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Blocking light in compact Riemannian manifolds

JEAN-FRANÇOIS LAFONT

BENJAMIN SCHMIDT

We study compact Riemannian manifolds .M;g/ for which the light from any given
point x 2M can be shaded away from any other point y 2M by finitely many
point shades in M . Compact flat Riemannian manifolds are known to have this finite
blocking property. We conjecture that amongst compact Riemannian manifolds this
finite blocking property characterizes the flat metrics. Using entropy considerations,
we verify this conjecture amongst metrics with nonpositive sectional curvatures.
Using the same approach, K Burns and E Gutkin have independently obtained this
result. Additionally, we show that compact quotients of Euclidean buildings have the
finite blocking property.

On the positive curvature side, we conjecture that compact Riemannian manifolds with
the same blocking properties as compact rank one symmetric spaces are necessarily
isometric to a compact rank one symmetric space. We include some results providing
evidence for this conjecture.

53C22; 53C20, 53B20

1 Introduction

To what extent does the collision of light determine the global geometry of space? In this
paper we study compact Riemannian manifolds with this question in mind. Throughout,
we assume that .M;g/ is a smooth, connected, and compact manifold without boundary
equipped with a smooth Riemannian metric g . Unless stated otherwise, a geodesic
segment  refers to a unit speed paramaterization of a geodesic in M . Notationally,
we will write such a paramaterized segment as  W Œ0;L �! M; where L is the
length of the segment  . By the interior of a geodesic segment  we mean the set
int. / WD  ..0;L //�M .

Definition (Light) Let X;Y � .M;g/ be two nonempty subsets, and let Gg.X;Y /

denote the set of geodesic segments  �M with initial point  .0/ 2X and terminal
point  .L / 2 Y . The light from X to Y is the set

Lg.X;Y /D f 2Gg.X;Y / j int. /\ .X [Y /D∅g:
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Definition (Blocking Set) Let X;Y �M be two nonempty subsets. A subset B is
a blocking set for Lg.X;Y / provided that for every  2Lg.X;Y /;

int. /\B ¤∅:

In this paper we focus on compact Riemannian manifolds for which the light between
pairs of points in M is blocked by a finite set of points. We remark that by a celebrated
theorem of Serre [24], Gg.x;y/ is infinite when x;y 2M are two distinct points. In
contrast, Lg.x;y/� Gg.x;y/ may or may not be an infinite subset. For example, in
the case of a round metric on a sphere, jL.x;y/j is infinite only when xD y or x and
y are an antipodal pair.

Definition (Blocking Number) Let x;y 2M be two (not necessarily distinct) points
in .M;g/. The blocking number bg.x;y/ for Lg.x;y/ is defined by

bg.x;y/D inffn 2 N[f1g jLg.x;y/ is blocked by n pointsg:

Definition (Finite Blocking Property) A compact Riemannian manifold .M;g/ is
said to have finite blocking if bg.x;y/ <1 for every .x;y/ 2M �M . When .M;g/

has finite blocking and the blocking numbers are uniformly bounded above, .M;g/ is
said to have uniform finite blocking.

The finite blocking property seems to have originated in the study of polygonal billiard
systems and translational surfaces (see Fomin [7], Gutkin [9; 10; 11], Heimer and
Snurnikov [13], and Monteil [16; 17; 18; 19]). Our motivation comes from the following
theorem (see [7], [9, Lemma 1], or Gutkin and Schroeder [12, Proposition 2]):

Theorem Compact flat Riemannian manifolds have uniform finite blocking.

We believe the following is true:

Conjecture Let .M;g/ be a compact Riemannian manifold with finite blocking.
Then g is a flat metric.

There is a natural analogue of (uniform) finite blocking for general geodesic metric
spaces. We provide an extension of the above theorem in Section 5:

Theorem 1 Compact quotients of Euclidean buildings have uniform finite blocking.

As evidence for the above conjecture we prove the following theorem in Section 4:
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Theorem 2 Let .M;g/ be a compact nonpositively curved Riemannian manifold with
the finite blocking property. Then g is a flat metric.

This theorem is a consequence of a well known result about nonpositively curved
manifolds and the next theorem relating the finite blocking property to the topological
entropy of the geodesic flow:

Theorem 3 Let .M;g/ be a compact Riemannian manifold without conjugate points.
If htop.g/> 0, then bg.x;y/D1 for every .x;y/2M . In other words, given any pair
of points x;y 2M and a finite set F �M �fx;yg, there exists a geodesic segment
connecting x to y and avoiding F .

Working independently and using a similar approach K Burns and E Gutkin have also
obtained Theorem 3 as well as the following [4]:

Theorem (Burns and Gutkin) Let .M;g/ be a compact Riemannian manifold with
uniform finite blocking. Then htop.g/D 0 and the fundamental group of M is virtually
nilpotent.

In Section 2, we define regular finite blocking by imposing a continuity and separation
hypothesis on blocking sets. We show that manifolds with regular finite blocking have
uniform finite blocking and are conjugate point free. Combining this result with the
previous theorem of K Burns and E Gutkin, and recent work of N D Lebedeva [14]
yields:

Theorem 4 Let .M;g/ be a compact Riemannian manifold with regular finite block-
ing. Then g is a flat metric.

Blocking light is also interesting in the context of the nonnegatively curved compact
type locally symmetric spaces. In [12], Gutkin and Schroeder show the following:

Theorem (Gutkin and Schroeder) Let .M;g/ be a compact locally symmetric space
of compact type with R-rank k�1. Then bg.x;y/�2k for almost all .x;y/2M�M .

We refer the reader to [12] for a more precise formulation and discussion of this result.
On the positively curved side, we focus on the blocking properties of the compact
rank one symmetric spaces or CROSSes. The CROSSes are classified and consist of
the round spheres .Sn; can/, the projective spaces .KPn; can/ where K denotes one
of R,C, or H, and the Cayley projective plane .CaP2; can/ where “can” denotes a
symmetric metric. The CROSSes all satisfy the following blocking property:
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Definition (Cross Blocking) A compact Riemannian manifold .M;g/ is said to have
cross blocking if

0< d.x;y/ < Diam.M;g/ H) bg.x;y/� 2:

Just as with finite blocking, we also define regular cross blocking by imposing a
continuity and separation hypothesis on blocking sets. In addition to cross blocking,
round spheres also satisfy the following blocking property:

Definition (Sphere Blocking) A compact Riemannian manifold .M;g/ is said to
have sphere blocking if bg.x;x/D 1 for every x 2M .

This is a blocking interpretation of “antipodal points”; we think of the single blocker
for Lg.x;x/ as being antipodal to x . We believe the following is true:

Conjecture A compact simply connected Riemannian manifold .M;g/ has cross
blocking if and only if .M;g/ is isometric to a simply connected compact rank one
symmetric space. In particular, .M;g/ has cross blocking and sphere blocking if and
only if .M;g/ is isometric to a round sphere.

As support for this conjecture, we prove the following theorems in Section 3:

Theorem 5 Let .S2;g/ be a metric on the two sphere with cross blocking and sphere
blocking. Then a shortest periodic geodesic is simple with period 2 Diam.S2;g/.

Theorem 6 Let .M 2n;g/ be an even dimensional manifold with positive sectional
curvatures and regular cross blocking. Then .M;g/ is a Blaschke manifold. If in
addition M is diffeomorphic to a sphere or has sphere blocking, then .M;g/ is
isometric to a round sphere.

Theorem 7 Let .M;g/ be a compact Riemannian manifold with regular cross block-
ing, sphere blocking, and which does not admit a nonvanishing line field. Then .M;g/

is isometric to an even dimensional round sphere.
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2 Finite blocking and conjugate points

For the reader’s convenience, we begin with the definition of a conjugate point in a
compact Riemannian manifold .M;g/. We let TM (resp. UM ) denote the tangent
bundle (resp. unit tangent bundle) of M and denote the fibers above a point p 2M ,
by TpM and UpM . For a point p 2M , the exponential map

exppW TpM !M

is everywhere defined by completeness.

Definition (Conjugate Point) A point q D expp.v/ 2M is conjugate to p along the
unit speed geodesic vW Œ0; jjvjj�!M with initial condition v

jjvjj
2 Up.M /� UM if

d.expp/v is not of full rank.

In [25], F Warner describes the conjugate locus of singular points C.p/ � Tp.M /

for the exponential map expp . A point v 2 C.p/ is said to be regular if there exists
a neighborhood U of v such that each ray emanating from the origin in Tp.M /

intersects at most one point in C.p/\U . The order of a point v 2 C.p/ is defined
to be the dimension of the kernel of d.expp/v . Warner shows that the set of regular
points C R.p/� C.p/ is an open dense subset of C.p/ which (if nonempty) forms a
codimension one submanifold of Tp.M /. Moreover, the order of points is constant in
each connected component of C R.p/ and there are normal forms (depending on the
order of the point) for the exponential map in a neighborhood of each regular point.
From these normal forms, it follows that the preimage under the exponential map of
a regular conjugate point of order more than one is indiscrete. It appears that regular
points of order more than one are rare in Riemannian manifolds (see Warner [26]).
The next proposition shows that there are no such conjugate points in Riemannian
manifolds with the finite blocking property.

Proposition 2.1 Suppose that .M;g/ is a compact Riemannian manifold with finite
blocking. Then for each p 2M , point preimages of expp are discrete subsets of TpM .

Geometry & Topology, Volume 11 (2007)



872 Jean-François Lafont and Benjamin Schmidt

Proof Suppose not. Then there are points p; q 2M and a sequence of vectors fvig �

exp�1
p .q/ converging to a vector v12 exp�1

p .q/�Tp.M /. Let BDfb1; : : : ; bkg�M

be a finite blocking set for Lg.p; q/. Note that any geodesic segment  2 Gg.p; q/

contains a subsegment  0 2Lg.p; q/. It follows that for each index i , there is a well
defined time ti 2 .0; 1/, given by

ti D infft 2 .0; 1/ j expp.tvi/ 2 Bg:

After possibly relabeling blockers and passing to a subsequence, we may assume that
expp.tivi/D b1 for all i 2N. A subsequence of the vectors ftivig converge to a vector
t1v1 and by continuity of the exponential map, expp.t1v1/D b1 . This shows that
the point b1 is a sooner conjugate point to p along the geodesic ray  .t/D expp.tv1/

than is the point q . By repeating this argument, there is always a sooner conjugate
point, contradicting the fact that conjugate points are discrete along a geodesic.

We expect that compact Riemannian manifolds with the finite blocking property will
never have conjugate points. Next we impose some restrictions on blocking sets
and show that the light between conjugate points cannot be finitely blocked by such
sets. For a compact Riemannian manifold .M;g/, let M 0 �M �M be the subset
of points for which bg <1, T 0 � TM be the subset of vectors .p; v/ 2 TM for
which .p; expp.v// 2M 0 , and let F.M / denote the set of finite subsets of M . A
blocking function for .M;g/ is a symmetric map BW M 0! F.M / such that for each
.x;y/ 2M 0; B.x;y/ is a finite blocking set for Lg.x;y/. Given a blocking function
B we define the first blocking time tBW T

0! .0; 1/ by

tB.p; v/D infft 2 .0; 1/ j expp.tv/ 2 B.p; expp.v//g:

Definition (Continuous Blocking) We say that a closed Riemannian manifold .M;g/

has continuous blocking if there is a blocking function B for which the first blocking
time tBW T

0! .0; 1/ is continuous.

Definition (Separated Blocking) We say that a blocking function B is separated if
there exists an � > 0 such that the � -neighborhoods of blocking points in each finite
blocking set B.x;y/�M are disjoint.

Lemma 2.2 Let B be a separated blocking function for a compact Riemannian man-
ifold .M;g/. Then the cardinalities of blocking sets defined by B are uniformly
bounded above. In particular, compact Riemannian manifolds with finite blocking and
a separated blocking function have uniform finite blocking.
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Proof Suppose that the blocking sets defined by B are � -separated. An upper bound
Kmax for the sectional curvatures yields a lower bound C WD C.Kmax; �/ > 0 for the
volume of balls of radius � in M . Therefore, there are at most vol.M;g/=C disjoint
balls of radius � in M , concluding the proof.

Proposition 2.3 Let .M;g/ be a compact Riemannian manifold with a blocking
function B that is both continuous and separated. Let p 2M and suppose that U is
an open subset of Tp.M / consisting of vectors from T 0\Tp.M /. Then no point in
expp.U /�M is a first conjugate point to the point p .

Proof Suppose not. Then there is a vector v 2 U for which expp.v/ is the first
conjugate point to p along the geodesic  .t/ WD expp.tv/, t 2 Œ0; 1�. It is well known
(see eg, Warner [25]) that expp is not one to one in any neighborhood of v . Let Bi

be a sequence of balls centered at v and contained in U with radii decreasing to zero.
For each i , choose distinct points xi ;yi 2 Bi with expp.xi/D expp.yi/ WD qi . Let
B be a continuous and separated blocking function, and let li WD expp.tB.xi/xi/ and
ri WD expp.tB.yi/yi/ be the associated first blocking points in B.p; qi/. By continuity
of B , the sequences flig and frig both converge to expp.tB.v/v/. By the separatedness
of B , it follows that li D ri for all sufficiently large indices, whence expp.tB.v/v/ is a
sooner conjugate point along  , a contradiction.

When a compact Riemannian manifold .M;g/ has finite (resp. cross) blocking and
a continuous and separated blocking function, we shall say that .M;g/ has regular
finite (resp. regular cross) blocking.

Corollary 2.4 Let .M n;g/ be a compact Riemannian manifold with regular finite
blocking. Then .M;g/ has uniform finite blocking and is conjugate point free. In
particular, the universal cover of M is diffeomorphic to Rn

Proof Since .M;g/ has finite blocking, T 0 D TM . By Lemma 2.2, .M;g/ has
uniform finite blocking and by Proposition 2.3, .M;g/ is conjugate point free. The
second statement is Hadamard’s theorem.

Corollary 2.5 Let .M;g/ be a compact Riemannian manifold with regular cross
blocking. If p; q 2 M are consecutive conjugate points along a geodesic  , then
d.p; q/D 0 or d.p; q/D Diam.M;g/.

Proof Suppose p; q 2M satisfy 0< d.p; q/ < Diam.M;g/ and let  W Œ0; 1�!M

be a geodesic with  .0/D p ,  .1/D q , and along which q is the first conjugate point
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to p . Then  .t/D expp.tv/ for some v 2 Tp.M /: By continuity of the exponential
map and the cross blocking property, there is an open set U � Tp.M / containing
v and satisfying U � T 0 \Tp.M /. By Proposition 2.3, the points p and q are not
consecutive conjugate points, a contradiction.

3 Blocking light and round spheres

In this section, we show under various hypothesis that compact Riemannian manifolds
with blocking properties similar to those of round spheres are necessarily isometric to
round spheres. In general, we believe the following should be true:

Conjecture Let .M;g/ be a compact simply connected Riemannian manifold with
cross blocking. Then .M;g/ is isometric to a simply connected compact rank one
symmetric space.

We begin by reviewing the definition and basic properties concerning cut points
in a compact Riemannian manifold .M;g/. In this section, a unit speed geodesic
 W Œ0;L �!M for which  .0/D  .L /D p will be called a geodesic lasso based at
p . For a geodesic lasso  , we shall denote by �1W Œ0;L �!M the geodesic lasso
obtained by traversing  in the reverse direction; specifically, �1.t/ WD  .L � t/. If
in addition the geodesic  is regular at p , ie, P .0/D P .L /,  will be called a closed
geodesic based at p . By a simple lasso (resp. simple closed geodesic) based at p we
mean a lasso (resp. closed geodesic)  W Œ0;L �!M based at p which is injective on
the interval .0;L / and with p …  ..0;L //.

Definition Let .M;g/ be a compact Riemannian manifold, p 2M , v 2Up.M /, and
 W Œ0;1/!M the unit speed geodesic ray defined by  .t/D expp.tv/ . Let Œ0; t0�
be the largest interval for which t 2 Œ0; t0� implies d.p;  .t//D t . The point  .t0/ is
said to be a cut point to p along the geodesic  . The union of the cut points to p

along all the geodesics starting from p is called the cut locus and will be denoted by
Cut.p/.

The next two propositions are well known and describe points in the cut locus (see eg,
do Carmo [6]).

Proposition 3.1 Suppose that  .t0/ is the cut point of p D  .0/ along a geodesic  .
Then either:

�  .t0/ is the first conjugate point of  .0/ along  , or
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� there exists a geodesic � ¤  from p to  .t0/ such that length.�/D length. /.

Conversely, if either of these two conditions is satisfied, then there exists t 0 2 .0; t0�

such that  .t 0/ is the cut point of p along  .

Proposition 3.2 Let p 2 M and suppose that q 2 Cut.p/ satisfies d.p; q/ D

d.p;Cut.p//. Then either:

� there exists a minimizing geodesic  from p to q along which q is conjugate to
p , or

� there exist exactly two minimizing geodesics  and � from p to q that together
form a simple geodesic lasso based at p of length 2d.p;Cut.p//.

It follows from Proposition 3.1 that expp is injective on a ball of radius r centered at
the origin in Tp.M / if and only if r < d.p;Cut.p//.

Definition The injectivity radius of .M;g/ is defined to be

inj.M;g/D inf
p2M

d.p;Cut.p//:

Note that the injectivity radius of a compact Riemannian manifold is never larger than
its diameter. Compact manifolds for which the injectivity radius equals the diameter
are known as Blaschke manifolds. All of the compact rank one symmetric spaces
are Blaschke and the well known Blaschke conjecture asserts that these are the only
Blaschke manifolds of dimension at least two. We will use the following theorem from
Berger [2, Appendix D], extending earlier work of Green [8]:

Theorem 3.3 (Berger) Let .M;g/ be a Blashke metric on a smooth sphere. Then
the metric g is a symmetric metric.

For a Blaschke manifold .M;g/, all infinite geodesics  W R!M cover simple closed
geodesics of length 2 Diam.M;g/ (see [2, Corollary 5.42]). The next proposition is a
first step in showing that geodesics in a manifold with cross blocking behave similarly
to those in a Blaschke manifold.

Proposition 3.4 Suppose that .M;g/ has cross blocking. Let  W Œ0;L �!M be a
unit speed simple geodesic lasso based at p 2M . Then L � 2 Diam.M;g/ and the
point  .L=2/ is the cut point to p in both of the directions P .0/ and � P .L /.
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Proof Let D WD Diam.M;g/ and let c1 be the cut point to p in the direction P .0/
and c2 be the cut point to p in the direction � P .L /. By simplicity of  , there
exists unique t1; t2 2 .0;L / such that ci D  .ti/ for i D 1; 2. By Proposition 3.1,
t1 �L=2� t2 . The statement of the proposition follows from showing that t1 D t2 ,
ie, that c1 D c2 and the point  .L=2/ is the cut point to p in both of the directions
P .0/ and � P .L /.

We now will assume that t1 < t2 and must obtain a contradiction. With this assumption,
we first argue that d.p;  ..t1; t2/// D D . If not, choose a t 2 .t1; t2/ for which
0< d.p;  .t// <D . Note that since  is simple, the restrictions of  to the interval
Œ0; t � and �1 to the interval Œ0;L � t � define distinct elements in Lg.p;  .t// with
nonintersecting interiors. There must be a single blocking point on the restriction
of  to the interior of each of these intervals since .M;g/ has cross blocking. As
neither of these light rays are minimizing, there is a unit speed minimizing geodesic
� W Œ0;L� �!M joining p to  .t/. Since � is minimizing, it defines a third light
ray between p and  .t/, whence its interior must intersect one of the two blocking
points for Lg.p;  .t//. Let s0 WD inffs 2 .0;L� / j �.s/ 2 int. /g. By simplicity of  ,
there is a unique t 0 2 .0;L / such that �.s0/D  .t 0/ WD q . Since � is unit speed and
minimizing, 0<d.p; q/D s0<L� Dd.p;  .t//<D , so that bg.p; q/�2 by the cross
blocking condition. However, the restriction of  to Œ0; t 0�, �1 to Œ0;L � t 0�, and the
restriction of � to Œ0; s0� define three distinct elements in Lg.p; q/ with nonintersecting
interiors, implying bg.p; q/� 3. This is a contradiction, whence d.p;  ..t1; t2///DD .

Next we show that d.p;  ..t1; t2///DD yields a contradiction, completing the proof.
By the discreteness of conjugate points along geodesics, there is a t 2 .t1; t2/ so that
q WD  .t/ is not conjugate to p in the direction P .0/ or in the direction � P .L /.
Neither of the restrictions of  to Œ0; t � or �1 to Œ0;L �t � is minimizing so that there
is a unit speed minimizing geodesic � W Œ0;D�!M joining p to q . Note that since �
is minimizing, the interior of � cannot intersect  . Indeed, a first point of intersection
between the interiors of � and  would be at a point p0 satisfying 0< d.p;p0/<D so
that the reasoning from the previous paragraph may be applied to obtain a contradiction.
Let qnD�.D�1=2n/. Choose sufficiently small neighborhoods B1 of t P .0/ and B2 of
�.L � t/ P .L / on which expp restricts to a local diffeomorphism. For all sufficiently
large n, there are unique xn 2 B1 and yn 2 B2 such that qn D expp.xn/D expp.yn/.
It follows by the continuity properties of the exponential map that for suitably large n,
the geodesics

s 7! expp.sxn/ and s 7! expp.syn/

for s 2 Œ0; 1� and the restriction of � to the interval Œ0;D�1=2n� define three light rays
between p and qn with nonintersecting interior. Hence, bg.p; qn/�3 for suitably large
n. But 0< d.p; qn/ <D , so that bg.p; qn/� 2 by cross blocking, a contradiction.
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Lemma 3.5 Suppose that .M;g/ has cross blocking and sphere blocking. Suppose
that  W Œ0;L � ! M is a unit speed simple geodesic lasso based at p 2 M . If
L < 2 Diam.M;g/, then  is regular at p and all lassos based at p finitely cover
 . If L D 2 Diam.M;g/, then the interior of all of the geodesic lassos through p

intersect in the point  .L=2/.

Proof Let p WD  .L=2/. Suppose there is a (not necessarily simple) unit speed lasso
� W Œ0;L� �!M through p with P�.0/ distinct from P .0/ and � P .L /. As .M;g/ has
sphere blocking and  is simple, there is a unique t 2 .0;L / such that  .t/ blocks
Lg.p;p/. Let s WD infft 2 .0;L� � j �.t/Dpg. The restriction of � to the interval Œ0; s�
gives an element in Lg.p;p/ so that by sphere blocking, its interior must pass through
the blocking point  .t/ (and hence int. /). Let s0 WD infft 2 .0; s/ j �.t/ 2 int. /g. By
simplicity of  there is a unique t 0 2 .0;L / such that  .t 0/D �.s0/ WD q . As  is
simple, the restrictions of  to the intervals Œ0; t 0�, �1 to the interval Œt 0;L �, and � to
the interval Œ0; s0� define three distinct light rays between p and q with nonintersecting
interiors. Since p¤ q cross blocking implies that d.p; q/DDiam.M;g/ and that qD

p (by Proposition 3.4 and since L=2�Diam.M;g/). Hence, if L=2<Diam.M;g/

there are no geodesic lassos through p with initial tangent vector outside of the set
f P .0/;� P .L /g, and if L=2 D Diam.M;g/, the interior of any lasso through the
point p passes through the point p . This concludes the proof of the last statement in
the lemma.

We now assume that L=2<Diam.M;g/, and will argue that  is regular at the point
p and that all lassos at p finitely cover  . By simplicity of  , the restriction of 
to the intervals Œ0;L=2� and �1 to the interval Œ0;L=2� define distinct light rays
between p and p with nonintersecting interiors. As .M;g/ has cross blocking, the
interior of a third light ray must intersect the interior of  in a blocker and will therefore
have a first point of intersection p0 with the interior of  . This implies bg.p;p

0/� 3,
a contradiciton. Therefore jLg.p;p/j D 2, while Gg.p;p/ is infinite by [24]. Note
that any geodesic segment from Gg.p;p/�Lg.p;p/ is obtained from extending one
of the two light rays in Lg.p;p/. Each such extension gives rise to a geodesic lasso
based at p with initial tangent vector in the set f� P .0/; P .L /g. But by the previous
paragraph, the initial tangent vector of all lassos at p lie in the set f P .0/;� P .L /g:
Therefore,  must be regular at p and all lassos at p finitely cover  .

Definition A SC2L manifold is a Riemannian manifold with the property that all
geodesics cover simple closed geodesics of length 2L.

It is tempting to think that the only SC2L manifolds are the CROSSes. Amazingly,
O Zoll exhibited an exotic SC2L real analytic Riemannian metric on the two sphere
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[27]. This example is discussed in [2, Chapter 4] along with examples on higher
dimensional spheres. We remark that these examples are not cross blocked. Indeed,
Proposition 3.4 implies that SC2L manifolds with cross blocking are Blaschke with
inj.M;g/ D Diam.M;g/ D L, while Theorem 3.3 asserts that there are no exotic
Blaschke metrics on spheres. In view of our conjecture that the manifolds with cross
blocking are precisely the CROSSes and the Blaschke conjecture that the Blaschke
manifolds are precisely the CROSSes, we expect that Blaschke manifolds are precisely
those manifolds with cross blocking. In the next proposition, we use well known
results concerning Blaschke manifolds to show that Blaschke manifolds all have cross
blocking.

Proposition 3.6 Suppose that .M;g/ is a Blaschke manifold. Then .M;g/ has cross
blocking.

Proof Suppose that p; q 2 M satisfy 0 < d.p; q/ < D WD Diam.M;g/. By [2,
Corollary 5.42], .M;g/ is a SC2D manifold. It follows that there is a unit speed
simple closed geodesic  W Œ0; 2D�!M with  .0/ D p and  .d.p; q// D q . The
restriction of  to the intervals Œ0; d.p; q/� and �1 to Œ0; 2D � d.p; q/� give two
distinct elements in Lg.p; q/ with nonintersecting interiors. Hence bg.p; q/� 2. If
bg.p; q/ > 2 then there must be a third unit speed light ray ˇW Œ0;Lˇ �!M joining
p to q . Note that since ˇ is a light ray and since all geodesics are periodic with
period 2D , Lˇ < 2D . Moreover, since d.p; q/ <D D inj.M;g/, the restriction of
 to the interval Œ0; d.p; q/� is the unique minimizing geodesic from p to q so that
Lˇ > inj.M;g/DD . Extend ˇ to the simple closed geodesic ˇW Œ0; 2D�!M . Then
the restriction of ˇ to the interval ŒLˇ; 2D� gives a geodesic joining q to p of length
2D �Lˇ < D D inj.M;g/. Hence, there are two minimizing geodesics joining p

and q , a contradiction. Therefore, bg.p; q/D 2 and Blaschke manifolds have cross
blocking.

Corollary 3.7 Suppose that .M;g/ is Blaschke manifold with sphere blocking. Then
.M;g/ is isometric to a round sphere.

Proof By the last proposition .M;g/ has cross blocking. By Lemma 3.5, the interior
of all of the simple closed geodesics through p intersect in a single point p0 satisfying
d.p;p0/D Diam.M;g/. By Proposition 3.4, p0 is the cut point to p along all these
geodesics. Hence, dim.Cut.p// D 0, from which it follows (see eg [2, Proposition
5.57]) that M is diffeomorphic to a sphere. By Theorem 3.3, .M;g/ is a round
sphere.

For the proof of the next theorem, we will need the following two definitions:
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Definition For p 2M and p0 2 Cut.p/, define the link ƒ.p;p0/� Up0M by

ƒ.p;p0/Df� P .d.p;p0// j is a unit speed and minimizing geodesic from p to p0g:

Definition For p 2M and U � UpM , U is said to be a great sphere if U is the
intersection of a linear subspace of TpM with UpM .

Theorem 3.8 Suppose that .M;g/ is a compact Riemannian manifold with regular
cross blocking, sphere blocking, and which does not admit a nonvanishing line field.
Then .M;g/ is isometric to an even dimensional round sphere.

Proof First we argue that .M;g/ is a Blaschke manifold.

To obtain a contradiction, suppose that inj.M;g/ < Diam.M;g/ WDD . We begin by
showing that for each point x 2M satisfying d.x;Cut.x// < D there is a unique
simple closed geodesic based at x and this geodesic has length 2d.x;Cut.x//. Indeed,
let x satisfy d.x;Cut.x// <D and x0 2 Cut.x/ satisfy d.x;x0/D d.x;Cut.x//. By
Corollary 2.5 the points x and x0 are not conjugate so that by Proposition 3.2 there is
a simple geodesic lasso C through x of length 2 inj.M;g/. By Lemma 3.5, C is a
simple closed geodesic through x and is the unique lasso through x , as required.

Let L WD supfd.p;Cut.p// jp 2M g �D . If L<D , the preceeding paragraph shows
that there is a unique closed geodesic Cp of length less than 2D through each point
p2M: Since all of the Cq have lengths uniformly bounded above, whenever a sequence
of points fpig converge to a point p1 2M , the sequence of closed geodesics Cpi

converge to a closed geodesic C1 . By the uniqueness of these geodesics, C1 D Cp1
.

Therefore, the tangent spaces to these geodesics define a nonvanishing line field on
M , a contradiction.

Hence, there is a point p 2M satisfying d.p;Cut.p// D D . Such a point is said
to have spherical cut locus at p [2, Definition 5.22]. By [2, Proposition 5.44], the
link ƒ.p;p0/� Up0.M / is a great sphere for each p0 2 Cut.p/, whence all geodesics
through p are periodic of period 2D . Now consider a geodesic connecting p to a point
q satisfying d.q;Cut.q// <D . This geodesic gives rise to a closed geodesic of length
2D through q , while the first paragraph shows that there is a closed geodesic through
p of length 2d.q;Cut.q//. This contradicts Lemma 3.5, implying that at every point
q 2M , we have d.q;Cut.q// D D , and hence concluding the proof that .M;g/ is
Blaschke.

By Corollary 3.7, .M;g/ is isometric to a round sphere. As M does not admit a
nonvanishing line field, .M;g/ is isometric to an even dimensional round sphere.
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Next, we adapt Klingenberg’s estimate on the injectivity radius to obtain the following
(see [6, Chapter 13, Proposition 3.4]):

Theorem 3.9 Suppose that .M 2n;g/ is an even dimensional, orientable, Riemannian
manifold with positive sectional curvatures. If .M;g/ has regular cross blocking, then
.M;g/ is Blaschke. In particular, if M is diffeomorphic to a sphere or .M;g/ has
sphere blocking, then g is a round metric on a sphere.

Proof Suppose to the contrary that inj.M;g/ < Diam.M;g/ and choose p; q 2M

so that q 2 Cut.p/ and d.p; q/ D inj.M;g/. By Corollary 2.5, p and q are not
first conjugate points along any geodesic. By Propositions 3.1 and 3.2, there is a
unit speed simple closed geodesic C W Œ0; 2 inj.M;g/� ! M of length 2 inj.M;g/

passing through p D C.0/ and q D C.inj.M;g//. Since M is orientable and even
dimensional, parallel transport along C leaves invariant a vector v orthogonal to C

at C.0/. The field v.t/ along C.t/ is the variational field of closed curves Cs.t/

for s 2 Œ0; �/. As the sectional curvatures are strictly positive, the second variational
formula implies that length.Cs/ < length.C / for all small s > 0. For each s > 0, let
qs be a point of Cs at maximum distance from Cs.0/. Necessarily, lims!0 qs D q and
d.qs;Cs.0// < inj.M;g/. For each s > 0, let s be the unique minimizing geodesic
joining qs to Cs.0/. Note that each Ps.0/ is orthogonal to Cs by the first variational
formula. Let w 2 TqM be an accumulation point of the vectors Ps.0/ 2 Tqs

M

and  W Œ0; 1�!M be the geodesic defined by  .t/ WD expq.tw/. It follows that 
is a minimizing geodesic joining q to p which is orthogonal to C at q . As  is
minimizing, it cannot intersect C except at the points p and q , whence bg.p; q/� 3, a
contradiction. Therefore .M;g/ is Blaschke. The last statement follows from Theorem
3.3 and Corollary 3.7.

Theorem 3.10 Suppose that .S2;g/ is a Riemannian metric on the two sphere with
cross blocking and sphere blocking. Then a shortest nontrivial closed geodesic is simple
and has length 2 Diam.S2;g/.

Proof Let D WD Diam.M;g/ and let C be a shortest nontrivial closed geodesic. We
first argue that if C is simple, then its length is 2 Diam.S2;g/. Indeed, by Proposition
3.4, length.C /� 2D . We suppose that length.C /< 2D and will obtain a contradiciton.
Note that C separates S2 into two components. By Santalo’s formula (see [23, page
488] or [1, page 290]), almost all geodesic rays with initial point on C eventually
leave the component they initially enter. Choose one such ray  W Œ0;1/!M and let
t WD infft 2 .0;1/ j  .t/ 2C g: If  .t/ is distinct from  .0/, then bg. .0/;  .t//� 3,
a contradiction. Hence,  .0/D  .t/, also a contradiction by Lemma 3.5.
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Next we argue that a shortest nontrivial closed geodesic C is simple. By Nabutovsky
and Rotman [20] or Sabourau [22], length.C / � 4D . Suppose that C is not simple,
and choose a unit speed paramaterization C W Œ0;LC �!M such that C.0/ is a crossing
point. Let s D infft 2 .0;LC / jC.s/ D C.0/g. Without loss of generality, we may
assume that the restriction of C to the interval Œ0; s� defines a simple lasso at C.0/,
whence s D 2D by Proposition 3.4. The restriction of C to the interval Œ2D;LC �

defines another lasso at C.0/. If this lasso is not simple, then it contains a simple lasso
of length 2D and LC > 4D , a contradiction. Hence, the restriction of C to the interval
Œ2D;LC � defines a simple lasso and LC D 4D . By Lemma 3.5, C.D/DC.3D/. Note
that the restriction of C to Œ0; 2D� separates S2 into two components. This implies that
C..0; 2D//\C..3D; 4D//¤∅. Letting s D infft 2 .3D; 4D/ jC.t/ 2 C..0; 2D//g;

it follows that bg.C.D/;C.s//� 3, a contradiction.

4 Finite blocking property and entropy

In this section we relate the finite blocking property for a compact Riemannian manifold
.M;g/ to the topological entropy htop.g/ of its geodesic flow.

Our starting point is a well known theorem (see eg, Mañé [15, Corollary 1.2]) identifying
the topological entropy with the exponential growth rate of the number of geodesics
between pairs of points in M . For x;y 2M and T > 0, let nT .x;y/ (resp. mT .x;y/)
denote the number of geodesic segments (resp. light rays) between the points x and y

of length no more than T .

Theorem 4.1 (Mañé) Let .M;g/ be a compact Riemannian manifold without conju-
gate points. Then

htop.g/D lim
T!1

log.nT .x;y//

T
;

for all .x;y/ 2M �M:

The main observation of this section lies in the following:

Proposition 4.2 Let .M;g/ be a compact Riemannian manifold without conjugate
points. If htop.g/ > 0, then bg.x;y/D1 for all .x;y/ 2M �M:

Proof Let I WD inj.M;g/. We first argue that nT .x;y/� .T=2I/2 mT .x;y/. For a
unit speed geodesic  W Œ0;L �!M in Gg.x;y/, let t1. / WD supft 2 Œ0;L / j  .t/D
xg and t2. / WD infft 2 .t1. /;L � j  .t/Dyg. Restrict  to the interval Œt1. /; t2. /�
and change the parameter of this interval to define a unit speed geodesic

Light. /W Œ0; t2. /� t1. /�!M
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in Lg.x;y/. Since for each ˇ 2Lg.x;y/, Light.ˇ/D ˇ , it follows that

LightW Gg.x;y/!Lg.x;y/

defines a surjective map. To conclude this step, it suffices to show that given a fixed
unit speed ˇ 2 Lg.x;y/ of length not more than T > 0, there are at most .T=2I/2

distinct preimages of ˇ under the map Light of length not more than T . For each unit
speed geodesic  W Œ0;L �!M of length not more than T satisfying Light. /D ˇ ,
P .t1. //D P̌.0/ and P .t2. //D P̌.Lˇ/ since geodesics are determined by their initial
conditions. It follows that the number of preimages of ˇ having length bounded above
by T coincides with the number of different extensions of ˇ to a unit speed geodesic
ˇ 2Gg.x;y/ having length not more that T . Given such an extension ˇ , let n

ˇ
.x/

and n
ˇ
.y/ be the number of returns to x and the number or returns to y . Necessarily,

n
ˇ
.x/; n

ˇ
.y/� T=2I since each return to x or return to y increases the length of ˇ

by at least 2I . Hence, by uniqueness of geodesics, nT .x;y/� .T=2I/2 mT .x;y/.

To complete the proof, we argue by contradiction, assuming there is a pair of points
x;y 2M with a finite blocking set F D fb1; : : : bkg �M �fx;yg for Lg.x;y/. By
definition, the interior of any light ray  2Lg.x;y/ passes through some point bi 2F ,
breaking  into two geodesic segments 1 2Gg.x; bi/ and 2 2Gg.bi ;y/. If  has
length bounded above by T , then one of 1 or 2 must have length bounded above by
T=2. Moreover, given a geodesic segment ˛ 2 Gg.x; bi/ (resp. ˇ 2 Gg.y; bi/), there
is at most one extension of ˛ (resp. ˇ ) to a light ray between x and y . It follows that
mT .x;y/�

Pk
jD1 nT=2.x; bj /CnT=2.bj ;y/. Combining this with the estimate from

the previous paragraph yields:

nT .x;y/� .T=2I/2
kX

jD1

nT=2.x; bj /C nT=2.bj ;y/:

Let 0< � < htop.g/=3. By Theorem 4.1, there is a T0 2 R so that T > To implies

jhtop.g/�
log.nT .�1;�2//

T
j< �;

for all �1;�2 2 fx;yg[F: Therefore

exp.htop.g/��/T < nT .�1;�2/ < exp.htop.g/C�/T ;

for all T > T0 and �1;�2 2 fx;yg[F . It now follows that

exp.htop.g/��/T < nT .x;y/ < 2k.T=2I/2 exp.htop.g/C�/T=2;

a contradiction for all sufficiently large values of T .
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We remark that the conclusion bg.x;y/D1 for all .x;y/ 2M �M may be phrased
more geometrically as saying that given any point .x;y/ 2M �M and any finite set
F �M �fx;yg, there is a geodesic segment between x and y avoiding F .

As a corollary of Proposition 4.2, we obtain the following:

Theorem 4.3 Let .M;g/ be a compact Riemannian manifold with nonpositive sec-
tional curvatures. Then .M;g/ has finite blocking if and only if .M;g/ is flat.

Proof Assume that .M;g/ has nonpositive curvature and is not flat. Then .M;g/

has no conjugate or focal points. By Pesin [21, Corollary 3], a geodesic flow on a
nonflat compact Riemannian manifold without focal points has positive entropy. By
Proposition 4.2, .M;g/ does not have finite blocking.

K Burns and E Gutkin [4] made the nice observation that by assuming uniform finite
blocking and by iterating the line of reasoning used in the proof of Proposition 4.2 one
can establish the following:

Theorem 4.4 (Burns-Gutkin) Let .M;g/ be a compact Riemannian manifold with
the uniform finite blocking. Then htop.g/D 0 and �1.M / has polynomial growth.

Using their result we obtain the following:

Theorem 4.5 Let .M;g/ be a compact Riemannian manifold with regular finite
blocking. Then .M;g/ is flat.

Proof By Corollary 2.4, .M;g/ has uniform finite blocking and is conjugate point
free. By Theorem 4.4, �1.M / has polynomial growth. By Lebedeva [14], compact
Riemannian manifolds without conjugate points and with polynomial growth funda-
mental group are flat.

5 Finite blocking property and buildings

In this section, we provide a proof of Theorem 1, which states that compact quotients
of Euclidean buildings have uniform finite blocking. Let us start by recalling some
elementary facts about Euclidean buildings, referring the reader to Brown [3] for more
details.

Let W �Rn be a compact polyhedron, with all faces forming angles of the form �=mij

for some positive integer mij . Let ƒ� Isom.Rn/ be the Coxeter group generated by
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reflections in the faces of the polyhedron, and observe that the ƒ-orbit of W generates
a tessellation of Rn by isometric copies of W . We can label the faces of the copies of
W in the tessellation of Rn according to the face of W whose orbit contains them.
A Euclidean building is a polyhedral complex zX , equipped with a CAT(0)-metric,
having the property that each top dimensional polyhedron is isometric to W (these
will be called chambers). In addition, a certain number of axioms are required to be
satisfied. We omit a precise definition of Euclidean buildings, contenting ourselves
with mentioning the properties we will need. The reader may refer to [3] for a precise
definition, and to Davis [5] for geometric properties of these buildings. The polyhedral
complex must also satisfy:

� Each face of the complex zX is labelled with one of the faces of the polyhedron
W .

� Given any pair of points x;y 2 zX , there exists an isometric, polyhedral, label
preserving embedding of the tessellated Rn whose image contains x and y . The
image of such an embedding is called an apartment.

� The group Isom. zX / is defined to be the group of label preserving isometries of
zX .

� Given any two apartments A1;A2 whose intersection is non-empty, there exists
an element � 2 Isom. zX / which fixes pointwise A1\A2 , and satisfies �.A1/D

A2 .

We will say that X is a compact quotient of zX provided it is the quotient of zX by a
cocompact subgroup of Isom. zX /, acting fixed point freely.

Note that in a Euclidean building, one has uniqueness of geodesics joining pairs
of points (from the CAT(0) hypothesis). Furthermore, we can pick an apartment
containing both x and y , giving a totally geodesic Rn inside zX containing x;y . Then
the geodesic joining x to y coincides with the straight line segment from x to y

within the apartment. We will call the point along the geodesic that is equidistant from
x and y the midpoint of x and y , and denote it by .xCy/=2.

Another important point is that both the building zX , as well as the compact quotient
X come equipped with a canonical folding map to the canonical chamber W , given
by the labeling. We will use � to denote the canonical folding map, and given a point
x 2 zX (or in zX=� ), we define the type of the point x to be the point �.x/ 2W . We
now make two observations:

� In a compact quotient zX=� , there are only finitely many points of any given
type.
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� Given any point p in zX=� , every pre-image of p in the universal cover zX has
exactly the same type as p .

The proof of the theorem will make use of the following easy lemma:

Lemma 5.1 Let A be any apartment, and x;y 2 W a pair of points in the model
chamber. Define S.x/, S.y/ to be the set of points in A of type x , y respectively.
Then there exist a finite collection of points b1; : : : ; bk 2W having the property that:

f.xxC xy/=2 j xx 2 S.x/; xy 2 S.y/g �
k[

iD1

S.bi/

Proof We first observe that the Coxeter group ƒ contains an isomorphic copy of Zr

as a finite index subgroup, where r D dim.A/. In particular, if we denote by ƒ0 this
finite index subgroup, we note that each of the two sets S.x/, S.y/ are the union of
Œƒ Wƒ0�Dm disjoint copies of ƒ0 -orbits in A. Now note that given any two ƒ0 -orbits
in A, the collection of midpoints of points in the first orbit with points in the second
orbit lie in a finite collection of ƒ0 -orbits (in fact, at most 2r such orbits). This is
immediate from the proof of the fact that a flat torus has finite blocking.

This in turn implies that the collection of midpoints of points in the set S.x/ and points
in the set S.y/ lie in the union of at most 2r m2 of the ƒ0 -orbits in A. Since each
ƒ0 -orbit lies in a corresponding ƒ-orbit, we conclude that the collection of midpoints
lie in the union of a finite collection of ƒ-orbits. But two points are in the same ƒ-orbit
if and only if they have the same type. Hence choosing the points b1; : : : ; bk to be the
finitely many types (at most 2r m2 of them), we get the desired containment of sets.

We now proceed to prove Theorem 1:

Proof of Theorem 1 Let X D zX=� be a compact quotient of the Euclidean building
zX , and let W denote a model chamber. Given two points x;y in the space X , we want

to exhibit a finite set of blockers. Consider the sets P.x/;P.y/� zX consisting of all
pre-images of the points x;y , respectively, under the covering map zX !X D zX=� .
As we previously remarked, we can make sense of the midpoint of a pair of points in
zX . We now claim that the collection of midpoints joining points in P.x/ to points in
P.y/ have only a finite number of possible types in W .

In order to see this, let us apply the previous lemma to the types �.x/; �.y/ 2 W .
First note that given an arbitrary pair of points xx 2 P.x/, xy 2 P.x/, there exists
an apartment A containing xx; xy . Furthermore, we have the obvious containments
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P.x/\A� S.�.x//, P.y/\A� S.�.y//, and hence the midpoint joining xx to xy
has the property that its type is one of the finitely many points b1; : : : ; bk .

Hence to obtain a finite blocking set, let us consider the collection of all points in
X whose type is one of b1; : : : ; bk . This yields a finite collection B of points in X

having the property that if  is an arbitrary geodesic joining x to y , its midpoint must
be one of the points in B , completing the proof of the theorem.
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