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Lens spaces, rational balls and the ribbon conjecture

PAOLO LISCA

We apply Donaldson’s theorem on the intersection forms of definite 4–manifolds to
characterize the lens spaces which smoothly bound rational homology 4–dimensional
balls. Our result implies, in particular, that every smoothly slice 2–bridge knot is
ribbon, proving the ribbon conjecture for 2–bridge knots.

57M25

1 Introduction

It is a well-known fact that every ribbon knot is smoothly slice. The ribbon conjecture
states that, conversely, a smoothly slice knot is ribbon. In this paper we prove that
the ribbon conjecture holds for 2–bridge knots, deducing this result from a character-
ization of the 3–dimensional lens spaces which smoothly bound rational homology
4–dimensional balls (Theorem 1.2 below).

A link in S3 is called 2–bridge if it can be isotoped until it has exactly two local
maxima with respect to a standard height function. Figure 1 represents the 2–bridge
link L.c1; : : : ; cn/, where ci 2 Z, i D 1; : : : ; n. Given coprime integers p > q > 0

with
p

q
D c1C

1

c2C
1

: : :C
1

cn

; ci > 0 for i D 1; : : : ; n;

the 2–bridge link K.p; q/ is, by definition, L.c1; : : : ; cn/. When p is even, K.p; q/

is a 2–component link, when p is odd K.p; q/ is a knot. It is well-known (see, for
example, Burde and Zieschang [1, Chapter 12]) that K.p; q/ and K.p0; q0/ are isotopic
if and only if p D p0 and either q D q0 or qq0 � 1 .mod p/, and that every 2–bridge
link is isotopic to some K.p; q/. Moreover, K.p;p � q/ is isotopic to the mirror
image of K.p; q/.

Now we recall what is known about 2–bridge knots with regard to the ribbon conjecture.
In order to do that, the following definition is needed.
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Figure 1: The 2–bridge link L.c1; : : : ; cn/

Definition 1.1 Let Q>0 denote the set of positive rational numbers, and define maps
f;gW Q>0!Q>0 by setting, for p

q
2Q>0 , p > q > 0, .p; q/D 1,

f
�p

q

�
D

p
p�q

; g
�p

q

�
D

p
q0
;

where p > q0 > 0 and qq0 � 1 .mod p/. Define R�Q>0 to be the smallest subset
of Q>0 such that f .R/�R, g.R/�R and R contains the set of rational numbers
p
q

such that p > q > 0, .p; q/D 1, p Dm2 for some m 2 N and q is of one of the
following types:

(1) mk˙ 1 with m> k > 0 and .m; k/D 1;

(2) d.m˙ 1/, where d > 1 divides 2m� 1 and

(3) d.m˙ 1/, where d > 1 is odd and divides m˙ 1.

According to Siebenmann [11], Casson, Gordon and Conway showed that every knot of
the form K.p; q/ with p

q
2R is ribbon. The interior of any ribbon disk can be radially

pushed inside the 4–ball B4 to obtain a smoothly embedded disk, and the 2–fold cover
of B4 branched along a slicing disk for K.p; q/ is a smooth rational homology ball
with boundary the lens space L.p; q/. Therefore if K.p; q/ is a knot (ie if p is odd)
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we have the following implications:
p
q
2R)K.p; q/ ribbon )K.p; q/ smoothly slice )L.p; q/D @W;

where W is a smooth 4–manifold with H�.W IQ/ŠH�.B
4IQ/. Casson and Gordon

[2] observed that if K.p; q/ is a smoothly slice knot then p is a perfect square.
Moreover, they proved that if the 2–bridge knot K.m2; q/ is ribbon then

(1–1) 2
m2

m2�1X
sD1

cot
�
�s
m2

�
cot

�
�qs

m2

�
sin2

�
�rs
m

�
D˙1; r D 1; : : : ;m� 1:

Casson and Gordon [2, page 188] used (1–1) to show that if a 2–bridge knot K.m2; q/

is ribbon and m � 105 then m2

q
belongs to R. Fintushel and Stern [5, Theorem

6.1] proved that (1–1) hold under the assumption that L.m2; q/ is the boundary of a
smooth rational homology ball W with H2.W IZ/ without 2–torsion. In [7] Owens
and Strle used a result by Oszváth and Szabó [8, Theorem 9.6] to find a priori different
obstructions for K.m2; q/ to be smoothly slice, and verified that for m � 105 these
new obstructions give the same constraints as (1–1). It is not known whether (1–1)
imply that the knot K.m2; q/ is smoothly slice.

The following is our main result.

Theorem 1.2 Let p > q > 0 be coprime integers. Then, the following statements are
equivalent.

(1) The lens space L.p; q/ smoothly bounds a rational homology ball.

(2) There exist:
(a) A surface with boundary †, homeomorphic to a disk if p is odd and to the

disjoint union of a disk and a Möbius band if p is even and
(b) A ribbon immersion i W †# S3 with i.@†/DK.p; q/.

(3) p
q

belongs to R.

Theorem 1.2 immediately implies the following result, which settles the ribbon conjec-
ture for 2–bridge knots.

Corollary 1.3 Let p > q > 0 be coprime integers with p odd. Then, the following
statements are equivalent:

(1) p
q

belongs to R;

(2) K.p; q/ is a ribbon knot;

(3) K.p; q/ is a smoothly slice knot and
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(4) L.p; q/ smoothly bounds a rational homology ball.

In particular, the ribbon conjecture holds for 2–bridge knots.

The proof of Theorem 1.2 is based on the following simple idea. If a lens space L.p; q/

smoothly bounds a rational homology ball W .p; q/, one can form a smooth negative
definite 4–manifold X.p; q/ by taking the union of �W .p; q/ with a canonical 4–
dimensional plumbing P .p; q/ bounding L.p; q/. Since X.p; q/ is negative definite,
Donaldson’s celebrated theorem [4] implies that the intersection lattice QX .p;q/ of
X.p; q/ is isomorphic to the standard diagonal intersection lattice Dn , where n D

b2.X.p; q//. Therefore there is an embedding of intersection lattices QP.p;q/ ,! Dn ,
and since �L.p; q/ D L.p;p � q/ smoothly bounds the rational homology ball
�W .p; q/, for some n0 there is an embedding QP.p;p�q/ ,!Dn0 as well. The existence
of both embeddings (it is easy to see that a single embedding is not enough) gives
constraints on the pair .p; q/ which eventually lead to the proof of Theorem 1.2. In
spite of the simplicity of this idea, the algebro–combinatorial machinery we must set
up to work out the above constraints is fairly complex and occupies Sections 2–7 of
the paper. Here is the gist of what we do. We can write

p

q
D a1�

1

a2�
1

: : : �
1

an

;
p

p� q
D b1�

1

b2�
1

: : : �
1

bn0

;

for some integers ai ; bj � 2 for i D 1; : : : ; n, j D 1; : : : ; n0 . It turns out (see Lemma
2.6) that

nX
iD1

.ai � 3/C

n0X
jD1

.bj � 3/D�2;

therefore, up to replacing .p; q/ with .p;p� q/, we may assume

(1–2)
nX

iD1

.ai � 3/ < 0:

A suitable set of generators for H2.P .p; q/IZ/ together with the embeddingQP.p;q/ ,!

Dn give rise to a subset S D fv1; : : : ; vng � Dn with

vi � vj D

8̂<̂
:
�ai if ji � j j D 0;

1 if ji � j j D 1;

0 if ji � j j> 1:
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We call such subsets standard. In Sections 2–7 we study the standard subsets of Dn

satisfying (1–2). In Section 7 we show that the string of integers .a1; : : : ; an/ associated
to such a subset must belong (for a fixed n) to a finite list which we describe explicitly.
This gives the constraints mentioned above. In Section 8 we prove the existence of
ribbon surfaces for all the links required by Theorem 1.21, and in Section 9 we prove
Theorem 1.2 using all the results obtained in the previous sections. Each section starts
with a brief outline summarizing its purpose, contents and relationships with the other
sections.

Acknowledgments

The author is grateful to Andrew Casson for generous help, to Cameron Gordon for
informative e–mail correspondence and to the anonymous referee for useful comments.

2 First definitions and preliminary results

Outline In this section we introduce definitions which will be used throughout the
paper. In particular, the concept of good subset (see Definition 2.2) is crucial in Section
3, Section 4 and Section 5, while the invariant I.S/ (see Definition 2.3) is the key
quantity on which the proof of Theorem 1.2 is based. We also prove Lemma 2.4, which
is the basis of the inductive process used in the subsequent sections, and Lemma 2.6,
which will be directly quoted in the proof of Theorem 1.2 in Section 9.

Let D denote the intersection lattice .Z; .�1//, and let Dn be the orthogonal direct
sum of n copies of D. Fix generators e1; : : : ; en 2 Dn such that

ei � ej D�ıij ; i; j D 1; : : : ; n:

Observe that the group of automorphisms Aut.Dn/ contains the reflections across each
hyperplane orthogonal to an ei as well as the all the transformations determined by the
permutations of fe1; : : : ; eng. Given a subset S D fv1; : : : ; vng � Dn , we define

ES
i WD fj 2 f1; : : : ; ng j vj � ei ¤ 0g; i D 1; : : : ; n;

Vi WD fj 2 f1; : : : ; ng j ej � vi ¤ 0g; i D 1; : : : ; n;

and
pi.S/ WD jfj 2 f1; : : : ; ng j jE

S
j j D igj; i D 1; : : : ; n:

1The results of Section 8 were known previously for knots [11] (although even in the case of knots we
were unable to recover all of them from [11]). In Section 8 we give a self–contained account valid for
links and adapted to our conventions.
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Let v1; : : : ; vn 2 Dn be elements such that, for i; j 2 f1; : : : ; ng,

(2–1) vi � vj D

8̂<̂
:
�ai � �2 if i D j ;

0 or 1 if ji � j j D 1;

0 if ji � j j> 1:

for some integers ai , i D 1; : : : ; n.

Remark 2.1 Elements v1; : : : ; vn 2 Dn satisfying Conditions (2–1) are linearly inde-
pendent over Z. In fact, it is easy to check that the associated intersection matrix

Q WD .vi � vj /

is nonsingular. The independence of v1; : : : ; vn follows immediately from the fact that

QD�MM t ;

where M WD .mij / is defined by vi D
P

j mij ej .

Let S Dfv1; : : : ; vng�Dn be a subset which satisfies (2–1). We define the intersection
graph of S as the graph having as vertices v1; : : : ; vn , and an edge between vi and vj
if and only if vi � vj D 1 for i; j D 1; : : : ; n. The number of connected components of
the intersection graph of S will be denoted by c.S/.

We shall say that an element vj 2 S is isolated, final or internal if the quantity

nX
iD1; i¤j

.vi � vj /

is equal to, respectively, 0, 1 or 2. In other words, vj is isolated or final if it is,
respectively, an isolated vertex or a leaf of the intersection graph, and it is internal
otherwise.

Given elements e; v 2 Dn with e � e D�1, we shall denote by �e.v/ the projection of
v in the direction orthogonal to e :

�e.v/ WD vC .v � e/e 2 Dn:

Two elements v;w 2 Dn are linked if there exists e 2 Dn with e � e D�1 such that

v � e ¤ 0; and w � e ¤ 0:

A set S � Dn is irreducible if, given two elements v;w 2 S , there exists a finite
sequence

v0 D v; v1; : : : ; vk D w 2 S
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such that vi and viC1 are linked for i D 0; : : : ; k�1. A set which is not irreducible is
reducible.

The reason to introduce the following definition is technical. It will become clear later
on (see the “Outline” at the beginning of Section 3).

Definition 2.2 A subset S D fv1; : : : ; vng � Dn is good if it is irreducible and its
elements satisfy (2–1).

Definition 2.3 Given a subset S D fv1 : : : ; vng � Dn , let

I.S/ WD

nX
iD1

.�vi � vi � 3/ 2 Z:

The following Lemma will be used in Section 3, Section 5, Section 6 and Section 8.

Lemma 2.4 Let S Dfv1; v2; v3g�D3Dhe1; e2; e3i be a good subset with I.S/ < 0.
Then, up to applying to S an element of Aut.D3/ and possibly replacing .v1; v2; v3/

with .v3; v2; v1/, one of the following holds:

(1) .v1; v2; v3/D .e1� e2; e2� e3;�e2� e1/,

(2) .v1; v2; v3/D .e1� e2; e2� e3; e1C e2C e3/ and

(3) .v1; v2; v3/D .e1C e2C e3;�e1� e2C e3; e1� e2/.

Moreover,

.p1.S/;p2.S/; c.S/; I.S//D

8̂<̂
:
.1; 1; 1;�3/ in case .1/;

.0; 2; 2;�2/ in case .2/;

.0; 1; 2;�1/ in case .3/:

In particular, .a1; a2; a3/ 2 f.2; 2; 2/; .2; 2; 3/; .3; 3; 2/g.

Proof Up to replacing .v1; v2; v3/ with .v3; v2; v1/, by Conditions (2–1) we have
three possible cases: (a) v1 � v2 D v2 � v3 D 1, (b) v1 � v2 D 1, v2 � v3 D 0 and (c)
v1 � v2 D v2 � v3 D 0. Moreover, since I.S/ < 0 we have

P
i ai � 8. Therefore ai � 4

for i D 1; 2; 3. Using the fact that S is irreducible it is easy to see that ai < 4 for
i D 1; 2; 3. This implies

fa1; a2; a3g 2 ff2; 2; 2g; f2; 2; 3g; f3; 3; 2gg:

Now observe that if ai D 3 then, up to applying an element of Aut.Dn/ we have
vi D e1Ce2Ce3 . If aj D 2 then vj 2 f˙el˙emg, therefore vi �vj is an even number,
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hence vi �vj D 0. By a similar argument one sees that there cannot be distinct elements
vi and vj with ai D aj D 3 and vi � vj D 0. Using such considerations it is easy to
check that, up to replacing .v1; v2; v3/ with .v3; v2; v1/,

(a) .a1; a2; a3/D .2; 2; 2/ is the only triple compatible with case (a),

(b) .a1; a2; a3/D .2; 2; 3/ is the only triple compatible with case (b) and

(c) .a1; a2; a3/D .3; 3; 2/ is the only triple compatible with case (c).

The lemma follows by a straightforward case-by-case analysis.

The following lemma provides a basic constraint on p1.S/ and p2.S/ coming from
the assumption I.S/ < 0. It will be used in Section 4 and Section 5.

Lemma 2.5 Let S � Dn D he1; : : : ; eni be a subset of cardinality n with I.S/ < 0.
Then,

(2–2) 2p1.S/Cp2.S/ >

nX
jD4

.j � 3/pj .S/:

Proof Let S D fv1; : : : ; vng and let M D .mij / be the matrix defined by vi DP
j mij ej . By the definition of pi.S/, the number of non–zero entries of M is

nX
iD1

ipi.S/�
X
i;j

jmij j �

X
i;j

m2
ij D�

nX
iD1

vi � vi :

Moreover, the assumption I.S/ < 0 is equivalent to

�

nX
iD1

vi � vi < 3n:

Since it is also evident that

nD p1.S/Cp2.S/C � � �Cpn.S/;

the lemma follows.

Given integers a1; : : : ; an � 2, we shall use the notation

Œa1; : : : ; an�
�
WD a1�

1

a2�
1

: : : �
1

an

;
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and for any integer t � 0 we shall write

(2–3) .: : : ; 2Œt �; : : :/ WD .: : : ;

t‚ …„ ƒ
2; : : : ; 2; : : :/:

The following arithmetic lemma will be used in the last section of the paper to prove
Theorem 1.2.

Lemma 2.6 Let p > q � 1 be coprime integers, and suppose that
p
q
D Œa1; : : : ; an�

�; p
p�q
D Œb1; : : : ; bm�

�;

with a1; : : : ; an � 2 and b1; : : : ; bm � 2. Then,
nX

iD1

.ai � 3/C

mX
jD1

.bj � 3/D�2:

Proof We can write
p
q
D Œm1; 2

Œm2�;m3; 2
Œm4�; : : : ;m2s�1; 2

Œm2s ���

for some
m1;m3; : : : ;m2s�1 � 3; m2;m4; : : : ;m2s � 0:

Then, by Riemenschneider’s point rule [10]

(2–4) p
p�q
D Œ2Œm1�2�;m2C 3; 2Œm3�3�;m4C 3; : : : ; 2Œm2s�1�3�;m2sC 2��:

Therefore,
nX

iD1

.ai � 3/D

sX
iD1

.m2i�1� 3/�

sX
iD1

m2i ;

and
mX

jD1

.bj � 3/D�1C

sX
iD1

m2i �

sX
iD1

.m2i�1� 3/� 1:

The lemma follows immediately.

3 The case p1.S / > 0 and I.S / < 0

Outline In this section we introduce the key notion of standard subset, which is the
algebraic object naturally arising in our approach to Theorem 1.2 (see the outline of
the proof in Section 1). For technical reasons, in order to understand standard subsets
we need to understand first the more general good subsets introduced in Section 2. In
this section we study the special class of good subsets S satisfying p1.S/ > 0 and
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I.S/ < 0. As explained at the beginning of Section 4, this is one of the two important
classes of good subsets S with I.S/ < 0. The main result of this section is Corollary
3.5, which shows that a good subset with p1.S/ > 0 and I.S/ < 0 is necessarily
standard and is obtained from a standard subset of D3 by a finite sequence of operations
we call expansions (see Definition 3.4). The results of this section will be used in
Section 5.

Definition 3.1 A subset Sn D fv1; : : : ; vng � Dn such that

(3–1) vi � vj D

8̂<̂
:
�ai � �2 if i D j ;

1 if ji � j j D 1;

0 if ji � j j> 1:

for i; j D 1; : : : ; n will be called standard.

The following lemma deals with good subsets S satisfying p1.S/ > 0. It will be used
in the proofs of Proposition 3.3, Corollary 3.5 and in Section 4.

Lemma 3.2 Suppose that n> 3, and let

Sn D fv1; : : : ; vng � Dn
D he1; : : : ; eni

be a good subset such that E
Sn

i D fsg for some i; s 2 f1; : : : ; ng. Then,

(1) vs is internal;

(2) for some 1� j �n we have VsDfi; j g, E
Sn

j Dfs�1; s; sC1g and jvs�1 �ej jD

jvs � ej j D jvsC1 � ej j D 1 and

(3) for some t 2 fs� 1; sC 1g the set

Sn�1 WD Sn n fvs; vtg[ f�ej
.vt /g � he1; : : : ; ei�1; eiC1; : : : ; eni Š Dn�1

is good, jESn�1

j j D 1 and I.Sn�1/D I.Sn/C 2C vs � vs .

Moreover, if Sn is standard then so is Sn�1 .

Proof Since Sn is irreducible we have jVsj � 2. If jVsj > 2, the set obtained from
Sn by replacing vs with �ei

.vs/ would still satisfy (2–1), but it would consist of
n independent vectors (see Remark 2.1) contained in the span of the n� 1 vectors
e1; : : : ; ei�1; eiC1; : : : ; en , giving a contradiction. Therefore jVsj D 2, ie Vs D fi; j g

for some j ¤ i .
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If jvs � ej j > 1 then we get a contradiction as before by replacing vs with �ei
.vs/.

Hence, we conclude jvs � ej j D 1. Since Sn is irreducible and E
Sn

i D fsg, vs is not
isolated.

We need to show that vs is not final. By contradiction, suppose eg that vs�1 � vs D 0

and vs � vsC1 D 1 (the discussion in the case vs�1 � vs D 1, vs � vsC1 D 0 is similar).
Let l � 1 be the largest natural number such that the set fvs; : : : ; vsClg has connected
intersection graph. If

asC1 D � � � D asCl D 2

it is easy to check that j [l
iD0

VsCi j D l C 2. Since Sn is irreducible and E
Sn

i D fsg,
this gives a contradiction. Therefore asCh > 2 for some 1� h� l . Choose h to be as
small as possible. Then, it is easy to verify that for some k 2 f1; : : : ; ng

VsCh\VsCh�1 D fekg and jvsCh � ek j D 1:

Since j [h�1
iD0

VsCi j D hC 1, it follows that by eliminating the vectors

vs; vsC1; : : : ; vsCh�1

and replacing vsCh with �ek
.vsCh/ one obtains a set of n� h independent vectors

contained in the span of n� .hC 1/ vectors. This contradiction shows that vs must be
internal, ie vs�1 � vs D vsC1 � vs D 1.

Now observe that, since E
Sn

i Dfsg, we must have j 2Vs�1\VsC1 . If as�1DasC1D2

then vs�1 � vsC1 D 0 implies Vs�1 D VsC1 , and it is easy to verify that either nD 3

or S is reducible.

If as�1; asC1>2 then, since clearly jvs�1 �ej jD jvsC1 �ej jD1, one gets a contradiction
by eliminating vs and replacing vs�1 and vsC1 , respectively, with �ej

.vs�1/ and
�ej

.vsC1/. We conclude that either (i) as�1 > 2 and asC1 D 2 or (ii) asC1 > 2 and
as�1D 2. By symmetry, it suffices to consider the case asC1 > 2 and as�1D 2. Since
jvs�1 � ej j D jvsC1 � ej j D 1, we have vs�1 ��ej

.vsC1/D 1. Therefore the elements of
the set

Sn�1 WD fv1; : : : ; vng n fvs; vsC1g[ f�ej
.vsC1/g

satisfy (2–1). Moreover, the formula

I.Sn�1/D I.Sn/C 2C vs � vs

is straightforward to check. Since E
Sn

i Dfsg we have E
Sn

j Dfs�1; s; sC1g, therefore
the only vectors linked to vs are vs�1 and vsC1 . Since vs�1 and �ej

.vsC1/ are linked
to each other, it follows easily that Sn�1 is irreducible. The fact that if Sn is standard
then so is Sn�1 is evident from the definition of Sn�1 .
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The following proposition analyzes the nature of a good subset S with I.S/ < 0 and
p1.S/ > 0. It is essential to prove the main result of this section, ie Corollary 3.5.

Proposition 3.3 Suppose that n� 3, and let

S D fv1; : : : ; vng � Dn
D he1; : : : ; eni

be a good subset such that I.S/ < 0 and p1.S/ > 0. Then,

(1) S is standard;

(2) jvi � ej j � 1 for every i; j D 1; : : : ; n and

(3) If n� 4 there exist h; t 2 f1; : : : ; ng and s 2 f1; ng such that

ES
h D fs; tg; as D 2 and at > 2:

Proof If nD 3 the proposition follows from Lemma 2.4. If n> 3, set Sn WD S . By
Lemma 3.2 there exists a good subset Sn�1 with p1.Sn�1/ > 0, to which Lemma
3.2 can be applied again as long as n� 1 > 3. Applying the lemma n� 3 times we
obtain a sequence Sn;Sn�1; : : : ;S3 of good subsets with p1.Sn/; : : : ;p1.S3/ > 0. In
particular, the fact that S3 is good and p1.S3/ > 0 implies, by Lemma 2.4, that there
is only one possibility for S3 modulo the action of Aut.D3/, which is given by Lemma
2.4(1). This immediately implies that all the sets Si , i D 3; : : : ; n, have connected
intersection graph. Therefore Sn is standard, ie (1) holds. Since by assumption
I.Sn/��1 and I.S3/D�3, the formula for I.Sn�1/ in the statement of Lemma 3.2
implies that every time we applied the lemma we had vs � vs ��4. Since Vs D fi; j g,
this implies vs � vs D �2. Therefore jvs � ei j D jvs � ej j D 1, and by the definition
of the sequence Sn;Sn�1; : : : ;S3 this immediately implies (3). Finally, it is easy to
check that (2) holds forS3 and S4 , and that if Sk�1 is obtained from Sk as in Lemma
3.2 and (2) holds for Sk�1 then (2) holds for Sk . This proves (2) and concludes the
proof.

Definition 3.4 Let S D fv1; : : : ; vng � Dn be a subset satisfying (2–1) and such that
jvi � ej j � 1 for every i; j D 1; : : : ; n. Suppose that there exist 1� h; s; t � n such that

ES
h D fs; tg and at > 2:

Then, we say that the subset S 0 � he1; : : : ; eh�1; ehC1; : : : ; eni Š Dn�1 defined by

S 0 WD S n fvs; vtg[ f�eh
.vt /g

is obtained from S by a contraction, and we write S & S 0 . Moreover, we say that S

is obtained from S 0 by an expansion, and we write S 0% S .
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The following result will be used in the proof of Corollary 5.4.

Corollary 3.5 Suppose that n� 3, and let S D fv1; : : : ; vng � Dn be a good subset
such that I.S/ < 0 and p1.S/ > 0. Then, S is standard and there is a sequence of
expansions

S3% S4% � � � % Sn�1% Sn WD S

such that Sk is standard and I.Sk/D�3 for every k D 3; : : : ; n.

Proof If n D 3 the corollary follows from Lemma 2.4. Suppose that n � 4, let
Sn WD S , and let h; s and t be the indexes appearing in Proposition 3.3(3). By Lemma
3.2 and Proposition 3.3, the set

Sn�1 WD Sn n fvs; vtg[ f�eh
.vt /g

is standard and is obtained from Sn by a contraction. Moreover, p1.Sn�1/ > 0, and
since as D 2 we have I.Sn�1/D I.Sn/. Arguing in the same way we get a sequence
of contractions Sn& Sn�1& � � � & S3 with each Sk standard and I.Sk/D I.S3/

for every k . Since by Lemma 2.4 we have I.S3/D�3, this concludes the proof.

4 The case p1.S /D 0, p2.S / > 0 and I.S / < 0

Outline It follows from Lemma 2.5 that if a subset S � Dn of cardinality n satisfies
I.S/ < 0 and p1.S/ D 0, then necessarily p2.S/ > 0. Having dealt with the case
p1.S/ > 0 in the previous section, in this section we start tackling the more difficult
case of a good subset with p1.S/D 0, p2.S/ > 0 and I.S/ < 0. As in the previous
case, one would like to show that good subsets satisfying this condition are obtained
by expansions of smaller subsets of the same type. But in this case one must first
understand the potential obstruction coming from the fact that during a sequence of
contractions the subset might develop what we call bad components (see Definition
4.1). The main result of the section is Proposition 4.5, essentially giving a control on
the number of bad components which might appear as a result of contractions. In the
next section we shall use Proposition 4.5 to establish some results which hold under
the general assumption I.S/ < 0 and, using these, in Section 6 we shall finally be able
to show that any standard subset S with I.S/ < 0 is obtained by expanding standard
subsets of the same type.

Definition 4.1 Let S 0Dfv1; : : : ; vng�Dn , n�3, be a good subset, and suppose there
exists 1 < s < n such that C 0 D fvs�1; vs; vsC1g � S 0 gives a connected component
of the intersection graph of S 0 , with vs�1 � vs�1 D vsC1 � vsC1 D �2, vs � vs < �2
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and ES 0

j D fs � 1; s; s C 1g for some j . Let S � Dm be a subset of order m � n

obtained from S 0 by a sequence of expansions by final .�2/–vectors attached to C 0 ,
so that c.S/D c.S 0/ and there is a natural 1� 1 correspondence between the sets of
connected components of the intersection graphs of S and S 0 . Then, the connected
component C � S corresponding to C 0 � S 0 is a bad component of S . The number
of bad components of S will be denoted by b.S/.

If a good subset S D fv1; : : : ; vng � Dn satisfies p2.S/ > 0 then for some i; s; t 2

f1; : : : ; ng we must have ES
i D fs; tg. There are two possibilities: either as and at

are both greater then 2, or one of them is equal to 2. The next lemma analyzes with
the latter possibility (assuming S has no bad components), while the former possibility
is considered in Lemma 4.3.

Lemma 4.2 Suppose that n> 3, the subset

S D fv1; : : : ; vng � Dn
D he1; : : : ; eni

is good, has no bad components and there exist i; s; t 2 f1; : : : ; ng such that

ES
i D fs; tg and as D 2:

Then, one of the following holds.

(1) vs � vt D 0, vs is not internal, jVt j> 2, and the set

S 0 WD S n fvs; vtg[ f�ei
.vt /g � he1; : : : ; ei�1; eiC1 : : : ; eni Š Dn�1

is good. Moreover, I.S 0/� I.S/ and S 0 has no bad components.

(2) vs � vt D 0, vs is internal and at > 2.

(3) vs � vt D 1, at > 2 and the set S 0 defined in .1/ above is good. Moreover,
I.S 0/� I.S/ and S 0 has no bad components.

Proof Since as D 2, we have Vs D fi; j g for some i; j 2 f1; : : : ; ng.

First case (vs � vt D 0 and at D 2) In this case Vt D fi; j g. Since S is irreducible
and n> 3, there is a vr with r 62 fs; tg linked to either vs or vt . Since ES

i D fs; tg,
this implies j 2 Vr and vr � vs D vr � vt D 1, therefore jVr j � 2. Assuming jVr j D 2

it easily follows that S is reducible. Therefore jVr j> 2, which implies that S has a
bad component. Hence this case cannot occur.

Second case (vs � vt D 0 and at > 2) We have Vt � fi; j g. Suppose first that vs

is isolated. If jVt j D 2, then no other vector could link vs nor vt , and S would be
reducible. If jVt j> 2 then the set

S 0 WD S n fvs; vtg[ f�ei
.vt /g
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satisfies (2–1). Since every vector v linked to vs must satisfy v�ej ¤0, S 0 is irreducible.
Clearly I.S 0/� I.S/ and it is easy to check that b.S 0/D b.S/D 0. Hence (1) holds.

If vs is final then vs � vs0 D 1 for some s0 2 fs� 1; sC 1g. This implies jvs0 � ej j D 1.
If jVt j > 2 then it follows as above that the set S 0 is good, I.S 0/ � I.S/, and
b.S 0/D b.S/D 0. Hence (1) holds. If jVt j D 2 then vs0 � vt D 1, hence jvt � ej j D 1.
Since vs � vt D 0, we also have jvt � ei j D 1. But this is impossible because at > 2.

Third case (vs � vt D 1 and at D 2) In this case vs is not isolated and Vt D fi; kg

for some k ¤ j . Observe that vs cannot be a final vector, otherwise ES
j D fsg, which

by Lemma 3.2 implies that vs is internal. By symmetry, we may assume without loss
of generality that t D sC 1. Then, arguing as in the proof of Lemma 3.2, one gets a
contradiction using the fact that ES

i D fs; tg by considering the largest l;m� 1 such
that fvs�m; : : : ; vsClg has connected intersection graph. In fact, if

as�m D � � � D asCl D 2

it is easy to check that j [sCl
iDs�m Vi j D l CmC 2. Since S is irreducible and ES

i D

fs; sC1g, this easily leads to a contradiction. Therefore, ar > 2 for some s�m� r < s

or ap > 2 for some sC 1 < p � sC l . Suppose eg that only the latter happens (the
other cases can be dealt with similarly). Choose p as small as possible. Then, for
some q 2 f1; : : : ; ng

Vp \Vp�1 D feqg and jvp � eqj D 1:

Since j [p�l
iDs�m Vi j D pC 1� sCm, one obtains the contradiction by eliminating the

vectors
vs�m; : : : ; vp�1;

replacing vp with �eq
.vp/ and arguing as in the proof of Lemma 3.2.

Fourth case (vs � vt D 1 and at > 2) By symmetry we may assume t D sC 1. If
j 62 VsC1 then, as in the case at D 2, vs is not final, otherwise ES

j D fsg, which
implies that vs is internal by Lemma 3.2. Then one obtains a contradiction as in the
previous case by considering the biggest l � 0 such that fvs�l ; : : : ; vsg has connected
intersection graph.

If VsC1 D fi; j g then vs cannot be final because otherwise vs and vsC1 would be
linked to no other vector, and therefore the set S would be reducible. But if vs is not
final then ES

j � fs� 1; s; sC 1g and k 2 Vs�1\VsC1 for some k 62 fi; j g, which is
impossible if VsC1 D fi; j g.

Therefore we conclude that VsC1 ¡ fi; j g. Since if vh is linked to vs then j 2 Vh , it
follows that the set

S 0 D S n fvs; vsC1g[ f�ei
.vsC1/g
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is good, and it is clear that I.S 0/ � I.S/. Moreover, one can easily check that
b.S 0/D b.S/D 0. Hence (3) holds.

Lemma 4.3 Suppose that n> 3, the subset

S D fv1; : : : ; vng � Dn
D he1; : : : ; eni

is good, has no bad components and there exist i; s; t 2 f1; : : : ; ng such that

(4–1) ES
i D fs; tg and as; at > 2:

Then, up to replacing the pair .s; t/ with another pair satisfying (4–1), one of the
following holds.

(1) The set

S 0 D S n fvs; vtg[ f�ei
.vt /g � he1; : : : ; ei�1; eiC1; : : : ; eni Š Dn�1

is good, I.S 0/� I.S/� 1 and b.S 0/� 1.

(2) There exist k ¤ i and s0 2 fs� 1; sC 1g such that
(a) ES

k
D fs; s0g,

(b) vs0 � vs D 1 and
(c) as0 D 2.

Proof If the set S 0 of (1) is good, since as > 2 it follows that I.S 0/� I.S/� 1, and
it is easy to check that S 0 can have at most one bad component, therefore b.S 0/� 1.
Hence (1) holds.

Now suppose that the set

S 0.s; t/ WD S n fvs; vtg[ f�ei
.vt /g

is not good because �ei
.vt / happens to have square �1. Then, vt D xei ˙ ej with

jxj > 1. Since vs � vt 2 f0; 1g, we must have j 2 Vs . Moreover, the vector �ei
.vs/

must have square less than �1, because otherwise vs D yei ˙ ej with jyj> 1, which
implies

jvs � vt j D j�xy˙ 1j � 3:

Therefore the set S 0.t; s/ satisfies (2–1). Since there is no vector linked to vt but
unlinked from vs , it follows that S 0.t; s/ is irreducible as well. Therefore, after
replacing .s; t/ with .t; s/, (1) holds.

We may now assume that S 0.s; t/ and S 0.t; s/ satisfy (2–1) but they are not good
because they are both reducible. We can write S 0.s; t/ D S 0

1
[ S 0

2
, where S 0

2
is

a maximal irreducible subset of S 0.s; t/ containing �ei
.vt / and S 0

1
D S 0.s; t/ n S 0

2
.
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Define Si�Snfvsg, iD1; 2, to be the preimage of S 0i under the natural surjective map
S nfvsg!S 0.s; t/ sending vj to vj for j ¤ s; t and vt to �ei

.vt /. The decomposition
S n fvsg D S1[S2 shows that S n fvsg is reducible. Define

V j
WD [vk2Sj

Vk ; j D 1; 2:

Observe that V 1\V 2 D∅ and i 2 V 2 , and let V
j

s WD Vs \V j , j D 1; 2. Since S

is irreducible while S n fvsg is reducible, there exists a vector vr 2 S1 which is linked
to vs , therefore jV 1

s j � 1. If jV 1
s j> 1 then we could replace vs with

zvs WD �

X
k2V 1

s

.vs � ek/ek

and vt with �ei
.vt /. For every u ¤ s we would have either Vu \ Vs � V 1

s or
Vu \ Vs � V 2

s , implying that vu � zvs 2 f0; 1g. The n vectors resulting from the
replacements just described would satisfy (2–1) and hence be independent, but they
would be contained in the span of fe1; : : : ; eng n feig, giving a contradiction. Thus, we
have V 1

s D fkg for some k . Since

V 1
s D Vs \

[
vk2S1

Vk D

[
vk2S1

.Vs \Vk/;

if vr 2 S1 is a vector linked to vs then Vr \Vs D fkg, hence vr �vs D 1. This implies
that fs� 1; sC 1g\ES

k
¤∅. Moreover, if vs is final we have r 2 fs� 1; sC 1g and

then ES
k
D fs� 1; sg or ES

k
D fs; sC 1g. By symmetry, we may assume that the first

case occurs. If as�1 D 2 then (2) holds. If as�1 > 2 and k 62 VsC1 , we can eliminate
vs , replace vs�1 with �ek

.vs�1/ and vt with �ei
.vt /. This gives a contradiction

unless �ek
.vs�1/ happens to have square �1. But in that case we can replace .s; t/

with .s � 1; s/, and by the argument given above S 0.s � 1; s/ is good, therefore (1)
holds.

Now we must consider the case when vs is not final. We have vs�1 �vs D vs �vsC1D 1,
ES

k
D fs� 1; s; sC 1g and Vs�1\Vs D Vs \VsC1 D fkg. Let us suppose that either

as�1 > 2 or asC1 > 2. By symmetry we may assume that as�1 > 2. Since vt 62 S1 ,
t 62 fs�1; sC1g, we have vs �vt D0, so we can eliminate vs and make the replacements:

vs�1 7! �ek
.vs�1/; vt 7! �ei

.vt /:

It is easy to see that the resulting set S 00 of n� 1 vectors satisfies (2–1) and can be
written as a disjoint union S 00 D S 00

1
[ � � � [S 00q of maximal irreducible subsets so that

each S 00
l

is contained in the span of a set of vectors ej whose cardinality is equal to

jS 00
l
j. We know that for some l , vsC1 2S 00

l
. Moreover, by construction E

S 00
l

k
DfsC1g.

Since vsC1 is not internal in S 00
l

, we get a contradiction with Lemma 3.2(1).
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We are left with the case as�1 D asC1 D 2. In this case it is easy to deduce that
Vs�1 D VsC1 D fh; kg for some h, and ES

h
D fs � 1; sC 1g. But this means that S

contains a bad component, which is contrary to our assumptions.

The following is an auxiliary result which will be used in the proof of Proposition 4.5
as well as in Section 5.

Lemma 4.4 Let
S D fv1; : : : ; vng � Dn

D he1; : : : ; eni

be a good subset such that p1.S/D 0, p2.S/ > 0 and I.S/ < 0. Suppose that for each
i; s; t 2 f1; : : : ; ng such that ES

i D fs; tg we have either as D 2 or at D 2. Then, for
at least one choice of i; s; t such that as D 2 and ES

i D fs; tg, either vs is not internal
or vs � vt D 1.

Proof Suppose by contradiction that for each i; s; t such that as D 2 and ES
i D fs; tg

we have vs � vt D 0 and vs is internal. Then, if Vs D fi; j .i/g it follows immediately
that j .i/ 2 Vs�1\Vs \VsC1 , and therefore, since vs � vt D 0 implies j .i/ 2 Vt , we
have jES

j.i/
j � 4. Note that, in particular, we must have n� 4. Consider the collection

fj .i/g of all the indices j .i/ obtainable in this way. Since p1.S/D 0 and jES
j.i/
j � 4

for every i , by Lemma 2.5 we have

p2.S/ > p4.S/C 2p5.S/C � � �C .n� 3/pn.S/� p4.S/Cp5.S/C � � �Cpn.S/:

Therefore we must have j .i/ D j .i 0/ for some i ¤ i 0 . But if ES
i0 D fs

0; t 0g with
as0 D 2 then j .i/D j .i 0/2 Vs0�1\Vs0\Vs0C1 and j .i/D j .i 0/2 Vt 0 , and this easily
implies that jES

j.i/
j � 5. Moreover, it is easy to check that if i; i 0; i 00 are three distinct

indexes with jES
i j D jE

S
i0 j D jE

S
i00 j D 2, then one cannot have j .i/D j .i 0/D j .i 00/.

This leads to conflict with Inequality (2–2), and we must conclude that there exist
i; s; t 2 f1; : : : ; ng such that as D 2, ES

i D fs; tg and either vs is not internal or
vs � vt D 1.

Proposition 4.5 Suppose that n> 3 and

S D fv1; : : : ; vng � Dn
D he1; : : : ; eni

is a good subset with no bad components and such that p1.S/ D 0, p2.S/ > 0 and
I.S/ < 0. Then, there exist i; s; t 2 f1; : : : ; ng such that the set

S 0 D S n fvs; vtg[ f�ei
.vt /g � he1; : : : ; ei�1; eiC1; : : : ; eni Š Dn�1

is good. Moreover, I.S 0/ � I.S/, b.S 0/ � 1 and if b.S 0/D 1 then vs � vs < �2 and
I.S 0/� I.S/� 1.
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Proof Since p2.S/ > 0, there exist i; s; t 2 f1; : : : ; ng such that ES
i D fs; tg. If

as > 2 and at > 2 the hypotheses of Lemma 4.3 are satisfied. Therefore, since S has
no bad components, the conclusions of Lemma 4.3(1) or Lemma 4.3(2) hold.

If the conclusion of Lemma 4.3(1) holds, then the proposition follows immediately.
If the conclusion of Lemma 4.3(2) holds then Lemma 4.2(3) applies and (2) holds.
Therefore, from now on we assume that for each i; s; t 2f1; : : : ; ng such that ES

i Dfs; tg

we have either as D 2 or at D 2. Since p1.S/ D 0, p2.S/ > 0 and I.S/ < 0, by
Lemma 4.4, for at least one choice of i; s; t we have ES

i D fs; tg, as D 2 and either vs

is not internal or vs � vt D 1. Since we are assuming b.S/D 0, by Lemma 4.2 we see
that either the conclusion of Lemma 4.2(1) or the conclusion of Lemma 4.2(3) holds.
In both cases the proposition is proved.

5 The general case I.S / < 0

Outline In this section we study good subsets S with no bad components and I.S/<0.
Our aim is to establish some results which will be used in the next section to analyze
standard subsets with I.S/ < 0. The main result is Corollary 5.4, which implies that a
good subset S with no bad components and I.S/ < 0 has I.S/ 2 f�1;�2;�3g and
is obtained by a sequence of expansions from a subset of D3 of the same kind as S .

The following simple lemma is used in the proof of Proposition 5.2.

Lemma 5.1 Let S � Dn , n� 3, be a standard subset with I.S/ < 0. Then S has no
bad components.

Proof Since the intersection graph of a standard subset is connected, if the only
connected component of the intersection graph of S is bad, then by definition S is
obtained via expansions by final .�2/–vectors from a subset S 0 � D3 consisting of a
single bad component with I.S 0/ < 0. But Lemma 2.4 forbids the existence of such a
subset.

The following proposition should be thought of as a generalization of Proposition
3.3(2).

Proposition 5.2 Suppose that n� 3, and let

S D fv1; : : : ; vng � Dn
D he1; : : : ; eni

be a good subset with no bad components such that I.S/ < 0. Then, jvi � ej j � 1 for
every i; j D 1; : : : ; n.
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Proof We argue by induction on n � 3. If n D 3 the conclusion is an immediate
consequence of Lemma 2.4. Therefore, from now on we shall assume n > 3. Since
I.S/ < 0, by Lemma 2.5 Inequality (2–2) holds, therefore either p1.S/ > 0 or
p2.S/ > 0. If p1.S/ > 0 then the conclusion holds by Proposition 3.3, hence we may
assume p1.S/D 0 and p2.S/ > 0.

Since b.S/D 0, by Proposition 4.5 there is a good subset S 0 � Dn�1 such that

I.S 0/C b.S 0/� I.S/C b.S/ < 0:

In particular, it follows that I.S 0/ < 0. Now we set S1 WD S , S2 WD S 0 , n1 D n and
n2 D n� 1. If n� 1 D 3 we stop. If n� 1 � 4 and p1.S2/ > 0, then by Corollary
3.5 S2 is standard, I.S2/ D �3 and S2 contracts to a standard subset S3 � Dn�2

such that I.S3/D�3. If n� 1 � 4 and p1.S2/D 0 then, since I.S2/ < 0 we have
p2.S2/ > 0. If S2 has a bad component then there is a sequence of contractions
from S2 to a good subset S 0

3
with a connected component fvs�1; vs; vsC1g such that

vs�1 � vs�1 D vsC1 � vsC1 D�2, vs � vs <�2 and E
S 0

3

j D fs� 1; s; sC 1g for some j .
Then, we set

S3 D S 03 n fvs; vsC1g[ f�ej
.vs/g:

It is easy to check that S3 is good, has no bad components and I.S3/D I.S2/C 1.
Therefore, in any case we obtain a good subset S3 � Dn3 with n3 � 2 and

I.S3/C b.S3/� I.S2/C b.S2/ < 0:

Continuing in this way, we obtain a decreasing sequence of good subsets without bad
components

S1 � Dn1 ; S2 � Dn2 ; � � � ;Sk � Dnk

with n1 > n2 > � � �> nk � 2 and

I.SiC1/C b.SiC1/� I.Si/C b.Si/ < 0; i D 1; : : : ; k � 1:

Clearly a good subset S � D2 has I.S/ D �2. Therefore, by Lemma 2.4 we have
I.Sk/� �3 and b.Sk/D 0. Setting

�.Si/ WD

(
I.Si/C b.Si/ i D 1; : : : ; k;

�3 i D kC 1;

since b.S1/D 0 we have

kX
iD1

.�.Si/� �.SiC1//D �.S1/� �.SkC1/D I.S1/C 3� �1C 3D 2:
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Since �.Si/� �.SiC1/� 0 for every i , we conclude

(5–1) 0� �.Si/� �.SiC1/� 2; i D 1; : : : ; k:

In particular, �.S1/� �.S2/� 2. By a simple calculation one easily sees that this is
equivalent to

asCjvt � ei j
2
� b.S2/C 5:

First case (b.S2/D 0) In this case as � 2 implies jvt �ei j
2D 1 and therefore as � 4.

Since jVsj � 2, we necessarily have jvs �ej j � 1 for every j D 1; : : : ; n, and this easily
implies the statement of the proposition.

Second case (b.S2/D 1) Clearly, either jvt �ei j
2D 1 or jvt �ei j

2D 4. If jvt �ei j
2D 1

then as � 5. If as < 5 the conclusion follows as in the previous case. If as D 5 and
jvs � ek j > 1 for some k , then vs D aei C bej with a2C b2 D 5 for some i; j . This
immediately implies vs � vt D 1, jvs � ei j D 1 and Vs \ Vt D fig, and one gets a
contradiction eg by replacing vs with �ei

.vs/ and vt with �ei
.vt /. If jvt � ei j

2 D 4

then as D 2. But then Proposition 4.5 is incompatible with the assumption b.S2/D 1.

The following proposition shows that good subsets with no bad components, possibly
disconnected intersection graphs and sufficiently negative invariant I.S/ can be con-
tracted to subsets having the same properties. This fact will quickly lead to the main
result of this section, ie Corollary 5.4.

Proposition 5.3 Suppose that n� 4, and let

S D fv1; : : : ; vng � Dn
D he1; : : : ; eni

be a good subset with no bad components such that I.S/ < 0. Then, for some i; s; t

the set

S 0 D S n fvs; vtg[ f�ei
.vt /g � he1; : : : ; ei�1; eiC1; : : : ; eni Š Dn�1

is good and has no bad components. Moreover, either

.I.S 0/; c.S 0//D .I.S/; c.S//

or
I.S 0/� I.S/� 1 and c.S 0/� c.S/C 1:

Proof Since I.S/ < 0, by Proposition 5.2 we have jvi � ej j � 1 for every i and j .
Moreover, inequality (2–2) holds by Lemma 2.5, hence either p1.S/ > 0 or p2.S/ > 0.
If p1.S/ > 0 then the conclusion holds by Proposition 3.3. Therefore from now
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on we shall assume p1.S/ D 0 and p2.S/ > 0. Under this assumption there exist
i; s; t 2 f1; : : : ; ng such that ES

i D fs; tg. If as > 2 and at > 2, since S has no bad
component the hypotheses of Lemma 4.3 are satisfied and either Lemma 4.3(1) or
Lemma 4.3(2) holds. If Lemma 4.3(2) holds then so does Lemma 4.2(3). But this
is impossible because the proof of Lemma 4.2 (see the fourth case) shows that if
Vs D fi; j g then Vt � fi; j g, which is incompatible with vs � vt D 1 and jvt � ej j � 1

for every j . If the conclusion of Lemma 4.3(1) holds then the set

S 0 D S n fvs; vtg[ f�ei
.vt /g

is good and clearly I.S 0/ � I.S/� 1 and c.S 0/ � c.S/C 1. Now we argue that S 0

has no bad components.

First, we claim that if S 0 has a bad component C 0 � S 0 then, if � W S n fvsg ! S 0

denotes the natural map, vt 2 C WD ��1.C 0/. Observe that if vt 62 C then vs must
be orthogonal to C (ie to every element of C ). Otherwise, it is easy to check that vs

would have nontrivial intersection with at least 2 vectors ej orthogonal to S nC . But
then, adding to S1 the vector obtained from vs by eliminating all the vectors ej which
are not orthogonal to S nC would give a contradiction via rank considerations. We
conclude that if vt 62 C then vs must be orthogonal to C . But then if S 0 has a bad
component also S has one, so we get a contradiction. Therefore vt 2 C .

Next, we observe that by the proof of Proposition 5.2 we have �4 � vs � vs � �3.
Using this fact together with jvs � ej j D 1 for every j it is now a simple exercise to
find a contradiction by analyzing separately the following three cases. We sketch the
argument for each case.

First case (vs orthogonal to C ) Since vs �vt D 0, Vs\Vt � fi; j g for some index j .
Moreover, jVs\Vt j must be even, therefore it is either 2 or 4. But if jVs\Vt j D 4 one
immediately gets a contradiction from the fact that vs is orthogonal to C . Therefore,
jVs\Vt j D 2 and ej �v

0¤ 0 for some v0 2C nfvtg. Since ES
i D fs; tg and vs �v

0D 0,
for some k ¤ i; j we have k 2 Vs and ek �v

0¤ 0. It is now easy to see that ek �v
00¤ 0

for some v00 2 C n fvt ; v
0g. Since vs � v

00 D 0, there is an index h¤ i; j ; k such that
k 2 Vs and ek � v

00 ¤ 0. Since jVsj � 4, continuing in this way clearly leads to a
contradiction.

Second case (vs not orthogonal to C but vs � vt D 0) As in the previous case,
Vs \Vt has either 2 or 4 elements. But jVs \Vt j D 4 easily leads to a contradiction,
therefore Vs \ Vt D fi; j g. Let vr 2 C with vs � vr D 1. We have Vs \ Vr ¤ fj g

(otherwise a contradiction follows immediately). If Vs D fi; j ; hg then a contradiction
follows quickly by considering the vectors of C which intersect non–trivially eh . If
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Vs D fi; j ; h; kg one gets a contradiction via a rank counting argument by replacing
vs with �ej

.�ei
.vs// and vt with �ei

.vt /.

Third case (vs � vt D 1) If Vs \ Vt D fig then replacing vs with �ei
.vs/ and vt

with �ei
.vt / one gets a contradiction by the usual rank counting argument. Therefore

Vs \Vt D fi; j ; kg. Again, this gives a contradiction by looking at the vectors of C

which intersect non–trivially ej and ek .

The previous arguments show that if as > 2 and at > 2 then the statement of the
proposition holds. Therefore we may now assume that for each i; s; t 2 f1; : : : ; ng such
that ES

i D fs; tg we have either as D 2 or at D 2. By Lemma 4.4, for at least one
choice of i; s; t we have as D 2 and either vs is not internal or vs � vt D 1. Therefore,
since S has no bad component the conclusion of either Lemma 4.2(1) or Lemma
4.2(3) holds. But, as we pointed out above, the conclusion of Lemma 4.2(3) leads to a
contradiction, therefore Lemma 4.2(1) must hold. Thus, the resulting S 0 has no bad
components and, since jvt � ei j D 1 and vs is not internal, we have I.S 0/D I.S/ and
c.S 0/D c.S/.

Corollary 5.4 Suppose that n� 3, and let Sn D fv1; : : : ; vng � Dn be a good subset
with no bad components and such that I.Sn/ < 0. Then I.Sn/ 2 f�1;�2;�3g, there
exists a sequence of contractions

(5–2) Sn& Sn�1& � � � & S3

such that, for each k D 3; : : : ; n�1 the set Sk is good, has no bad components and we
have either

.I.Sk/; c.Sk//D .I.SkC1/; c.SkC1//

or
I.Sk/� I.SkC1/� 1 and c.Sk/� c.SkC1/C 1:

Moreover:

(1) If p1.Sn/ > 0 then I.Sn/D�3, Sn is standard and one can choose the above
sequence so that I.Sk/D�3 and Sk is standard for every k D 3; : : : ; n�1 and

(2) If I.Sn/C c.Sn/� 0 then S3 is given, up to applying an automorphism of D3 ,
by either (1) or (2) in Lemma 2.4; if I.Sn/C c.Sn/ < 0 then the former case
occurs.

Proof If nD 3 the corollary follows immediately from Lemma 2.4, so we may assume
n� 4. Since I.Sn/� �c.Sn/ < 0, by Lemma 2.5 either p1.Sn/ > 0 or p2.Sn/ > 0.
If p1.Sn/ > 0 then the existence of the required sequence as well as (1) follow from
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Corollary 3.5. Moreover, in this case (2) follows from (1) because, by Lemma 2.4, S3

is given, up to the action of Aut.D3/, by Lemma 2.4(1).

If p1.Sn/ D 0 and p2.Sn/ > 0 the existence of the sequence (5–2) follows from
several applications of Proposition 5.3. Since I.Sk/� I.SkC1/ for k D 3; : : : ; n� 1,
I.Sn/ 2 f�1;�2;�3g. If I.Sn/C c.Sn/� 0, since

(5–3) I.S3/C c.S3/� I.S4/C c.S4/� � � � � I.Sn/C c.Sn/� 0;

it follows from Lemma 2.4 that, up to applying an automorphism of D3 , S3 must
be either of type Lemma 2.4(1) or Lemma 2.4(2). Inequalities (5–3) imply that if
I.Sn/C c.Sn/ < 0 then I.S3/C c.S3/ � �1, hence S3 is given, up the action of
Aut.D3/, by Lemma 2.4(1).

6 Standard subsets

Outline In this section we finally look at the subsets of Dn we are mostly interested
in, that is the standard subsets with I.S/ < 0. By Corollary 5.4 such subsets satisfy
I.S/2f�1;�2;�3g. As it turns out, the case I.S/D�3 is the easiest, so we deal with
this case first in Proposition 6.1. Theorem 6.4 is the main result and the culmination
of all the work done in this section and in the previous three sections. It is the main
algebraic result underlying the proof of Theorem 1.2. Proposition 6.1 and Theorem 6.4
will be used in the next section to characterize the strings .a1; : : : ; an/ associated to
standard subsets S � Dn with I.S/ < 0.

Proposition 6.1 Let n� 3, and let

Sn D fv1; : : : ; vng � Dn
D he1; : : : ; eni

be a standard subset such that I.Sn/D�3. Then, there is a sequence of contractions

Sn& � � � & S3

with I.Sk/D�3 and Sk standard for k D 3; : : : ; n. Moreover,

(1) p1.Sn/D p2.Sn/D 1 and p3.Sn/D n� 2;

(2) If E
Sn

i D fsg then vs is internal and vs � vs D�2;

(3) If jESn

j j D 2 then E
Sn

j D f1; ng;

(4) either v1 � v1 D�2 or vn � vn D�2.
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Proof We argue by induction on n. For nD 3 the statement of the proposition follows
immediately from Lemma 2.4, because I.S3/D �3 implies that S3 is given, up to
the action of Aut.D3/, by Lemma 2.4(1). Let us now assume n> 3. By Corollary 5.4
there is a sequence of contractions

Sn& � � � & S3

with I.Sn/� � � � � I.S3/. Since by Lemma 2.4 I.S3/��3, the assumption I.Sn/D

�3 implies I.Sn/D � � � D I.S3/D �3. By Corollary 5.4 it follows that each Sk is
standard for k D 3; : : : ; n. Up to applying an element of Aut.Dn/ we have

Sn�1 D Sn n fvs; vtg[ f�en
.vt /g

for some s; t with vs final and vs � vs D�2. Moreover, we may assume without loss
that vs D e1C en . Then, it is easy to check that jESn�1

1
j D 2 and therefore, by the

induction hypothesis, E
Sn�1

1
D f1; n� 1g. It follows immediately that jESn

1
j D 3 and

E
Sn
n D f1; ng, and using this it is very easy to verify the statement of the proposition

for Sn .

The next two lemmas will be used in the proof of Theorem 6.4.

Lemma 6.2 Let S3 % � � � % Sn be a sequence of expansions such that, for each
k D 3; : : : ; n, Sk is good, has no bad component and .I.Sk/; c.Sk//D .�2; 2/. Then,

(1) p1.Sn/D 0, p2.Sn/D 2 and p3.Sn/D n� 2,

(2) If E
Sn

i D ft; t
0g then vt and vt 0 are not internal and exactly one of them has

square �2 and

(3) If vt 2 Sn is not internal then there exists i 2 Vt such that jESn

i j D 2.

Proof We argue by induction on n� 3. For nD 3 the statement of the lemma follows
immediately from Lemma 2.4, because I.S3/D �2 implies that S3 is given, up to
the action of Aut.D3/, by Lemma 2.4(2). Now we assume n> 3. Up to applying an
element of Aut.Dn/ we have

Sn�1 D Sn n fvs; vtg[ f�en
.vt /g

for some s; t with vs final and vs �vs D�2. As in the proof of Proposition 6.1 we may
assume without loss that vs D e1Cen , and it is easy to check that jESn�1

1
j D 2. Using

the fact that, by the induction hypothesis, the lemma holds for Sn�1 it is now easy to
check that jESn

1
j D 3 and vt is not internal, and from this that the lemma holds for

Sn .
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Lemma 6.3 Let S3�D3 be a good subset with I.S3/D�3 and c.S3/D 1. Suppose
that S3% � � � % Sk is a sequence of expansions such that, for each hD 3; : : : ; k , Sh

is good, has no bad component and .I.Sh/; c.Sh//D .�3; 1/. Then, it is not possible
to expand Sk by an isolated .�3/–vector.

Proof We may assume that

Sk D fv1; : : : ; vkg � he1; : : : ; eki Š Dk :

By contradiction, suppose that SkC1 � DkC1 is obtained by expanding SkC1 via an
isolated .�3/–vector vkC1 . Up to applying an automorphism of DkC1 we can write
vkC1 D e1C e2C ekC1 . Since vkC1 is isolated and jESkC1

kC1
j D 2, we have

jE
SkC1nfvkC1g

1
jC jE

SkC1nfvkC1g

2
jC jE

SkC1nfvkC1g

kC1
j

D jE
Sk

1
jC jE

Sk

2
jC 1�

X
i¤kC1

vi � vkC1 .mod 2/� 0 .mod 2/:

This shows that the sum jESk

1
j C jE

Sk

2
j must be odd. Therefore by Proposition 6.1

we may assume E
Sk

1
D f1; kg and either jESk

2
j D 1 or jESk

2
j D 3. Since vkC1 is

orthogonal to each vi for i D 1; : : : ; k , using Proposition 6.1 it is easy to check that
both cases jESk

2
j D 1 and jESk

2
j D 3 lead to a contradiction.

Theorem 6.4 Let n� 3, and let

Sn D fv1; : : : ; vng � Dn

be a standard subset such that I.Sn/ < 0. Then, I.Sn/ 2 f�1;�2;�3g and there is a
sequence of contractions

Sn& � � � & S3

such that for every k D 3; : : : ; n� 1 the set Sk is standard and I.Sk/� I.SkC1/.

Proof We argue by induction on n� 3. For nD 3 the theorem follows immediately
from Lemma 2.4, so we assume n > 3 and that the theorem holds true for sets of
cardinality between 3 and n�1. By Corollary 5.4 we have I.Sn/ 2 f�1;�2;�3g and
there is a sequence of contractions

Sn& � � � & S3

such that for every k D 3; : : : ; n� 1, each Sk is good, it has no bad components, and
we have either

(6–1) .I.Sk/; c.Sk//D .I.SkC1/; c.SkC1//
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or

(6–2) I.Sk/� I.SkC1/� 1 and c.Sk/� c.SkC1/C 1:

If I.Sn/D�3 the theorem follows from Proposition 6.1, therefore we may assume
I.Sn/ 2 f�2;�1g.

Suppose first I.Sn/ D �2. By Corollary 5.4(2) we have .I.S3/; c.S3// D .�3; 1/.
Then, (6–1) and (6–2) force c.Sk/ D 1 for every k D 3; : : : ; n � 1, therefore the
theorem follows in this case.

Now assume I.Sn/D�1. By (6–1) and (6–2) we have c.Sn�1/� 2. If c.Sn�1/D 1

we can apply the induction hypothesis and immediately obtain the theorem, therefore
we may assume .I.Sn�1/; c.Sn�1// D .�2; 2/. By Corollary 5.4(2) .I.S3/; c.S3//

is equal to either .�2; 2/ or .�3; 1/. If .I.S3/; c.S3//D .�3; 1/, it is easy to check
using (6–1) and (6–2) that for some 3 � k < n� 1 we have SkC1 D fv1; : : : ; vkC1g

and

Sk D SkC1 n fvkC1; vtg[ f�ekC1
.vt /g;

where I.SkC1/D�2 and I.Sk/D�3. But again by (6–1) and (6–2) we must have

I.Sk/D I.Sk�1/D � � � D I.S3/D�3

and therefore c.Sk/D c.Sk�1/D � � � D c.S3/D 1. This implies that vkC1 is isolated
and vkC1 � vkC1 D �3, but it contradicts Lemma 6.3. Therefore from now on we
assume .I.S3/; c.S3//D .�2; 2/.

The contraction Sn & Sn�1 involves eliminating an internal vector of square �3,
while the sequence of contractions

(6–3) Sn�1& � � � & S3

satisfies the assumptions of Lemma 6.2. Let us write

Sn�1 D Sn n fvs; vtg[ f�ei
.vt /g � he1; : : : ; ei�1; eiC1; : : : ; eni Š Dn�1

for some i , 1 < s < n and t ¤ s with as D 3. Up to applying an automorphism of
Dn we may assume i D n and vs D e1C e2C en . Moreover, we can write Sn�1 as a
union Sn�1 D S1

n�1
[S2

n�1
of subsets with connected intersection graphs, where

S1
n�1 D fv

0
1; : : : ; v

0
s�1g; S2

n�1 D fv
0
sC1; : : : ; v

0
ng:
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In view of Proposition 5.2 it is easy to check that, since vs�1 � vs D vsC1 � vs D 1 and
jE

Sn
n j D 2, we have

2D vs�1 � vsC vsC1 � vs D

X
i¤s

vi � vs

� jE
Snnfvsg

1
jC jE

Snnfvsg

2
jC jESnnfvsg

n j .mod 2/

� jE
Sn�1

1
jC jE

Sn�1

2
jC 1 .mod 2/;

and therefore the sum jESn�1

1
jC jE

Sn�1

2
j must be odd. On the other hand, by Lemma

6.2 jESn�1

i j is equal to either 2 or 3 for every i . Therefore, we may assume jESn�1

1
jD

2 and jESn�1

2
j D 3. Moreover, by Lemma 6.2 we may also assume jESn�1

3
j D 2 and

E
Sn�1

1
[E

Sn�1

3
Df1; s�1; sC1; ng. Therefore, if e1 2Vs�1\VsC1 then e3 2V1\Vn .

In this case, by Lemma 6.2 either v1 � v1 D�2 and vn � vn < �2 or vn � vn D�2 and
v1 � v1 < �2. By symmetry we may assume the latter occurs and define

S 0n�1 WD Sn n fv1; vng[ f�e3
.v1/g:

Clearly .I.S 0
n�1

/; c.S 0
n�1

//D .�1; 1/ and S 0
n�1

is obtained from Sn by a contraction,
hence applying the induction hypothesis to S 0

n�1
we get the statement of the theorem.

Thus, by symmetry and Lemma 6.2 we may assume e1 2 Vs�1 \ Vn . If en 2 VsC1

then, since vs � vsC1 D 1, e2 62 VsC1[Vs�1 . But this conflicts with jESn�1

1
j D 2 and

jE
Sn�1

2
j D 3, therefore en 62 VsC1 , e2 2 VsC1 and e3 2 V1 \ VsC1 . If v1 � v1 D �2

then by Lemma 6.2 vsC1 � vsC1 < �2, we can define

S 0n�1 WD Sn n fv1; vsC1g[ f�e3
.vsC1/g

and argue as before. If v1�v1<�2 then vsC1�vsC1D�2 and therefore VsC1Dfe2; e3g.
Since v1 �vsC1D 0 and e3 2V1 , this implies e2 2V1 . Now either sD 2 and v1D vs�1

or s > 2 and v1 � vs�1 D 0. In the former case e1 2 V1 D Vs�1 , and since v1 � vs D 1,
we must also have en 2 V1 . In the latter case we still have en 2 V1 because e1 62 V1 .
Therefore in either case we can define

S 0n�1 WD Sn n fv1; vsg[ f�en
.v1/g:

and conclude as before.

7 Strings associated to standard subsets

Outline In this section we use Proposition 6.1 and Theorem 6.4 to identify the strings
.a1; : : : ; an/ corresponding to standard subsets S � Dn with I.S/ 2 f�1;�2;�3g.
These results will be used in Section 9 to prove Theorem 1.2.
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The case I D�3

Recall Notation (2–3).

Lemma 7.1 Let n� 3 and let Sn D fv1; : : : ; vng �Dn be a standard subset such that
I.Sn/D�3. Suppose vi � vi D�ai for i D 1; : : : ; n. Then, the string .a1; : : : ; an/ is
obtained from .2; 2; 2/ via a finite sequence of operations of the following types:

(1) .s1; s2; : : : ; sk�1; sk/ 7! .s1C 1; s2; : : : ; sk�1; sk ; 2/ and

(2) .s1; s2; : : : ; sk�1; sk/ 7! .2; s1; s2; : : : ; sk�1; sk C 1/.

It follows that either .a1; : : : ; an/ or .an; : : : ; a1/ is of the form

.ck C 1; 2Œck�1�1�; ck�2C 2; : : : ; c3C 2; 2Œc2�1�;

c1C 2; 2Œc1C1�; c2C 2; : : : ; ck�1C 2; 2Œck�1�/ or

.c1C 1; 2Œc1C1�/;

for some integers c1; : : : ; ck � 1 and k � 3.

Proof By Proposition 6.1 there is a sequence of expansions

S3% � � � % Sn

with S3 given, up to applying an element of Aut.D3/, by Lemma 2.4(1) and each
expansion is obtained by adding a final vector of square �2 while simultaneously
decreasing by 1 the square of the opposite final vector. This immediately implies the
first part statement. The second part of the statement follows from a straightforward
calculation.

The case I D�2

Lemma 7.2 Let n � 4, and let Sn D fv1; : : : ; vng � Dn be a standard subset such
that I.Sn/D �2. Suppose vi � vi D �ai for i D 1; : : : ; n. Then, either .a1; : : : ; an/

or .an; : : : ; a1/ is of one of the following types:

(1) .2Œt �; 3; 2C s; 2C t; 3; 2Œs�/, s; t � 0 or

(2) .2Œt �; 3C s; 2; 2C t; 3; 2Œs�/, s; t � 0.

Proof By Theorem 6.4 and Lemma 2.4 there is a sequence of contractions

Sn& � � � & Sk & Sk�1& � � � & S3
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of standard subsets with I.S3/ D �3 and therefore, for some n � k > 3, I.Sn/ D

� � � D I.Sk/ D �2 and I.Sk�1/ D � � � D I.S3/ D �3. Moreover, we may assume
Sk D fv1; : : : ; vkg and

Sk�1 D Sk n fvk ; vtg[ f�ek
.vt /g � he1; : : : ; ek�1i Š Dk�1

for some 1� t � k � 1 and vk � vk D�3, with vk final. Up to applying an element of
Aut.Dk/ we may also assume that vk D e1Ce2Cek . Moreover, by Proposition 6.1 we
have p1.Sk�1/D 1. Therefore, if jESk�1

1
j> 1 and jESk�1

2
j> 1 then we would have

p1.Sk/ > 0, which would imply I.Sk/D�3 by Corollary 5.4(1). Since vk is final,
it is easy to see, as in the proof of Theorem 6.4, that the number jESk�1

1
jC jE

Sk�1

2
j

must be even. Thus, in view of Proposition 6.1 we may assume jESk�1

1
j D 1 and

jE
Sk�1

2
j D 3. By (2) of the same proposition there is a vector vh 2 Sk such that

1< h< k�1 and e1 �vh¤ 0. If t D h then vh �ek ¤ 0, therefore E
Sk

1
DE

Sk

k
Dfh; kg.

Since jESk

2
jD 4, there exists s 62 fh; k�1; kg such that e2 2Vs . But vs �vkD 0 implies

s 2E
Sk

1
[E

Sk

k
, which is impossible. Therefore we have t ¤h, vh �ek D 0 and e2 2Vh .

Then vh 2 f˙.e1 � e2/g, and since jESk�1

1
j D 1 this implies e2 2 Vh�1 \ VhC1 as

well. If hC 1 < k � 1 then, since E
Sk

1
D fh; kg, vh�1 � vk D vhC1 � vk D 0 implies

ek 2 E
Sk

h�1
\E

Sk

hC1
, which is impossible because jESk

k
j D 2. Therefore we must

conclude hC 1D k � 1 and ek 2 Vh�1 .

Combining this analysis with the proof of Proposition 6.1 shows that if Sk�1 D

fv0
1
; : : : ; v0

k�1
g then, up to the action of Aut.Dk�1/ we have

v0k�1 D�e2� e3� � � � � ek�1 and v0k�i D ei � ei�1; i D 2; : : : ; k � 1:

Moreover, vi D v
0
i for 1� i � k � 1, i ¤ k � 3, and vk�3 D v

0
k�3
C ek . Now we see

that Sk can be contracted to a standard subset S 0
k�1

by dropping v1 and replacing

vk�1 with v.1/
k�1
WD �ek�1

.vk�1/. Similarly, for i D 2; : : : ; k � 4 we can define S 0
k�i

by dropping vi from S 0
k�iC1

and replacing v.i�1/

k�iC1
with v.i/

k�i
WD �ek�i

.v
.i�1/

k�iC1
/.

Continuing in this way we can construct a new sequence of contractions

(7–1) Sk & S 0k�1& � � � & S 04

of standard subsets with I.S 0i/ D �2 for i D 4; : : : ; k � 1, and such that, up to an
automorphism of D4 ,

S 04 D fe3� e2C e4; e2� e1;�e2� e3; e1C e2C e4g:
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Analysing (7–1) it is easy to see that, up to reversing the k –tuple .v1; : : : ; vk/, if
jE

Sk

i j D 2 then

E
Sk

i 2 ff1; k � 1g; fk � 2; kg; fk � 3; kgg:

Since the subset Sn is obtained from Sk by a sequence of expansions by final .�2/–
vectors, the lemma follows easily.

The case I D�1

Lemma 7.3 Let n� 4 and let Sn D fv1; : : : ; vng �Dn be a standard subset such that
I.Sn/ D �1. Suppose vi � vi D �ai for i D 1; : : : ; n. Then, either .a1; : : : ; an/ or
.an; : : : ; a1/ is of one of the following types:

(1) .t C 2; sC 2; 3; 2Œt �; 4; 2Œs�/, s; t � 0,

(2) .t C 2; 2; 3C s; 2Œt �; 4; 2Œs�/, s; t � 0 or

(3) .3C t; 2; 3C s; 3; 2Œt �; 3; 2Œs�/, s; t � 0.

Proof By Theorem 6.4 and Lemma 2.4 there is a sequence of contractions

Sn& � � � & S3

of standard subsets with I.S3/D�3. Thus, either for some 3< k � n we have

(7–2) I.Sn/D � � � D I.Sk/D�1; I.Sk�1/D � � � D I.S3/D�3;

or for some 3� k < h� n we have

I.Sn/D � � � D I.Sh/D�1; I.Sh�1/D � � � D I.Sk/D�2;(7–3)

I.Sk�1/D � � � D I.S3/D�3:

First case ((7–2) holds) The expansion Sk�1% Sk is obtained by adding a final
.�4/–vector which can be assumed of the form vkD e1Ce2Ce3Cek , and p1.Sk/D0

otherwise by Corollary 5.4(1) I.Sk/ D �3. Moreover, by Proposition 6.1 we have
p1.Sk�1/ D 1 and, by the parity argument used in the proofs of Theorem 6.4 and
Lemma 7.2 we have jESk�1

1
j D 1, jESk�1

2
j D 2 and jESk�1

3
j D 3 (up to renaming the

vectors e1 , e2 and e3 ). Also, by Proposition 6.1 we have e1 2Vl for some 1< l <k�1

and vl is of the form vl D˙e1˙ ei with E
Sk�1

i D fl � 1; l; lC 1g. Since vl � vk D 0

this immediately implies i D 3. Again by the proposition we have e2 2V1\Vk�1\Vk .
Since vk � v1 D vk � vl�1 D 0, it is easy to check that if l �1¤ 1 then ek 2 Vl�1\V1 ,
which is impossible because jESk

k
j D 2. Therefore l D 2, e3 2 V1 and ek 2 V3 . By
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the proposition this implies that Sk has associated string (up to a reflection) of the
form

.t C 2; 2; 3; 2Œt �; 4/;

E
Sk

1
D f2; kg, E

Sk

k
D f3; kg and jESk

i j> 2 for i ¤ 1; k . Since Sn is obtained from
Sk by a sequence of expansions obtained by adding final vectors of square �2, this
implies that Sn has associated fraction (up to a reflection) as in (1) or (2) from the
statement of the lemma.

Second case ((7–3) holds) Arguing as in the proof of Lemma 7.2 we may assume
that k D 4, and

S4 D fv1 D e1� e2C e4; v2 D e2C e3; v3 D�e2� e1; v4 D e4C e2� e3g;

with S4%� � �%Sh�1 consisting of expansions obtained by adding final .�2/–vectors
and the expansion Sh�1% Sh obtained by adding a final .�3/–vector which we can
assume to be vh D e1C e2C eh . Since the number jESh�1

1
jC jE

Sh�1

2
j must be even

and it can be easily checked that p2.Sh�1/D 3, p4.Sh�1/D 1 and p3.Sh�1/D h�5,
a case–by–case analysis shows that jESh�1

1
j D jE

Sh�1

2
j D 2.

This implies, assuming Sh D fv1; : : : ; vhg, that i 2 E
Sh

1
\ E

Sh

2
for some i with

i < h. The same analysis of the sequence S4% � � � % Sh�1 used at the end of the
proof of Lemma 7.2 shows that jESh�1

i j D 2 implies E
Sh�1

i \f1; h� 1g ¤∅. Since
vh�1 � vh D 1, up to renaming e1 and e2 we may assume e1; e2 2 V1 and e2 2 Vh�1 .
It is easy to check that this implies that all the .�2/–vectors added in the sequence
S4 % � � � % Sh�1 are added from the same side. If they are added eg from the
right–hand side the string associated to Sh�1 has the form

.3C t; 2; 2; 3; 2Œt �/:

Moreover, the same analysis as above shows that E
Sh

h
D f3; hg and jESh

i j D 3 for
every i 2 V1 . This implies that the sequence Sh% � � � % Sn consists of expansions
obtained by adding .�2/–vectors from the right–hand side only. It follows that the
string associated to Sn is of the form (3) from the statement of the lemma. If the
.�2/–vectors added in the sequence S4% � � � % Sh�1 are added from the left–hand
side the resulting string is obtained from (3) by a reflection.

8 Existence of ribbon surfaces

Outline In this section we prove the existence of bounding ribbon surfaces for all the
2–bridge links which will occur in the proof of Theorem 1.2 in Section 9.
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We shall use the following elementary fact about continued fractions (see eg [6, Ap-
pendix] for a proof). Let p > q � 1 be coprime integers, and suppose that

p
q
D Œa1; a2; : : : ; an�

�; a1; : : : ; ah � 2:

Then,

(8–1) p
q0
D Œan; an�1; : : : ; a1�

�;

where p > q0 � 1 and qq0 � 1 .mod p/.

Let a1; : : : ; a2n be positive integers. The following identity holds (see [9, Proposition
2.3]):

Œa1; : : : ; a2n�
C(8–2)

D

(
Œa1C 1; 2Œa2�1�; a3C 2; 2Œa4�1�; : : : ; a2n�1C 2; 2Œa2n�1���; n� 2;

Œa1C 1; 2Œa2�1���; nD 1:

Lemma 8.1 Let p > q � 1 be coprime integers, and suppose that p
q
D Œa1; : : : ; an�

� ,
where either .a1; : : : ; an/ or .an; : : : ; a1/ is of the form

.ck C 1; 2Œck�1�1�; ck�2C 2; : : : ; c3C 2; 2Œc2�1�; c1C 2; 2Œc1C1�; c2C 2; : : : ;

ck�1C 2; 2Œck�1�/ or

.c1C 1; 2Œc1C1�/;

for some integers c1; : : : ; ck � 1 and k � 3. Then, if p is odd K.p; q/ bounds an
immersed ribbon disk; if p is even the 2–component link K.p; q/ bounds the image
under a ribbon immersion of the disjoint union of a disk and a Möbius band.

Proof Let k; c1; : : : ; ck � 1 be integers. Then, a straightforward application of (8–2)
gives

Œck C 1; 2Œck�1�1�; ck�2C 2; : : : ; c3C 2; 2Œc2�1�; c1C 2; 2Œc1C1�; c2C 2; : : : ;

ck�1C 2; 2Œck�1�/��

D Œck ; ck�1; ck�2; : : : ; c1; c1C 2; c2; c3; : : : ; ck�1; ck �
C

and
Œc1C 1; 2Œc1C1��� D Œc1; c1C 2�C:

Recalling that if 0 < q0 < p and qq0 � 1 .mod p/ the link K.p; q0/ is isotopic to
K.p; q/, this shows that the K.p; q/ is isotopic to L.ck ; : : : ; c1; c1C 2; c2; : : : ; ck/

(see Figure 1, case n even). Applying the ribbon move described in the top picture of
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Figure 2 reduces K.p; q/ to a 2–component unlink, as shown in the remaining pictures
of Figure 2. By standard facts on ribbon moves, this proves the lemma.
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ck
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(isotopy)

(isotopy)

(isotopy)

Figure 2: The link L.ck ; : : : ; c1; c1C 2; : : : ; ck/ bounds a ribbon surface.

Lemma 8.2 Let La;b , a; b 2Z, be the 2–bridge link given by the top picture of Figure
3. If the link La;b is a knot then it bounds a ribbon disk. If La;b has two components
then it bounds the image under a ribbon immersion of the disjoint union of a disk and a
Möbius band.

Proof Figure 3 shows that after performing two ribbon moves the link La;b reduces
to a 3–component unlink. This proves the lemma.

Lemma 8.3 Let L0
a;b

, a; b 2 Z, be the link given by the top picture of Figure 4. If
the link L0

a;b
is a knot then it bounds a ribbon disk. If L0

a;b
has two components then

it bounds the image under a ribbon immersion of the disjoint union of a disk and a
Möbius band.
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(two ribbon moves)

(isotopy)

Figure 3: Ribbon moves on the link La;b .

Proof Figure 4 shows that after performing one ribbon move the link L0
a;b

reduces to
a 2–component unlink. This proves the lemma.

Lemma 8.4 Let p > q > 0 be coprime integers, and suppose that p
q

is equal to one of
the following:

(1) Œ2Œt �; 3; sC 2; t C 2; 3; 2Œs��� , s; t � 0 or

(2) Œ2Œt �; sC 3; 2; t C 2; 3; 2Œs��� , s; t � 0.

Then, if p is odd K.p; q/ bounds a ribbon disk; if p is even the 2–component link
K.p; q/ bounds the image under a ribbon immersion the disjoint union of a disk and a
Möbius band.

Proof By (8–2) we have

Œ1; t; 1; 1; s; 1; t; 1; 1; sC 1�C D Œ2Œt �; 3; sC 2; t C 2; 3; 2Œs���:
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a

b �aC1 �bC1

a

b�1
�a

�bC1

(one ribbon move)

(isotopy)

(isotopy)

Figure 4: Ribbon move on the link L0
a;b

.

Therefore, in Case .1/ the link K.p; q/D L.1; t; 1; 1; s; 1; t; 1; 1; sC 1/ is given by
the top picture in Figure 5. After an isotopy, the knot appears as in the middle picture
of Figure 5. After a further isotopy, we obtain the bottom picture of Figure 5. After an
isotopy starting with pulling a strand as suggested by the arrow in Figure 5, we arrive
at the link given by the top picture of Figure 3 for .a; b/D .t C 2;�s� 1/. Thus, in
Case (1) the lemma follows from Lemma 8.2.

By (8–2) we have

Œ1; t; sC 1; 2; t; 1; 1; sC 1�C D Œ2Œt �; sC 3; 2; t C 2; 3; 2Œs���:

Therefore K.p; q/ is isotopic to the link L.1; t; sC 1; 2; t; 1; 1; sC 1/ given in Figure
6. Applying an obvious isotopy it is easy to see that this link is isotopic to the link
L0

tC1;�s�1
, where L0

a;b
, for a; b 2 Z, is as in Lemma 8.3. Part (2) of the statement

now follows from Lemma 8.3.
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t

�s �t

sC1

tC1

�s�1 �t

sC1

tC2 �s�1

�t�1 sC2

(isotopy)

(isotopy)

Figure 5: The link L.1; t; 1; 1; s; 1; t; 1; 1; sC 1/ .

t

�t�s�1

sC1

Figure 6: The link L.1; t; sC 1; 2; t; 1; 1; sC 1/ .

Lemma 8.5 Let p > q � 1 be coprime integers, and suppose that p
q

is equal to one of
the following:

(1) Œt C 2; sC 2; 3; 2Œt �; 4; 2Œs��� , s; t � 0,

(2) Œt C 2; 2; sC 3; 2Œt �; 4; 2Œs��� , s; t � 0 or

(3) Œt C 3; 2; sC 3; 3; 2Œt �; 3; 2Œs��� , s; t � 0.

Then, if p is odd K.p; q/ bounds a ribbon disk; if p is even the 2–component link
K.p; q/ bounds the image under a ribbon immersion of the disjoint union of a disk and
a Möbius band.
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Proof By (8–2) we have

Œt C 1; 1; s; 1; 1; t C 1; 2; sC 1�C D Œt C 2; sC 2; 3; 2Œt �; 4; 2Œs���; s; t � 0:

Therefore in Case (1) K.p; q/ is isotopic to the link L.t C 1; 1; s; 1; 1; t C 1; 2; sC 1/

given by the top picture of Figure 7. Applying the isotopy suggested by the arrow one

�t�1 �s

tC1 sC1

�t�2

�s�2 tC1 sC1

(isotopy)

Figure 7: The link L.t C 1; 1; s; 1; 1; t C 1; 2; sC 1/ .

obtains the link given by the bottom picture of Figure 7, which is easily checked to be
the mirror image of the link L0

tC2;sC2
, where L0

a;b
, for a; b 2 Z, is as in Lemma 8.3.

Therefore, Part (1) of the statement follows from Lemma 8.3. By (8–2) we have

Œt C 1; 2; sC 1; t C 1; 2; sC 1�C D Œt C 2; 2; 3C s; 2Œt �; 4; 2Œs���; s; t � 0:

This shows that in Case (2) K.p; q/ is isotopic to L.t C 1; 2; sC 1; t C 1; 2; sC 1/,
which is easily seen to be isotopic to L�t�1;�s�1 , where La;b , a; b 2Z is as in Lemma
8.2. Thus, in Case (2) the statement follows from Lemma 8.2. Now observe that if

p
q
D Œt C 3; 2; sC 3; 3; 2Œt �; 3; 2Œs���; s; t � 0;

then by Equations (2–4) and (8–1) we have
p

p�q0
D ŒsC 2; t C 3; 3; 2Œs�; 4; 2ŒtC1���;

which is of the type considered in Case (1). This concludes the proof.

9 The proof of Theorem 1.2

Outline In this section we use the results obtained in the previous sections to prove
Theorem 1.2.
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Before starting the proof of Theorem 1.2 we need four arithmetic lemmas.

Lemma 9.1 Suppose that ai � 2 for i D 1; : : : ; n, are integers and

Œa1; : : : ; an�
�
D

m2

mk˙1
; .m; k/D 1; 0< k <m:

Then,
Œ2; a1; : : : ; an; anC 1�� D .2m�k/2

.2m�k/m˙1

and
Œa1C 1; a2; : : : ; an; 2�

�
D

.mCk/2

.mCk/k˙1
:

Proof Since
.m.m� k/˙ 1/.mk˙ 1/� 1 .mod m2/;

by (8–1) we have

(9–1) Œan; : : : ; a1�
�
D

m2

m.m�k/˙1
;

therefore
ŒanC 1; : : : ; a1�

�
D

m2Cm.m�k/˙1
m.m�k/˙1

D
2m2�mk˙1
m.m�k/˙1

:

Similarly, since

.m.m� k/˙ 1/.2mk � k2
˙ 2/D 1� .2m2

�mk˙ 1/.k2
�mk� 1/

we have
Œa1; : : : ; anC 1�� D 2m2�mk˙1

2mk�k2˙2
:

The first formula in the statement of the lemma now follows by a simple computation.
By (9–1) and the first formula in the statement we have

Œ2; an; : : : ; a1C 1�� D .2m�.m�k//2

.2m�mCk/m˙1
D

.mCk/2

.mCk/m˙1
;

which implies, as before, the second formula in the statement of the lemma.

Lemma 9.2 Let n� 3 and let Sn D fv1; : : : ; vng �Dn be a standard subset such that
I.Sn/D�3. Suppose vi � vi D�ai for i D 1; : : : ; n. Then,

Œa1; : : : ; an�
�
D

m2

mkC1

for some integers m; k with 0< k <m and .m; k/D 1.

Proof The fraction associated to the set S3 of Lemma 2.4 is Œ2; 2; 2�D 4=3, which
is of the form m2=.mC 1/. The lemma follows immediately from Lemma 7.1 and
Lemma 9.1.
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In the following proofs we shall use the formula

(9–2) Œ2Œt �;x�� D .tC1/x�t
tx�.t�1/

; t 2 N[f0g;

which holds for any variable x and can be established by an easy induction.

Lemma 9.3 Let n� 4, and let SnD fv1; : : : ; vng �Dn be a standard subset such that
I.Sn/ D �2. Suppose vi � vi D �ai for i D 1; : : : ; n. Then, either Œa1; : : : ; an�

� or
Œan; : : : ; a1�

� is of one of the following forms:

(1) m2

m2�d.m�1/
, where d divides 2mC 1 or

(2) m2

m2�d.m�1/
, where d is odd and divides m� 1.

Proof Using (9–2) one can verify that

Œ2Œt �; 3; sC 2; t C 2; 3; 2Œs���

D
.2stC3sC3tC4/2

.2stC3sC3tC4/2�.2sC3/.2stC3sC3tC3/
:

For mD 2st C 3sC 3t C 4 and d D 2sC 3, since 2mC 1D .2sC 3/.2t C 3/, this
shows that the associated fraction is of the form

m2

m2�d.m�1/
;

where d divides 2mC 1. Similarly,

Œ2Œt �; sC 3; 2; t C 2; 3; 2Œs��� D .2stC2sC3tC4/2

.2stC2sC3tC4/2�.2sC3/2.tC1/

D
m2

m2�d.m�1/
;

where m D 2st C 2sC 3t C 4 and d D 2sC 3. Observe that d is odd and divides
m� 1D .2sC 3/.t C 1/. By Lemma 7.2 this concludes the proof.

Lemma 9.4 Let n� 4 and let Sn D fv1; : : : ; vng �Dn be a standard subset such that
I.Sn/D�1. Suppose that vi � vi D�ai , i D 1; : : : ; n. Then, either Œa1; : : : ; an�

� or
Œan; : : : ; a1�

� is of one of the following types:

(1) m2

d.mC1/
where d is odd and divides mC 1;

(2) m2

d.mC1/
where d divides 2m� 1 or

(3) m2

m2�d.mC1/
where d is odd and divides mC 1.
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Proof Using (9–2) one can verify that

Œt C 2; sC 2; 3; 2Œt �; 4; 2Œs��� D .2stC4sC3tC5/2

.2sC3/2.tC2/
D

m2

d.mC1/
;

where mD 2stC4sC3tC5 and dD 2sC3 is odd and divides mC1D .2sC3/.tC2/.
Similarly,

Œt C 2; 2; sC 3; 2Œt �; 4; 2Œs��� D .2stC3sC3tC5/2

.2sC3/.2stC3sC3tC6/
D

m2

d.mC1/
;

where m D 2st C 3sC 3t C 5 and d D 2sC 3 divides 2m� 1 D .2sC 3/.2t C 3/.
Finally,

Œt C 3; 2; sC 3; 3; 2Œt �; 3; 2Œs��� D .2tsC5sC4tC9/2

.sC2/.4tsC10sC8tC17/

D
m2

.2m�1/.mC1/=d
;

where mD 2tsC5sC4tC9 and d D 2tC5 divides mC1D .sC2/.2tC5/. Since
.2m�1/.mC1/

d
.m2
� d.mC 1//� 1 .mod m2/;

by (8–1) we have

m2

m2�d.mC1/
D Œ2Œs�; 3; 2Œt �; 3; sC 3; 2; t C 3��:

Thus, the lemma follows by Lemma 7.3.

Proof of Theorem 1.2 We first show that (2) implies (1). Let us assume that (2) holds.
Let e† �B4 be a smoothly embedded surface obtained by pushing the interior of †
inside the 4–ball. It is easy to check that (regardless of the parity of p ) the inclusion
S3 n @e† � B4 n e† induces a surjective homomorphism

'W H1.S
3
n @e†IZ/!H1.B

4
n e†IZ/

such that the homomorphism H1.S
3 n @e†IZ/ ! Z=2Z defining the 2–fold cover

L.p; q/! S3 branched along @e† DK.p; q/ factors through H1.B
4 n e†IZ/ via ' .

Therefore, the cover L.p; q/!S3 extends to a 2–fold cover W !B4 branched alonge† . We may assume that the distance function from the origin B4! Œ0; 1� restricted
to e† is a proper Morse function with only index–0 and index–1 critical points. This
implies that W has a handlebody decomposition with only 0–, 1– and 2–handles (see
eg [3, lemma at pages 30–31]). Therefore, from

b0.W /� b1.W /C b2.W /D �.W /D 2�.B4/��.e†/D 1

we deduce b1.W /Db2.W /. On the other hand, since b1.@W /D0 and H1.W; @W IQ/Š

H 3.W IQ/D 0, the homology exact sequence of the pair .W; @W / gives b1.W /D 0,
so it follows that H�.W IQ/ŠH�.B

4IQ/, and (1) holds.
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Now we show that (1) implies (3). Assume that Part (1) of the statement holds. It is a
well–known fact that if p

q
D Œa1; : : : ; an�

� the lens space L.p; q/ smoothly bounds
the 4–dimensional plumbing P .p; q/ given by the weighted graph of Figure 8. The

· · · · · ·�a1 �a2 �a3 �an�2 �an�1 �an

Figure 8: The graph of the canonical plumbing bounded by L.p; q/ .

intersection form of P .p; q/ is negative definite. Hence, since L.p; q/Š�L.p;p�q/,
if L.p; q/ smoothly bounds a rational homology 4–ball W .p; q/ we can construct the
smooth, negative 4–manifolds

X.p; q/D P .p; q/[@ .�W .p; q//; X.p;p� q/D P .p;p� q/[@ W .p; q/:

By Donaldson’s theorem on the intersection form of definite 4–manifolds [4], the
intersection forms of X.p; q/ and X.p;p � q/ are both standard diagonal. Hence,
suppose that the intersection lattice of X.p; q/ is isomorphic to Dn and the inter-
section lattice of X.p;p� q/ is isomorphic to Dn0 . Clearly, the intersection lattices
H2.P .p; q/IZ/ Š Zn and H2.P .p;p � q/IZ/ Š Zn0 have bases fv1; : : : ; vng and
fw1; : : : ; wn0g which satisfy (3–1). Therefore, via the embeddings P .p; q/� X.p; q/

and P .p;p � q/ � X.p;p � q/ we can view the above bases as standard subsets
S � Dn and S 0 � Dn0 with associated strings .a1; : : : ; an/ and .b1; : : : ; bn0/, where
Œb1; : : : ; bn0 �

� D p=.p� q/. In view of Lemma 2.6, we may assume without loss of
generality that I.S/ < 0. Then, by Theorem 6.4 and Lemma 2.4, Lemma 9.2, Lemma
9.3 and Lemma 9.4 it follows that (3) holds.

Finally, we show that (3) implies (2). Suppose that (3) holds, ie p
q
2R. Then, since

applying finitely many times the functions f and g of Definition 1.1 amounts to
changing K.p; q/ by an isotopy or a reflection, we may assume that p Dm2 and q is
of one of the three types given in Definition 1.1. We consider various cases separately.

First case (qDmk˙1, with m> k > 0 and .m; k/D 1) In view of Lemma 7.1 and
Lemma 8.1, it suffices to show that the string of coefficients of the continued fraction
expansion of p

q
is obtained from .2; 2; 2/ via a finite sequence of operations as in

Lemma 7.1. Since m2�.mk�1/Dm.m�k/˙1 and either m� 2k or m� 2.m�k/,
up to replacing k with m� k (and K.p; q/ with its mirror image K.p;p � q/) we
may assume m� 2k . If mD 2k , since .m; k/D 1 we must have mD 2, k D 1 and
p=q D Œ2; 2; 2�� . If m> 2k , arguing by induction on m we may assume

.m�k/2

.m�k/k˙1
D Œa1; a2; : : : ; an�

�;
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where .a1; a2; : : : ; an/ is obtained from .2; 2; 2/ as described above. But in view of
Lemma 9.1 we have

m2

mk˙1
D Œa1C 1; a2; : : : ; an; 2�

�;

so we are done.

Second case (q D d.m� 1/, where d > 1 divides 2mC 1) It suffices to show that
(2) holds for K.p;p � q/. Since d.m� 1/ <m2 , we have 2mC 1 > d > 1, and d

must be odd because it divides 2mC 1. Therefore we can write d D 2sC 3 for some
s � 0 and 2mC 1D d.2t C 3/ for some t � 0. Then mD 2st C 3sC 3t C 4, and as
in the proof of Lemma 9.3

m2

m2�d.m�1/
D Œ2Œt �; 3; sC 2; t C 2; 3; 2Œs���:

Therefore (2) holds by Lemma 8.4(1).

Third case (qD d.mC1/, where d > 1 divides 2m�1) Arguing as in the previous
case, we can write d D 2s C 3 and 2m� 1 D d.2t C 3/ for some s; t � 0. Then,
mD 2st C 3sC 3t C 5 and

m2

d.mC1/
D Œt C 2; 2; sC 3; 2Œt �; 4; 2Œs���;

which implies (2) by Lemma 8.5(2).

Fourth case (qDd.mC1/, where d >1 is odd and divides mC1) Since d.mC1/<

m2 we have mC1> d > 1, therefore we can write d D 2sC3 and mC1D d.tC2/

for some s; t � 0. Then

m2

d.mC1/
D Œt C 2; sC 2; 3; 2Œt �; 4; 2Œs���;

and (2) holds by Lemma 8.5(1).

Fifth case (qDd.m�1/, where d >1 is odd and divides m�1) As before, it suffices
to prove that (2) holds for K.p;p�q/. We can write d D 2sC3 and m�1D d.tC1/

for some s; t � 0. Then

m2

m2�d.m�1/
D Œ2Œt �; sC 3; 2; t C 2; 3; 2Œs���;

and (2) holds by Lemma 8.4(2). This concludes the proof.
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