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Absolute Whitehead torsion

ANDREW KORZENIEWSKI

We refine the Whitehead torsion of a chain equivalence of finite chain complexes in an
additive category A from an element of eK iso

1 .A/ to an element of the absolute group
Kiso

1
.A/ . We apply this invariant to symmetric Poincaré complexes and identify it in

terms of more traditional invariants. In the companion paper (joint with Ian Hambleton
and Andrew Ranicki) this new invariant is applied to obtain the multiplicativity of the
signature of fibre bundles mod 4.

57Q10

Introduction

The Whitehead torsion of a homotopy equivalence f W X!Y of finite C W complexes
is an element of the Whitehead group of � D �1.X /D �1.Y /

�.f /D �. ef W C. eX /! C.eY // 2Wh.�/DK1.ZŒ��/=f˙�g;

with ef the induced chain equivalence of based f.g. free cellular ZŒ��–module chain
complexes. The Whitehead torsion of a finite n–dimensional Poincaré complex X is

�.X /D �.ŒX �\�W C. eX /n��! C. eX // 2Wh.�/:

In this paper we extend the methods of Ranicki [7] to consider absolute Whitehead
torsion invariants for homotopy equivalences of certain finite C W complexes and
finite Poincaré complexes, which take values in K1.ZŒ��/ rather than Wh.�/. We
shall also be extending the round L–theory of Hambleton–Ranicki–Taylor [2], which
is the algebraic L–theory with absolute Whitehead torsion decorations. In the paper
Hambleton–Korzeniewski–Ranicki [1] absolute Whitehead torsion in both algebraic
K– and L–theory will be applied to investigate the signatures of fibre bundles.

The absolute torsion of a finite contractible chain complex of finitely generated based
R–modules C is defined by

�.C /D �.d C�W Codd! Ceven/ 2K1.R/:

for a chain contraction � ; it is independent of the choice of � . The algebraic mapping
cone of a chain equivalence of finite chain complexes of finitely generated based
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216 Andrew Korzeniewski

R–modules f W C ! D is a contractible chain complex C.f /. The naive absolute
torsion �.C.f // 2K1.R/ only has good additive and composition formulae modulo
Im.K1.Z/!K1.R//. Likewise, the naive definition of the torsion of an n–dimensional
symmetric Poincaré complex .C; �/ (see Ranicki [5]) with C a based f.g. free R–
module chain complex

�.C; �/D �.C.�0W C
n��
! C //

only has good cobordism and additivity properties in eK1.R/. The Tate Z2 –cohomology
class

�.C; �/ 2 bH n
.Z2IK1.R//

may not be defined, and even if defined may not be a cobordism invariant.

In [7] Andrew Ranicki developed a theory of absolute torsion for chain equivalences of
round chain complexes, that is chain complexes C satisfying �.C /D 0. This absolute
torsion has a good composition formula but it is not additive, and for round Poincaré
complexes �.C; �0/ is not a cobordism invariant, contrary to the assertions of Ranicki
[8, (7.21), (7.22)].

There are two main aims of this paper, firstly to develop a more satisfactory definition
of the absolute torsion of a chain equivalence with good additive and composition
formulae and secondly to define an absolute torsion invariant of Poincaré complexes
which behaves predictably under cobordism. Section 1 is devoted to the first of these
aims. Following [7] we work in the more general context of an additive category A . The
chief novelty here is the introduction of a signed chain complex; this is a pair .C; �C /

where C is a finite chain complex and �C is a “sign” term living in K1.A/, which
will be made precise in Section 1. We give definitions for the sum and suspension of
two signed chain complexes, and we define the absolute torsion of a chain equivalence
of signed chain complexes

�NEW.f W C !D/ 2Kiso
1 .A/:

This gives us a definition of absolute torsion with good additive and composition
formulae at the cost of making the definition more complicated by adding sign terms
to the chain complexes. This definition is similar to the one given in [7], indeed if
the chain complexes C and D are round and �C D �D D 0 then the definition of the
absolute torsion of a chain equivalence f W C !D is precisely that given in [7]. When
working over a ring R the absolute torsion defined here reduces to the usual torsion in
zK1.R/.

In Section 3 we work over a category with involution and define the dual of a signed
chain complex. We can then define in Section 4 the absolute torsion of a symmetric
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Absolute Whitehead torsion 217

Poincaré complex to be the absolute torsion of the chain equivalence �0W C
n��! C .

This new invariant is shown to be additive and to have good behaviour under round
algebraic cobordism. Although we have to choose a sign �C in order to define the
absolute torsion of �0 , we show that the absolute torsion is independent of this choice.
In Section 6 we state a product formula for the absolute torsion and prove it for group
rings.

It should be noted that the definitions in “Round L–Theory” [2] used the absolute
torsion invariant of [7], [8], which is not a cobordism invariant. In Section 7 we show
that the absolute torsion defined here may be used as the “correct” definition; in this
case the statements in [2] are correct.

In Section 8 we investigate the absolute torsion of manifolds. This invariant is only
defined when we pass to the reduced group bH n

.Z2IK1.ZŒ�1M �// and we provide
some examples. In Section 9 the “sign” term of the absolute torsion of a manifold is
identified with more traditional invariants of a manifold such as the signature, the Euler
characteristic and the semi-characteristic.

The forthcoming paper [1] will make extensive use of the invariants and techniques
developed here. Section 2 and Section 5 develop the notion of the signed derived
category which will be required by [1].

I would like to thank my supervisor Andrew Ranicki for his help and encouragement
during the writing of this paper. I would also like to thank Ian Hambleton for many
useful conversations and for carefully checking the computations.

1 Absolute torsion of contractible complexes and chain equiv-
alences

In this section we introduce the absolute torsion of contractible complexes and chain
equivalences and derive their basic properties. This closely follows [7] but without the
assumption that the complexes are round (�.C /D 0 2K0.A/); we also develop the
theory in the context of signed chain complexes which we will define in this section.

Let A be an additive category. Following [7] we make the following definition.

Definition 1 (1) The class group K0.A/ has one generator ŒM � for each object in
A and relations:
(a) ŒM �D ŒM 0� if M is isomorphic to ŒM 0�

(b) ŒM ˚N �D ŒM �C ŒN � for objects M;N in A

(2) The isomorphism torsion group Kiso
1
.A/ has one generator � iso.f / for each

isomorphism f W M !N in A , and relations:
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218 Andrew Korzeniewski

(a) � iso.gf /D � iso.f /C � iso.g/ for isomorphisms f W M !N , gW N ! P

(b) � iso.f ˚ f 0/ D � iso.f / C � iso.f 0/ for isomorphisms f W M ! N and
f 0W M 0!N 0

1.1 Sign terms

The traditional torsion invariants are considered to lie in eK iso
1 .A/, a particular quotient

of Kiso
1
.A/ (defined below) in which the torsion of maps such as

�
0 1
1 0

�
W C˚D!D˚C

are trivial. In absolute torsion we must consider such rearrangement maps; to this end
we recall from [7] the following notation:

Definition 2 Let C;D be finite chain complexes in A .

(1) The suspension of C is the chain complex SC such that SCr D Cr�1 .

(2) The sign of two objects M;N 2 A is the element

�.X;Y / WD � iso
��

0 1N

1M 0

�
W M ˚N !N ˚M

�
2Kiso

1 .A/:

The sign only depends on the stable isomorphism classes of M and N and
satisfies
(a) �.M ˚M 0;N /D �.M;N /C �.M 0;N /,
(b) �.M;N /D��.N;M /,
(c) �.M;M /D � iso.�1W M !M /,
(d) 2�.M;M /D 0.

We may extend � to a morphism of abelian groups

�W K0.A/˝K0.A/!Kiso
1 .A/I .ŒM �; ŒN �/ 7! �.M;N /:

(3) The reduced isomorphism torsion group eK iso
1 .A/ is the quotient

eK iso
1 .A/ WDKiso

1 .A/=Im.�W K0.A/˝K0.A/!Kiso
1 .A//:

(4) The intertwining of C and D is the element defined by

ˇ.C;D/ WD
X
i>j

.�.C2i ;D2j /� �.C2iC1;D2jC1// 2Kiso
1 .A/:

This depends only on the isomorphism classes of the chain complexes C and D .

Example 3 The reader may find it useful to keep the following example in mind, as it
is the most frequently occurring context.

Geometry & Topology, Volume 11 (2007)



Absolute Whitehead torsion 219

Let R be an associative ring with 1 such that rankR.M / is well-defined for f.g free
modules M . We define A.R/ to be the category of based f.g. R–modules. In this
case the map K0.A.R//! Z given by M 7! dim M is an isomorphism. We have a
forgetful functor

Kiso
1 .A.R//!K1.R/I �

iso.f / 7! �.f /;

mapping elements of Kiso
1
.A.R// to the more familiar K1.R/ in the obvious way. In

particular

Im.�W K0.A.R//˝K0.A.R//!K1.R//D f�.˙1/g D Im.K1.Z/!K1.R//

justifying the terminology of a “sign” term; the map is given explicitly for modules M

and N by
�.M;N /D rankR.M /rankR.N /�.�1/:

We will make use of the notation

Ceven D C0˚C2˚C4˚ � � �

Codd D C1˚C3˚C5˚ � � �

and as usual we define the Euler characteristic �.C / as

�.C /D ŒCeven�� ŒCodd� 2K0.A/:

We also recall from [7] (Proposition 3.4 and the remark above Proposition 3.3) the
following relationships between the “sign” terms.

Lemma 4 Let C;C 0;D;D0 be finite chain complexes over A . Then

(1) ˇ.C;D/D � iso..C˚D/even!Ceven˚Deven/��
iso..C˚D/odd!Codd˚Dodd/

(2) ˇ.C ˚C 0;D/D ˇ.C;D/Cˇ.C 0;D/

(3) ˇ.C;D˚D0/D ˇ.C;D/Cˇ.C;D0/

(4) ˇ.C;D/�ˇ.D;C /C
P
.�/r�.Cr ;Dr /D �.Ceven;Deven/� �.Codd;Dodd/

(5) ˇ.SC;SD/D�ˇ.C;D/

(6) ˇ.SC;C /D �.Codd;Ceven/.

1.2 Signed chain complexes

In order to make to formulae in this paper more concise we introduce the concept
of a signed chain complex; this is a chain complex with an associated element in
Im.�W K0.A/˝K0.A/!Kiso

1
.A// which we refer to as the sign of the complex. We

use this element in the definition of the absolute torsion invariants.
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220 Andrew Korzeniewski

Definition 5 (1) A signed chain complex is a pair .C; �C / where C is a finite
chain complex in A and �C an element of

Im.�W K0.A/˝K0.A/!Kiso
1 .A//

We will usually suppress mention of �C denoting such complexes as C .

(2) Given a signed chain complex .C; �C / we give the suspension of C , SC the
sign

�SC D��C :

(3) We define the sum signed chain complex of two signed chain complexes .C; �C /,
.D; �D/ as .C ˚D; �C˚D/ where C ˚D is the usual based sum of two chain
complexes and �C˚D defined by

�C˚D D �C C �D �ˇ.C;D/C �.Codd; �.D//

(it is easily shown that �.C˚D/˚E D �C˚.D˚E/ ).

1.3 The absolute torsion of isomorphisms

We now define the absolute torsion of a collection of isomorphisms ffr W Cr !Dr g

between two signed chain complexes. Note that the map f need not be a chain isomor-
phism (ie fdC D dDf need not hold). In the case where f is a chain isomorphism the
torsion invariant defined here will coincide with the definition of the absolute torsion
of a chain equivalence given later.

Definition 6 The absolute torsion of a collection of isomorphisms ffr W Cr !Dr g

between the chain groups of signed chain complexes C and D is defined as

�NEW
iso .f /D

1X
rD�1

.�/r� iso.fr W Cr !Dr /� �C C �D 2Kiso
1 .A/:

Lemma 7 We have the following properties of the absolute torsion of isomorphisms:

(1) The absolute torsion of isomorphisms is logarithmic, that is for isomorphisms
f W C !D and gW D!E .

�NEW
iso .gf /D �NEW

iso .f /C �NEW
iso .g/

(2) The absolute torsion of isomorphisms is additive, that is for isomorphisms
f W C !D and f 0W C 0!D0

�NEW
iso .f ˚f 0/D �NEW

iso .f /C �NEW
iso .f 0/
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Absolute Whitehead torsion 221

(3) The absolute torsion of the rearrangement isomorphism�
0 1
1 0

�
W C ˚D �!D˚C

is �.�.C /; �.D// 2Kiso
1
.A/.

(4) The absolute torsion of the isomorphism�
0 1
1 0

�
W S.C ˚D/ �! SC ˚SD

is �.�.D/; �.C // 2Kiso
1
.A/.

Proof Parts 1 and 2 follow straight from the definitions, keeping in mind the fact that
the sign terms � and ˇ depend only on the isomorphism classes of their respective
inputs. For part 3 we apply Lemma 4 part (4) to get

�NEW
iso .C ˚D!D˚C /D

1X
rD0

.�/r�.Cr ;Dr /� �C˚D C �D˚C

D

1X
rD0

.�/r�.Cr ;Dr /Cˇ.C;D/�ˇ.D;C /

��.Codd; �.D//C �.Dodd; �.C //

D �.Ceven;Deven/� �.Codd;Dodd/

��.Codd; �.D//C �.Dodd; �.C //

D �.�.C /; �.D//:

For part 4

�NEW
iso .S.C ˚D/! SC ˚SD/D �SC˚SD � �S.C˚D/

D�ˇ.SC;SD/C �.Ceven; �.SD//

�ˇ.C;D/C �.Codd; �.D//

D �.�.D/; �.C //:

using Lemma 4 part (5).

1.4 The absolute torsion of contractible complexes and short exact se-
quences

We recall from [7] the following:

Given a finite contractible chain complex over A

C W Cn! � � � ! C0
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and a chain contraction �W Cr ! CrC1 we may form the isomorphism

d C� D

0BBB@
d 0 0 � � �

� d 0 � � �

0 � d � � �
:::
:::
:::
: : :

1CCCA W Codd D C1˚C3˚C5˚ � � � ! Ceven D C0˚C2˚C4˚ � � � :

The element � iso.d C�/ 2Kiso
1
.A/ is independent of the choice of � and is denoted

�.C / (following [7, Section 3]).

We define the absolute torsion of a contractible signed chain complex C as

�NEW.C /D �.C /C �C 2Kiso
1 .A/:

Following [7] we give A the structure of an exact category by declaring that a sequence

0!M
i
�!M 00

j
�!M 0

! 0

is exact if there exists a splitting morphism kW M 0!M 00 such that j kD 1W M 0!M 0

and the map
.i k/W M ˚M 0

!M 00

is an isomorphism.

Given a short exact sequence

0! C
i
�! C 00

j
�! C 0! 0

of signed chain complexes over A , we may find a sequence of splitting morphisms
fkW C 0r !C 00r jr � 0g such that j k D 1W C 0r !C 0r .r � 0/ and each .i k/W Cr˚C 0r !

C 00r .r � 0/ is an isomorphism. The torsion of this collection of isomorphisms

�NEW
iso ..i k/W Cr ˚C 0r ! C 00r /

is independent of the choice of the kr , so we may define the absolute torsion of a short
exact sequence as

�NEW.C;C 00;C 0I i; j /D �NEW
iso ..i k/W Cr ˚C 0r ! C 00r /:

Lemma 8 We have the following properties of the absolute torsion of signed con-
tractible complexes:

(1) Suppose we have a short exact sequence

0! C
i
�! C 00

j
�! C 0! 0
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of contractible signed complexes. Then

�NEW.C 00/D �NEW.C /C �NEW.C 0/C �NEW.C;C 00;C 0I i; j /:

(2) Let C , C 0 be contractible signed complexes. Then

�NEW.C ˚C 0/D �NEW.C /C �NEW.C 0/:

Proof

(1) From [7, Proposition 3.3] we have that

�.C 00/D �.C /C �.C 0/C

1X
rD�1

.�/r� iso..i k/W Cr ˚C 0r ! C 00/Cˇ.C;C 0/

for some choice of splitting morphisms fkW C 0r ! C 00r jr � 0g. By the definition
of the absolute torsion of a short exact sequence and the definition of the sum
torsion (noting that contractible complexes have �.C /D 0 2K0.A/) we get

�NEW.C;C 00;C 0I i; j /D

1X
rD�1

.�/r� iso..i k/W Cr ˚C 0r ! C 00/

Cˇ.C;C 0/� �C � �C 0 C �C 00 :

By comparing these two formulae and the definition of the absolute torsion of a
contractible signed complex, the result follows.

(2) Apply the above to C 00 D C ˚C 0 .

1.5 The absolute torsion of chain equivalences

Sign Convention 9 We define the algebraic mapping cone of a chain map f W C !D

as follows:

dC.f / D

�
dD .�/rC1f

0 dC

�
W C.f /r DDr ˚Cr�1! C.f /r�1 DDr�1˚Cr�2

We make C.f / into a signed complex by setting

�C.f / D �D˚SC :

Lemma 10 The absolute torsion of a chain isomorphism f W C !D of signed chain
complexes satisfies

�NEW
iso .f /D �NEW.C.f //:
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Proof In the case of an isomorphism we may choose the chain contraction for C.f /
to be

�C.f / D

�
0 0

.�/rf �1 0

�
W C.f /r ! C.f /rC1:

We have a commutative diagram

.D1˚C0/˚ .D3˚C2/˚ � � �
.dC.f /C�C.f // //

��

D0˚ .D2˚C1/˚ .D4˚C3/˚ � � �

��
C0˚D1˚C2˚D3˚ � � �

0BBB@
f dD 0 : : :

0 �f �1 dC : : :

0 0 f : : :
:::

:::
:::
: : :

1CCCA
// D0˚C1˚D2˚C3:

The torsion of the upper map is � iso.C.f //, the torsion of the lower isomorphism
is
P1

rD�1.�/
r� iso.fr W Cr ! Dr /C �.Codd;Codd/ and the difference between the

torsions of the downward maps is
P1

rD�1.�/
r�.Cr ;Cr�1/ (using the fact that Cr Š

Dr ). Hence

�NEW.C.f //D � iso.C.f //C �C.f /

D

1X
rD�1

.�/r� iso.fr W C r !Dr /�

1X
rD�1

.�/r�.Cr ;Cr�1/

�ˇ.C;SC /C �.Codd; �.SC //C �.Codd;Codd/� �C C �D

D

1X
rD�1

.�/r� iso.fr W Cr !Dr /� �C C �D

D �NEW
iso .f /

(using the formulae of Lemma 4).

We can now give a definition of the absolute torsion of a chain equivalence f W C !D

which coincides with the previous definition in the case when f is a chain isomorphism.

Definition 11 We define the absolute torsion of a chain equivalence of signed chain
complexes f W C !D as

�NEW.f /D �NEW.C.f // 2Kiso
1 .A/:

In the case where f is a chain isomorphism the above lemma shows that this definition
of the torsion agrees with that given in Definition 6.
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The following lemma explicitly describes how to compute the absolute torsion of a
chain equivalence. It is intended primarily to allow readers already familiar with the
absolute torsion of [7] to form a direct comparison with the new definition.

Lemma 12 The absolute torsion of a chain equivalence of chain complexes with
torsion f W C !D is

�NEW.f /D �.C.f //�ˇ.D;SC /� �.Dodd; �.C //C �D � �C 2K1.A/

(cf definition of torsion [7, pp 223 and 226]. The two definitions coincide if both �.C /
and �.D/ are even and �C D �D ).

Proof The proof is simply a matter of unravelling definitions.

We have the following properties of the absolute torsion of chain equivalences.

Proposition 13

(1) Let f W C !D and gW D!E be chain equivalences of signed chain complexes
in A , then

�NEW.gf /D �NEW.f /C �NEW.g/ 2Kiso
1 .A/:

(2) Suppose f W C ! D is a chain equivalence of contractible signed chain com-
plexes. Then

�NEW.f /D �NEW.D/� �NEW.C / 2Kiso
1 .A/:

(3) The absolute torsion �NEW.f / is a chain homotopy invariant of f .

(4) Suppose we have a commutative diagram of chain maps as follows where the
rows are exact and the vertical maps are chain equivalences

0 // A
i //

a

��

B
j //

b
��

C //

c

��

0

0 // A0
i0 // B0

j 0 // C 0 // 0:

Then

�NEW.b/D �NEW.a/C �NEW.c/� �NEW.A;B;C I i; j /

C�NEW.A0;B0;C 0I i 0; j 0/ 2Kiso
1 .A/:

(5) The torsion of a sum f ˚f 0W C ˚C 0!D˚D0 is given by

�NEW.f ˚f 0/D �NEW.f /C �NEW.f 0/ 2Kiso
1 .A/:
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(6) Suppose we have a short exact sequence

0!A
f
�! B

g
�! C ! 0

where C is a contractible complex and f is a chain equivalence. Then

�NEW.f /D �NEW.A;B;C If;g/C �NEW.C /:

Proof The proofs of these follow those in [7, Proposition 4.2 and Proposition 4.4]
modified where appropriate.

(1) We denote by �C the chain complex defined by

d�C D dC W �Cr D CrC1!�Cr�1 D Cr :

We define a chain map

hW �C.g/! C.f /

by �
0 �1
0 0

�
W �C.g/r DErC1˚Dr ! C.f /r DDr ˚Cr�1:

The algebraic mapping cone C.h/ fits into the short exact sequences

0! C.f / i
�! C.h/

j
�! C.g/! 0(1–1)

0! C.gf / i0

�! C.h/
j 0

�! C.�1D W D!D/! 0(1–2)

where

i D
�

1
0

�
W C.f /r ! C.h/r D C.f /r ˚ C.g/r

j D . 0 1 / W C.h/r D C.f /r ˚ C.g/r ! C.g/r

i 0 D

 
0 0
0 1
1 0
0 f

!
W C.gf /r DEr ˚SCr ! C.h/r DDr ˚SCr ˚Er ˚SDr

j 0 D
�

1 0 0 0
0 �f 0 1

�
W C.h/r DDr ˚SCr ˚Er ˚SDr ! C.�1D/r DDr ˚SDr :

Applying Lemma 8 part (1) to the first short exact sequence (1–1) we have

(1–3) �NEW.h/D �NEW.f /C �NEW.g/:
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Notice that

�NEW
iso ..i 0k 0//D �NEW

iso

  
0 0 1 0
0 1 0 0
1 0 0 0
0 f 0 1

!
W C.gf /r ˚ C.�1D/r ! C.h/

!
D �NEW

iso .D˚SC ! SC ˚D/

C�NEW
iso .E˚SC ! SC ˚E/

C�NEW
iso .D˚E!E˚D/

D �.�.D/; �.D//

(using the results of Lemma 7, the fact that �.C /D �.D/D �.E/ and that f
has no effect on the torsion). We also see that �NEW.C.�1D//D �

NEW
iso .�1D/D

�.�.D/; �.D//. Applying these two expressions and Lemma 8 part (1) to the
second exact sequence (1–2) we see that

�NEW.gf /D �NEW.h/

and comparison with (1–3) yields the result.

(2) By construction we have C.0 0
�!D/DD and hence

�NEW.0
0
�!D/D �NEW.D/:

Applying this and the composition formula (part 1) to the composition

0
0
�! C

f
�!D

yields the result.

(3) A chain homotopy
gW f ' f 0W C !D

gives rise to an isomorphism�
1 .�/r g
0 1

�
W C.f /DD˚SC ! C.f 0/DD˚SC

which has trivial torsion. Using part 2

0D �NEW.C.f 0//� �NEW.C.f //

the result follows.

(4) We choose splitting morphisms fkW Cr !Br jr � 0g and fk 0W C 0r !B0r jr � 0g.
We have the following short exact sequence of mapping cones:

0! C.a/

�
i0 0
0 i

�
����! C.b/

�
j 0 0
0 j

�
�����! C.c/! 0
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We note that

�NEW �C.a/; C.b/; C.c/I � i0

i

�
I
�

i0

i

��
D �NEW

iso
��

i0 0 k0 0
0 i 0 k

�
W A0˚SA˚C 0˚SC ! B0˚B

�
D �NEW

iso
��

i0 k0 0 0
0 0 i k

�
W A0˚C 0˚SA˚SC ! B0˚B

�
C�NEW

iso .SA˚C 0! C 0˚SA/

D �NEW
iso ..i k/W SA˚SC ! SB/C �NEW

iso ..i 0 k 0//C �.�.SA/; �.C 0//

D �NEW
iso ..i k/W S.A˚C /! SB/C �NEW

iso ..i 0 k 0//

C�NEW
iso .SA˚SC ! S.A˚C //C �.�.C /; �.A//

D��NEW
iso ..i k/W A˚C ! B/C �NEW

iso ..i 0 k 0//

��.�.C /; �.A//C �.�.C /; �.A//

D��NEW
iso ..i k/W A˚C ! B/C �NEW

iso ..i 0 k 0//

D �NEW.A0;B0;C 0I i 0; j 0/� �NEW.A;B;C I i; j /:

The result now follows from applying Lemma 8 part (1) to the short exact
sequence above.

(5) Applying the result for a commutative diagram of short exact sequences (part
(4)) with aDf W C!D , cDf 0W C 0!D0 and bDf ˚f 0W C˚C 0!D˚D0

yields the result.

(6) We have a commutative diagram with short exact rows:

0 // A
f //

f

��

B
g //

1
��

C //

��

0

0 // B
1 // B // 0 // 0

The result follows by applying part (4) to the above diagram.

1.6 Applications to topology and examples of use

Let X be a connected finite C W –complex. We may form the cellular chain complex
of the universal cover of X as a complex C. zX / over the fundamental group ring
ZŒ�1X �; we may further make C. zX / into a signed complex with an arbitrary choice of
�

C. zX /
. For a cellular homotopy equivalence f W X !X we have an associated chain

equivalence f�W C. zX /! C. zX /; we can make C. zX / into a signed chain complex by
choosing some �

C. zX /
and defining the torsion of f to be

�NEW.f / WD �NEW.f�W C. zX /! C. zX // 2K1.ZŒ�1X �/
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which is independent of the choice of �
C. zX /

. We now give some examples.

(1) The torsion of the identity map of any connected C W –complex is trivial.

(2) Let X D CP2 ; we choose homogeneous coordinates .x W y W z/ and we give X

a C W –structure as follows:

0–cell .1 W 0 W 0/

2–cell .z1 W 1 W 0/

4–cell .z1 W z2 W 1/

Let f W CP2
! CP2 be the cellular self-homeomorphism given by complex

conjugation in all three coordinates, that is,

f W .x W y W z/ 7! .xx W xy W xz/:

This map preserves the orientation of the 0-cell and 4-cell, and it reverses the
orientation of the 2-cell. Hence �NEW.f /D �.�1/. In Corollary 38 we show
that for any orientation preserving self-homeomorphism g of a simply connected
manifold of dimension 4k C 2, that �NEW.g/ D 0. This example shows that
for self-homeomorphism f of a 4k –dimensional manifold it is possible for
�NEW.f /¤ 0:

2 The signed derived category

The forthcoming paper [1] will require the use of the signed derived category SD.A/.
In this section we define SD.A/ and prove some basic properties.

Definition 14 The signed derived category SD.A/ is the category with objects finite
signed chain complexes in A and morphisms chain homotopy classes of chain maps
between such complexes.

Proposition 15

(i) The Euler characteristic defines a surjection

�W K0.SD.A//!K0.A/I ŒC; �C � 7! �.C /D

1X
rD�1

.�/r ŒCr �:

(ii) Isomorphism torsion defines a forgetful map

i�W K
iso
1
.SD.A//!Kiso

1
.A/I � iso.f / 7! Œ�NEW.f /�D �NEW.f /
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which is a surjection split by the injection

Kiso
1 .A/!Kiso

1 .SD.A//I � iso.f W A! B/ 7! � iso.f W .A; 0/! .B; 0//:

where .A; 0/ (respectively .B; 0/) is the signed chain complex which is A

(respectively B ) in dimension 0, trivial elsewhere and with trivial sign.

(iii) The diagram

K0.SD.A//˝K0.SD.A//

�˝� Š
��

� // Kiso
1
.SD.A//

i�
��

K0.A/˝K0.A/
� // Kiso

1
.A/

commutes, that is the sign of objects .C; �C /, .D; �D/ in SD.A/ has image

i��..C; �C /; .D; �D//D �.�.C /; �.D// 2Kiso
1 .A/:

Proof

(i) A short exact sequence 0! C !D!E! 0 of finite chain complexes in A

determines a relation

ŒC; �C �� ŒD; �D �C ŒE; �E �D 0 2K0.SD.A//

for any signs �C ; �D ; �E .

(ii) By construction.

(iii) The sign

�..C;�C/; .D;�D//D�
NEW��0 1

1 0

�
W .C ;�C/˚.D;�D/!.D;�D/˚.C ;�C//2Kiso

1 .SD.A/
�

has image

i��..C; �C /; .D; �D//D �
NEW �� 0 1

1 0

�
W C ˚D!D˚C

�
D �.�.C /; �.D// 2Kiso

1 .A/:

by Lemma 7 part 3.

3 Duality properties of absolute torsion

In this section we extend the notion of absolute torsion to encompass dual objects and
dual maps. We now work over an additive category with involution (defined below)
and introduce the notion of a dual signed complex C n�� (also defined below). We
prove the following results.
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Proposition 16

(1) Let C be a contractible signed complex. Then

�NEW.C n��/D .�/nC1�NEW.C /� 2Kiso
1 .A/:

(2) Let f W C !D be a chain equivalence of signed chain complexes. Then

�NEW.f n��
W C n��

!Dn��/D .�/n�NEW.f /� 2Kiso
1 .A/:

(3) Let f W C n��!D be a chain equivalence of signed chain complexes. Then the
chain equivalence Tf W Dn��! C (defined below) satisfies

�NEW.Tf W Dn��
! C /D .�/n�NEW.f /�C n

2
.nC 1/�.�.C /; �.C // 2Kiso

1 .A/:

The rest of this section will be concerned with defining these concepts and proving
Proposition 16.

Following Ranicki [8] we define an involution on an additive category A to be a
contravariant functor

�
W A! AIM !M �; .f W M !N /! .f �W N �!M �/

together with a natural equivalence

eW idA!��W A! AIM ! .e.M /W M !M ��/

such that for any object M of A

e.M �/D .e.M /�1/�W M �
!M ���:

An involution on A induces an involution on K0.A/ and Kiso
1
.A/ in the obvious way.

We can easily deduce the following properties of the sign terms with respect to the
involution

(1) �.C n��/D .�/n�.C /�

(2) �.A�;B�/D �.B;A/�

(3) ˇ.C n��;Dn��/D .�/nˇ.D;C /� .

Throughout the rest of this chapter A is an additive category with involution.

Sign Convention 17 Given an n–dimensional chain complex

C W Cn
dC
��! Cn�1

dC
��! Cn�2

dC
��! � � �

dC
��! C0
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in A we may form the dual chain complex

C n��
W C 0

dC n��

�����! C 1
dC n��

�����! � � �
dC n��

�����! C n

with the r th object given by C n�r D C �n�r and the differentials given by

dC n�� D .�/r d�C W C
n�r
! C n�rC1:

We define the sign term

˛n.C /D
X

r�nC2;nC3.mod4/

�.C r ;C r /: 2Kiso
1 .A/:

Given a signed chain complex .C; �C / we define the dual signed chain complex
.C n��; �C n��/ by

�C n�� WD .�/nC1��C C .�/
nC1ˇ.C;C /�C˛n.C / 2Kiso

1 .A/:

We now compute the absolute torsion of various useful chain equivalences.

Lemma 18 Let C and D be signed chain complexes over A .
(1) For chain isomorphisms f W C !D we have

�NEW.f n��
W Dn��

! C n��/D .�/n�NEW.f /�:

(2) �NEW..C ˚D/n��! C n��˚Dn��/D

(
0 for n even

�.�.C /; �.D//� for n odd.

(3) �NEW.1W C n��! .SC /nC1��/D 0.
(4) �NEW..�1/r W C nC1��

r ! S.C n��/r /D 0.
(5) �NEW..�1/.nC1/r W .C n��/n��r ! Cr /D

n
2
.nC 1/�.�.C /; �.C //� .

Proof Part 1 follows straight from the definitions. For part 2,

�NEW..C ˚D/n��! C n��
˚Dn��/

D �C n��˚Dn�� � �.C˚D/n��

D �.�.C n��/; .Dn��/even/C .�/
n�.�.C /;Deven/

�:

The result follows after considering the odd and even cases.

Part 3 follows straight from the definitions. For part 4,

�NEW..�1/r W C nC1��
r ! S.C n��/r /

D �S.C n��/� �C nC1�� C
P

r�n.mod2/ �.Cr ;Cr /
�

D ˛nC1.C /C˛n.C /C
P

r�n.mod2/ �.Cr ;Cr /
�

D 0:
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For part 5,

�NEW..�1/.nC1/r
W .C n��/n��r ! Cr /

D �C � �.C n��/n�� C �..�/
.nC1/r W Cr ! Cr /

D ˛n.C
n��/C .�/n˛n.C /

�C .nC 1/
P

rodd �.Cr ;Cr /

D
P

r�nC2;nC3.mod4/.�.Cr ;Cr /C �.Cn�r ;Cn�r //

C.nC 1/
P

rodd �.Cr ;Cr /

D

(
0 for n� 0 or n� 3

�.�.C /; �.C // for n� 1 or n� 2

D
n
2
.nC 1/�.�.C /; �.C //:

This proves the Lemma.

Lemma 19 The torsion of a contractible signed chain complex C in A satisfies

�NEW.C n��/D .�/nC1�NEW.C /� 2Kiso
1 .A/:

Proof We denote by xC n�� the chain complex with . xC n��/r D .Cn�r /
� and

d xC n�� D d�C W
xC n�r

! xC n�rC1:

We have an isomorphism f W C n��
r ! xC n��

r given by f D�1 if r�nC2; nC3.mod4/

and f D 1 otherwise. By considering the torsion of this isomorphism we have

(3–1) �.C n��/D �. xC n��/C˛n.C /:

Let neven be the greatest even integer � n, similarly nodd . For any chain contraction �
for C we have the following commutative diagram:

C neven ˚ � � �˚C 0

0@ d� 0 0 ���

�� d� 0 ���

0 �� d� ���

:::
:::
:::
:::

1A
//

0@ 1
1

. ..
1

1A
��

C nodd ˚ � � �˚C 1

0@ 1
1

. ..
1

1A
��

C 0˚ � � �˚C neven

0@ d� �� 0 ���

0 d� �� ���
0 0 d� ���

:::
:::
:::
:::

1A
// C 1˚ : : :˚C nodd
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The torsion of the lower map in this diagram is �.C /� ; the torsion of the uppermost
map is .�/nC1�. xC n��/. So, by first considering the torsions of the maps in the above
diagram we have

�. xC n��/D .�/nC1�.C /�C .�/nC1
� X

i>j Ii;jeven

�.C i ;C j /�
X

i>j Ii;jodd

�.C i ;C j /
�

D .�/nC1�.C /�C .�/nˇ.C;C /�:

Hence by (3–1)

�.C n��/D .�/nC1�.C /�C .�/nˇ.C;C /�C˛n.C /:

Using the definition of the dual signed chain complex we have

�NEW.C n��/D .�/nC1�NEW.C /�:

Lemma 20 Let C;D be n–dimensional signed chain complexes in A and f W C !D

a chain equivalence. Then

�NEW.f n��
W Dn��

! C n��/D .�/n�NEW.f /� 2Kiso
1 .A/:

Proof We have an isomorphism of chain complexes � W C.f n��/! C.f /nC1�� given
by

C.f n��/r D C n�r
˚Dn�rC1

�
0 .�/n�r

1 0

�
��������! C.f /nC1��

r DDn�rC1
˚C n�r :

The torsion of the map � is given by

�NEW.�/D �NEW..�/n�r
W S.Dn��/!DnC1��/

C�NEW.C n��
! .SC /nC1��/

C�NEW..SC /nC1��
˚DnC1��

! .SC ˚D/nC1��/

C.�/nC1�NEW.D˚SC ! SC ˚D/�

D n�.�.D/; �.D//�C .nC 1/�.�.D/; �.D//�

C�.�.D/; �.D//�

D 0;

and the result follows since �NEW.C.f /nC1��/D .�/n�NEW.f /�:

We define the duality isomorphism T as

T W HomA.C
p;Dq/! HomA.D

q;Cp/I�! .�/pq��:
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Lemma 21 Let C;D be n–dimensional signed chain complexes in A and f W C n��!

D a chain equivalence. Then

�NEW.Tf W Dn��
! C /D .�/n�NEW.f /�C n

2
.nC 1/�.�.C /; �.C // 2Kiso

1 .A/:

Proof Using Lemma 18 and Lemma 20 we have

�NEW.Tf W Dn��
! C /D �NEW.f �W Dn��

! .C n��/n��/

C�NEW..�1/.nC1/r .C n��/n��! C /

D .�/n�NEW.f /�C n
2
.nC 1/�.�.C /; �.C //

as required.

Together the above three lemmas prove Proposition 16.

4 Torsion of Poincaré complexes

We now move on to consider symmetric Poincaré complexes. These are algebraic
objects which encapsulate the properties of Poincaré duality spaces (see Ranicki [5; 6]
for a more complete discussion). We will restrict ourselves to considering symmetric
Poincaré complexes over a ring R, that is we work over ADA.R/ and we will consider
the torsion invariants to lie in the more familiar K1.R/. We will define the notion of
the absolute torsion of a symmetric Poincaré complex to be, essentially, the torsion of
the Poincaré duality chain equivalence. In the case of compact oriented manifolds M n

with C W –structure this is the torsion of the map

ŒM n�\�W C.M /n��! C.M /:

In this section we develop the theory from this algebraic viewpoint; it will be applied
to geometric objects in a later section.

We recall from Ranicki [5; 9] the following definition.

Definition 22

(1) An n–dimensional symmetric complex .C; �0/ is a chain complex C in A.R/,
together with a collection of morphisms

� D f�sW C
n�rCs

! Cr js � 0g

such that

dC�sC .�/
r�sd�C C .�/

nCsC1.�s�1C .�/
sT�s�1/D 0W C n�rCs�1

! Cr
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where s � 0, and ��1 D 0. Hence �0W C
n��! C is a chain map and �1 is a

chain homotopy �1W �0 ' T�0 .

(2) The complex is said to be Poincaré if �0 is a chain equivalence.

(3) The complex is said to be round if C is round.

(4) A morphism between n-dimensional symmetric complexes .C; �/ and .C 0; �0/
consists of a chain map f W C!C 0 and morphisms �sW C

0nC1Cs�r
!C 0r s� 0

such that

�0s �f �sf
�
D dC 0�sC .�/

r�sd�C 0 C .�/
nCs.�s�1C .�/

sT�s�1/W C
0n�rCs

! C 0r

(in particular �0
0
' f �0f

� ). Such a morphism is said to be a homotopy equiva-
lence if f is a chain equivalence.

(5) A symmetric complex .C; �/ is said to be connected if H0.�0W C
n��!C /D 0.

(6) The boundary .@C; @�/ of a connected n–dimensional symmetric complex
.C; �/ is the .n�1/–dimensional symmetric Poincaré complex defined by

d@C D

�
dC .�/r�0

0 .�/r d�
C

�
W @CrDCrC1˚C n�r

�!@Cr�1DCr˚C nC1�r

@�0D

�
.�/n�r�1T�1 .�/

r n

1 0

�
W @C n�r�1

DC n�r
˚CrC1�!@CrDCrC1˚C n�r

@�sD

�
.�/n�r�1T�sC1 .�/

r n

0 0

�
W @C n�rCs�1

DC nCs�r
˚Cr�sC1�!

@CrDCrC1˚C n�r :

(7) A signed symmetric (Poincaré) complex is a symmetric (Poincaré) complex
.C; �0/ where in addition C is a signed chain complex.

Example 23 An n–dimension manifold M with universal covering fM determines a
symmetric Poincaré complex .C.fM /; �/ in A.ZŒ�1M �/ with

�0 D ŒM �\�W C.fM /n��! C.fM /:

Lemma 24 The boundary .@C; @�/ of any signed n–dimensional symmetric complex
.C; �/ satisfies

�NEW.@�0W .@C /
n�1��

! @C /D
n

2
.nC 1/�.�.C /; �.C // 2K1.R/:

Proof The map

@�0 D

�
.�/n�r�1T�1 .�/rn

1 0

�
W @C n�r�1

! @Cr

is an isomorphism.
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We have

�NEW.@�0/D �
NEW

��
0 .�/rn

1 0

�
W .�C ˚C n��/n�1��

!�C ˚C n��

�
D �NEW..�C ˚C n��/n�1��

! .�C /n�1��
˚ .C n��/n�1��/

C�NEW..C n��/n�1��
! .�C n�1��/n�1��/

C�NEW..�/nr
W .�C n�1��/n�1��

!�C /

C�NEW..�C /n�1��
! C n��/

D �NEW.C n��
˚�C !�C ˚C n��/

D
n
2
.nC 1/�.�.C /; �.C //

using the results of Lemma 18.

We can now define a new absolute torsion invariant of Poincaré complexes which is
additive and a cobordism invariant.

Definition 25 We define the absolute torsion of a signed Poincaré complex .C; �/ as

�NEW .C; �/D �NEW.�0/ 2K1.R/:

Proposition 26 Let .C; �/ and .C 0; �0/ be signed n–dimensional Poincaré complexes.
Then:

(1) Additivity:

�NEW .C ˚C 0; �˚�0/D �NEW .C; �/C �NEW .C 0�00/ 2K1.R/:

(2) Duality:

�NEW .C; �/D .�/n�NEW .C; �/�C n
2
.nC 1/�.�.C /; �.C // 2K1.R/

(n.b. the above sign term disappears in the case where anti-symmetric forms over
the ring R necessarily have even rank; this is the case for RD Z or RDQ but
not RD C).

(3) Homotopy invariance: Suppose .f; �s/ is a homotopy equivalence from .C; �/

to .C 0; �0/. Then

�NEW.C 0; �0/D �NEW.C; �/C �.f /C .�/n�.f /� 2K1.R/:
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(4) Cobordism Invariance: Suppose that .C; �/ is homotopy equivalent to the bound-
ary of some .nC 1/–dimensional symmetric complex with torsion .D; �D/.
Then

�NEW .C; �/D .�/nC1�NEW.C ! @D/�� �NEW.C ! @D/

C
1
2
.nC 1/.nC 2/�.�.D/; �.D// 2K1.R/:

(5) Orientation change:

�NEW .C;��/D �NEW .C; �/C �.�.C /; �.C // 2K1.R/:

(6) The absolute torsion of a signed Poincaré complex is independent of the choice
of sign �C .

Proof

(1) A symmetric Poincaré complex of odd dimension satisfies �.C /D 0, hence the
map .C ˚C 0/n��!C n��˚C 0

n�� has trivial absolute torsion. Additivity now
follows from the additivity of chain equivalences.

(2) We know that �0 is homotopic to T�0 ; duality now follows by applying Lemma
21.

(3) We have that �0
0
' f �0f

� and hence

�NEW.�00/D �
NEW.f /C �NEW.�0/C .�/

n�NEW.f /�:

(4) This follows from Lemma 24 and homotopy invariance.

(5) We have that �NEW.��0/ D �
NEW.�0/C �

NEW.�1W C ! C / D �NEW.�0/C

�.C /�.�1/.

(6) A change in �C leads to a corresponding change in �cn�� so �NEW.�0/ is
unchanged.

5 The signed Poincaré derived category with involution

In this section we will add an involution to a particular subcategory of the signed
derived category. Let SPDn.A.R// denote the category whose object are signed n–
dimensional chain complexes C in A.R/ which are isomorphic to their dual complexes
C n�� and �.C /D 0 if n is odd. Then we have an involution

�W C 7! C n��

�W .f W C !D/ 7! .f n��
W Dn��

! C n��/
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with the natural equivalence e.C / given by

e.C /D .�/.nC1/r
W C ! .C n��/n��:

We call this category the signed Poincaré derived category with n–involution. In
order to show that this is a covariant functor of additive categories we must show that
�.A˚B/D �A˚�B . However, the condition that �.C / is odd if n is odd implies
that the torsion of the rearrangement map .C ˚D/n��!C n��˚Dn�� is trivial (see
Lemma 18 part (2)) and the functor � is additive. As in the case of the signed derived
category we have a map

i�W K
iso
1 .SPDn.A.R///!Kiso

1 .A.R//I � iso.f / 7! �NEW.f /:

The behaviour of i� under the involution on SPDn.A.R// is given by

i�.f
�/D .�/ni�.f /

�:

6 A product formula

In this section we will quote a formula for the absolute torsion of a product of symmetric
Poincaré complexes and prove it in a special case.

All tensor products will be over the integers Z. For rings R and R0 we have nat-
ural inclusion maps K1.R/ ! K1.R˝R0/ and K1.R

0/ ! K1.R˝R0/. For an
isomorphism f W A! B in A.R/ and a module M in A.R0/ we have

�.f ˝ 1W A˝M ! B˝M /D rankR0.M /�.f / 2K1.R˝R0/

�.1˝f W M ˝A!M ˝B/D rankR0.M /�.f / 2K1.R˝R0/:

We recall from [5] the definition of the tensor product of symmetric Poincaré complexes.

Definition 27

(1) The tensor product C ˝D of a chain complex C in A.R/ and a chain complex
D in A.R0/ is the chain complex in A.R˝R0/

dC˝D W .C ˝D/r D

1X
sD�1

Cs˝Dr�s! .C ˝D/r�1I

x˝y 7! x˝ dD.y/C .�/
r�sdC .x/˝y:
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(2) The tensor product .C ˝D; �˝ �/ of an n–dimensional symmetric Poincaré
complex .C; �/ with an m–dimensional symmetric Poincaré complex .D; �/ is
an .nCm/–dimensional Poincaré complex defined by

.�˝ �/s D

sX
rD�1

.�1/.nCr/s�r ˝T �s�r W .C ˝D/nCm��
! C ˝D:

Proposition 28 Let .C; �/ and .C 0; �0/ be symmetric Poincaré complexes over a
rings with involution R and R0 respectively. Then

�NEW.C ˝C 0; �˝�0/D �.C /�NEW.C 0; �0/C�.C 0/�NEW.C; �/:

The proof of this result requires the theory of signed complexes to be extended to tensor
products; this theory is developed in [1] using the theory of signed filtered complexes.

We will use the following “ad hoc” methods to prove the product formula under the
following conditions.

Assumption 29 The rings R and R0 are such that .4kC2/–dimensional symmetric
forms necessarily have even rank (eg group rings).

The ring R D C is an example which does not satisfy this assumption. We say a
module M in A.R/ is even if rankR.M / is even; similarly we say a chain complex
C in A.R/ is even if Cr is even for all r .

Definition 30 Let .C; �C / and .D; �D/ be even signed complexes. We define the
signed complex tensor product by

.C ˝D; �C˝D/D .C ˝D; 0/:

Lemma 31

(1) Let C , C 0 be signed, even complexes in A.R/ and D a signed even complex in
A.R0/. Then

�NEW..C ˚C 0/˝D! .C ˝D/˚ .C 0˝D//D 0

�NEW.D˝ .C ˚C 0/! .D˝C /˚ .D˝C 0//D 0:

(2) Let C be a signed contractible even complex in A.R/ and D a signed even
complex in A.R0/. Then

�NEW.C ˝D/D �NEW.D˝C /D �.D/�NEW.C /:
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(3) Let f W C ! C 0 be a chain equivalence of even complexes in A.R/ and D a
signed even complex in A.R0/. Then

�NEW.f ˝ 1W C ˝D! C 0˝D/D �NEW.1˝f W D˝C !D˝C 0/

D �.D/�NEW.f /:

Proof For even modules M;N the map �.M;N / D 0 2 K1.R/ and �.�1W M !

M /D 0, so the torsion of rearrangement maps is always zero and �C˚D D �D C �C

for even chain complexes C , D . Part 1 follows straight from these facts. For part 2, let
�W C�! C�C1 be a chain contraction of C , then .dC C�/˝ 1 is a chain contraction
of C ˝D . We have a commutative diagram

.C ˝D/odd
.dCC�/˝1 //

��

.C ˝D/even

��
.Ceven˝Dodd/˚ .Codd˚Deven/ // .Codd˝Dodd/˚ .Ceven˚Deven/

with the bottom map given by .dC C�/˝ 1˚ .dC C�/˝ 1. The torsion of the top
map is �.C ˝D/, the torsion of the bottom map is �.D/�.C /. Part 2 follows from the
fact that the torsions of the left and right maps are zero, since they are rearrangements.
For part 3 we have that

�NEW.C.f ˝ 1/! C.f /˝D/D 0

since it is a rearrangement map and the result now follows straight from part 2.

Proposition 32 Let .C; �C / and .D; �D/ be Poincaré complexes over ring R and
R0 respectively, where R and R0 satisfy Assumption 29. Then

�NEW.C ˝D; �C
˝�D/D �.D/�NEW.C; �C /C�.C /�NEW.D; �D/

2K1.R˝R0/:

Proof Given any f.g. based chain complex C we may form a direct sum with a
contractible chain complex to form a new chain complex which is of even rank in
every dimension except one. Hence given a Poincaré pair .C; �/ we may form a new
Poincaré pair .C 0; �C 0/ which is even in every dimension by

(1) Forming the direct sum with a contractible complex (letting �C 0 vanish on this
contractible complex) such that C 0 is even in every dimension except possibly
the middle.
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(2) If the complex is odd (and hence of dimension 4k), forming the direct sum with
the Poincaré complex which is R in dimension 2k , vanishes otherwise and has
�0 D 1W R!R.

We may form a similar complex .D0; �D0/ from .D; �D/. Using Lemma 31 we see
that

�NEW.�C 0

0 ˝�
D0

0 /D �.C 0/�NEW.�D0

0 /C�.D0/�NEW.�C 0

0 / 2K1.R˝R0/:

Hence

�NEW.C 0˝D0; �C 0
˝�D0/D �.C 0/�NEW.D0; �D0

0 /C�.D0/�NEW.C 0; �C 0

0 /:

Let RC denote the chain complex which is 0 if C is even and R in dimension 2k

otherwise; similarly R0
D . By direct computation (for the sake of clarity we now

suppress mention of the morphisms � )

�NEW.RC
˝D/D �.C /.�NEW.D/C .kC 1/�.D//�.�1//

�NEW.C ˝R0
D
/D �.D/.�NEW.C /C .l C 1/�.C /�.�1//

�NEW.RC
˝R0

D
/D .kC l/�.C /�.D/�.�1/:

The Poincaré complex .C 0˝D0/ is homotopy equivalent to .C ˚RC /˝ .D˚R0
D
/;

using the invariance of absolute torsion under homotopy equivalence, its additivity
properties and the above three formulae we have

�NEW.C ˝D/D �.C /�NEW.D/C�.D/�NEW.C / 2K1.R˝R0/

as required.

7 Round L–theory

We refer the reader to [2] for the definition of the round symmetric L–groups Ln
r .A/.

The absolute torsion defined in this paper as �.C; �0/ D �.�0/ (here �.�0/ refers
to the absolute torsion defined in [7]) is not a cobordism invariant. We can define
such an invariant using the absolute torsion of a Poincaré complex. If this invariant is
substituted for �.C; �0/ as defined in [2] then the results become correct.

Lemma 33 Let .C; �/ be a round Poincaré complex. The reduced element

�NEW.C; �/ 2 bH n
.Z2IK1.R//
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is independent of the choice of sign �C ; moreover we have a well defined homomor-
phism

Ln
r .R/!

bH n
.Z2IK1.R//

given by .C; �/ 7! �NEW.C; �/.

Proof The element �NEW.C; �/ 2 bH n
.Z2IK1.R// is independent of the choice of

sign by Proposition 26 part (6). The absolute torsion is additive by Proposition 26 part
(1). The absolute torsion of the boundary of a round symmetric complex is trivial in
the reduced group bH n

.Z1IK1.R// by Proposition 26 part (4). Hence the torsion of a
round null-cobordant complex is trivial and the map

Ln
r .R/!

bH n
.Z2IK1.R//

given by .C; �/ 7! �NEW.C; �/ is well defined.

8 Applications to manifolds

8.1 The absolute torsion of oriented manifolds

To any n-dimensional oriented manifold M we may associate a Poincaré complex
.C; �/ over the ring R D ZŒ�1M � , well defined up to homotopy equivalence (see
[6]). By property (2) of Proposition 26 the absolute torsion of such a Poincaré complex
satisfies

�NEW.C; �/D .�/n�NEW.C; �/�

since �.M /� 0 (mod 2) unless n� 0 (mod 4). Hence the torsion �NEW.C; �/ may be
considered to lie in the group bH n

.Z2IK1.ZŒ�1M �//. By property (3) of Proposition
26 if .C; �/ is homotopy equivalent to .C 0; �0/ then

�NEW.C; �/D �NEW.C 0; �0/ 2 bH n
.Z2IK1.ZŒ�1M �//

hence
�NEW.M n/ WD �NEW.C; �/ 2 bH n

.Z2IZŒ�1M �/

is well defined.

8.2 Examples of the absolute torsion of manifolds

8.2.1 The circle We may associate to the circle (S1/ the following chain complex
over RD ZŒ�1.S

1/�D ZŒt; t�1� by giving it the CW–decomposition consisting of one
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1–cell and one 0–cell:

ZŒt; t�1�
1 //

t�1�1
��

ZŒt; t�1�

1�t
��

ZŒt; t�1�
t // ZŒt; t�1�

In this diagram the two modules on the right are the chain complex, the two modules
on the left are the dual complex and the sideways arrows represent �0 .

Hence �NEW.S1/D �.�t/ 2 bH n
.Z2IK1.ZŒt; t�1�/.

8.2.2 The absolute torsion of an algebraic mapping torus The mapping torus of
a map f W M !M is the space obtained from M � I by attaching the boundaries
M � f0g and M � f1g using the map f . The following algebraic analogue is defined
by Ranicki [10, Definition 24.3] (the reader should note the different sign convention
used here).

Definition 34 The algebraic mapping torus of a morphism .f; �/W .C; �/! .C; �/

from an n–dimensional symmetric Poincaré complex .C; �/ over a ring R to itself
is the .nC 1/–dimensional symmetric complex .T .f /; �/ over the ring RŒz; z�1�

defined by

T .f /D C.f � z/

�s D

�
.�/n�s .�/s�sz

.�/n�rC1�sf
� .�/n�rCsC1T�s�1

�
W T .f /n�rCsC1

! T .f /r :

The complex is Poincaré if the chain map f is a chain equivalence.

Lemma 35 Let .f; �/W .C; �/ ! .C; �/ be a self chain equivalence from an n–
dimensional symmetric Poincaré complex .C; �/ over a ring R to itself. Then

�NEW.T .f /; �/D �NEW.f /C�.C /�.�z/ 2K1.RŒz; z
�1�/:

Proof We have a commutative diagram with short exact rows:

0 // C n�r

�
0
1

�
//

�z�0

��

C.f � z/nC1�r
. .�/r 0 / //

�0

��

S.C n�r /

.�/n�0f
�

��

// 0

0 // Cr �
1
0

� // C.f � z/r
.0 1 /

// SCr
// 0
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The absolute torsion of the lower short exact sequence is trivial; for the top map we
have

�NEW
�
C n�r ; C.f � z/nC1�r ;S.C n�r /I

�
0
1

�
; . .�/r 0 /

�
D �NEW

��
0 .�/r

1 0

�
W .C ˚SC /nC1��

! C n��
˚S.C n��/

�
D �NEW..C ˚SC /nC1��

! C nC1��
˚ .SC /nC1��/

C �NEW..�1/r W C nC1��
! S.C n��//

C �NEW..SC /nC1��
! C n��/

C �NEW.S.C n��/˚C n��
! C n��

˚S.C n��//

D 0:

Using Proposition 13 part (4) we have

�NEW.T .f /; �/D �NEW.�0/

D �NEW.�z�0/C �
NEW..�1/nS.�0f

�/W S.C n��/! SC /

D��NEW.f �/C �NEW.�zW C ! C /

D .�/nC1���NEW.f /�C �NEW.�zW C ! C /

D �NEW.f /C�.C /�.�z/

as required.

8.2.3 A specific example of a mapping torus We return to the example of the orien-
tation preserving self-homeomorphism f W CP2

!CP2 given by complex conjugation
in some choice of homogeneous coordinates (see Section 1.6). We recall that the torsion
of this map is �NEW.f /D �.�1/ 2K1.Z/. Using Lemma 35 we compute the absolute
torsion of the mapping torus of f as

�NEW.T .f //D �.z3/ 2K1.ZŒz; z�1�/

where z is a generator of �1.T .f //D �1.S
1/D Z. By contrast we may compute the

absolute torsion of the space T .Id W CP2
! CP2/D S1 �CP2 as

�NEW.S1
�CP2/D �.�z3/ 2K1.ZŒz; z�1�/

hence the absolute torsion can distinguish between these two CP2 bundles over S1 .
A more thorough investigation into the absolute torsion of fibre bundles of compact
manifolds is made in [1].
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9 Identifying the sign term

Throughout this section we work over a group ring RD ZŒ�� for some group � (or,
more generally, any ring with involution R which admits a map R! Z such that the
composition Z!R!Z is the identity). We first identify the relationship between the
“sign” term of the absolute torsion of a Poincaré complex and the traditional signature
and Euler characteristic and semi-characteristic invariants.

We have a canonical decomposition of K1.ZŒ��/ as follows:

K1.ZŒ��/D zK1.ZŒ��/˚Z2

with the Z2 component the “sign” term identified by the map

i�K1.ZŒ��/!K1.Z/D Z2

induced by the augmentation map i W �! 1 (more generally, a map R! Z gives a
map K1.R/!K1.Z/DZ2 which gives a splitting K1.R/D zK1.R/˚Z2 ). We wish
to determine the Z2 component in terms of more traditional invariants of Poincaré
complexes. The augmentation map may also be applied to a symmetric complex .C; �/
over ZŒ�� to form a symmetric complex over Z by forgetting the group. Functoriality
of the absolute torsion tells us that this complex has the same sign term as .C; �/,
hence to identify the sign term it is sufficient to consider symmetric Poincaré complexes
over Z. We will require the Euler semi-characteristic �1=2.C / of Kervaire [3]

Definition 36 The Euler semi-characteristic �1=2.C / of a .2k � 1/–dimensional
chain complex C over a field F is defined by

�1=2.C /D

k�1X
iD0

.�/irankF Hi.C / 2 Z

For a .2k�1/–dimensional chain complex C over Z we define

�1=2.C IF /D �1=2.C ˝Z F /:

Proposition 37 The absolute torsion of an n–dimensional symmetric Poincaré com-
plex over Z is determined by the signature and the Euler characteristic and semi-
characteristic as follows:

(1) If nD 4k then

�NEW.C; �/D 1
2

�
�.C /� .1C 2k/�.C /

�
�.�1/

with �.C / the signature of the complex.
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(2) If nD 4kC 1 then �NEW.C; �/D �1=2.C IQ/.

(3) Otherwise �NEW.C; �/D 0.

As an example we have a simple corollary.

Corollary 38 The absolute torsion of an orientation preserving self-homeomorphism
of a simply-connect manifold of dimension 4kC 2 is trivial.

Proof Let f W M ! M be such a self-homeomorphism. We may triangulate M

and hence construct the algebraic mapping torus T .f / of the chain equivalence
f W C.M /! C.M /. By Lemma 35

�NEW.T .f //D �NEW.f / 2K1.ZŒz; z�1�/:

The augmentation map �W Z! 1 induces a map of rings ��W ZŒz; z�1�! Z. Since
L–theory and the absolute torsion are functorial, ��T .f / represents an element of
L4kC3.Z/ with absolute torsion �NEW.��T .f //D �

NEW.f / 2K1.Z/. However by
part 3 of the above proposition �NEW.��T .f //D 0.

The aim of the rest of this section is to prove Proposition 37 . We recall from [6] the
computation of the symmetric L–groups Ln

h
.Z/ of the integers Z:

Ln
h.Z/D

8̂̂̂̂
<̂
ˆ̂̂:

Z.signature/ n� 0.mod 4/

Z2.de Rham invariant/ n� 1.mod 4/

0 n� 2.mod 4/

0 n� 3.mod 4/

The deRham invariant d.C / 2Z2 of a .4kC 1/–dimensional Poincaré complex was
expressed in Lusztig–Milnor–Peterson [4] as the difference

d.C /D �1=2.C IZ2/��1=2.C IQ/:

For dimensions n� 2; 3.mod 4/ the absolute torsion is a cobordism invariant (Proposi-
tion 26 part (4)) so the above computation of the symmetric L–groups tells us that the
absolute torsion is trivial in these cases, thus proving the third part of Proposition 37.

If nD 4kC 1 then the absolute torsion is not a cobordism invariant; however it is a
round cobordism invariant, so absolute torsion defines a map

L4kC1
rh

.Z/!K1.Z/:
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Since �.C /D 0 for all odd-dimensional symmetric Poincaré complexes every such
.4kC1/–dimensional complex represents an element in L4kC1

rh
.Z/. In [2, Proposition

4.2] the group L4kC1
rh

.Z/ is identified as

L4kC1
rh

.Z/D Z2˚Z2IC 7! .�1=2.C IZ2/; �1=2.C;Q//:

We now construct explicit generators of this group and compute their absolute torsions.
We define the generator .G; �/ to have chain complex G concentrated in dimensions
2k and 2kC 1 defined by

dG D 0 WG2kC1 D Z!G2k D Z;

with the morphisms � given by

�0 D

�
1 WG2k D Z!G2kC1 D Z
1 WG2kC1 D Z!G2k D Z

�1 D 0:

Geometrically .G; �/ is the symmetric Poincaré complex over Z associated to the circle.
By direct computation, �1=2.G;Z2/D 1, �1=2.G;Q/D 1 and �NEW.G; �/D �.�1/.
We define the generator .H;  / to have chain complex H concentrated in dimensions
2k and 2kC 1 defined by

dH D 2W H2kC1 D Z!H2k D Z;

with the morphisms  given by

 0 D

�
�1W H 2k D Z!H2kC1 D Z
1W H 2kC1 D Z!H2k D Z

 1 D 1W H 2kC1
!H2kC1:

Geometrically .H;  / is a symmetric Poincaré complex over Z which is cobordant to
the complex associated to the mapping torus of the self-diffeomorphism of CP2 given by
complex conjugation. Again by direct computation, �1=2.H;Z2/D 1, �1=2.H;Q/D 0

and �NEW.H;  /D 0. By considering the absolute torsion of these two generators we
see that the map L4kC1

rh
.Z/!K1.Z/ is given by

.C; �/ 7! �1=2.C;Q/�.�1/

thus proving part two of Proposition 37.

To prove part 1 of Proposition 37 we use the following lemma taken from [1].

Lemma 39 We have the following relationship between �NEW and signature modulo
4 of a 4k -dimensional Poincaré complex .C; �/

�.C /D 2�NEW.C; �/C .2kC 1/�.C / 2 Z4

where the map 2W K1.Z/D Z2! Z4 takes �.�1/ to 2 2 Z4 .
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A simple rearrangement of the formula of the above lemma yields the first part of
Proposition 37.
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