergence-free.

Since y! equals some standard harmonic E–valued 1–form in a neighborhood of
the boundary, and since standard forms are all divergence-free, the divergence of
! D y!C dEs just equals the divergence of dEs in a neighborhood of the boundary.
By definition the latter equals the divergence of the vector field u which is the real part
of s ; this equals �yı� , since � is the 1–form dual to u.
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Since trD�yı� in a neighborhood of the boundary, we can use the boundary condition
(20) on � when computing the boundary integral. Also, since y! is harmonic in a
neighborhood of the boundary, ıE y! D 0 in a neighborhood of the boundary which
in turn implies that ıEdEs is zero near the boundary. As discussed in Section 2, this
means that . y4C 4/� D 0 near the boundary.

The second term in the integrand becomes �y�ydyı� , but, because � satisfies . ydyı C
yı ydC4/� D 0; this equals y�.yı ydC4/� . Since the integral is over the boundary, only the
tangential part of the integrand appears. The tangential part of y�yı yd� D ydy�yd� equals
d.2z�/ where 2z� is the tangential part of y�yd� and d is the exterior derivative on the
boundary. The tangential part of y�� equals h dA, where dA is the area form on the
boundary. Rewriting 2dz� as 2ı.�z�/ dA, the boundary integral can then be written asZ

@M

.�yı�/.4hC ı.�2z�// dA:

Using (20) and (21), the boundary integral becomesZ
@M

2".2h� ıS�/.4h� ı.2S� C ".4S� � 2dSh// dA:

This simplifies to

2"

Z
@M

.2h� ıS�/ ..2C "ıdS /.2h� ıS�// dA;

which equals
2" h.2h� ıS�/; .2C "ıdS /.2h� ıS�/i@M ;

where h�; �i@M denotes the L2 dot product of 1–forms on @M .

We see that 2C "ıdS D 2C "ıS
1
2 S

1
2 d is a positive operator since S is positive self-

adjoint and hence has a positive self-adjoint square root. Thus the boundary integral
is nonnegative and we conclude that the deformation is divergence free on M as
desired.

The fact that ! is divergence-free provides us with further information about the
boundary behavior of the solution � . In particular, since trD�yı� near the boundary,
one concludes, as in the previous proof, that yı� D 0 near the boundary. Together with
the first boundary condition (20), this implies that

2 hD ıS�;

and the second boundary condition (21) simplifies to

2z� D �.2S� C "ıd�/:
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The computations of the general Weitzenböck correction term in the previous section
were all expressed in terms of a general differential operator A on tangential 1–forms.
The operator A expresses the relation between the two tangential 1–forms �; z� and is
determined by the Equation (15) z� D �A� . With our choice of boundary conditions
(20) and (21), we see that

A� D S� C
1

2
"ıd�

which is precisely the value (18) for the operator A that we wished to obtain. It was
with this result in mind that we were led to our boundary conditions.

We noted in the previous section that in order for the Weitzenböck correction term
b in (16) to be positive, it is necessary for the 0–order term of A� to equal S� and
that choosing A� D S� did give a positive value for b . Indeed, a natural choice for
our boundary conditions would have been to set " D 0 in (20) and (21); this would
have led to the value A� D S� . However, those conditions do not lead to an elliptic
boundary value problem and it was necessary to perturb this natural choice to obtain
an elliptic problem. To do so in such a way that the resulting harmonic deformation
was divergence-free and so that b was still positive required some delicacy and led to
the more complicated form of the boundary conditions.

We are now in a position to apply the conclusions from the previous sections.

Let ! D y!C dEs equal the harmonic E–valued 1–form obtained from our boundary
value problem, and decompose ! into its real and imaginary parts as �C iz� where
�; z� are elements of Hom.TM;TM /. We have assumed that � is symmetric and
Proposition 4.1 implies that it is traceless. Therefore the stronger harmonicity equation
(3) holds. As discussed in Section 2, this implies that z� is also traceless and symmetric
and equals �D�. This, in turn, allows to conclude that the Weitzenböck formula (6)
holds.

In a neighborhood of the boundary, we can write ! D!0C!c , where !0 is a standard
form and !c D dEs . Since the real and imaginary parts of !0 are also symmetric and
traceless, the same will be true for !c . Writing !c D dEs D �cC iz�c ; we see that the
hypotheses of Theorem 3.6 hold for �c ; z�c : Since we have also concluded that, for any
! obtained using our boundary conditions, the operator A satisfies (18), Theorem 3.7
applies. If we write !0 D �0C iz�0 , then, as discussed in Section 2, z� D �D� and
z�0 D �D�0: It follows that z�c D �D�c as well. Hence, the boundary integral b in
(10) equals �bR.�c ; �c/ where bR.�c ; �c/ is the contribution from the correction term
!c to the Weitzenböck formula (6):

b D

Z
@M

�c ^ z�c D

Z
@M

�c ^�D�c D�bR.�c ; �c/
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Thus, assuming the existence of the solution � of our boundary value problem (proved
in Theorem 4.4 below), Theorem 3.7 implies:

Theorem 4.2 Let M be a hyperbolic 3–manifold with tubular boundary whose prin-
cipal curvatures k1; k2 satisfy 1=

p
3 � k1 � k2 �

p
3: Then, for any infinitesimal

deformation, there is a harmonic representative ! so that the correction term bR.�c ; �c/

is nonpositive.

Recall from Section 2 that, for any divergence-free harmonic ! , we have the Weitzen-
böck formula (6), (7):

jjD�jj2 C jj�jj2 D bR.�; �/D bR.�0; �0/C bR.�c ; �c/:

We immediately obtain the following corollary which will be crucial in proving the
applications in the next section. Note that the standard form !0 depends only on the
infinitesimal variation of the holonomy of the boundary; thus, it and its real part �0 are
invariants of the cohomology class of the infinitesimal deformation, independent of the
choice of representative.

Corollary 4.3 Let M be a hyperbolic 3–manifold with tubular boundary whose
principal curvatures k1; k2 satisfy 1=

p
3 � k1 � k2 �

p
3: Then, for any nontrivial

infinitesimal deformation of M we obtain bR.�0; �0/ > 0:

Finally, we must justify our claim that we can always solve our given boundary value
problem.

For our purposes a differential operator on a manifold M with boundary consists
of a differential operator P from C1.F /, the C1 sections of a bundle F over M

to C1.G/, where G is another such bundle, together with a collection fp1; :::;pr g

of differential operators from C1.F / to
L

i C1.Gi/ where
L

i Gi is a direct sum
decomposition of the bundle G , restricted to the boundary. Such an operator will be
denoted by .P I fp1; :::;pr g/: In our case, the bundles F and G are both equal to the
bundle of 1–forms on M and we decompose this bundle on the boundary as the direct
sum of its normal and tangential parts. The main operator P is y4C 4 and p1;p2

equal the operators on the left-hand sides of (20) and (21), respectively.

The remainder of this section will be devoted to proving the following theorem.
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Theorem 4.4 Let M be a compact hyperbolic 3–manifold with tubular boundary.
Then, for any constant " > 0, the differential operator .P I fp1;p2g/ on the bundle of
C1 real-valued 1–forms on M defined, using the notation above, by

P .�/D . y4C 4/.�/

p1.�/D yı.�/� 2".ıS� � 2h/

p2.�/D 2z� ��.2S� C ".4S� � 2dSh//

is elliptic. On the subspace where p1.�/D p2.�/D 0 it is positive and self-adjoint. In
particular, for any smooth 1–form � , there is a unique solution to P .�/D �;p1.�/D

p2.�/D 0 and that solution is smooth on all of M .

Proof We will first show that this operator is self-adjoint and positive.

Recall that y4D ydyıCyı yd . Then for any real-valued 1–forms �;  on M , integration
by parts gives us:

h y4�;  i D h yd�; yd i C hyı�; yı iCB.�;  /;

where h�; �i is the L2 inner product on M and B.�;  / is a boundary term which is
given by an integral over the boundary.

The operator y4 (hence y4C 4) is self-adjoint as long as

h y4�;  i � h y4 ; �i D B.�;  / � B. ; �/ D 0:

The operator y4C 4 will have trivial kernel as long as

h. y4C 4/�; �i> 0

for any nonzero � . Letting � D  above this will be guaranteed as long as we have

B.�; �/� 0:

Using Green’s identity, we obtain the following formula for the boundary term, where
the boundary is oriented with respect to the inward normal:

B.�;  / D �
� Z

@M

y�yd� ^ C yı� ^ y� 
�
:

Again we use the notation y� to denote the 3–dimensional star operator on forms,
reserving the notation � for the corresponding operator on the boundary.

As before we decompose � as � D h dr C � and let 2z� equal the tangential part of
y�yd� . If we decompose  as  D k dr C� , we can write

B.�;  / D

Z
@M

2� ^ z� � yı� ^�k:
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Using the boundary conditions (20) and (21), the boundary term becomes

B.�;  /D

Z
@M

� ^�.2S� C ".4S� � 2dSh/ C 2".2h� ıS�/^�k/

D 2h�;S�iC ".h�; ıd� C dS .ıS� � 2h/iC h�2k; .ıS� � 2h/i/

D 2h�;S�iC ".hd�; d�iC h.ıS� � 2k/; .ıS� � 2h/i/

where h�; �i denotes the L2 inner product on forms on the boundary oriented by the
inward normal and we have used the definition �S D ıd C dSıS .

It is apparent from this formula and the fact that S is symmetric and positive definite,
that the boundary term is symmetric in � and  and nonnegative when  D � . It
follows that the operator 4C4 is self-adjoint and positive definite with these boundary
conditions.

Finally, we must show that this boundary value problem is elliptic. To see that the
boundary conditions lead to an elliptic boundary value problem, we consider each of the
operators, P;p1;p2 where the ranges of the two latter operators are the sub-bundles
of normal and tangential parts of 1–forms on the boundary. We then take the top order
terms of each of these operators. It is a subtlety of differential operators on bundles
that ellipticity may depend on the choice of decomposition of the target bundle, since
this affects what the top order terms are.

To show that the system is elliptic one considers the symbols of the operators. This
amounts to looking at the system in local coordinates, fixing the coefficients of the
operators by evaluating at a boundary point, and taking only the top order terms in
each operator. One then considers the homogeneous, constant coefficient problem in
the upper half space of Rn given by these simplified operators. We refer the reader to
Hörmander [12, Chapter X] or Atiyah [1, Appendix] for a full description. Below we
will see how the process works in our specific case.

For y4C 4 taking the symbol simply gives the standard Laplacian in R3 which is
well-known to be elliptic. Since 2z� equals the tangential part of y�yd�; it is obtained by
applying a first order operator to � . One then easily sees that p1 is of first order and
p2 is of order 2. Taking the top order terms, the boundary operators simplify to

yı� � 2".ıS�/;

"4S�:

These operators are still defined in terms of the hyperbolic metric. It is easy to check
that, taking natural orthonormal coordinates at any point on the boundary torus the
coefficients of the top order terms are independent of the point chosen. The operators
simply become the same operators viewed in the upper half-space R3

CDf.x;y; t/jt�0g
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with the standard Euclidean metric. Multiplication by S becomes multiplication in
the .x;y/–plane by the diagonal matrix with diagonal entries k D k1; k

�1 D k2

which are the principal curvatures of the boundary torus. We are now left with the
simplified system of solving y4� D 0 in the upper half-space with homogeneous
boundary conditions determined by these simplified boundary operators. By definition,
the original system is elliptic if and only if this simplified system has no nontrivial
bounded solutions. It suffices to show that there are no nontrivial bounded solutions
�.x;y; t/ of the form

�.t/ei.� � .x;y//;

where � D .a; b/ is any nonzero vector in the boundary plane. The solutions, �.t/, to
y4� D 0 for a given choice of � are linear combinations of ej�j t and e�j�j t . Since we
are only interested in bounded solutions, only scalar multiples of the latter function
will appear. In particular, we have that � 0.t/D�j�j�.t/.

We decompose � into its normal and tangential components which we again denote
by h and � , respectively. Viewing � as a 3–dimensional vector field and � as a
2–dimensional one, �yı� is the divergence of � which equals h0 plus the divergence
of � . Similarly, �ıS� is the divergence of S� . Note that all calculations are done
with respect to the Euclidean metric.

For solutions of this form with � fixed, the boundary conditions become

h.0/j�j � i � � �.0/C i 2"� �S�.0/D 0

"LS .�/�.0/D 0;

where LS .�/ is the matrix computed below.

We’ll see that LS .�/ is invertible, so the second boundary condition implies that
�.0/ D 0; and thus, the first implies that h.0/ D 0. This means that �.0/ D 0 and,
since � 0.0/D�j�j�.0/, we conclude that any solution must be trivial.

To compute the matrix in the second boundary condition, we view � as a 1–form on
the boundary of the upper half-space. Recall that �S D ıdCdSıS D ıdCSdıS . It’s
a standard calculation that for � D .a; b/, the symbols for ıd and dı are, respectively,
multiplication by the matrices�

b2 �ab

�ab a2

�
and

�
a2 ab

ab b2

�
:

The matrix S is diagonal with entries k , k�1 on the diagonal. It follows that the
matrix corresponding to the operator 4S is

LS .�/ D

�
k2a2C b2 0

0 a2C k�2b2

�
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which is clearly invertible for all .a; b/¤ 0:

It is worth pointing out that, when " D 0 in the original boundary conditions, the
top order term in the second equation is 2z� which is of first order and the simplified
conditions become

yı� D 0

2z� D 0:

An easy calculation shows that the first order part of 2z� equals � 0 � dh, so that the
corresponding linear equations used to determine ellipticity are

h.0/j�j � i � � �.0/D 0

�.0/j�jC i h.0/� D 0:

This system is seen to have a nontrivial solution given by i �.0/D h.0/�=j�j for any
� ¤ 0, and thus the system is not elliptic. This is the reason we needed to perturb
the system by adding a small second order term in the second boundary condition.
The term added to the first boundary condition was necessary to keep the system self
adjoint. The precise form of these added terms was determined by other conditions
necessary to conclude that the system was divergence free and led to a positive value
for the Weitzenböck boundary correction b .

5 Applications to hyperbolic Dehn surgery space

We now apply our harmonic deformation theory to study generalized hyperbolic Dehn
surgery as introduced by Thurston in [16].

5.1 Geometry of tubular boundaries

Let M be a compact orientable hyperbolic 3–manifold M with tubular boundary, and
let T D TR be a torus in @M of tube radius R<1. Then T has principal curvatures
k1 D coth R and k2 D tanh R, and the intrinsic Euclidean metric on T has the form
E2=� where � Š Z2 acts as translations of E2 , and the holonomy of the Euclidean
structure gives an isomorphism hW �1.T /! � .

The developing map for M restricts to an isometric immersion ˆW zT D E2 ! H3

taking the universal cover zT of T to the surface of a cylinder of radius R in H3 ; ˆ
is uniquely defined up to composition with isometries of H3 .

Explicitly, if we choose standard Cartesian coordinates on E2 with x1;x2 coordinate
axes in the directions of the principal curvatures k1; k2 respectively, we can take
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ˆ.x1;x2/ to be the point with hyperbolic cylindrical coordinates � D x1= sinh R and
� D x2= cosh R. Then for each 
 2 �1.T /, the complex length of 
 is given by

L.
 /D
x2

cosh R
C i

x1

sinh R
;(22)

where the Euclidean holonomy h.
 / is a translation with components .x1;x2/. Once
we choose an orientation on T the complex length is uniquely defined up to sign;
changing sign corresponds to composing ˆ with a 180 degree rotation of H3 taking
the cylinder to itself. In the limiting case as R!1, we obtain a horospherical torus;
then we define L.
 /D 0 for all 
 2 �1.T /.

The Euclidean length L D L.
 / of a closed curve 
 on the Euclidean torus T is
the length of a geodesic in its homotopy class. This is the length of the translation
h.
 / D .x1;x2/, so we have L2 D x2

1
C x2

2
, and this can be written terms of the

complex length as follows:

L2
D .cosh R ReL/2C .sinh R ImL/2:(23)

Next we extend some geometric notions from simple closed curves on T D TR to
arbitrary homology classes in H1.T IR/.

The complex length of closed curves on T gives a Z–linear function LW H1.T IZ/Š
�1.T / ! C . We define the complex length L for each element of H1.T IR/ by
extending this to an R–linear function LW H1.T IR/!C .

We can regard the generalized Dehn surgery coefficient on T as the homology class
c D L�1.2� i/ in H1.T IR/ whenever L is invertible. (Note that (22) implies that
L is invertible whenever T has tube radius R < 1.) After choosing a basis a; b

for H1.T IZ/Š Z2 this corresponds to the element .x;y/ in R2 such that xL.a/C
yL.b/D 2� i , giving the generalized Dehn surgery coefficient as defined in [16].

If the boundary @M consists of k tori T1 , . . . Tk , then we have a complex length
function Lj W H1.Tj IR/ ! C for each j ; the direct sum of these gives a func-
tion LW H1.@M IR/ D

L
j H1.Tj IR/! Ck . We then define the generalized Dehn

surgery coefficient to be the homology class c D L�1.2� i; : : : ; 2� i/ 2H1.@M IR/DL
j H1.Tj IR/ whenever L is invertible.

The Euclidean length L of closed curves on T gives a quadratic form L2 on H1.T IZ/,
and this extends naturally to a positive definite quadratic form on H1.T IR/. If we
choose a basis a; b for H1.T IZ/ and let c D paC qb where p; q 2 Z, then we
can write L.paC qb/2 D Ap2 C 2Bpq C C q2 where A;B;C are constants. We
use the same formula to define the length L.paC qb/ whenever p; q 2R. Then the

Geometry & Topology, Volume 12 (2008)



1068 Craig D Hodgson and Steven P Kerckhoff

relationship (23) between Euclidean length and complex length continues to hold for
all homology classes in H1.T IR/.

Next we discuss some other geometric quantities that will be important in our arguments.

The area of the torus T D TR can also be expressed in terms of complex lengths. If
a; b is a basis for H1.T IZ/, then the area of T is just the area of the parallelogram
with sides given by the Euclidean translations h.a/; h.b/. If laC i�a and lb C i�b

denote the complex lengths of a and b , then

h.a/D .�a sinh R; la cosh R/ and h.b/D .�b sinh R; lb cosh R/

so area.TR/D

ˇ̌̌̌
�a sinh R la cosh R

�b sinh R lb cosh R

ˇ̌̌̌
D sinh R cosh R .lb�a� la�b/;

provided a; b are oriented so the above determinant is positive. (Note that this is the
same for any basis a; b which is oriented compatibly with T .)

We now define the visual area of the torus TR to be

AD
area.TR/

sinh R cosh R
:(24)

This represents the measure of the set of geodesics meeting TR orthogonally as viewed
from the core geodesic of the corresponding cylinder of radius R, and will play an
important role in our analysis.

Note that the visual area A is the same for parallel tori, ie the right hand side of (24)
is independent of R. For a hyperbolic cone manifold with core geodesic of length `
and cone angle ˛ we have AD ˛`. In general, A can be expressed in terms of the
complex lengths on T . Using the notation above we have

AD lb�a� la�b(25)

for any positively oriented basis a; b for H1.T IZ/.

Next, we define the normalized length of a homology class c 2H1.T IR/ on T D TR

to be

yL.c/D
L.c/p

area.TR/
:(26)

This is just the Euclidean length of c after the torus TR is rescaled to have area 1. In
the case where RD1, T is a horospherical torus and yL is the same for all parallel
tori, ie independent of the choice of horospherical cusp cross section.
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Finally, let M be a hyperbolic 3–manifold with tubular boundary, and let �M denote
its canonical filling. For any sufficiently small r > 0, we can truncate all the ends
of �M to give a hyperbolic manifold with tubular boundary consisting of disjoint,
embedded tubular tori of tube radius r . Then we define the tube radius yR of �M to be
the supremum of all such r .

Note that if M has boundary components with tube radii R1; : : : ;Rk then yR is larger
than R D min.R1; : : : ;Rk/. Further, for any r < yR we can truncate �M to obtain
a manifold M with tubular boundary such that all boundary components have tube
radius r .

5.2 Infinitesimal rigidity keeping Dehn surgery coefficients fixed

Now assume we have a hyperbolic 3–manifold M with tubular boundary such that
each boundary component has tube radius at least R0 D arctanh.1=

p
3/� 0:65848:

Then we can use our harmonic deformation theory to prove an infinitesimal rigidity
theorem for nearby hyperbolic structures:

Theorem 5.1 Let M be a compact, orientable hyperbolic 3–manifold with tubu-
lar boundary such that each boundary component has tube radius at least R0 D

arctanh.1=
p

3/� 0:65848: Then there are no infinitesimal deformations of this hyper-
bolic structure keeping the Dehn Surgery coefficients constant.

Proof Each infinitesimal deformation of the holonomy of a boundary torus T is
represented, in a neighborhood of T , by a standard form !0 with real part �0 . We can
write !0 as a linear combination

!0 D s!mC .xC iy/!l s;x;y 2R

of the forms !m and !l given in (2) and (3) of [11]. (The vector fields e2; e3 in [11]
are chosen in the directions of the principal curvatures on the tubular boundary.) Then
the effect of !0 on complex length L of any closed peripheral curve is given in [11,
Lemma 2.1] by:

d

dt
.L/D�2sLC 2.xC iy/Re.L/(27)

and this formula extends by linearity to give the variation in the complex length of any
element of H1.T IR/.

If the Dehn surgery coefficient c 2H1.T IR/ is fixed, then the complex length of c is
LD 2� i . Hence

d

dt
.L/D�2sLD 0
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and sD 0, so the !m term vanishes. The contribution to the boundary term bR.�0; �0/

defined in (5) from the boundary torus T was computed explicitly in [11, p 382]. Here
this simplifies to

�.x2
Cy2/

sinh R

cosh R

�
2C

1

cosh2.R/

�
area.T /� 0;

where R is the tube radius of T .

If M has multiple boundary components, then for any infinitesimal deformation keeping
the Dehn Surgery coefficients constant, bR.�0; �0/ is a sum of terms of this form so
bR.�0; �0/ � 0. But for any nontrivial infinitesimal deformation, bR.�0; �0/ > 0 by
Corollary 4.3, and we conclude that the infinitesimal deformation is trivial.

5.3 Local parametrization by Dehn surgery coefficients

Let M be a compact, orientable hyperbolic 3–manifold with tubular boundary, and
suppose that the tube radius of each boundary component is finite and at least R0 D

arctanh.1=
p

3/ � 0:65848: Let R denote the character variety of representations
�1.M /! PSL2.C/ up to conjugacy (see Culler–Shalen [7] and Boyer–Zhang [2]).
First we describe the local structure of the algebraic variety R near the holonomy
representation �0W �1.M /! PSL2.C/ of M . (Throughout this section we abuse
notation, by using the same symbol for a representation and its image in the character
variety.)

Theorem 5.2 Let �0W �1.M / ! PSL2.C/ be the holonomy representation for a
compact, orientable hyperbolic 3–manifold M with tubular boundary such that the
tube radius of each boundary component is finite and at least R0 D arctanh.1=

p
3/.

Then the character variety R is a smooth manifold near �0 , of complex dimension
equal to the number of boundary components of @M . Further, there is a smooth local
parametrization of R near �0 by the complex lengths of the Dehn surgery coefficient
c0 2H1.@M IR/ corresponding to �0 .

Proof For each representation � near �0 , the complex length of peripheral curves
extends to a well-defined R–linear map

L�W H1.@M IR/!Ck ;

where k is the number of tori in @M . Define F W R! Ck by taking the complex
lengths of the (initial) Dehn surgery coefficient c0 2H1.@M IR/ for M :

F.�/D L�.c0/:
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As in [9, Section 4], the infinitesimal rigidity theorem (Theorem 5.1) implies that the
derivative dF�0

W T�0
R!Ck has trivial kernel. Hence the Zariski tangent space T�0

R
has complex dimension dimC T�0

R� k . However, by [16, Theorem 5.6], we know
that R has complex dimension �k at �0 , so dimC T�0

R�k . Hence dimC T�0
RDk

and R is a smooth manifold near �0 of complex dimension k . Further, the inverse
function theorem then implies that F is a local diffeomorphism.

Next, we show that the Dehn surgery coefficients give a smooth local parametrization
near �0 .

Theorem 5.3 Let �0W �1.M / ! PSL2.C/ be the holonomy representation for a
compact hyperbolic 3–manifold M with tubular boundary such that the tube radius
of each boundary component is finite and at least R0 D arctanh.1=

p
3/. Then there is

an open neighborhood U of �0 in R such that for each � 2 U there is a well defined
Dehn surgery coefficient c.�/ 2 H1.@M IR/, and the map cW U ! H1.@M IR/ is a
diffeomorphism onto its image.

Proof For each representation � in a neighborhood V of �0 in R, complex lengths
define an R–linear map

L�W H1.@M IR/!Ck

where k is the number of tori in @M . We can regard this as a function of two variables:

LW V �H1.@M IR/!Ck ; where L.�; c/D L�.c/:

For each � near �0 , the corresponding Dehn surgery coefficient c is defined by the
equation

L.�; c/D .2� i; : : : ; 2� i/:(28)

For � D �0 this has a unique solution c0 . Differentiating Equation (28) at .�0; c0/

gives the linearized equation satisfied by tangent vectors . P�; Pc/ to the solution space
of (28):

@L
@�

ˇ̌̌̌
.�0;c0/

P�C
@L
@c

ˇ̌̌̌
.�0;c0/

Pc D 0:

Since L.�; c/ is a linear function of c this gives:

L�0
. Pc/D�

@L
@�

ˇ̌̌̌
.�0;c0/

P�:

Now the right hand side is �dF�0
. P�/ where F W R!Ck is defined by F.�/DL�.c0/

as in the proof of Theorem 5.2. So this can be written

L�0
. Pc/D�dF�0

. P�/:
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Since L�0
is invertible and dF�0

is invertible by Theorem 5.2, this has a unique
solution Pc for any P� and the map P� 7! Pc is invertible. Hence, by the implicit function
theorem, (28) has a unique solution cD c.�/ for any � near �0 and the map � 7! c.�/

is local diffeomorphism. Thus the Dehn surgery coordinates give a smooth local
parametrization of R near �0 .

This completes the proof of Theorem 1.4.

Remark A hyperbolic structure with infinite tube radius Rj D1 along some com-
ponents Tj of @M can be filled in to give a hyperbolic structure with complete cusps
corresponding to these components. At such structures, the corresponding complex
lengths Lj are zero and the corresponding Dehn surgery coefficient is defined to
be cj D 1. In this case, a sign for Lj cannot be chosen to vary continuously for
nearby structures. However, the results of Theorem 5.2 and Theorem 5.3 extend to this
situation provided the complex length is regarded as a function LW

L
j H1.Tj IR/!

.C=˙ 1/k , and the Dehn surgery coefficient as an element of
L

j
yH1.Tj ;R/ where

yH1.Tj ;R/D .H1.Tj ;R/[1/=˙ 1.

5.4 An effective version of the hyperbolic Dehn surgery theorem

Consider a complete, finite volume, orientable hyperbolic 3–manifold with cusps,
diffeomorphic to the interior of a compact 3–manifold X with boundary consisting
of k tori @1X ; : : : ; @kX . Given a homology class c D .c1; : : : ; ck/ 2H1.@X IR/DL

j H1.@j X IR/, we consider deformations of the hyperbolic structure with Dehn
surgery coefficients varying “radially”:

2�

˛
c; 0< ˛ � 2�;(29)

where ˛ is a smooth increasing function of a parameter t . Then the complex length of
the homology class cj for a given value of t is

L.cj /D ˛.t/i:(30)

We want to show that we can deform the hyperbolic structure and increase ˛ to 2� ,
provided the normalized lengths of the surgery coefficients cj are sufficiently large.
By Thurston’s original Dehn surgery theorem [16], we can always increase ˛ from
0 (corresponding to the complete hyperbolic structure on the interior of X ) to some
small positive value. The local parametrization in Theorem 5.3 shows that we can
always increase ˛ slightly, so the set of attainable ˛ is an open subset of .0; 2��. Then
we need to control the change in geometry during the deformation, and guarantee that
no degeneration of hyperbolic structures occurs before ˛ D 2� is reached.
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Here is a brief outline of the argument in this section. Let �Mt denote the filled
hyperbolic manifold corresponding to parameter t . By removing disjoint open tubes
around the ends of �Mt we obtain a smooth family of a hyperbolic manifolds Mt

with tubular boundary. First we use the positivity condition in Corollary 4.3 provided
by our harmonic deformation theory to control the variation in complex lengths of
curves on @Mt . This leads to Proposition 5.5, which gives differential inequalities
on the total visual area A of the boundary @Mt (ie the sum of visual areas of all the
boundary components). Then, in Theorem 5.6, we apply tube packing arguments to
obtain a crucial estimate relating A to the tube radius yR of �Mt (as defined at the
end of Section 5.1). This shows that good control on A throughout a deformation
will guarantee that the tube radius yR stays bounded away from zero. Integrating the
differential inequalities for A shows that such control can be obtained provided that
the normalized length of the surgery coefficient is sufficiently large (Theorem 5.7). In
Theorem 5.8 we use geometric limit arguments to show that this control on the tube
radius, together with bounds on the volume (Lemma 5.9) and injectivity radius of the
boundary (Lemma 5.10) imply that no degeneration of the hyperbolic manifolds Mt

can occur before ˛D 2� is reached. Finally, combining Theorem 5.7 and Theorem 5.8
gives the main results: Theorem 1.1 and Theorem 1.2 of the introduction.

Suppose the hyperbolic manifold Mt has tubular boundary consisting of tori T1; : : : ;Tk

with tube radii R1; : : : ;Rk . We first choose a harmonic representative ! for the
infinitesimal deformation as in Theorem 4.2. Then near each boundary torus Tj we
can write the standard part of ! in the form:

!0 D sj!mC .xj C iyj /!l .sj ;xj ;yj 2R/;

!0 D sj .!mC .Xj C iYj /!l/or

xj DXj sj ; yj D Yj sj :where

The coefficients sj ;Xj ;Yj completely describe the variation in the holonomy of the
torus Tj for any “radial” deformation of Dehn surgery coefficients as in (29). In
particular, using (30) and (27) with LD L.cj /, we see that

sj D�
1

2˛

d˛

dt

so all sj are all equal and depend only on the logarithmic derivative of ˛ with respect
to t .

Now we choose a parametrization where ˛ is an increasing function of t , with

sj D s D�
1

2˛

d˛

dt
< 0
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for all j . Using the crucial positivity property in Corollary 4.3, we obtain estimates on
the size of the coefficients Xj ;Yj . In particular, we have:

Proposition 5.4 Let Aj be the visual area of Tj and let A D
P

j Aj be the total
visual area of @Mt . Then if RDmin.R1; : : : ;Rk/�R0 D arctanh.1=

p
3/,X

j

Aj

A
.Xj C �/

2
� w2;(31)

� D
1

sinh2R .2 cosh2RC 1/
and w D

2 cosh2R

sinh2R .2 cosh2RC 1/
:where

Proof By Corollary 4.3, �0 D Re!0 satisfies the positivity property

0� bR.�0; �0/D

Z
@M

y�D�0 ^ �0:

Now this integral breaks up into a sum of integrals over the boundary tori Tj , so

0� bR.�0; �0/D
X

j

Z
Tj

y�D�0 ^ �0:

A priori, some of these boundary integrals could be negative, and this makes the
argument more complicated in the case of multiple boundary components.

Note that we have some flexibility in the choice of the tube radii Rj . In particular, by
adding collars on boundary components we can decrease any Rj , so we may assume
that Rj DR for each j . By explicit calculations as in [11, p 383] we then obtain:

bR.�0; �0/D
X

j

�
a.X 2

j CY 2
j /C bXj C c

�
Aj s2

where Aj is the visual area of Tj , s D�
1

2˛

d˛

dt
and

aD
� sinh2R

cosh2R

�
2 cosh2RC 1

�
; b D

�2

cosh2R
; c D

2 cosh2R� 1

sinh2R cosh2R
:(32)

By completing the squares we obtain

0� bR.�0; �0/D
X

j

a

 �
Xj C

b

2a

�2

CY 2
j

!
Aj s2

C

 
4ac � b2

4a

!
Aj s2:
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Since a< 0 this gives

bR.�0; �0/�

 
4ac � b2

4a

!
s2AD

�
4 cosh R

sinh3R .2 cosh2RC 1/

�
s2A;

X
j

�
Xj C

b

2a

�2

Aj �

 
b2� 4ac

4a2

!
A;and

where we write A D
P

j Aj . Computing b=.2a/ D � and .b2 � 4ac/=.4a2/ D w2

using (32) gives the result.

Combining this result with Equation (27) gives us control on the holonomy of peripheral
curves: the variation in the complex length L of any homology class on a boundary
torus Tj is given by

d

dt
.L/D�2sLC 2.xj C iyj /Re.L/D

1

˛

d˛

dt
LC 2.xj C iyj /Re.L/:(33)

We now use this to estimate the variation in the visual area Aj of Tj . Choose an
oriented basis a; b for H1.Tj IZ/ with complex lengths la C i�a; lb C i�b . Then
applying the formula (33) to a; b gives

dla

dt
C i

d�a

dt
D

1

˛

d˛

dt
.laC i�a/C 2.xj C iyj /la(34)

dlb

dt
C i

d�b

dt
D

1

˛

d˛

dt
.lbC i�b/C 2.xj C iyj /lb:(35)

By differentiating Equation (25), it follows that

d

dt
.Aj /D

d

dt
.lb�a� la�b/D 2Aj

�
1

˛

d˛

dt
Cxj

�
(36)

d

dt
.Aj /D .2�Xj /

Aj

˛

d˛

dt
:or

where the Xj satisfy the inequality (31).

In the following argument, the total visual area of the boundary AD
P

j Aj will play
a crucial role. To control the behavior of A, we will consider the variation of

vj D
Aj

˛2
and v D

A
˛2
D

X
j

vj :

Note that these quantities only depend on the canonical filling �Mt ; any truncation Mt

of �Mt with tubular boundary gives the same values for Aj , A, vj and v .
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First we examine the limiting behavior of vj for our family of hyperbolic manifolds with
tubular boundary Mt , where we fix a homology class cj 2H1.Tj IR/ and vary the Dehn
surgery coefficients .2�=˛/cj along a ray going out to 1 as ˛! 0. The homology
class cj has complex length L.cj /D ˛i where ˛ is the deformation parameter. Hence,
by Equation (23), the Euclidean length of cj on Tj is Lj DL.cj /D ˛ sinh Rj where
Rj is the tube radius of Tj , so

area.Tj /

L2
j

D
Aj sinh Rj cosh Rj

˛2 sinh2.Rj /
D vj coth Rj :

As ˛! 0, the hyperbolic structures converge to the complete hyperbolic structure on
the interior of X and Rj !1. Hence

vj D
area.Tj /

L2
j

tanh Rj !
1

yL2
j

;

v D
X

j

vj !
X

j

1

yL2
j

;and

where yLj D
yL.cj / is the normalized Euclidean length of cj , as defined in (26), on a

horospherical cross section for the complete hyperbolic structure on the interior of X .

Remark The quantity yLD yL.c/ defined by

1

yL2
D

X
j

1

yL2
j

(37)

seems to be a useful analogue of the normalized length in the one-cusped case, and
we will also call it the normalized length of the homology class c 2H1.@X IR/ in the
multi-cusped case. Its reciprocal 1= yL gives a good measure of the distance from the
complete hyperbolic structure on the interior of X to the hyperbolic structure M.c/

with Dehn surgery coefficient c .

Differentiating vj using Equation (36) gives

dvj

dt
D

d

dt

�
Aj

˛2

�
D

1

˛2

�
dAj

dt
�

2Aj

˛

d˛

dt

�
D

2Aj xj

˛2
D 2vj xj

1

v

dv

dt
D 2

X
j

vj

v
xj D�

1

˛

d˛

dt

X
j

vj

v
Xj :(38)

Combining this with Proposition 5.4 gives our basic differential inequalities for v .

Geometry & Topology, Volume 12 (2008)



The shape of hyperbolic Dehn surgery space 1077

Proposition 5.5 Let vDA=˛2D v1C : : :Cvk where vj DAj=˛
2 . Then v satisfies

the differential inequalities

1

sinh2 yR

1

˛

d˛

dt
�

1

v

dv

dt
� �

1

sinh2 yR

 
2 cosh2 yR� 1

2 cosh2 yRC 1

!
1

˛

d˛

dt
;(39)

provided the tube radius yR of the canonical filling �Mt is larger than R0 . Further, v
satisfies the initial condition

lim
˛!0

v D
X

j

1

yL2
j

;

where yLj D
yL.cj / is the normalized Euclidean length of cj , on a horospherical cross

section for the complete hyperbolic structure on the interior of X .

Proof Since yR>R0 , we can truncate �Mt to give a hyperbolic manifold with tubular
boundary Mt such that all components of @Mt have tube radius at least R, where
yR>R�R0 .

Using the Cauchy–Schwartz inequality and (31) then gives�X
j

vj

v
.Xj C �/

�2

D

�X
j

 
vj

v

�1=2

�

�
vj

v

!1=2

.Xj C �/

�2

�

X
j

vj

v

X
j

vj

v
.Xj C �/

2
D

X
j

vj

v
.Xj C �/

2
� w2;

since
P

j vj D v . Hence,

�w� � �
X

j

vj

v
Xj � w� �:

Writing out w and � in terms of R gives

�
1

sinh2 R
�

X
j

vj

v
Xj �

1

sinh2R

 
2 cosh2R� 1

2 cosh2RC 1

!
:

Multiplying through by the negative number �
1

˛

d˛

dt
and recalling, from (38), that

1

v

dv

dt
D�

1

˛

d˛

dt

X
j

vj

v
Xj
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gives the inequality

1

sinh2 R

1

˛

d˛

dt
�

1

v

dv

dt
� �

1

sinh2R

 
2 cosh2R� 1

2 cosh2RC 1

!
1

˛

d˛

dt
:

Since these inequalities hold for all R such that R0 �R < yR, they also hold when
R is replaced by yR. This gives (39). The initial conditions for v was already derived
above.

Next, let M be a hyperbolic 3–manifold with tubular boundary, and let �M denote its
canonical filling. Then the tube packing arguments in the proof of [11, Theorem 4.4]
give us the following crucial estimate relating the total visual area of @M to the tube
radius of �M .

Theorem 5.6 Let M be a compact, orientable hyperbolic 3–manifold with tubular
boundary, and let A be the total visual area of @M . Then

A� h. yR/;(40)

where yR is the tube radius of the filled manifold �M , and h is the function given by

h.r/D 3:3957
tanh r

cosh.2r/
:

Proof We briefly recall the argument from [11]. If we expand tubes around the ends
of �M at the same rate, then these first bump when the tube radius is yR. Suppose that
the tube bounded by a torus Ti bumps into the tube bounded by a torus Tj when the
tube radius reaches yR; possibly with i D j . Then the tube packing arguments from
[11] show that Ti [Tj contains two open ellipses meeting only at the bumping point,
each with semi-major axes

aD
0:980258 sinh yR cosh yR

cosh.2 yR/
and b D

sinh yR sinh yR

sinh.2 yR/

and hence of area

Ae D �ab D
0:980258� sinh2 yR

2 cosh.2 yR/
:

(These two ellipses are in the same torus Ti if j D i ; otherwise there is one ellipse
in Ti and one ellipse in Tj .) Further, the packing density for these ellipses is at most
�=.2
p

3/, so it follows that

area.Ti [Tj /�
4
p

3

�
Ae � 3:3957

sinh2 yR

cosh.2 yR/
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and the total visual area of @M satisfies

A�
area.Ti [Tj /

sinh yR cosh yR
� 3:3957

sinh yR

cosh yR cosh.2 yR/
D h. yR/:

Now we can apply the same arguments as in [11, Section 5], but with the tube radius
condition yR > 0:531 replaced by yR >R0 D arctanh.1=

p
3/� 0:65848: Since h.r/

is a decreasing function for r �R0 it follows from (40) that if initially the tube radius
satisfies yR>R0 and we know that A<h.R0/ throughout a deformation, then yR>R0

throughout the deformation.

Next we use the control on A given by Proposition 5.5 and the inequality (40) to show
that the tube radius yR of �Mt stays bounded below throughout any deformation as
in (29) with 0 � ˛.t/ � ˛0 � 2� , provided that the normalized lengths of the Dehn
surgery coefficients cj 2H1.Tj IR/ are sufficiently large.

First note that the inequalities (39) are exactly equivalent to the differential inequalities
for uD 1=v obtained in [11] in the one cusped case:

�
1

sinh2 yR

1

˛

d˛

dt
�

1

u

du

dt
�

1

sinh2 yR

 
2 cosh2 yR� 1

2 cosh2 yRC 1

!
1

˛

d˛

dt
:

Now we choose a parametrization with t D ˛2 . Then this becomes

�
1

sinh2 yR

u

2˛2
�

du

dt
�

1

sinh2 yR

 
2 cosh2 yR� 1

2 cosh2 yRC 1

!
u

2˛2
;(41)

We analyze this as in [11] by introducing a new variable z D tanh.�/ where h.�/DA
and � �R0 . Note that � is defined whenever A � h.R0/ and if yR �R0 then (40)
implies that R0 � � � yR. This allows us to replace yR by � in the inequality (41).

Now we define functions

H.z/D
1

A
D

1

h.�/
D

1C z2

3:3957z.1� z2/
;

G.z/D
H.z/

2

1� z2

z2
D

1C z2

6:7914 z3
;

zG.z/D
H.z/

2

.1� z2/.1C z2/

z2.3� z2/
D

.1C z2/2

6:7914 z3 .3� z2/
:and

Then the differential inequality (41) for u, with yR replaced by � , becomes

�G.z/�
du

dt
� zG.z/
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and putting u D tH.z/ gives the differential inequalities for
dz

dt
obtained in [11,

equation (51)]:

(42)
H 0.z/

H.z/� zG.z/

dz

dt
� �

1

t
�

H 0.z/

H.z/CG.z/

dz

dt
:

To solve these differential inequalities we write:

H 0.z/

H.z/� zG.z/
D zF .z/C

1

1� z
;

H 0.z/

H.z/CG.z/
D F.z/C

1

1� z
:

F.z/D�
.1C 4zC 6z2C z4/

.zC 1/.1C z2/2
Then

is integrable on the interval 0� z � 1 and

zF .z/D�
z6C 7z4C 12z3� 9z2� 4zC 1

.zC 1/
�
z2C 1

� �
z2� 2z� 1

� �
z2C 2z� 1

�
is integrable on the interval

p
2� 1C "� z � 1 for each " > 0.

Now we integrate (42) with respect to t from t1 to � where 0 < t1 < � < 1, and
z.�/� tanh.R0/D 1=

p
3. Carefully taking a limit as t1! 0; z1D z.t1/! 1 as in [11]

gives estimates on the time � D˛2 taken to reach a given value of ADA.z/D 1=H.z/

where z D z.�/. Define yL by
1

yL2
D

X
j

1

yL2
j

where yLj D
yL.cj / is the normalized length of the homology class cj 2H1.Tj IR/ for

the complete hyperbolic structure on the interior of X , as in (37). Then we obtain

zf .z/�
˛2

yL2
� f .z/;(43)

zf .z/D 3:3957.1� z/ exp.�
Z z

1

zF .w/ dw/

f .z/D 3:3957.1� z/ exp.�
Z z

1

F.w/ dw/:and

These bounds are illustrated in the graph in Figure 1.

We conclude that we can increase the parameter ˛ from 0 to 2� , maintaining z D

tanh � > z0D tanh.R0/, hence keeping the tube radius yR� � >R0D arctanh.1=
p

3/
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1
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0:6

0:4

0:2

1:41:210:80:60:40:2

Figure 1: Graph of A versus x D ˛2= yL2

and A< h.R0/, provided

yL2 >
.2�/2

3:3957.1� z0/
exp

�Z z0

1

F.w/dw

�
� 57:5041

yL>
p

57:5041� 7:58315:or

Thus, we have shown that as long as yL satisfies this inequality then there is a lower
bound to the tube radius:

Theorem 5.7 Let Mt be a smooth family of hyperbolic structures with tubular
boundary on X for 0 � t < 1, with Dehn surgery coefficients .2�=˛.t//c where
c D .c1; : : : ; ck/ 2H1.@X IR/ and 0� ˛.t/� ˛0 � 2� . If the normalized lengths of
the surgery coefficients yLi D

yL.ci/ satisfyX
i

1

yL2
i

<
1

C 2
where C D 7:5832;

then tube radius of the filled manifold �Mt satisfies yR>R0 for all t .

The next main result is the following analogue of [11, Theorem 5.4]:

Theorem 5.8 Let Mt be a smooth family of hyperbolic structures with tubular
boundary on X for 0 � t < 1, with Dehn surgery coefficients .2�=˛.t//c where
c D .c1; : : : ; ck/ 2 H1.@X IR/ and ˛.t/ is an increasing function of t with 0 �

˛.t/ � ˛0 � 2� . Suppose the tube radius of the canonical filling �Mt satisfies
yR > R0 D arctanh.1=

p
3/ � 0:6585 for t D 0 and the total visual area of @Mt

satisfies A� h0 D h.R0/ for all t . Then the manifolds Mt converge geometrically as
t ! 1 to a hyperbolic manifold M1 with tubular boundary. Further, the Dehn surgery
coefficient for Mt converges to the Dehn surgery coefficient for M1 .
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Proof We begin with some estimates on the geometry of the manifolds Mt . First
we study the change in volume of the filled in manifolds �Mt with Dehn surgery type
singularities. In fact, we have Schläfli type formula for the variation in volume:

Lemma 5.9 Let Mt be a smooth family of hyperbolic 3–manifolds with tubular
boundary with Dehn surgery coefficients varying radially as in (29). Then the variation
in volume V of the filled manifolds �Mt is given by

dV D�
A
2˛

d˛;(44)

where AD
P

j Aj is the total visual area of @Mt . In particular, the volume decreases
as ˛ increases.

Remark In the cone manifold case, (44) is just the usual Schläfli formula:

dV D�
1

2

X
j

j̀ d˛;

where j̀ is the length and ˛ is the cone angle of the core geodesic produced when Tj

is filled.

Proof From [13, equation (46)] (or [8, Chapter 5; 6, Section 4.5]) the variation in
volume is a sum of contributions dVj from the boundary tori Tj , and we have

dVj D�
1

2
.lbd�a� lad�b/;

if a; b is any oriented basis for H1.Tj IZ/. Now, from equations (34) and (35), we
have

lb
d�a

dt
� la

d�b

dt
D lb

� 1

˛

d˛

dt
�aC 2yla

�
� la

� 1

˛

d˛

dt
�bC 2ylb

�
D

1

˛

d˛

dt
.lb�a� la�b/D

Aj

˛

d˛

dt
:

Hence dV D�
X

j

Aj

2˛
d˛ D�

A
2˛

d˛:

Tube packing arguments as in [11] give the following estimate on injectivity radius of
the boundary of a hyperbolic 3–manifold with tubular boundary.

Lemma 5.10 Let M be a compact, orientable hyperbolic 3–manifold with tubular
boundary such that each boundary component has tube radius at least R > 0. Then
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there exists a constant c.R/ > 0 such that M can be truncated along tubular tori to
give a hyperbolic 3–manifold with tubular boundary such that the injectivity radius of
the Euclidean metric on each boundary component is at least c.R/.

Proof We first expand the boundary tori of @M , moving each torus inwards at the
same rate until it bumps into itself or another boundary component. Let T1; : : : ;Tk

be the (immersed) tubular tori obtained when this bumping occurs; these tori meet
tangentially in a finite collection of points. Let Ri be the tube radius of Ti ; then
Ri �R for all i .

We let N D �M denote the canonical filling of M , zN the universal covering of N ,
and yN the metric completion of zN . For each subset Y � zN � yN , let yY denote the
closure of Y in yN .

We can regard T1; : : : ;Tk as a subsets of the canonical filling N . Then each Ti bounds
an open tube Vi in N and the tubes V1; : : : ;Vk are disjoint.

Let Ui be one (fixed) lift of Vi to the universal cover zN of N and let yUi be its closure
in yN . Now consider the lifts U of tubes Vj to zN such that @U meets @Ui tangentially
at a point (possibly with j D i ), and let yU be the closure of U in yN . For each such U ,
we construct a point q 2 yU as follows: Let p denote the intersection point of @Ui and
@U . Then q is the point inside yU at distance R from p along the geodesic through p

orthogonal to @U .

Claim Let Q be the collection of all points q constructed as above. Then the distance
in yN between any two distinct points of Q is at least 2R.

Proof Let U 0;U 00 � zN be lifts of the tubes V1; : : : ;Vk whose closures yU 0; yU 00 � yN
contain two distinct points q0; q00 2Q, and let B.q0;R/ and B.q00;R/ denote the open
balls in yN of radius R around q0 and q00 respectively. Since R�Rj , it follows from
the triangle inequality that B.q0;R/� yU 0 and B.q00;R/� yU 00 . But yU 0 and yU 00 have
disjoint interiors, hence B.q0;R/ and B.q00;R/ are disjoint. This proves the claim.

Now the distance from the boundary of Vi to any singular point in the completion of
N is at least R. So we can expand yUi to an open tube �Wi of radius di D Ri CR

which embeds isometrically in yN .

The geometry of �Wi can be described as follows. Let g be a geodesic in H3 . The
universal cover of H3�g can be completed by adding a geodesic, yg , which projects to
g in H3 . (This can be thought of as the infinite cyclic branched cover of H3 branched
over the geodesic g .) Let �H3 denote this completion. Then there is an isometry
�W �Wi!W to the open tube W of radius di about yg in �H3 .
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We use this to identify �Wi with W � �H3 and to identify the set of points Q with a
subset yQ� @W � �H3 . Since the closure SW of W is a convex subset of �H3 , it follows
from the claim above that d�H3.q

0; q00/D d SW .q
0; q00/� 2R for all q0 ¤ q00 2 yQ.

Next we use the arguments of [11] to estimate the distance measured on @Ui between
the tangency points p described above. For q 2 yQ, let Bq denote the closed ball in�H3 of radius R around the point q and let Pq denote the orthogonal projection of
Bq onto the surface at radius Ri from the core geodesic of �H3 . Since the balls Bq

have disjoint interiors, are of equal radius and are all centered at the same distance
di DRi CR from the core geodesic in �H3 , it follows that their projections Pq also
have disjoint interiors.

As in [11] we introduce cylindrical coordinates on H3 around the geodesic g and lift
these to cylindrical coordinates .r; �; �/ on �H3 ; here the angle � is a well defined real
number. Then from [11, Lemma 4.3], the projection of Bq to the .�; �/ plane can be
parametrized by

sinh2 � cosh2.Ri CR/C sin2 � sinh2.Ri CR/� sinh2R;

where R�Ri .

Now, as in [11], we have

j sinh �j �
sinh R

cosh.Ri CR/
�

sinh R

cosh.2R/
�

1

2
p

2
;

hence, using convexity of the sinh function,

jsinh �j � S j�j where S D

1

2
p

2

arcsinh 1

2
p

2

<
1

0:980258
:

j sin � j � j� j;Further,

so Pq contains the region:

.S�/2 cosh2.Ri CR/C �2 sinh2.Ri CR/� sinh2R�
S cosh.Ri CR/

sinh R cosh Ri

�2

.� cosh Ri/
2
C

�
sinh.Ri CR/

sinh R sinh Ri

�2

.� sinh Ri/
2
� 1:or

Since � cosh Ri and � sinh Ri are Euclidean coordinates on the surface in H3 at radius
r DRi , this equation describes an ellipse with semi-major axes

aD
sinh R cosh Ri

S cosh.Ri CR/
and b D

sinh R sinh Ri

sinh.Ri CR/
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whose interior is disjoint from the ellipses corresponding to other points q 2 yQ. Thus
these project to ellipses in Ti with disjoint interiors.

1

a
D S.coth RC tanh Ri/ < S.coth RC 1/Now

1

b
D coth RC coth Ri � 2 coth R< coth RC 1� S.coth RC 1/;and

where S < 1=0:980258: Hence the Euclidean injectivity radius of Ti is larger than

c.R/D
0:980258

coth RC 1
:

By adding sufficiently small collars on the tori Ti we obtain a hyperbolic manifold
with tubular boundary as desired.

The proof of Theorem 5.8 now follows from the arguments in the proofs of [11,
Theorem 1.2] and [11, Theorem 3.12] together with the volume and injectivity radius
estimates given in Lemma 5.9 and Lemma 5.10 above. We outline the argument.

Let M be a hyperbolic 3–manifold with tubular boundary whose canonical filling �M
has tube radius at least R0 . Then by using Lemma 5.10 we can add standard collars
on the boundary components to obtain a hyperbolic manifold N � �M with tubular
boundary such that the boundary components of @N are at least distance R0=2 apart
and have tube radius at least R0=2, and whose injectivity radius at all boundary points
(as defined in [11, p 388]) is at least c0 , where c0 is a positive constant depending only
on R0 .

Thus we can truncate the manifolds �Mt to obtain a smooth family of hyperbolic
manifolds Nt with tubular boundary, with uniform lower bounds on the tube radius and
injectivity radius (as defined in [11, p 388]) on their boundaries. Further, the volume
of Nt is at most the volume of the canonical filling yNt D

�Mt , and Lemma 5.9 shows
that this is decreasing throughout the deformation since ˛.t/ is increasing. Hence the
volumes of the Nt are bounded above.

It follows as in the proof of [11, Theorem 3.12] that Nt converge in the bilipschitz
topology to a hyperbolic manifold N1 with tubular boundary, and we can choose
holonomy representations �t for Nt converging to the holonomy representation �1

for N1 . Further, the convergence of the geometry on the boundary of Nt implies,
using (22), that the corresponding complex length functions Lt for @Nt converge to
the complex length function Lt for @N1 .

In particular, since limt!1 Lt .cj / D limt!1 ˛.t/i ¤ 0 the limiting complex length
function is not identically zero. Hence the limiting tube radius for each boundary
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component of N1 is finite. It follows that L1 is invertible and the Dehn surgery
coefficient for each boundary component of N1 is the limit of the corresponding Dehn
surgery coefficients for Nt . This completes the proof of Theorem 5.8.

Combining the control on tube radii given by Theorem 5.7 with Theorem 5.8 shows that
we can deform the complete hyperbolic structure on the interior of X to a hyperbolic
structure with Dehn surgery coefficient c 2H1.@X IR/ provided the normalized length
yL of c is at least 7:5832. This proves our main result.

Theorem 5.11 Consider a complete, finite volume hyperbolic structure on the interior
of a compact, orientable 3–manifold X with k � 1 torus boundary components. Let
T1; : : : ;Tk be horospherical tori which are embedded as a cross-sections to the cusps of
the complete structure. Then there exists a universal constant C D7:5832 such that there
is a “radial” deformation from the complete hyperbolic structure on the interior of X to
a hyperbolic structure with Dehn surgery coefficient c D .c1; c2; � � � ; ck/ 2H1.@X IR/
through hyperbolic structures with Dehn surgery coefficients .2�=˛/c provided the
normalized lengths yLj D

yL.cj / on Tj satisfyX
j

1

yL2
j

<
1

C 2
:

In particular, this implies Theorem 1.1 and Theorem 1.2 as stated in the introduction.

Remark The same result holds if some surgery coefficients cj are infinite, ie some
cusps remain complete. The proof is essentially the same as given above.

5.5 Volume estimates

Finally, we use our estimates on the total visual area A to control the change in
geometry during hyperbolic Dehn filling. We consider a deformation as in the previous
section, and use the notation and results from that section.

The inequalities in (43) give us upper and lower bounds on A as a function of
x D ˛2= yL2 provided x � .2�=7:5832/2 . If yL � 7:5832 then these estimates apply
throughout the deformation, as ˛ increases from 0 to 2� . Then by integrating the
estimates, we obtain upper and lower bounds on the change in the volume V of the
filled in manifolds �Mt with Dehn surgery type singularities.

Using the parametrization t D ˛2 , Schläfli’s formula (44) gives

d

dt
.V /D�

A
2˛

d˛

dt
D�

A
4˛2
D�

A
4t
:

Geometry & Topology, Volume 12 (2008)



The shape of hyperbolic Dehn surgery space 1087

Fixing yL and putting x D ˛2= yL2 D t= yL2 we find that the decrease in volume is

�V D

Z .2�/2

0

A
4t

dt D

Z yx
0

A.x/
4x

dx

where yx D .2�/2= yL2 and A.x/ lies in the region defined by the inequalities in (43)
and illustrated in Figure 1.

The lower bound for A.x/ is given by AD A.z/ where x D zf .z/, dx D zf 0.z/dz .
Hence

1

4

Z zz
1

A.z/ zf 0.z/
zf .z/

dz ��V

where zf .zz/D yxD .2�/2= yL2 . Rewriting this using the definitions of zf and AD 1=H

gives
1

4

Z 1

zz

H 0.z/

H.z/.H.z/� zG.z//
dz ��V:

The upper bound for A.x/ is given by AD A.z/ where x D f .z/, dx D f 0.z/dz .
Hence

�V �
1

4

Z yz
1

A.z/f 0.z/
f .z/

dz

where f .yz/D yx D .2�/2= yL2 . Hence

�V �
1

4

Z 1

yz

H 0.z/

H.z/.H.z/CG.z//
dz:

In particular, taking yzD1=
p

3 gives an upper bound �V �0:197816 when .2�/2= yL2�

f .1=
p

3/, ie yL� 7:5832.

This gives us the following estimates on the changes in geometry during generalized
hyperbolic Dehn filling.

Theorem 5.12 Let X be a compact, orientable 3–manifold as in Theorem 5.11, and
let V1 denote the volume of the complete hyperbolic structure on the interior of X .
Let c D .c1; : : : ; ck/ 2 H1.@X IR/ be a surgery coefficient with normalized lengths
yLi D

yL.ci/ satisfying

1

yL2
D

X
j

1

yL2
j

<
1

C 2
where C D 7:5832;

and let M.c/ be the filled hyperbolic manifold with Dehn surgery coefficient c . Then:
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(1) The decrease in volume in hyperbolic Dehn filling �V D V1 � vol.M.c//

satisfies

1

4

Z 1

zz

H 0.z/

H.z/.H.z/� zG.z//
dz ��V �

1

4

Z 1

yz

H 0.z/

H.z/.H.z/CG.z//
dz;

where yz and zz are defined by

f .yz/D zf .zz/D
.2�/2

yL2
:

(2) The total visual area A in M.c/ satisfies

A.zz/D
1

H.zz/
�A�A.yz/D

1

H.yz/
;

where yz; zz are as above.

Remark The estimate on the change in volume during Dehn filling in Theorem 5.12
is a significant improvement on the estimate obtained in [11]. The previous analysis
bounded the change in volume until AD ˛` reached its maximum allowed value hmax ,
but in this process the parameter ˛ could increase beyond 2� . Here we estimate the
change in volume until ˛ reaches 2� ; this gives the more refined estimate.

The graphs in Figure 2 and Figure 3 illustrate the results in Theorem 5.12. The dotted
lines in these figures correspond to the asymptotic formulas of Neumann–Zagier [13]: as
yL!1, the decrease in volume is �V ��2= yL2 and the visual area is A� .2�/2= yL2:

0:2

0:15

0:1

0:05

0:60:50:40:30:20:1

Figure 2: Graph of �V versus yx D .2�/2= yL2

In particular, taking yLD 7:5832 in the above gives the following numerical estimates.
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1

0:8

0:6

0:4

0:2

0:60:50:40:30:20:1

Figure 3: Graph of A versus yx D .2�/2= yL2

Corollary 5.13 Let X be a compact, orientable 3–manifold as in Theorem 5.11, and
let c 2H1.@X IR/ be a surgery coefficient with yL.c/ > 7:5832. Then

(1) the decrease in volume during hyperbolic Dehn filling is at most 0:198,

(2) the total visual area of the boundary of the filled hyperbolic manifold M.c/ is at
most h.R0/� 0:980254.

In particular, if M.c/ is a hyperbolic manifold with a smooth core geodesic of length `
then AD 2�`. Thus the core geodesic length is at most h.R0/=.2�/� 0:156012.
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