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Refined analytic torsion as an element of the determinant line

MAXIM BRAVERMAN

THOMAS KAPPELER

We construct a canonical element, called the refined analytic torsion, of the determi-
nant line of the cohomology of a closed oriented odd-dimensional manifold M with
coefficients in a flat complex vector bundle E . We compute the Ray–Singer norm of
the refined analytic torsion. In particular, if there exists a flat Hermitian metric on
E , we show that this norm is equal to 1. We prove a duality theorem, establishing a
relationship between the refined analytic torsions corresponding to a flat connection
and its dual.

58J52; 58J28, 57R20

1 Introduction

The aim of this paper is to define the notion of the refined analytic torsion associated to
an arbitrary vector bundle E!M over a closed oriented manifold of odd dimension
d D 2r � 1 and an arbitrary flat connection r on E . The refined analytic torsion
�anD �an.r/ is a canonically defined element of the determinant line Det .H �.M;E//

of the cohomology of the bundle E .

The Ray–Singer norm of the refined analytic torsion is equal to e� Im� , where � is the
�–invariant of the Atiyah–Patodi–Singer odd signature operator B associated to r and
a Riemannian metric on M . In particular, if the connection r is Hermitian then � is
real and the Ray–Singer norm of �an.r/ is equal to 1. This property justifies calling
�an.r/ the refined analytic torsion. Indeed, the Ray–Singer torsion can be viewed as
an element of the determinant line Det

�
H �.M;E/

�
whose Ray–Singer norm is equal

to one. Such an element is defined up to a multiplication by t 2 C with jt j D 1. The
refined analytic torsion �an.r/ is a canonical choice of such an element.

If the connection r is acyclic, that is, if the cohomology H �.M;E/ D 0, then
Det.H �.M;E// is canonically isomorphic to C and the refined analytic torsion is a
complex number. Under the additional assumption that B is bijective, we introduced
this number and studied it in [9; 5]. In this paper we drop this assumption and define the
refined analytic torsion for arbitrary flat connections and compare it to the Ray–Singer
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torsion. Recall that in [9; 5], we also computed the quotient of the refined analytic
torsion and Turaev’s refinement of the combinatorial torsion. In our subsequent paper
[8], we extend this computation to arbitrary flat connections.

Having applications in topology in mind Dan Burghelea suggested constructing a
holomorphic function on the space of acyclic connections, whose absolute value is
(related to) the Ray–Singer torsion. Such functions were constructed by Burghelea and
Haller in [14; 12] and also in our papers [9; 5]. The results of the present paper fit
nicely into this program. In fact, in [8], we show that the refined analytic torsion is a
holomorphic section of the determinant line bundle over the space of flat connections (or,
equivalently, over the space of representations of the fundamental group of M ). Thus
we extend the construction of [9; 5] to general, not necessarily acyclic, connections.

Let us now briefly describe our construction of the refined analytic torsion.

1.1 The refined torsion of a finite dimensional complex

Let

(1–1) .C �; @/W 0! C 0 @
����! C 1 @

����! � � �
@

����! C d ! 0

be a complex finite dimensional C–vector spaces of odd length d D 2r �1. A chirality
operator �W C �!C � is an involution such that �.C j /DC d�j , for all j D 0; : : : ; d .
As a first step towards our construction of the refined analytic torsion we introduce and
study the refined torsion of the pair .C �; �/. Consider the determinant line

Det.C �/ WD
dO

jD0

Det.C j /.�1/j ;

where Det.C j /�1 WD Hom.C j ;C/ denotes the dual of C j . For an element cj 2

Det.C j / we denote by c�1
j the unique element in Det.C j /�1 satisfying c�1

j .cj /D 1.
We also denote by �cj 2 Det.C d�j / the image of cj under the map Det.C j / !

Det.C d�j / induced by �W C j ! C d�j .

For each j D 0; : : : ; r � 1, fix an element cj 2 Det.C j / and consider the element

c
�
WD .�1/R.C

�/
� c0˝ c�1

1 ˝ � � �˝ c
.�1/r�1

r�1
˝

.�cr�1/
.�1/r

˝ .�cr�2/
.�1/r�1

˝ � � �˝ .�c0/
�1

of Det.C �/, where .�1/R.C
�/ is a normalization factor introduced in (4–1). It is easy

to see that c
�

is independent of the choice of c0; : : : ; cr�1 .
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Denote by H �.@/ the cohomology of the complex .C �; @/. In Section 2.4, we construct
a sign refined version of the standard isomorphism Det.C �/!Det.H �.@//, cf Milnor
[25]. Our isomorphism �C � W Det.C �/! Det.H �.@// is similar but not equal to the
one considered by Turaev [35].

Definition 1.2 The refined torsion of the pair .C �; �/ is the element

�
�
D �

C�;�
WD �C �.c� / 2 Det.H �.@//:

1.3 Calculation of the refined torsion of a finite dimensional complex

To compute the refined torsion we introduce the operator

B WD �@C @�:

This operator is a finite dimensional analogue of the signature operator on an odd-
dimensional manifold, see Atiyah [1, page 44], [2, page 405], Gilkey [19, pages 64–65],
and Section 7 of this paper. For j D 0; : : : ; d , define

C
j
C WD Ker

�
@ ı�

�
\C j ; C j

� WD Ker @ \C j

and set C�1
C D C dC1

� D 0. Let Bj and B˙j denote the restriction of B to C j and C
j
˙

respectively. Then, for each j D 0; : : : ; d , one has

BCj D � ı @W C
j
C �! C

d�j�1
C ; B�j D @ ı�W C

j
� �! C d�jC1

� :

Denote C even WD
L

jeven C j and C even
˙
WD
L

jeven C
j
˙

. Set

Beven WD
M
jeven

Bj W C
even
! C even; B˙even WD

M
jeven

B˙j W C
even
˙
! C even

˙
;

and define Bodd;B˙odd similarly. As Beven D � ıBodd ı� , it turns out that it suffices to
study Beven .

Suppose, first, that the signature operator B is bijective. Then, cf Lemma 5.2, the
complex .C �; @/ is acyclic. Hence, Det.H �.@// is canonically identified with C and
the refined torsion �

�
can be viewed as a number in C. In Proposition 5.6 we compute

this number and show that
�
�
D Detgr.Beven/;

where the graded determinant Detgr.Beven/ is defined by the formula

Detgr.Beven/
Def
D Det.BCeven/=Det.�B�even/:
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Note that in our definition of the graded determinant the quotient is the determinant of
the negative of B�even .

To compute the refined torsion in the case B is not bijective, note that B2 D .� @/2C

.@�/2 maps C j (j D 0; : : : ; d ) into itself. For each j D 0; : : : ; d and an arbitrary
interval I , denote by C

j
I � C j the linear span of the generalized eigenvectors of the

restriction of B2 to C j , corresponding to eigenvalues � with j�j 2 I . Since both
operators, � and @ , commute with B (and, hence, with B2 ), �.C j

I / � C
d�j
I and

@.C
j
I /� C

jC1
I . Hence, we obtain a subcomplex C �I of C � and the restriction �I of

� to C �I is a chirality operator for C �I . We denote by H �I .@/ the cohomology of the
complex .C �I ; @I/.

Denote by @I , BI , and Beven
I the restrictions of @ , B , and Beven to C �I . Then

BI D �I @I C @I�I and one easily shows (cf Lemma 5.8) that .C �I ; @I/ is acyclic if
0 62 I .

For each ��0, C �DC �
Œ0;��
˚C �

.�;1/
and H �

.�;1/
.@/D0 whereas H �

Œ0;��
.@/'H �.@/.

Hence, there are canonical isomorphisms

ˆW Det.H �.�;1/.@// �! C; ‰W Det.H �Œ0;��.@// �! Det.H �.@//:

In the sequel, we will write t for ˆ.t/ 2 C and denote by h also the element ‰.h/ 2
Det.H �.@//. Then, cf Proposition 5.10, for any � � 0, the refined torsion can be
computed to be

(1–2) �
�
D Detgr.Beven

.�;1// � ��Œ0;��
:

In particular, the element Detgr.Beven
.�;1/

/ ��
�
Œ0;��

is independent of �. It is this property
which allows us to define the refined analytic torsion.

1.4 The canonical element in the determinant line of the cohomology of a
flat vector bundle over a Riemannian manifold

In the second part of this paper (Sections 6–11) we apply the notion of refined torsion
to define and investigate the refined analytic torsion of the (twisted) de Rham complex.
Let E!M be a complex vector bundle over a closed manifold of odd dimension
d D 2r � 1 and let r be a flat connection on E . Let ��.M;E/ denote the de Rham
complex of E–valued differential forms on M . For a given Riemannian metric gM

on M denote by

� D �.gM /W ��.M;E/ �!��.M;E/
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Refined analytic torsion as an element of the determinant line 143

the chirality operator (cf Berline–Getzler–Vergne [3, Section 3]), defined in terms of
the Hodge �–operator by the formula

�! WD ir .�1/
k.kC1/

2 �!; ! 2�k.M;E/:

The odd signature operator introduced by Atiyah, Patodi, and Singer [1; 2] (see also
Gilkey [19]) is the first order elliptic differential operator BW ��.M;E/!��.M;E/,
given by

B Def
D �r Cr�:

Notice, that B2 maps �j .M;E/ into itself for every j D 0; : : : ; d .

For an interval I� Œ0;1/ we denote by �j
I.M;E/ the image of the spectral projection

of B2 corresponding to the eigenvalues whose absolute value lies in I , cf Section 6.10
and Section 7.5 for details. The space �j

I.M;E/ contains the span of the generalized
eigenforms of B2 corresponding to eigenvalues whose absolute value lies in I and
coincides with this span if the interval I is bounded. In particular, if I is bounded,
then the dimension of �j

I.M;E/ is finite. Note that, since B2 and r commute, the
space �j

I.M;E/ is a subcomplex of the de Rham complex ��.M;E/.

For each �� 0, we have

��.M;E/D��Œ0;��.M;E/˚��.�;1/.M;E/:

The complex ��
.�;1/

.M;E/ is clearly acyclic. Hence, the cohomology H �
Œ0;��

.M;E/

of the complex ��
Œ0;��

.M;E/ is naturally isomorphic to the cohomology H �.M;E/

of ��.M;E/. Further, as � commutes with B2 , it preserves the space �Œ0;��.M;E/

and the restriction �
Œ0;��

of � to this space is a chirality operator on ��
Œ0;��

.M;E/.

To define the refined analytic torsion we need to introduce the notion of a graded
determinant of B . For every interval I � Œ0;1/ and for each k D 0; : : : ; d , set

�k
C;I.M;E/ WD Ker.r�/\�k

I.M;E/D
�
�.Kerr/

�
\�k

I.M;E/I

�k
�;I.M;E/ WD Ker.�r/\�k

I.M;E/D Kerr \�k
I.M;E/:

If 0 62 I , then, clearly,

�k
I.M;E/D�k

C;I.M;E/˚�k
�;I.M;E/:

The latter decomposition is considered as a grading on ��I.M;E/. As both, � and
r , commute with B2 , we conclude that for all j D 0; : : : ; d ,

�W �k
˙;I.M;E/ �!�d�k

�;I .M;E/;

rW �k
˙;I.M;E/ �!�kC1

�;I .M;E/:
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Denote by BIeven and B˙;Ieven the restrictions of B to �even
I .M;E/ WD

Lr�1
pD0�

2p
I .M;E/

and �even;˙
I .M;E/ WD

Lr�1
pD0�

2p
˙;I.M;E/, respectively.

Let � 2 .��; 0/ be an Agmon angle for BI , cf Definition 6.3. For each I with 0 62 I
define the graded determinant of the operator BIeven by the formula

(1–3) Detgr;� .BIeven/
Def
D Det� .BC;Ieven/=Det� .�B�;Ieven/;

where Det� denotes the �–regularized determinant, cf Section 6 and Section 7 for
details. One verifies easily that for any 0� �� � <1,

(1–4) Detgr;� .B.�;1/even /D Detgr;� .B.�;��even / �Detgr;� .B.�;1/even /:

For any given � � 0, denote by �
�
Œ0;��

the refined torsion of the finite dimensional
complex ��

Œ0;��
.M;E/ and the chirality operator �

Œ0;��
. In view of (1–2) and (1–3),

the product

(1–5) �D �.r;gM / WD Detgr;� .B.�;1/even / � �
�
Œ0;��
2 Det.H �.M;E//

is independent of the choice of �� 0. It is also independent of the choice of the Agmon
angle � 2 .��; 0/ of Beven .

1.5 The metric anomaly of �.r ;gM /

The element �.r;gM / is very close to our notion of the refined analytic torsion.
However, in general, it is not a differential invariant of the flat bundle E , since it does
depend on the choice of the Riemannian metric gM . To compute the metric anomaly
of �.r;gM / we show (cf Proposition 8.1) that

Detgr;� .B.�;1/even /D exp
�
��� i����

i�

2

dX
jD0

.�1/j jdj ;�

�
:

Here

�� D
1

2

d�1X
jD0

.�1/jC1 d

ds

ˇ̌̌
sD0

�2�

�
s; .�r/2

ˇ̌
�
j

C;.�;1/
.M;E/

�
;

where � 2 .��=2; 0/ is an Agmon angle for B such that there are no eigenvalues of B
in the solid angles L.��=2;�� and L.�=2;�C�� ,

�� D �
�
B.�;1/even

�
is the �–invariant of B.�;1/even , and

dj ;� WD dim�
j

Œ0;��
.M;E/:
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We then analyze the dependence on the Riemannian metric separately for �� � ��
Œ0;��

and �� . The metric anomaly for �� has been already computed by Gilkey [19]. Using
his result, we compute the metric anomaly of �.r;gM /. The refined analytic torsion
is then defined by correcting �.r;gM / by its anomaly. More precisely, we prove (cf
Theorem 9.6) the following Theorem.

Theorem 1.6 Let E be a flat vector bundle over a closed oriented odd-dimensional
manifold M and let r denote the flat connection on E . Let N be an oriented manifold
whose oriented boundary is the disjoint union of two copies of M . Then the product

(1–6) �.r;gM / � ei�.rank E/�trivial 2 Det.H �.M;E//;

is independent of the metric gM . Here

�trivial D
1
2
�
�
0;Btrivial

even
�

is the half of the value at 0 of the �–function of the odd signature operator Btrivial
even

associated to the trivial connection on the trivial complex line bundle M �C!M .

In particular if dim M � 1.mod 4/ then �trivial D 0, cf [1], and hence �.r;gM / is
independent of gM .

1.7 Definition of the refined analytic torsion

We now define the refined analytic torsion �an D �an.r/ to be the element (1–6) of
Det.H �.M;E//. It is independent of the choice of the Agmon angle � 2 .��; 0/ and
of the metric gM .

In Remark 9.9 we also suggest an alternative definition of the refined analytic torsion,
which is more convenient for some applications.

1.8 The Ray–Singer metric of the refined analytic torsion

Let k � kRS
Det.H �.M;E//

denote the Ray–Singer norm on the determinant line given by
Det.H �.M;E//, cf Bismut–Zhang [4] and Section 11.2. In Section 10, we compute
the refined analytic torsion associated to the connection r 0 on E dual to a given
connection r . In Section 11, we use this calculation to calculate the Ray–Singer
norm of the refined analytic torsion. More precisely we prove (cf Theorem 11.3) the
following

Theorem 1.9 Let E be a complex vector bundle over a closed, oriented, odd-
dimensional manifold M and let r be a flat connection on E . Then

k�ank
RS
Det.H �.M;E// D e� Im�.Beven.r;g

M //:
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146 Maxim Braverman and Thomas Kappeler

In particular, if r is a Hermitian connection, then the operator Beven.r;g
M / is self-

adjoint, hence, its �–invariant �.Beven.r;g
M // is real, and

k�ank
RS
Det.H �.M;E// D 1:

1.10 Project “Refined analytic torsion”

The present paper is the central part of an ongoing project whose aim is to refine the
Ray–Singer torsion [29] and establish the relationship of the refined analytic torsion
with the refined combinatorial torsion introduced by Turaev [35; 36] and in a more
general setting by Farber and Turaev [17; 18]. In this subsection, we briefly describe
various results of ours as well as related results obtained by others and explain how
they fit together.

Recall that the Ray–Singer torsion is defined using the square roots of the determinants
of the Laplacians on forms. The main idea of the construction of the refined analytic
torsion is to replace these square roots by the graded determinant of the restriction
Beven of the odd signature operator B to even forms. Recall that when the connection
r is Hermitian, then B2 D�. Thus, roughly speaking, we replace the square root of
the determinant of the Laplacian by the determinant of the square root of the Laplacian.

In our previous paper [9] we treated in detail the case when B is bijective and r is
acyclic. In this case, up to a correction by the multiplicative anomaly, the refined
analytic torsion is equal to the graded determinant of Beven . In the present paper we
use the results of [9] as one of the main ingredients for the construction of the refined
analytic torsion in the general case, when B is not necessarily bijective. To do this we
fix a number 0� �<1 and split the de Rham complex ��.M;E/ into the direct sum

��.M;E/D��Œ0;��.M;E/˚��.�;1/.M;E/

of spectral subspaces of the operator B2 corresponding to the small and the large
eigenvalues of B2 respectively, cf Section 1.4. The space ��

Œ0;��
.M;E/ is a finite

dimensional subcomplex, while the restriction B.�;1/ of B to ��
.�;1/

.M;E/ is
bijective. The Hodge �–operator induces an involution on ��

Œ0;��
.M;E/ – the chirality

operator �Œ0;�� . The main step in the present paper is a construction of the refined torsion
of a finite dimensional complex endowed with a chirality operator – see Sections 2–5.
We then define the refined analytic torsion �an (up to the metric anomaly) to be the
product of the graded determinant of the operator B.�;1/even and the refined torsion of
the finite dimensional complex ��

Œ0;��
.M;E/ and show that it does not depend on the

choice of �. The study of the properties of �an in this and the subsequent papers relies
heavily on the results about the graded determinant of Beven obtained in [9].
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Refined analytic torsion as an element of the determinant line 147

One of the main results of the present paper is the calculation of the Ray–Singer norm
of the refined analytic torsion, cf Theorem 1.9. In particular, if the connection r is
Hermitian, the norm of �an is equal to one. This result justifies calling �an the refined
analytic torsion. Many other interesting and important properties of the refined analytic
torsion were established since the first version [7] of this paper was released in 2005.
We now briefly describe some of these results.

Denote by Rep.�1.M /;Cn/ the space of n–dimensional complex representations of
the fundamental group �1.M / of M . For ˛ 2 Rep.�1.M /;Cn/ we denote by E˛
the flat vector bundle over M whose monodromy is equal to ˛ . Let r˛ be the flat
connection on E˛ . The refined analytic torsion �an.˛/D �an.r˛/ is an element of the
determinant line Det

�
H �.M;E˛/

�
. The disjoint union of the lines Det

�
H �.M;E˛/

�
,

.˛ 2 Rep.�1.M /;Cn//, forms a line bundle Det ! Rep.�1.M /;Cn/, called the
determinant line bundle, cf [3, Section 9.7]. It admits a nowhere vanishing section,
given by the Farber–Turaev torsion, and, hence, has a natural structure of a trivializable
holomorphic bundle.

In our subsequent paper [8] we prove that �an.˛/ is a nowhere vanishing holomorphic
section of the bundle Det . It means that the ratio of the refined analytic and the
Farber–Turaev torsions is a holomorphic function on Rep.�1.M /;Cn/. For an acyclic
representation ˛ , the determinant line Det

�
H �.M;E˛/

�
is canonically isomorphic

to C and �an.˛/ can be viewed as a nonzero complex number. Then �an.˛/ be-
comes a holomorphic function on the open set Rep0.�1.M /;Cn/� Rep.�1.M /;Cn/

of acyclic representations, whose absolute value is equal to the Ray–Singer torsion
times e� Im�.Beven.r˛;g

M // and whose phase is equal to �� Re �.Beven.r˛;g
M //C

�n�trivial.g
M /. In particular, when the representation ˛ is unitary, the �–invariant

is real and the absolute value of �an.˛/ is equal to the Ray–Singer torsion while the
phase of �an.˛/ is equal to ���.Beven.r˛;g

M //C �n�trivial.g
M /. The fact that

the Ray–Singer torsion and the �–invariant can be combined into one holomorphic
function allows one to use methods of complex analysis to study both invariants. In [8],
using these methods, we compute the quotient of the refined analytic torsion and the
Farber–Turaev torsion generalizing in this way the classical Cheeger–Müller theorem.
As an application we establish a formula relating the �–invariant and the phase of the
Farber–Turaev torsion extending earlier results of Farber [16]. The significance of this
application stems from the fact that the �–invariant, defined in analytic terms, now can
be studied using methods of combinatorial topology.

In our most recent paper [6] we compare the refined analytic torsion to the complex
Ray–Singer torsion, recently introduced by Burghelea and Haller [12] which is a
complex valued quadratic form on Det.H �.M;E/. In [6], we compute explicitly its
value at the refined analytic torsion. As an application we obtain new results about the
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Burghelea–Haller torsion. In particular, we proved, up to a complex numbers of norm
1, the Burghelea–Haller conjecture concerning the value of their torsion for the Farber–
Turaev combinatorial torsion. In [23], Huang has proved the conjecture, up to sign,
on connected components which contain a unitary representation. Recently, arguing
as in Burghelea–Friedlander–Kappeler [11], Burghelea and Haller [13] have proved
the above mentioned conjecture in full generality, again up to sign. Independently, a
different proof of the same conjecture has been provided by Su and Zhang [34].

In [23; 22], Huang studies further properties of �an such as the product formula, and
explicitly computes �an for lens spaces, answering several questions raised in [9].
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2 The determinant line of a finite dimensional complex

In this section we review some standard material about determinant lines of finite
dimensional spaces and complexes and define a sign refined version of the isomorphism
between the determinant line of a complex and the determinant line of its cohomology
similar to the one introduced by Turaev, [35] (see also [36], [37], and [18]). We also
discuss some properties of this isomorphism.

Let k be a field of characteristic zero.

2.1 Determinant lines

Let V be a k–vector space of dimension dim V D n. The determinant line of V is the
line Det.V / WDƒnV , where ƒnV denotes the nth exterior power of V . By definition,
we set Det.0/ WD k.
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Refined analytic torsion as an element of the determinant line 149

More generally, if V � D V 0˚V 1˚ � � �˚V d is a graded k–vector space, we define
the determinant line of V � by the formula

(2–1) Det.V �/ WD
dO

jD0

Det.V j /.�1/j ;

where for a k–line L we denote by L�1 WD Homk.L;k/ the dual line.

If L is a k–line and l 2L is a nonzero element, we denote by l�1 2L�1 the unique
k–linear map L! k such that l�1.l/D 1.

2.2 The determinant line of a finite dimensional complex

Let

(2–2) .C �; @/W 0! C 0 @
����! C 1 @

����! � � �
@

����! C d ! 0

be a complex of finite dimensional k–vector spaces. We call the integer d the length
of the complex .C �; @/ and we denote by H �.@/D

Ld
iD0 H i.@/ the cohomology of

.C �; @/. Set

(2–3)

Det.C �/ WD
dO

jD0

Det.C j /.�1/j ;

Det.H �.@// WD
dO

jD0

Det.H j .@//.�1/j :

2.3 The determinant line of a direct sum

For two finite dimensional k–vector spaces V and W we define the canonical fusion
isomorphism

(2–4) �V;W W Det.V /˝Det.W / �! Det.V ˚W /

by the formula

(2–5) �V;W W .v1 ^ v2 ^ � � � ^ vk/˝ .w1 ^w2 ^ � � � ^wl/

7! v1 ^ v2 ^ � � � ^ vk ^w1 ^w2 ^ � � � ^wl ;

where k D dim V; l D dim W; vj 2 V; wj 2W . Clearly, for v 2Det.V /; w 2Det.W /

we have

(2–6) �V;W .v˝w/D .�1/dim V �dim W �W ;V .w˝ v/:
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By a slight abuse of notation, we denote by

(2–7) ��1
V;W W Det.V /�1

˝Det.W /�1
�! Det.V ˚W /�1

the transpose of the inverse of �V;W . It than follows that, for any v 2 Det.V / and
w 2 Det.W /,

(2–8) ��1
V;W .v

�1
˝w�1/D

�
�V;W .v˝w/

��1
:

Similarly, if V1; : : : ;Vr are finite dimensional k-vector spaces, we define an isomor-
phism

(2–9) �V1;:::;Vr
W Det.V1/˝ � � �˝Det.Vr / �! Det.V1˚ � � �˚Vr /:

One easily checks that, for every j 2 1; : : : ; r � 1,

(2–10) �V1;:::;Vr
D

�V1;:::;Vj�1;Vj˚VjC1;VjC2;:::;Vr
ı
�
1˝ � � �˝ 1˝�Vj ;VjC1

˝ 1˝ � � �˝ 1
�
:

2.4 The isomorphism between the determinant line of a complex and the
determinant line of its cohomology

Fix a direct sum decomposition

(2–11) C j
D Bj

˚H j
˚Aj ; j D 0; : : : ; d;

such that Bj ˚H j D .Ker @/\C j and Bj D @.C j�1/D @.Aj�1/, for all j . Note
that Ad D f0g. Set A�1 D f0g. Then H j is naturally isomorphic to the cohomology
H j .@/ and @ defines an isomorphism @W Aj ! BjC1 .

For each j D 0; : : : ; d , fix cj 2 Det.C j / and aj 2 Det.Aj /. Let @.aj / 2 Det.BjC1/

denote the image of aj under the map Det.Aj /! Det.BjC1/ induced by the iso-
morphism @W Aj ! BjC1 . Then, for each j D 0; : : : ; d , there is a unique element
hj 2 Det.H j / such that

(2–12) cj D �Bj ;H j ;Aj
�
@.aj�1/˝ hj ˝ aj

�
:

Define the isomorphism

(2–13) �C � D �.C �;@/W Det.C �/ �! Det.H �.@//' Det.H �/;

by the formula

(2–14) �C � W c0˝ c�1
1 ˝ � � �˝ c

.�1/d

d
7! .�1/N .C

�/h0˝ h�1
1 ˝ � � �˝ h

.�1/d

d
;
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where

(2–15) N .C �/ WD
1

2

dX
jD0

dim Aj
�
�

dim Aj
C .�1/jC1

�
:

One easily checks that �C � is independent of the choices of cj and aj .

Remark 2.5

(a) We have

(2–16)
jX

kD0

.�1/k dim C k
C .�1/jC1 dim Aj

D

jX
kD0

.�1/k dim H k ;

since both sides of this equality are equal to the Euler characteristic of the
complex

0! C 0 @
����! C 1 @

����! � � �
@

����! C j @
����! @.Aj /! 0:

Hence, N .C �/ can be expressed exclusively in terms of the dimensions of the
spaces C j and H j .@/.

(b) The isomorphism �C � is a sign refined version of the standard construction, cf
Milnor[25]. The idea to introduce a sign factor in the definition of �C � is due to
Turaev [35]. It allows to obtain various compatibility properties, cf, for example,
Lemma 2.7 and Proposition 5.6 below. Our sign is slightly different from [35]
but is consistent with Nicolaescu [26]. We refer the reader to Deligne [15] and
Nicolaescu [26] for the motivation of this choice of sign, based on the theory of
weighted determinant lines.

2.6 The fusion isomorphism for graded vector spaces

Let V �DV 0˚V 1˚� � �˚V d and W �DW 0˚W 1˚� � �˚W d be finite-dimensional
graded k–vector spaces. The fusion isomorphism

(2–17) �V �;W � W Det.V �/˝Det.W �/ �! Det.V �˚W �/;

is defined by the formula

(2–18) �V �;W � WD .�1/M.V �;W �/
dO

qD0

�
.�1/q

V q ;W q ;
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where �C1
V j ;W j D �V j ;W j and ��1

V j ;W j are defined in Section 2.3, and

(2–19) M.V �;W �/ WD
X

0�k<j�d

dim V j
� dim W k :

The following lemma is a precise analogue of Farber–Turaev [18, Lemma 2.4].

Lemma 2.7 Let .C �; @/ and . zC �; z@/ be length d complexes of finite dimensional
k–vector spaces. Then the following diagram commutes:

(2–20)

Det.C �/˝Det. zC �/
�C�˝� zC�
�������! Det.H �.@//˝Det.H �.z@//

�
C�; zC�

??y ??y�H�.@/;H�.z@/

Det.C �˚ zC �/
�

C�˚ zC�

������! Det
�
H �.@˚z@/

�
' Det

�
H �.@//˚H �.z@/

�
Proof As in (2–11), write

(2–21) C j
D Bj

˚H j
˚Aj ; zC j

D zBj
˚ zH j

˚ zAj :

For each j D 0; : : : ; d , choose

cj 2 Det.C j /; aj 2 Det.Aj /; hj 2 Det.H j /;

zcj 2 Det. zC j /; zaj 2 Det. zAj /; zhj 2 Det. zH j /;

such that

(2–22)
cj D �Bj ;H j ;Aj

�
@.aj�1/˝ hj ˝ aj

�
;

zcj D � zBj ; zH j ; zAj

�
z@.zaj�1/˝ zhj ˝zaj

�
:

Set

yC j
D C j

˚ zC j ; yH j
DH j

˚ zH j ; yAj
DAj

˚ zAj ; yBj
D Bj

˚ zBj :

Also denote y@ D @˚ z@ . Further, set

ycj D �C j ; zC j
.cj ˝zcj /; yaj D �Aj ; zAj

.aj ˝zaj /:

Then, for all j D 0; : : : ; d , the unique element yhj 2 Det. yH j /, satisfying

(2–23) ycj D � yBj ; yH j ; yAj

�
y@.yaj�1/˝ yhj ˝yaj

�
;

is given by

(2–24) yhj D .�1/dim Aj �dim zAj�1Cdim H j �dim zAj�1Cdim Aj �dim zH j

�
H j ; zH j .hj ˝

zhj /:
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Set c WD
Nd

jD0 c
.�1/j

j and define zc in a similar way. Then, by definitions (2–18) and
(2–23),

(2–25)

�
C �; zC �

.c˝zc/D .�1/M.C �; zC �/
dO

jD0

�
C j ; zC j

.cj ˝zcj /
.�1/j

D .�1/M.C �; zC �/
dO

jD0

yc
.�1/j

j :

From (2–23) and (2–25) we conclude that

(2–26) �
C �˚ zC �

ı�
C �; zC �

.c˝zc/D .�1/K.C
�; zC �/

dO
jD0

�
H j ; zH j .hj ˝

zhj /
.�1/j ;

where

(2–27) K.C �; zC �/DN .C �˚ zC �/CM.C �; zC �/

C

dX
jD0

�
dim Aj

� dim zAj�1
C dim H j

� dim zAj�1
C dim Aj

� dim zH j
�
:

Since, clearly,

(2–28) �
H �.@/;H �.z@/

ı
�
�C � ˝� zC �

�
.c˝zc/

D .�1/N .C
�/CN . zC �/CM.H �; zH �/

dO
jD0

�
H j ; zH j .hj ˝

zhj /
.�1/j ;

to prove the commutativity of the diagram (2–20) it remains to show that, mod 2,

(2–29) N .C �˚ zC �/CN .C �/CN . zC �/CM.H �; zH �/CM.C �; zC �/

�

dX
jD0

�
dim Aj

� dim zAj�1
C dim H j

� dim zAj�1
C dim Aj

� dim zH j
�
:

Using the identity

(2–30)
.xCy/.xCyC .�1/j /

2
�

x.xC .�1/j /

2
�

y.yC .�1/j /

2
D xy;
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where x;y 2 k; j 2 Z�0 , we obtain

(2–31) N .C �˚ zC �/�N .C �/�N . zC �/D
dX

jD0

dim Aj
� dim zAj :

On the other hand, using (2–21) and the equalities dim zAj�1 D dim zBj we see that
the following equality holds modulo 2

(2–32)

dX
jD0

�
dim Aj

� dim zAj�1
C dim Aj

� dim zH j
�

D

dX
jD0

dim Aj
�
�

dim zAj�1
C dim zH j

�
�

dX
jD0

dim Aj
�
�

dim zAj
C dim zC j

�
D

dX
jD0

dim Aj
� dim zAj

C

dX
jD0

dim Aj
� dim zC j :

By (2–16),

dim Aj
�

jX
kD0

�
dim H k

C dim C k
�
:

A similar equality holds for dim zAj . Hence, we get from (2–32)

(2–33)
dX

jD0

�
dim Aj

� dim zAj�1
C dim Aj

� dim zH j
�
�

dX
jD0

dim Aj
� dim zAj

C

X
0�k�j�d

dim C k
� dim zC j

C

X
0�k�j�d

dim H k
� dim zC j :

Similarly,

(2–34)
dX

jD0

dim H j
�dim zAj�1

D

X
0�k<j�d

dim H j
�dim zC k

C

X
0�k<j�d

dim H j
�dim zH k :
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Combining (2–19), (2–33), and (2–34) we obtain that modulo 2

(2–35)

dX
jD0

�
dim Aj

� dim zAj�1
C dim H j

� dim zAj�1
C dim Aj

� dim zH j
�

CM.C �; zC �/CM.H �; zH �/

�

dX
jD0

dim Aj
� dim zAj

C

dX
j ;kD0

dim C k dim zC j
C

dX
j ;kD0

dim H k dim zC j

�

dX
jD0

dim Aj
� dim zAj

C

� dX
kD0

dim C k
�
�

� dX
jD0

dim zC j
�

C

� dX
kD0

dim H k
�
�

� dX
jD0

dim zC j
�
:

Both
Pd

kD0 dim C k and
Pd

kD0 dim H k are equivalent modulo 2 to the Euler charac-
teristic of the complex .C �; @/. Hence, we conclude that the left hand side of (2–35)
is equivalent modulo 2 to

dX
jD0

dim Aj
� dim zAj :

Combining this with (2–31), we obtain (2–29).

3 The determinant line of the dual complex

In this section we introduce the dual of a complex and, for the case when the length of
the complex is odd, construct a natural isomorphism between the determinant lines of
a complex and that of its dual. We also show that this isomorphism is compatible with
the canonical isomorphism (2–13).

Throughout the section, k is a field of characteristic zero endowed with an involutive
automorphism

� W k! k:

The main examples are kD C with � being the complex conjugation and kD R with
� being the identity map.
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3.1 The determinant line of the �–dual space

If V;W are k–vector spaces, a map f W V !W is said to be � –linear if

f .x1v1Cx2v2/D �.x1/v1C �.x2/v2 for any v1; v2 2 V;x1;x2 2 k:

Let V be an n–dimensional k–vector space. The linear space V � D V �� of all
� –linear maps V ! k is called the � –dual space to V . There is a natural � –linear
isomorphism

(3–1) ˛V W Det.V �/ �! Det.V /�1;

defined by the formula

(3–2)
�
˛V .v

1
^ � � � ^ vn/

�
.v1 ^ � � � ^ vn/

D

X
�

.�1/j� j�
�
v1.v�.1//

�
� �
�
v2.v�.2//

�
� � � �

�
vn.v�.n//

�
;

where v1; : : : ; vn 2 V; v1; : : : ; vn 2 V � , and the sum is taken over all permutations �
of f1; : : : ; ng. Similarly, we define the � –linear map

(3–3) ˇV W Det.V / �! Det.V �/�1;

defined by the formula

(3–4)
�
ˇV .v1 ^ � � � ^ vn/

�
.v1
^ � � � ^ vn/

D .�1/n �
X
�

.�1/j� j�
�
v1.v�.1//

�
� �
�
v2.v�.2//

�
� � � �

�
vn.v�.n//

�
:

Remark 3.2 The sign factor .�1/n in (3–4) simplifies the statements of various
compatibility relations with the fusion isomorphism (2–4), cf below. It is motivated by
the fact that, in (3–4), we interchange v1 ^ � � � ^ vn and v1 ^ � � � ^ vn , which both are
forms of degree n.

Formulae (3–2) and (3–4) can be simplified by choosing an appropriate basis. Let
e1; : : : ; en be a basis of V . Denote by e1; : : : ; en the dual basis of V � , ie, the unique
set of elements of V � such that ej .ei/D ı

j
i for all i; j D 1; : : : ; n. Then�

˛V .e
1
^ : : :^en/

�
.e1^ : : :^en/D �

�
e1.e1/

�
��
�
e2.e2/

�
: : : �

�
en.en/

�
I(3–5) �

ˇV .e1^ � � � ^en/
�
.e1
^ : : :^en/D .�1/n��

�
e1.e1/

�
��
�
e2.e2/

�
: : : �

�
en.en/

�
:(3–6)
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Recall from Section 2.1 that for a nonzero element v 2 Det.V / we denote by v�1 the
unique element of

�
Det.V /

��1 such that v�1.v/D 1. It follows from (3–5) that

(3–7) ˛�1
V

�
.e1 ^ � � � ^ en/

�1
�
D e1

^ � � � ^ en:

Using (3–6) and (3–7) we conclude that for any v 2 Det.V /

(3–8)
�
˛�1

V .v�1/
��1
D .�1/dim V ˇV .v/:

Let V and W be k–vector spaces. From (2–5), (3–5), and (3–6), we obtain

(3–9)
�
�V;W .v˝w/

��1
D ˛V˚W ı�V �;W �

�
˛�1

V .v�1/˝˛�1
W .w�1/

�
;

for any v 2 Det.V /; w 2 Det.W /.

3.3 The �–adjoint map

Let T W V !W be a k–linear map. The � –adjoint of T is the linear map

T �W W � �! V �

such that

(3–10) .T �w�/.v/D w�.T v/; for all v 2 V; w� 2W �:

If dim V D dim W then T and T � induce k–linear maps Det.V /! Det.W / and
Det.W �/! Det.V �/, which, by a slight abuse of notation, we also denote by T and
T � respectively. If T is bijective then, for any nonzero v 2 Det.V /, we have

(3–11) T �˛�1
W

�
.T v/�1

�
D ˛�1

V .v�1/:

3.4 The �–dual graded space

Let now V � D V 0˚V 1˚ � � � ˚V d be a finite dimensional graded k–vector space.
We define the (� –)dual graded space yV D yV 0˚ yV 1˚ � � �˚ yV d by

yV j
WD .V d�j /�; j D 0; : : : ; d:

Assume now that the number d D 2r � 1 is odd. Then (3–1) and (3–3) induce a
� –linear isomorphism

(3–12) ˛V � W Det.V �/ �! Det. yV �/;
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defined by the formula

(3–13) ˛V �
�
v0˝ .v1/

�1
˝ � � �˝ .vd /

�1
�

D .�1/M.V �/
�˛�1

V d .v
�1
d /˝ˇV d�1.vd�1/˝ � � �˝ˇV 0.v0/;

where vj 2 Det.V j / .j D 0; : : : ; d/ and

(3–14) M.V �/DM.V �;V �/D
X

0�j<k�d

dim V j
� dim V k ;

cf (2–19). We refer to Nicolaescu [26] for the motivation of the choice of the sign in
(3–13).

3.5 The dual complex

Consider the complex (2–2) of finite dimensional k–vector spaces. The dual complex
is the complex

(3–15) . yC �; @/W 0! yC 0 @�

����! yC 1 @�

����! � � �
@�

����! yC d ! 0;

where yC j D .C d�j /� and @� is the � –adjoint of @ . Then the cohomology H j .@�/

of yC � is naturally isomorphic to the � –dual space to H d�j .@/ .j D 0; : : : ; d/.
Hence, if the length d of the complex C � is odd, then, by (3–12), we obtain � –linear
isomorphisms

(3–16)
˛C � W Det.C �/ �! Det. yC �/;

˛H �.@/W Det.H �.@// �! Det.H �.@�//:

Lemma 3.6 Let .C �; @/ be a complex of finite dimensional k–vector spaces and
assume that its length d D 2r � 1 is odd. Then the following diagram commutes

(3–17)

Det.C �/
�C�

����! Det
�
H �.@/

�
˛C�

??y ??y˛H�.@/

Det. yC �/
� yC�
����! Det

�
H �.@�/

�;
where the isomorphisms �C � and � yC � are as in (2–13).

Proof We shall use the notation of Section 2.4. For j D 0; : : : ; d , set

(3–18) yAj
WD .Bd�j /�; yBj

WD .Ad�j /�; yH j
WD .H d�j /�

and identify these spaces with subspaces of yC j in a natural way. Then @�. yAj /D yBjC1 .
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Let cj ; aj ; hj (j D 0; : : : ; d ) be as in (2–12). For each j D 0; : : : ; d , set

ycj D ˛
�1
C d�j .c

�1
d�j /;(3–19)

yaj D ˛
�1
Bd�j

�
.@ad�j�1/

�1
�
;(3–20)

yhj D ˛
�1
H d�j .h

�1
d�j /:(3–21)

Then, from the equality (3–8), we obtain,

ˇC d�j .cd�j /D .�1/dim C j
� yc�1

j ;

ˇH d�j .@/.hd�j /D .�1/dim H j .@/
� yh�1

j :

Hence, from the definition (3–13), we get

(3–22) ˛C �
�
c0˝c�1

1 ˝� � �˝c�1
d

�
D .�1/M.C �/C

Pr�1
pD0 dim C 2p

� yc0˝yc
�1
1 ˝� � �˝yc

�1
d ;

(3–23) ˛H �.@/

�
h0˝ h�1

1 ˝ � � �˝ h�1
d

�
D .�1/M.H �.@//C

Pr�1
pD0 dim H 2p.@/

� yh0˝
yh�1

1 ˝ � � �˝
yh�1

d :

From the identity (3–11) and the definition (3–20) of yaj , we get

@�.yaj�1/D ˛
�1
Ad�j .a

�1
d�j /; j D 1; : : : ; d:

Hence, from (2–12) and (3–9), we obtain

ycj D ˛
�1
C d�j

�
�Bd�j ;H d�j ;Ad�j

�
@.ad�j�1/˝ hd�j ˝ ad�j

���1

D � yAj ; yH j ; yBj

�
yaj ˝

yhj ˝ @
�.yaj�1/

�
:

Using (2–6), we now conclude that

(3–24) ycj D .�1/Gj �� yBj ; yH j ; yAj

�
@�.yaj�1/˝ yhj ˝yaj�1

�
;

where

(3–25) Gj D dim yAj
� dim yH j

C dim yAj
� dim yAj�1

C dim yAj�1
� dim yH j :

Thus, from (2–14), we obtain

(3–26) � yC �
�
yc0˝yc

�1
1 ˝ � � �˝ yc

�1
d

�
D .�1/N .

yC �/C
Pd
jD0 Gj � yh0˝

yh�1
1 ˝ � � �˝

yh�1
d :

Hence, by (3–13) and (3–22),

(3–27) � yC � ı˛C �
�
c0˝ c�1

1 ˝ � � �˝ c�1
d

�
D .�1/M.C �/CN . yC �/C

Pd
jD0 GjC

Pr�1
pD0 dim C 2p

� yh0˝
yh�1

1 ˝ � � �˝
yh�1

d :
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From (3–13) and (3–23), we get

(3–28) ˛H �.@/ ı�C �
�
c0˝ c�1

1 ˝ � � �˝ c�1
d

�
D .�1/M.H �.@//CN .C �/C

Pr�1
pD0 dim H 2p.@/

� yh0˝
yh�1

1 ˝ � � �˝
yh�1

d :

From (3–27) and (3–28), we conclude that to prove (3–17) it remains to show that,
modulo 2,

(3–29) M.C �/CN . yC �/C
dX

jD0

Gj C

r�1X
pD0

dim C 2p

�M.H �.@//CN .C �/C
r�1X
pD0

dim H 2p.@/:

Using the equality

dim yAj
D dim Bd�j

D dim Ad�j�1;

we easily see that N . yC �/ D N .C �/. In addition, note that if we set zC � D C � in
(2–29), then the right hand side of (2–29) is equal to

Pd
jD0 Gj . Hence, (2–29) and

(3–14) imply that (3–29) is equivalent to

(3–30) N .C �˚C �/C

r�1X
pD0

�
dim C 2p

� dim H 2p.@/
�
� 0 mod 2:

By (2–15),

(3–31) N .C �˚C �/�

dX
jD0

dim Aj mod 2:

From (2–11) and the equality dim Bj D dim Aj�1 we conclude that

dim C 2p
� dim H 2p.@/D dim A2p

C dim A2p�1;

and, hence,

(3–32)
r�1X
pD0

�
dim C 2p

� dim H 2p.@/
�
D

dX
jD0

dim Aj :

Combining (3–31) and (3–32) we obtain (3–30).
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4 The refined torsion of a finite dimensional complex with a
chirality operator

On the de Rham complex of a Riemannian manifold acts a canonical involution � ,
called the chirality operator, cf [3, Chapter 3]. In this section we consider a finite
dimensional complex with such an operator. We show that the chirality operator defines
a canonical element, the refined torsion, of the determinant line of the cohomology of
this complex and we study some properties of this element.

In this section k is a field of characteristic zero.

4.1 The refined torsion associated to a chirality operator

Let d D 2r � 1 be an odd integer and let .C �; @/ be a length d complex of finite
dimensional k–vector spaces. A chirality operator is an involution �W C �! C � such
that �.C j /D C d�j , j D 0; : : : ; d . For cj 2 Det.C j / .j D 0; : : : ; d/ we denote by
�cj 2 Det.C d�j / the image of cj under the isomorphism Det.C j /! Det.C d�j /

induced by � .

Fix nonzero elements cj 2 Det.C j /, j D 0; : : : ; r � 1, and consider the element

(4–1) c
�
WD .�1/R.C

�/
� c0˝ c�1

1 ˝ � � �˝ c
.�1/r�1

r�1

˝ .�cr�1/
.�1/r

˝ .�cr�2/
.�1/r�1

˝ � � �˝ .�c0/
�1;

of Det.C �/, where

(4–2) R.C �/D
1

2

r�1X
jD0

dim C j
�
�

dim C j
C .�1/rCj

�
:

It follows from the definition of c�1
j that c

�
is independent of the choice of cj

(j D 0; : : : ; r � 1).

Remark 4.2 Using the isomorphisms �W C j ! C d�j one can define a natural trace
functional TrW Det.C �/! k, cf [26]. The sign factor .�1/R.C

�/ is defined so that the
equality Tr.c

�
/D 1 holds.

Definition 4.3 The refined torsion of the pair .C �; �/ is the element

(4–3) �
�
D �

C�;�
WD �C �.c� /;

where �C � is the canonical map defined in Section 2.4.
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4.4 The norm of the refined torsion

In this subsection we assume that kDR or C. Suppose that the spaces C j ; j D0; : : : ; d ,
are endowed with a Euclidean (if kD R) or a Hermitian (if kD C) scalar products
h�; �ij . These scalar products induce a metric k � kDet.C �/ on the determinant line
Det.C �/. Let k � kDet.H �.@// be the metric on the determinant line Det.H �.@// such
that the canonical isomorphism �C � , defined in (2–13), is an isometry.

Lemma 4.5 Let h�; �ij be scalar products on C j ; j D 0; : : : ; d , such that the chirality
operator � is self-adjoint. Then

(4–4) k�
�
kDet.H �.@// D 1:

Proof By definition,

(4–5) k�
�
kDet.H �.@// D kc�kDet.C �/:

Let k � kj denote the norm on Det.C j / induced by h�; �ij . Since � is a self-adjoint
involution it is also a unitary operator, ie, for every x 2Det.C j / we have k�xkd�j D

kxkj . Hence, from (4–1) we get kc
�
kDet.C �/D 1. The lemma follows now from (4–5).

The above lemma explains why we call �
�

the refined torsion: the classical com-
binatorial torsion of Milnor [25] is an element � of Det.H �.@//, defined up to a
multiplication by t 2 k with jt j D 1, such that k�kDet.H �.@// D 1. The refined torsion
�
�

is a choice of a particular element of Det.H �.@// with norm 1.

4.6 The refined torsion of a direct sum

Lemma 4.7 Let .C �; @/ and . zC �; z@/ be length d D 2r � 1 complexes of finite
dimensional k–vector spaces and let �W C �!C � , z�W zC �! zC � be chirality operators.
Then y� WD � ˚ z�W C � ˚ zC � ! C � ˚ zC � is a chirality operator on the direct sum
complex .C �˚ zC �; @˚ z@/ and

(4–6) �
y�
D �

H �.@/;H �.z@/

�
�
�
˝ �

z�

�
:

Proof Clearly, y�2 D 1 and y�.C j ˚ zC j /D C d�j ˚ zC d�j . Hence, y� is a chirality
operator. By Lemma 2.7, to prove (4–6) it is enough to show that

(4–7) cy� D �C �; zC �
.c� ˝ cz�/:
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For each j D 0; : : : ; r � 1, fix nonzero elements cj 2 Det.C j /; zcj 2
zC j and set

ycj D �C j ; zC j
.cj ˝zcj /. Recall that we denoted the operators induced by � and z� on

Det.C �/ and Det. zC �/ by the same letters. Thus,

y�ycj D .�˚ z�/ ı�C j ; zC j
.cj ˝zcj /D �C d�j ; zC d�j .�cj ˝

z�zcj /:

By (2–8),
��1

C j ; zC j
.c�1

j ˝zc�1
j /D

�
�

C j ; zC j
.cj ˝zcj /

��1
:

Hence, it follows from (2–18) and (4–1) that

(4–8) �
C �; zC �

.c� ˝ cz�/D .�1/M.C �; zC �/CR.C �/CR. zC �/
� yc0˝yc

�1
1 ˝

� � �˝ yc
.�1/r�1

r�1
˝ y�.ycr�1/

.�1/r
˝ y�.ycr�2/

.�1/rC1

˝ � � �˝ y�.yc0/
�1

D .�1/M.C �; zC �/CR.C �/CR. zC �/�R.C �˚ zC �/
� cy� :

Using the isomorphisms �W C �!C d�� and z�W zC �! zC d�� one sees that dim C j D

dim C d�j and dim zC j D dim zC d�j . Therefore,

M.C �; zC �/D
X

0�k<j�d

dim C j
� dim zC k

D

X
0�k<j�d

dim C d�j
� dim zC d�k

D

X
0�k<j�d

dim C k
� dim zC j :

Hence,

M.C �; zC �/D
1

2

X
0�k 6Dj�d

dim C j
� dim zC k

D
1

2

h� dX
jD0

dim C j
�
�

� dX
jD0

dim zC j
�
�

dX
jD0

dim C j
� dim zC j

i

D
1

2

h�
2

r�1X
jD0

dim C j
�
�

�
2

r�1X
jD0

dim zC j
�
� 2

r�1X
jD0

dim C j
� dim zC j

i

�

r�1X
jD0

dim C j
� dim zC j mod 2:(4–9)

Using the identity (2–30), we obtain from (4–2)

(4–10) R.C �˚ zC �/�R.C �/�R. zC �/D
r�1X
jD0

dim C j
� dim zC j :
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Combining (4–9) and (4–10), we get

(4–11) M.C �; zC �/CR.C �/CR. zC �/�R.C �˚ zC �/� 0 mod 2:

The identity (4–7) follows now from (4–8).

4.8 Dependence of the refined torsion on the chirality operator

In this subsection kD C or R . Suppose that �t , t 2 R , is a smooth family of chirality
operators on the complex .C �; @/. Let P�t W C

�! C d�� denote the derivative of �t

with respect to t . Then, for each k D 0; : : : ; d , the composition P�t ı �t maps C k

into itself. In particular P�t ı�t W C
even!C even and P�t ı�t W C

odd!C odd . Define the
supertrace Trs. P�t ı�t / of P�t ı�t by the formula

(4–12) Trs. P�t ı�t / WDTr. P�t ı�t jC even/�Tr. P�t ı�t jC odd/D

dX
jD0

.�1/j Tr. P�t ı�t jC j /:

Proposition 4.9 Let .C �; @/ be a length d D 2r � 1 complex of finite dimensional
k–vector spaces and let �t , t 2 R, be a smooth family of chirality operators on C � .
Then the following equality holds

(4–13)
d

dt
�
�t
D

1

2
Trs. P�t ı�t / � ��t

:

Proof Let �t;j denote the restriction of �t to C j . Above we denoted the map
Det.C j /! Det.C d�j / induced by �t by the same symbol �t . To avoid confusion
we will not use that convention in this proof and denote this map by �Det

t;j .

For each j D 0; : : : ; r � 1, t0 2 R we have �t;j D �t;j ı�t0;d�j ı�t0;j and, hence,

(4–14)
d

dt

ˇ̌̌
tDt0

�Det
t;jD

d

dt

ˇ̌̌
tDt0

h
Det.�t;jı�t0;d�j /�

Det
t0;j

i
DTr. P�t0;jı�t0;d�j /�

Det
t0;j
;

where for the latter equality we used that for any smooth family of operators AtWC
d�j!

C d�j one has d
dt

Det.At / D Tr. PAtA
�1
t / �Det.At / and that ��1

t;j D �t;d�j . Hence,
for any nonzero element cj 2 Det.C j /, we have

(4–15)
d

dt

�
�Det

t;j .cj /
�˙1
D˙Tr. P�t;j ı�t;d�j / �

�
�Det

t;j .cj /
�˙1

:
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Using (4–15) and the equality .�1/jC1 D .�1/d�j we conclude from the definition
(4–1) of the element c

�t
that

(4–16)
d

dt
c
�t
D

r�1X
jD0

.�1/d�j Tr. P�t;j ı�t;d�j / � c�t
:

Since �t;j ı�t;d�j D 1 we obtain

0D
d

dt
Tr.�t;j ı�t;d�j /D Tr. P�t;j ı�t;d�j /CTr.�t;j ı

P�t;d�j /:

Hence,

(4–17) Tr. P�t;j ı�t;d�j /D�Tr. P�t;d�j ı�t;j /:

Combining (4–16) with (4–17), we obtain (4–13).

4.10 The refined torsion of the dual complex

Suppose now that k is endowed with an involutive endomorphism � , cf Section 3.
Let yC � be the � –dual complex of C and let ˛C � W Det.C �/! Det. yC �/ denote the
� –isomorphism defined in (3–16). Let �� be the � –adjoint of � , cf Section 3.3. Then
y� is a chirality operator for the complex yC � .

Lemma 4.11 In the situation described above,

(4–18) �
��
D ˛H �.@/.�� /:

Proof Fix cj 2 Det.C j /, j D 0; : : : ; r � 1, and set

(4–19) ycj D ˛
�1
C d�j

�
.�cj /

�1
�
2 Det. yC j /; j D 0; : : : ; r � 1:

Then, by (3–11),

(4–20) ��ycj D ˛
�1
C j
.c�1

j / 2 Det. yC d�j /; j D 0; : : : ; r � 1:

Using (3–8), we obtain from (4–19) and (4–20), that, for j D 0; : : : ; r � 1,

(4–21) ˇC j .cj /D .�1/dim C j
� .��ycj /

�1; ˇC d�j .�cj /D .�1/dim C j
� yc�1

j :

Combining (3–13), (4–1), (4–19), (4–20), and (4–21), we get

(4–22) ˛C �.c� /D .�1/M.C �/C
Pr�1

pD0 dim C 2p

� c
��
:

By definition (4–3), �
�
D �C �.c�/. Therefore, from Lemma 3.6, we obtain

(4–23) ˛H �.@/.�� /D � yC � ı˛C �.c� /D .�1/M.C �/C
Pr�1

pD0 dim C 2p

� �
��
:
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Since, by assumption �.C j /D C d�j , we have dim C j D dim C d�j . Hence,

r�1X
pD0

dim C 2p
D

1
2

dX
jD0

dim C j ;

and, by (3–14),

(4–24) M.C �/C

r�1X
pD0

dim C 2p
D

X
0�j<k�d

dim C j
� dim C k

C
1
2

dX
jD0

dim C j

D
1
2

dX
j ;kD0

dim C j
� dim C k

D
1
2

� dX
jD0

dim C j
�2
:

Using again the equality dim C j D dim C d�j , we obtain

dX
jD0

dim C j
D 2

r�1X
jD0

dim C j :

Hence, from (4–24) we get

(4–25) M.C �/C

r�1X
pD0

dim C 2p
D 2

� r�1X
jD0

dim C j
�2
� 0; mod 2:

Combining (4–23) with (4–25), we obtain (4–18).

5 Calculation of the refined torsion of a finite dimensional
complex

In this section we introduce a finite dimensional analogue of the Atiyah-Patodi-Singer
odd signature operator and express the refined torsion in terms of the determinant of
this operator.

Throughout the section we work under the assumptions of Section 4.1.

5.1 The signature operator

The signature operator B is defined by the formula

(5–1) B WD �@C @�:
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This is a direct analogue of the signature operator of an odd-dimensional manifold, cf
[1, page 44], [2, page 405], [19, pages 64–65]. See also Section 7 below.

For j D 0; : : : ; d define

(5–2)
C

j
C WD Ker

�
@ ı�

�
\C j

D �
�

Ker @\C d�j
�
;

C j
� WD Ker @\C j

and set C�1
C D C dC1

� D 0. Let Bj and B˙j denote the restriction of B to C j and C
j
˙

respectively. Then, for each j D 0; : : : ; d , one has

ImBCj � Im
�
� ı @jC j

�
� �

�
Ker @jC jC1

�
� C

d�j�1
C I(5–3)

ImB�j � Im
�
@ ı�jC j

�
� Im

�
@jC d�j

�
� C d�jC1
� :(5–4)

Hence,

(5–5) BCj D � ı @W C
j
C �! C

d�j�1
C ; B�j D @ ı�W C

j
� �! C d�jC1

� :

Denote C even WD
L

j even C j , C even
˙
WD
L

jeven C
j
˙

and set

(5–6)

Beven WD
M

j even

Bj W C
even
! C even;

B˙even WD
M

j even

B˙j W C
even
˙
! C even

˙
;

and define Bodd;B˙odd similarly. Note that Beven D � ı Bodd ı � . Hence, the whole
information about B is encoded in its even part Beven .

Lemma 5.2 Suppose that the signature operator BW C �! C � is bijective. Then the
complex .C �; @/ is acyclic and, for all j D 0; : : : ; d ,

(5–7) C j
D C

j
C˚C j

�:

Proof If c 2 C
j
C\C j

� , then it follows from (5–2) and the definition (5–1) of B that
Bc D 0. Hence, since B is injective, we obtain

(5–8) C
j
C\C j

� D f0g:

Similarly, from (5–2) and (5–1) we obtain ImB � C �C C C �� . Hence, since B is
surjective,

(5–9) C � D C �CCC ��:

Combining (5–8) and (5–9) we obtain (5–7).
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Let us now show that the complex .C �; @/ is acyclic. By (5–7),

(5–10) B D BCCB�:

By (5–3) and (5–4), ImB˙ � C �
˙

. Thus, since B D BCCB� is surjective, it follows
from (5–7), that ImB˙ D C �

˙
. The equality B� D @ ı� implies now that Im @ � C �� .

Hence, by (5–2), Im @ D C �� . Combining the latter equality with the definition (5–2)
of C �� , we obtain Im @ D Ker @ , proving the acyclicity of .C �; @/.

Remark 5.3 It is easy to construct an acyclic complex .C �; @/ and a chirality operator
� , so that the corresponding signature operator B is not bijective.

5.4 Calculation of the refined torsion in case B is bijective

Assume that the signature operator BW C �!C � is bijective. Then, by Lemma 5.2, the
complex .C �; @/ is acyclic. Hence, Det.H �.@// is canonically isomorphic to k and
the refined torsion �

�
can be viewed as a number in k. In this subsection we calculate

this number.

Definition 5.5 The graded determinant of the even part of the signature operator is
defined by the formula

(5–11) Detgr.Beven/D Det.BCeven/=Det.�B�even/:

Since � ıB�even ı� D B
C
odd and �2 D Id, we have Det.�B�even/D Det.�BCodd/ and

(5–12)

Detgr.Beven/D Det.BCeven/=Det.�BCodd/

D Det
�
.�1/r�1�@jC r�1

C

�.�1/r�1
r�1Y
jD1

Det
�
.�1/j�1�@j

C
j�1
C
˚C

d�j
C

�.�1/j�1

D .�1/.r�1/ dim C r�1
C Det

�
�@jC r�1

C

�.�1/r�1
r�1Y
jD1

Det
�
�@j

C
j�1
C
˚C

d�j
C

�.�1/j�1

;

where in the last equality we used that

Det
�
.�1/j�1�@j

C
j�1
C
˚C

d�j
C

�
D Det

�
�@j

C
j�1
C
˚C

d�j
C

�
since dim C

j�1
C D dim C

d�j
C .

Proposition 5.6 Suppose that the signature operator B is invertible and, hence, the
complex .C �; @/ is acyclic. Then

(5–13) �
�
D Detgr.Beven/:
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Proof Recall that �
�
D �C �.c� /, where c

�
is the element in Det.C �/ given by the

formula (4–1) and

�C � W Det.C �/ �! Det
�
H �.@/

�
' k

is defined by (2–13).

To compute �C �.c� /, we choose the decomposition (2–11) to be C j D C j
� ˚ C

j
C

and define elements c0; : : : ; cd as follows: For each j D 0; : : : ; d � 1, fix a nonzero
element aj 2 Det.C j

C/ and set

c0 D a0; cd D �a0; cj D �C j�;C
j
C

.�ad�j ˝ aj /; j D 1; : : : ; d � 1:

Note that, for each j D 1; : : : ; d ,

(5–14) �cj D �C
d�j
C

;C d�j
�

.ad�j ˝�aj /

D .�1/dim C
j
C
�dim C j��

C d�j
� ;C

d�j
C

.�aj ˝ ad�j /D .�1/dim C
j
C
�dim C j�cd�j :

Thus, from (4–1), we obtain

(5–15)

c
�
D .�1/R.C

�/
� c0˝ c�1

1 ˝ � � � c
.�1/r�1

r�1

˝ .�cr�1/
.�1/r

˝ .�cr�2/
.�1/r�1

˝ � � �˝ .�c0/
�1

D .�1/R.C
�/C

Pr�1
jD1 dim C

j
C
�dim C j�c0 ^ c�1

1 ^ � � � ^ cd�1 ^ c�1
d :

To compute �
�

we now need to calculate �C �.c0^c�1
1
^� � �^cd�1^c�1

d
/, ie, in view

of (2–14), we need to determine the elements hj 2Det.H j /' k which satisfy (2–12).

If L is a k–line and x;y 2L with y 6D 0, we denote by Œx W y� 2 k the unique number
such that x D Œx W y�y . Then, by (2–12), the elements hj 2 k, which appear in (2–14),
are given by

h0 D 1;(5–16)

hd D Œcd W @ad�1�D Œa0 W �@ad�1�;(5–17)

and, for j D 1; : : : ; d � 1,

(5–18)

hj D
�
cj W �C j�;C

j
C

.@aj�1˝ aj /
�

D
�
�

C j�;C
j
C

.�ad�j ˝ aj / W �C j�;C
j
C

.@aj�1˝ aj /
�

D
�
�ad�j W @aj�1

�
D
�
ad�j W �@aj�1

�
:
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By (5–17) and (5–18), for j D 1; : : : ; r � 1, we obtain

(5–19)

hj �hd�jC1 D
�
ad�j W�@aj�1

�
�
�
aj�1 W�@ad�j

�
D
�
�

C
d�j
C

;C
j�1
C

.ad�j˝aj�1/ W�C
d�j
C

;C
j�1
C

.�@aj�1˝�@ad�j

�
D .�1/dim C

d�j
C
� dim C

j�1
C Det.�@j

C
j�1
C
˚C

d�j
C

/�1:

By (5–18) we have

(5–20) hr D Det.� @jC r�1
C

/�1:

Combining (2–14), (5–16), (5–19), and (5–20), we obtain

(5–21) �C �.c0 ^ c�1
1 ^ � � � ^ cd�1 ^ c�1

d /

D .�1/N .C
�/ Det.�@jC r�1/.�1/r�1

�

r�1Y
jD1

Det.�@j
C
j�1
C
˚C

d�j
C

/.�1/j�1

:

From the definition (4–3) of �
�

and the identities (5–15), (5–21), we get

(5–22) �
�
D .�1/F.C

�/ Det.� @jC r�1/.�1/r�1

�

r�1Y
jD1

Det.� @j
C
j�1
C
˚C

d�j
C

/.�1/j�1

;

where

(5–23) F.C �/DN .C �/CR.C �/C
r�1X
jD0

dim C
j
C �dim C j

�C

r�1X
jD0

dim C
d�j
C �dim C

j�1
C :

As the maps @W C j�1
C ! C j

� and �W C d�j
C ! C j

� are isomorphisms, the last two
terms in (5–23) can be computed to be

(5–24)
r�1X
jD0

dim C
j
C � dim C j

�C

r�1X
jD0

dim C
d�j
C � dim C

j�1
C

D

r�1X
jD0

dim C
j
C � dim C

j�1
C C

r�1X
jD0

dim C j
� � dim C

j�1
C D

r�1X
jD0

dim C j
� dim C

j�1
C :

Since the map �@W C j
C! C

d�j�1
C is an isomorphism, for all j D 0; : : : ; r � 2 we

have

dim C
j
C �
�

dim C
j
CC .�1/jC1

�
D dim C

d�j�1
C �

�
dim C

d�j�1
C C .�1/d�j

�
:
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Hence, by formula (2–15) for N .C / and the fact that for any x 2 Z, x.x ˙ 1/ �

0.mod 2/, we obtain
(5–25)

N .C �/D
r�2X
jD0

dim C
j
C �
�

dim C
j
CC .�1/jC1

�
C

1
2

dim C r�1
C �

�
dim C r�1

C C .�1/r
�

�
1
2

dim C r�1
C �

�
dim C r�1

C C .�1/r
�

D
1
2

dim C r�1
C �

�
dim C r�1

C � 1
�
C

1
2
.1C .�1/r / � dim C r�1

C mod 2:

Next, using the isomorphism @W C
j�1
C ! C j

� we obtain from (5–7),

(5–26) dim C j
D dim C

j�1
C C dim C

j
C:

Hence, from definition (4–2) of R.C �/ and from identity (2–30), we get
(5–27)

R.C �/D
r�1X
jD0

h
1
2

dim C
j
C �
�

dim C
j
CC .�1/rCj

�
C

1
2

dim C
j�1
C �

�
dim C

j�1
C C .�1/rCj�1

�
C dim C

j
C � dim C

j�1
C

i
D

1
2

dim C r�1
C �

�
dim C r�1

C � 1
�
C

r�2X
jD0

.dim C
j
C/

2
C

r�1X
jD0

dim C
j
C � dim C

j�1
C :

By (5–26),

(5–28)
r�2X
jD0

.dim C
j
C/

2
C

r�1X
jD0

dim C
j
C � dim C

j�1
C

D

r�1X
jD1

h
.dim C

j�1
C /2C dim C

j
C � dim C

j�1
C

i
�

r�1X
jD0

dim C j
� dim C

j�1
C :

Hence, from (5–27), we get

(5–29) R.C �/� 1
2

dim C r�1
C �

�
dim C r�1

C � 1
�
C

r�1X
jD0

dim C j
� dim C

j�1
C ; mod 2:

Combining (5–25) and (5–29) and using again that x.x˙1/�0 for x 2Z, we conclude
that

(5–30) N .C �/CR.C �/�1
2
.1C.�1/r / dim C r�1

C C

r�1X
jD0

dim C j
� dim C

j�1
C ; mod 2:
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Since 1
2
.1C .�1/r /� r � 1 modulo 2, we conclude from (5–23), (5–24), and (5–30),

that
F.C �/� .r � 1/ dim C r�1

C ; mod 2:

The equality (5–13) follows now from (5–12) and (5–22).

5.7 Calculation of the refined torsion in case B is not bijective

In this section we don’t assume that B is bijective. In particular, the complex .C �; @/
is not necessarily acyclic. For simplicity, we restrict to the case kD C.

Consider the operator B2 . Note that B2 D .� @/2 C .@�/2 and B2.C j / � C j for
all j D 0; : : : ; d . For an arbitrary interval I � Œ0;1/ and j D 0; : : : ; d , we denote
by C

j
I � C j the span of the generalized eigenvectors of the restriction of B2 to C j

corresponding to eigenvalues � with j�j 2 I . Since both operators � and @ commute
with B and, hence, with B2 we have

�W C
j
I �! C

d�j
I ; @W C

j
I �! C

jC1
I :

Hence, we obtain a subcomplex C �I of C � and the restriction �I of � to C �I is a
chirality operator on this complex. Let @I , BI , and Beven

I denote the restriction of @ ,
B , and Beven to C �I . Then BI D �I @I C @I�I .

Lemma 5.8 If 0 62 I then the complex .C �I ; @I/ is acyclic.

Proof If x 2 Ker @I then B2x D .@�/2x 2 Im @I . Hence,

B2
I W Ker @I �! Im @I � Ker @I :

Since the operator B2
I W C

�
I ! C �I is invertible, we conclude that Ker @I D Im @I .

For each �� 0, the complex C � is a direct sum of the complex C �
Œ0;��

and the acyclic
complex C �

.�;1/
. In particular, H �

.�;1/
.@/D 0 and H �

Œ0;��
.@/'H �.@/. Hence, there

are canonical isomorphisms

ˆW Det.H �.�;1/.@// �! C; ‰W Det.H �Œ0;��.@// �! Det.H �.@//:

Lemma 5.9 For every t 2 Det.H �
.�;1/

.@//; h 2 Det.H �
Œ0;��

.@//

(5–31) ˆ.t/ �‰.h/D �H �
.�;1/

.@/;H �
Œ0;��

.@/.t ˝ h/:
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Proof Since H �
.�;1/

.@/D 0, it follows from (2–19), that

M.H �.�;1/.@/;H
�
Œ0;��/D 0:

The lemma follows now from the definition (2–18) of the fusion isomorphism.

In the sequel we will not distinguish between t 2 Det.H �
.�;1/

.@// and ˆ.t/ 2 C and
write simply t for ˆ.t/. Similarly, for h 2 Det.H �

Œ0;��
.@// we will denote by h also

the element ‰.h/ 2 Det.H �.@//.

From Lemma 4.7, Proposition 5.6, and Lemma 5.9, we immediately obtain the following
Proposition.

Proposition 5.10 Let .C �; @/ be a complex of finite dimensional complex vector
spaces and let � be a chirality operator on C � . Then, for each �� 0,

(5–32) �
�
D Detgr.Beven

.�;1// � ��Œ0;��
;

where, as above, we view �
�
Œ0;��

as an element of Det.H �.@// via the canonical
isomorphism ‰W Det.H �

Œ0;��
.@//! Det.H �.@//.

6 Preliminaries on determinants and the �–invariant of ellip-
tic operators

In this section we briefly review the main facts about the �–regularized determinants
and �–invariants of non self-adjoint elliptic operators. In particular, we define a sign-
refined version of the graded determinant – a notion, which plays a central role in this
paper. We refer the reader to of [9, Sections 3 and 4] for a more detailed discussion of
the subject.

Let E be a complex vector bundle over a smooth compact manifold M and let
DW C1.M;E/ ! C1.M;E/ be an elliptic differential operator of order m � 1.
Denote by �.D/ the leading symbol of D .

6.1 Choice of an angle

Our aim is to define the �–function and the determinant of D . For this we will need
to define the complex powers of D . As usual, to define complex powers we need to
choose a spectral cut in the complex plane. We restrict ourselves to the spectral cuts
given by a ray

(6–1) R� D
˚
�ei�

W 0� � <1
	
; 0� � < 2�:

Consequently, we have to choose an angle � 2 Œ0; 2�/.
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Definition 6.2 The angle � is a principal angle for an elliptic operator D if

spec
�
�.D/.x; �/

�
\R� D∅; for all x 2M; � 2 T �x M nf0g:

If I � R we denote by LI the solid angle

LI D
˚
�ei�

W 0< � <1; � 2 I
	
:

The existence of a principal angle is an additional assumption on D . Since M is
compact every operator which possesses a principal angle has a discrete spectrum.

Definition 6.3 The angle � is an Agmon angle 1 for an elliptic operator D if it is a
principal angle for D and there exists " > 0 such that

spec.D/\LŒ��";�C"� D∅:

If � is a principal angle for D , then, cf Seeley [31] or Shubin [32], there exists " > 0

such that spec.D/\LŒ��";�C"� is finite and spec.�.D//\LŒ��";�C"� D ∅. Hence
there exists an Agmon angle � 0 2 .� � "; � C "/ for D .

6.4 �–function and determinant

Assume that � is an Agmon angle for D . Let …W L2.M;E/! L2.M;E/ denote
the spectral projection of D corresponding to all nonzero eigenvalues of D . The
�–function �� .s;D/ of D is defined as follows.

Since, by assumption, D possesses a principal angle, its spectrum is discrete. Hence,
there exists a small number �0 > 0 such that

spec.D/\
˚
z 2 CI jzj< 2�0

	
� f0g:

Define the contour � D��;�0
�C consisting of three curves � D�1[�2[�3 , where

(6–2)

�1 D
˚
�ei�

W 1> � � �0

	
;

�2 D
˚
�0ei˛

W � < ˛ < � C 2�
	
;

�3 D
˚
�ei.�C2�/

W �0 � � <1
	
:

For Re s > dim M
m

, the operator

(6–3) …D�s
� D

i

2�

Z
��;�0

��s.D��/�1d�

1Note that in the literature the notion of Agmon angle is often defined differently, namely it is required,
in addition, that zero is nor in the spectrum of the operator.
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is a pseudo-differential operator with continuous kernel K� .sIx;y/, cf [31; 32]. In
particular, the operator …D�s

�
is of trace class.

We define

(6–4) �� .s;D/D Tr…D�s
� D

Z
M

tr K� .sIx;x/dx; Re s >
dim M

m
:

It was shown by Seeley [31] (see also [32]) that �� .s;D/ has a meromorphic extension
to the whole complex plane and that 0 is a regular value of �� .s;D/.

More generally, let Q be a pseudo-differential operator of order q . We set

(6–5) �� .s;Q;D/D Tr Q…D�s
� ; Re s > .qC dim M /=m:

This function also has a meromorphic extension to the whole complex plane, see
Wodzicki [40, Section 3.22] and Grubb–Seeley [20, Theorem 2.7] (see also Guillemin
[21]). Moreover, if Q is a 0th order pseudo-differential projection, ie a 0th order
pseudo-differential operator satisfying Q2 D Q, then by Wodzicki [39, Section 7],
[40] (see also Brüning–Lesch [10] or Ponge [27] for a shorter proof), �� .s;Q;D/ is
regular at 0.

If the dimension of M is odd and D is a bijective differential operator of even order,
then �� .0;D/D 0, cf Seeley [31]. More generally, we have the following

Proposition 6.5 Suppose dim M is odd, DW C1.M;E/!C1.M;E/ is an elliptic
differential operator of even order m � 2, � is an Agmon angle for D , and P is a
finite rank pseudo-differential projection which commutes with D . Set Q D Id�P

and assume that the restriction DjIm Q of D to the image of Q defines an invertible
operator DjIm QW IM Q! Im Q. Then,

(6–6) �� .0;Q;D/D� rank.Id�Q/:

In particular, if m0 denotes the dimension of the span of the generalized eigenvectors
of D corresponding to the eigenvalue �D 0 (ie m0 is the algebraic multiplicity of the
eigenvalue �D 0 of D ), then

(6–7) �� .0;D/D�m0:

Proof If " 6D 0 is a small enough real number, then DC " is an invertible differential
operator of even order and � is an Agmon angle for DC ". Hence, �� .0;DC "/D 0,
cf [31]. Clearly,

(6–8) �� .0;Q;DC "/D �� .0;DC "/� rank.Id�Q/D� rank.Id�Q/:
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Since 0 is not an eigenvalue of the restriction of D to the image of Q, we have

(6–9) lim
"!0

�� .0;Q;DC "/D �� .0;Q;D/:

Combining (6–8) and (6–9), we obtain (6–6).

Definition 6.6 The � -regularized determinant of D is defined by the formula

(6–10) Det0� .D/ WD exp
�
�

d

ds

ˇ̌̌
sD0

�� .s;D/

�
:

Roughly speaking, (6–10) says that the logarithm log Det0
�
.D/ of the determinant of

D is equal to ��0
�
.0;D/. However, the logarithm is a multivalued function. Hence,

log Det0
�
.D/ is defined only up to a multiple of 2� i , while ��0

�
.0;D/ is a well defined

complex number. We denote by LDet0
�
.D/ the particular value of the logarithm of the

determinant such that

(6–11) LDet0� .D/D�
d

ds

ˇ̌̌
sD0

�� .s;D/:

Let us emphasize that the equality (6–11) is the definition of the number LDet0
�
.D/.

Remark 6.7 The prime in Det0
�
.D/ and LDet0

�
.D/ indicates that we ignore the zero

eigenvalues of D in the definition of the regularized determinant. If the operator D is
invertible we usually omit the prime and write Det� .D/ and LDet� .D/ instead.

We will need the following generalization of Definition 6.6.

Definition 6.8 Suppose Q is a 0th order pseudo-differential projection commuting
with D . Then V WD Im Q is a D invariant subspace of C1.M;E/. The �–regularized
determinant of the restriction DjV of D to V is defined by the formula

(6–12) Det0� .DjV / WD eLDet0
�
.DjV /;

where

(6–13) LDet0� .DjV /D�
d

ds

ˇ̌̌
sD0

�� .s;Q;D/:

As in Remark 6.7, if the restriction of D to V defines an invertible operator DjV W V !

V , we usually omit the prime in the notation for the numbers (6–12) and (6–13) and
write Det� .DjV / and LDet� .DjV / instead.

Remark 6.9 The right hand side of (6–13) is independent of Q except through
Im.Q/. This justifies the notation LDet0

�
.DjV /. However, we need to know that V is

the image of a 0th order pseudo-differential projection Q to ensure that �� .s;D/ has
a meromorphic extension to the whole s–plane with s D 0 being a regular point.
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6.10 Spectral subspaces

We will often use Definition 6.8 in the following special situation. For � � 0 let
…D;Œ0;�� denote the spectral projection of D corresponding to the set fz 2C W jzj � �g.
It is given by the Cauchy integral

…D;Œ0;�� D
i

2�

Z 2�

0

�
D� .�C "/ei�

��1
d�;

where ">0 is small enough so that there are no eigenvalues of D with absolute value in
the interval .�; �C "�. Since the operator D is an elliptic differential operator of order
> 0, the image of …D;Œ0;�� is finite dimensional and consists of smooth sections. We
denote by C1

Œ0;��
.M;E/�C1.M;E/ the image of …D;Œ0;�� . Note that C1

Œ0;��
.M;E/

is equal to the span of the generalized eigenvectors of D corresponding to eigenvalues
with absolute value � �.

Define the projections

(6–14)
…D;.�;1/ D Id�…D;Œ0;��;

…D;.�;�� D…D;Œ0;���…D;Œ0;��; for �� �:

The range of …D;.�;�� is finite dimensional and contained in C1.M;E/. It is equal to
the span of the generalized eigenvectors of D with eigenvalues � such that �< j�j ��.
The range of …D;.�;1/ is infinite dimensional and contains the span of the generalized
eigenvectors of D with eigenvalues whose absolute value is greater than �, cf Ponge
[27, Appendix B].

Let now I be an interval of the form Œ0; ��; .�; ��, or .�;1/. Then …D;I maps
smooth sections to smooth sections and the space

C1I .M;E/ WD…D;I
�
C1.M;E/

�
� C1.M;E/

is D invariant. Let DI denote the restriction of D to the space C1I .M;E/. Note
also that DI is invertible whenever 0 62 I .

Definition 6.8 gives us the determinant Det0
�
.DI/. Clearly, for any 0� �� �,

(6–15) Det�
�
D.�;1/

�
D Det�

�
D.�;��

�
�Det�

�
D.�;1/

�
:

6.11 Dependence of the determinant on the angle

Assume that � is a principal angle for D . Then, cf [31; 32], for any " > 0, we can
choose an Agmon angle � 0 2 .� � "; � C "/ for D . Let � 00 > � 0 be another Agmon
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angle for D such that all the angles in the interval Œ� 0; � 00� are principal for D . Then
cf for example, [9, Section 3.10],

(6–16)
d

ds

ˇ̌̌
sD0

�� 0.s;D/�
d

ds

ˇ̌̌
sD0

�� 00.s;D/ mod 2� i:

Hence, by Definition 6.6,

(6–17) Det0� 00.D/D Det0� 0.D/:

Note that the equality (6–17) holds because both angles, � 0 and � 00 , are close to a
given principal angle � so that the intersection spec.D/\LŒ� 0;� 00� is finite. If there
are infinitely many eigenvalues of D in the solid angle LŒ� 0;� 00� then Det0

� 0
.D/ and

Det0
� 00
.D/ might be different.

6.12 Graded determinant

Let DW C1.M;E/! C1.M;E/ be a differential operator. Suppose that

Qj W C
1
! C1.M;E/;

with (j D 0; : : : ; d ) are 0th order pseudo-differential projections commuting with D .
Set Vj WD Im Qj and assume that C1.M;E/D

Ld
jD0 Vj .

Definition 6.13 Assume � 2 Œ0; 2�/ is an Agmon angle for the operator .�1/j DjVj ,
for every j D 0; : : : ; d . The graded determinant Det0gr;� .D/ of D (with respect to the
grading defined by the pseudo-differential projections Qj ) is defined by the formula

(6–18) Det0gr;� .D/ WD e
LDet0gr;� .D/;

where

(6–19) LDet0gr;� .D/ WD

dX
jD0

.�1/j LDet0�
�
.�1/j DjVj

�
:

The following is an important example of the above situation. Let E D
Ld

jD0 Ej be a
graded vector bundle over M . Suppose that for each j D 0; : : : ; d , there is a bijective
elliptic differential operator

Dj W C
1.M;Ej / �! C1.M;Ej /;

such that � 2 Œ0; 2�/ is an Agmon angle for .�1/j Dj for all j D 0; : : : ; d . We denote
by

(6–20) D D

dM
jD0

Dj W C
1.M;E/ �! C1.M;E/
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the direct sum of the operators Dj . Then (6–19) reduces to

(6–21) LDet0gr;� .D/D

dX
jD0

.�1/j LDet0�
�
.�1/j Dj

�
:

6.14 Case of a self-adjoint leading symbol

Let hE be a Hermitian metric on the bundle E!M and assume that the principal
symbol �.D/.x; �/ of the elliptic operator D is self-adjoint, ie,

(6–22) �.D/�.x; �/D �.D/.x; �/; .x; �/ 2 T �M;

where �.D/�.x; �/ denotes the adjoint of the operator �.D/.x; �/ with respect to
the scalar product hE . This assumption implies that D can be written as a sum
D DD0CA where D0 is a self-adjoint differential operator of order m and A is a
differential operator of order smaller than m. If the leading symbol of D is self-adjoint
then any angle � 6D 0; � is principal for D .

Though the operator D is not self-adjoint in general, the assumption (6–22) guarantees
that it has nice spectral properties, cf Markus [24, Section I.6] and [9, Section 3.9].
Though many of the results of this paper remain valid for arbitrary elliptic differential
operators which possess an Agmon angle, for simplicity of notation we will often
assume that our operators have a self-adjoint leading symbol.

6.15 �–invariant

It is well known, cf Singer–Dirac [33] or Wojciechowski [41], that the phase of the
determinant of a self-adjoint elliptic differential operator D can be expressed in terms
of the �–invariant of D and the �–function of D2 . We now extend this result to non
self-adjoint operators.

First, we recall the definition of the �–function of D for a non-self-adjoint operator, cf
Gilkey [19].

Definition 6.16 Let DW C1.M;E/!C1.M;E/ be an elliptic differential operator
of order m � 1 with self-adjoint leading symbol. Assume that � is an Agmon angle
for D (cf Definition 6.3). Let …> (resp. …< ) be a pseudo-differential projection
whose image contains the span of all generalized eigenvectors of D corresponding to
eigenvalues � with Re� > 0 (resp. with Re� < 0) and whose kernel contains the span
of all generalized eigenvectors of D corresponding to eigenvalues � with Re� � 0

(resp. with Re� � 0), cf [27, Appendix B]. We define the �–function of D by the
formula

(6–23) �� .s;D/D �� .s;…>;D/� �� .s;…<;�D/:
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Note that, by definition, the purely imaginary eigenvalues of D do not contribute to
�� .s;D/.

It was shown by Gilkey, [19], that �� .s;D/ has a meromorphic extension to the whole
complex plane C with isolated simple poles, and that it is regular at 0. Moreover, the
number �� .0;D/ is independent of the Agmon angle � .

Since the leading symbol of D is self-adjoint, the angles ˙�=2 are principal angles
for D , cf Definition 6.2. In particular, there are at most finitely many eigenvalues of
D on the imaginary axis.

Let mC.D/ (resp., m�.D/) denote the number of eigenvalues of D , counted with
their algebraic multiplicities, on the positive (resp., negative) part of the imaginary axis.
Let m0.D/ denote algebraic multiplicity of 0 as an eigenvalue of D .

Definition 6.17 The �–invariant �.D/ of D is defined by the formula

(6–24) �.D/D 1
2
.�� .0;D/CmC.D/�m�.D/Cm0.D//:

As �� .0;D/ is independent of the choice of the Agmon angle � for D , cf [19], so is
�.D/.

Let D.t/ be a smooth 1–parameter family of elliptic operators with self-adjoint leading
symbol. Then �.D.t// is, in general, not smooth but may have integer jumps when
eigenvalues cross the imaginary axis or cross 0 along the imaginary axis. Because of
this, the �–invariant is usually considered modulo integers. However, in this paper
we will be interested in the number ei��.D/ , which changes its sign when �.D/ is
changed by an odd integer. Hence, we will consider the �–invariant as a complex
number.

Remark 6.18 Note that our definition of �.D/ is slightly different from the one
proposed by Gilkey in [19]. In fact, in our notation, Gilkey’s �–invariant is given
by �.D/Cm�.D/. Hence, reduced modulo integers, the two definitions coincide.
However, the number ei��.D/ will be multiplied by .�1/m�.D/ if we replace one
definition by the other. In this sense, Definition 6.17 can be viewed as a sign refinement
of the definition given in [19].

6.19 Relationship between the �–invariant and the determinant

Since the leading symbol of D is self-adjoint, the angles ˙�=2 are principal for D .
Hence, there exists an Agmon angle � 2 .��=2; 0/ such that there are no eigenvalues
of D in the solid angles L.��=2;�� and L.�=2;�C�� . Then 2� is an Agmon angle for
the operator D2 .
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Theorem 6.20 Let DW C1.M;E/! C1.M;E/ be an elliptic differential operator
of order m� 1 with self-adjoint leading symbol. Assume � 2 .��=2; 0/ is an Agmon
angle for D such that there are no eigenvalues of D in the solid angles L.��=2;��
and L.�=2;�C�� (Hence, there are no eigenvalues of D2 in the solid angle L.��;2�� ).
Then2

(6–25) LDet0� .D/D
1
2

LDet02� .D
2/� i�

�
�.D/�

�2� .0;D
2/Cm0.D/

2

�
:

In particular,

(6–26) Det0� .D/D e�
1
2
�0

2�
.0;D2/

� e�i�.�.D/�
�2� .0;D

2/Cm0.D/

2
/:

In the case when D is invertible the theorem is proven in [9, Section 4]. The same
arguments without any changes prove Theorem 6.20 in the general case.

Remark 6.21
(a) Let � be as in Theorem 6.20 and suppose that � 0 2 .��; 0/ is another angle

such that both � 0 and � 0C� are Agmon angles for D . Then, by (6–17),

(6–27)
Det0� 0.D/D Det0� .D/;

�02� .0;D
2/� �02� 0.0;D

2/ mod 2� i:

In particular,

(6–28) e�
1
2
�0

2�0
.0;D2/

D˙e�
1
2
�0

2�
.0;D2/:

Clearly, ��1
.0;D2/D ��2

.0;D2/ if there are finitely many eigenvalues of D2

in the solid angle LŒ�1;�2� . Hence, �2� .0;D2/D �2� 0.0;D
2/. We then conclude

from (6–26), (6–27), and (6–28) that

(6–29) Det0� 0.D/D˙e�
1
2
�0

2�0
.0;D2/

� e�i�.�.D/�
�2�0 .0;D

2/Cm0.D/

2
/:

In other words, for (6–26) to hold we need the precise assumption on � which
are specified in Theorem 6.20. But “up to a sign” it holds for every spectral cut
in the lower half plane.

(b) If instead of the spectral cut R� in the lower half-plane we use the spectral cut
R�C� in the upper half-plane we will get a similar formula

(6–30) LDet0�C�.D/D
1
2

LDet02� .D
2/C i�

�
�.D/�

�2� .0;D
2/Cm0.D/

2

�
;

2Recall that we denote by LDet0
�
.D/ the particular branch of the logarithm of the determinant of D

defined by formula (6–11).
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whose proof is a verbatim repetition of the proof of (6–25), cf [9, Section 4].

(c) If the dimension of M is odd, then, in view of Proposition 6.5, �2� .0;D2/D

�m0.D/. Hence, (6–25) simplifies to

(6–31) LDet0� .D/D
1
2

LDet02� .D
2/� i��.D/:

6.22 �–invariant and graded determinant

Suppose now that D D
Ld

jD0 Dj is as in (6–20). Choose � 2 .��=2; 0/ such that
there are no eigenvalues of Dj in the solid angles L.��=2;�� and L.�=2;�C�� for every
0� j � d . From Definition 6.17 of the �–invariant it follows that

�.�Dj /D��.Dj /Cm0.Dj /:

Combining this latter equality with (6–21) and (6–25) we obtain

(6–32) LDet0gr;� .D/D
1
2

dX
jD0

.�1/j LDet02� .D
2
j /

� i�
�
�.D/�

m0.D/

2
�

1
2

dX
jD0

.�1/j�2� .0;D
2
j /
�
;

where �.D/ D
Pd

jD0 �.Dj / is the �–invariant of the operator D D
Ld

jD0 Dj and

m0.D/D
Pd

jD0 m0.Dj / is the algebraic multiplicity of 0 as an eigenvalue of D .

Finally, note that, by Remark 6.21(c), if the dimension of M is odd, and all the
operators Dj are invertible (so that m0.Dj /D 0), then (6–32) takes the form

(6–33) LDetgr;� .D/D
1
2

dX
jD0

.�1/j LDet2� .D
2
j /� i��.D/:

6.23 Generalization

The definition (6–24) of the �–invariant easily generalizes to operators acting on a
subspace of the space C1.M;E/ of smooth sections of the vector bundle E , cf [9,
Section 4.10].

Let DW C1.M;E/!C1.M;E/ be an elliptic differential operator with a self-adjoint
leading symbol. Let QW C1.M;E/!C1.M;E/ be a 0-th order pseudo-differential
projection commuting with D . Then V WD Im Q � C1.M;E/ is a D–invariant
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subspace. Let …> and …< be as in Definition 6.16. Let � be as in Section 6.22 and
set

�� .s;DjV /D �� .s;Q…>;D/� �� .s;Q…<;�D/;(6–34)

�.DjV /D
1
2
.�� .0;DjV /CmC.DjV /�m�.DjV /Cm0.DjV //:(6–35)

Then, cf [9, Section 4.10],

(6–36) LDet0� .DjV /

D
1
2

LDet02� .D
2
jV /� i�

�
�.DjV /�

�2� .0;D
2jV /Cm0.DjV /

2

�
;

where we used the notation

(6–37) �2� .s;D
2
jV /D �2� .s;Q;D

2/;

cf (6–5).

Note, however, that an analogue of (6–31) does not necessarily hold in this case even
if dim M is odd, because �2� .s;D2jVj / defined by (6–37), is not a �–function of a
differential operator and Proposition 6.5 does not necessarily hold.

Finally, suppose that V D
Ld

jD0 Vj is given as in Definition 6.13. Then

(6–38)

LDet0gr;� .D/D
1
2

dX
jD0

.�1/j LDet02� .D
2
jVj /

� i�
�
�.DjV /�

m0.DjV /

2
�

1
2

dX
jD0

.�1/j�2� .0;D
2
jVj /

�
;

where �.DjV /D
Pd

jD0 �.DjVj / and m0.DjV /D
Pd

jD0 m0.DjVj /.

7 The graded determinant of the odd signature operator

In this section we define the graded determinant of the Atiyah–Patodi–Singer odd
signature operator, [2; 19], of a flat vector bundle E over a closed oriented Riemannian
manifold M . We also use this determinant to define an element � of the determinant
line of the cohomology of the bundle E . Our definition is based on the formula which
relates the graded determinant of the signature operator and the refined torsion in the
finite dimensional setting, cf Proposition 5.10. In Section 11 we will show that, if E

admits an invariant Hermitian metric, then the Ray–Singer norm of � is equal to 1.
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Thus the element � can be viewed as a refinement of the Ray–Singer metric. In general,
however, it might depend on the Riemannian metric on M . In subsequent sections
we study the metric anomaly of � , use it to “correct” � , and then define a differential
invariant of the flat bundle E – a metric independent element of the determinant line
of the cohomology, called the refined analytic torsion.

7.1 Setting

Let M be a smooth closed oriented manifold of odd dimension d D 2r � 1 and let
E!M be a complex vector bundle over M endowed with a flat connection r . We
denote by r also the induced differential

rW ��.M;E/ �!��C1.M;E/;

where �k.M;E/ denotes the space of smooth differential forms on M of degree k

with values in E .

7.2 Odd signature operator

Fix a Riemannian metric gM on M and let �W ��.M;E/! �d��.M;E/ denote
the Hodge �–operator. Define the chirality operator � D �.gM /W ��.M;E/ !

��.M;E/ by the formula

(7–1) �! WD ir .�1/
k.kC1/

2 �!; ! 2�k.M;E/;

with r given as above by r D 1
2
.d C 1/. This operator is equal to the operator defined

in [3, Section 3.2] as one can see by applying [3, Proposition 3.58] in the case dim M

is odd. In particular, �2 D 1.

Definition 7.3 The odd signature operator is the operator

(7–2) B D B.r;gM / WD �r Cr�W ��.M;E/ �!��.M;E/:

We denote by Bk the restriction of B to the space �k.M;E/.

More explicitly, the value of the odd signature operator on a form ! 2�k.M;E/ is
given by the formula
(7–3)
Bk! WD ir .�1/

k.kC1/
2
C1
�
.�1/k �r �r �

�
! 2�d�k�1.M;E/˚�d�kC1.M;E/:

The odd signature operator was introduced by Atiyah, Patodi, and Singer, [1, page 44],
[2, page 405], in the case when E is endowed with a Hermitian metric invariant with
respect to r (ie invariant under parallel transport by r ). The general case was studied
by Gilkey, [19, pages 64–65].
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Lemma 7.4 Suppose that E is endowed with a Hermitian metric hE . Denote by h�; �i
the scalar product on ��.M;E/ induced by hE and the Riemannian metric gM on
M . Then

(1) B is elliptic and its leading symbol is symmetric with respect to the Hermitian
metric hE .

(2) If, in addition, the metric hE is invariant with respect to the connection r , then
B is symmetric with respect to the scalar product h�; �i,

B� D B:

If the metric hE is not invariant, then, in general, B is not symmetric.

The proof of the lemma is a simple calculation. The first part is already stated in [2,
page 405]. The second part is proven in the Remark on page 65 of [19].

7.5 Decomposition of the odd signature operator

Set

�even.M;E/ WD

r�1M
pD0

�2p.M;E/; �odd.M;E/ WD

rM
pD1

�2p�1.M;E/;

Beven WD

r�1M
pD0

B2pW �
even.M;E/ �!�even.M;E/;

Bodd WD

rM
pD1

B2p�1W �
odd.M;E/ �!�odd.M;E/:

Since �2 D 1 we obtain

(7–4) Bodd D � ıBeven ı�
ˇ̌
�odd.M;E/

:

Hence, the whole information about the odd signature operator is encoded in its even
part Beven . The operator Beven can be expressed by the following formula, which is
slightly simpler than (7–3).

(7–5) Beven! WD ir .�1/pC1
�
�r �r �

�
!; for ! 2�2p.M;E/:

Note that for each k D 0; : : : ; d , the operator B2 maps �k.M;E/ into itself. Suppose
I is an interval of the form Œ0; ��; .�; ��, or .�;1� (�� �� 0). Then …B2;I is the
spectral projection of B2 corresponding to I , cf Section 6.10. Set

��I.M;E/ WD…B2;I
�
��.M;E/

�
���.M;E/:
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Recall from Section 6.10, that if the interval I is bounded, then the space ��I.M;E/

is finite dimensional and is equal to the span of the generalized eigenforms of B2

corresponding to eigenvalues with absolute value � �. In general, ��I.M;E/ contains
the span of the eigenforms of B2 corresponding to eigenvalues whose absolute value
lies in I .

For each k D 0; : : : ; d , set

(7–6)
�k
C;I.M;E/ WD Ker.r�/\�k

I.M;E/D
�
�.Kerr/

�
\�k

I.M;E/I

�k
�;I.M;E/ WD Ker.�r/\�k

I.M;E/D Kerr \�k
I.M;E/:

Clearly,

(7–7) �k
I.M;E/D�k

C;I.M;E/˚�k
�;I.M;E/; if 0 62 I:

We consider the decomposition (7–7) as a grading 3 of the space ��I.M;E/, and
refer to �k

C;I.M;E/ and �k
�;I.M;E/ as the positive and negative subspaces of

�k
I.M;E/.

As both, � and r , commute with B2 , we conclude that, for k D 0; : : : ; d ,

(7–8) �W �k
˙;I.M;E/ �!�d�k

�;I .M;E/;

and

(7–9) rW �k
˙;I.M;E/ �!�kC1

�;I .M;E/:

Denote by BI
k

the restriction of B to �k
I.M;E/ and by B˙;I

k
the restriction of B to

�k
˙;I.M;E/. Then

BC;I
k
W �k
C;I.M;E/ �!�d�k�1

C;I .M;E/; ! 7! �r!I

B�;I
k
W �k
�;I.M;E/ �!�d�kC1

�;I .M;E/; ! 7! r�!:

7.6 Graded determinant of the odd signature operator

Let I be an interval of the form Œ0; ��, .�; ��, or .�;1� (�� �� 0) and define

�even
˙;I.M;E/D

r�1M
pD0

�
2p
˙;I.M;E/:

3Note, that our grading is opposite to the one considered in [11, Section 2].
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Let BI , BIeven , and BIodd denote the restrictions of B to the subspaces ��I.M;E/,
�even
I .M;E/, and �odd

I .M;E/ respectively. Then

BIevenW �
even
˙;I.M;E/ �!�even

˙;I.M;E/:

Let B˙;Ieven denote the restriction of BIeven to the space �even
˙;I.M;E/. Clearly, the

operators B˙;Ieven are bijective whenever 0 62 I .

By Definition 5.5 and Definition 6.13, for every I , the graded determinant of BIeven is
given by the formula

(7–10) Det0gr;� .B
I
even/ WD e

LDet0gr;� .B
I
even/;

where � 2 .��; 0/ is an Agmon angle for the operator BIeven , and

(7–11) LDet0gr;� .B
I
even/ WD LDet0�

�
BC;Ieven

�
�LDet0�

�
�B�;Ieven

�
2 C:

Clearly, for 0� �� �, we have

(7–12) Detgr;� .B.�;1/even /D Detgr;� .B.�;��even / �Detgr;� .B.�;1/even /:

Note also that since the rank of B.�;��even is finite, Detgr;� .B
.�;��
even / is independent of �

and is equal to the product of the eigenvalues of B.�;��even .

7.7 The canonical element of the determinant line

Since the covariant differentiation r commutes with B , the subspace ��I.M;E/ is a
subcomplex of the twisted de Rham complex .��.M;E/;r/. Clearly, for each �� 0,
the complex ��

.�;1/
.M;E/ is acyclic. Since

(7–13) ��.M;E/D��Œ0;��.M;E/˚��.�;1/.M;E/;

the cohomology H �
Œ0;��

.M;E/ of the complex ��
Œ0;��

.M;E/ is naturally isomorphic
to the cohomology H �.M;E/ of ��.M;E/.

Let �I denote the restriction of � to ��I.M;E/. For each �� 0, let

(7–14) �
�
Œ0;��
D �

�
Œ0;��

.r;gM / 2 Det.H �Œ0;��.M;E//

denote the refined torsion of the finite dimensional complex .��
Œ0;��

.M;E/;r/ cor-
responding to the chirality operator �

Œ0;��
, cf Definition 4.3. We view �

�
Œ0;��

as an
element of Det.H �.M;E// via the canonical isomorphism between H �

Œ0;��
.M;E/

and H �.M;E/.

From Proposition 5.10, (7–12), and (6–17), we immediately obtain the following
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Proposition 7.8 Assume that � 2 .��; 0/ is an Agmon angle for the operator Beven .
Then the element

(7–15) �D �.r;gM / WD Detgr;� .B.�;1/even / � �
�
Œ0;��
2 Det.H �.M;E//

is independent of the choice of � � 0. Further, � is independent of the choice of the
Agmon angle � 2 .��; 0/ of Beven .

If the odd signature operator is invertible thenH �.M;E/D0. In this case,Det.H �.M;E//

is canonically isomorphic to C and �
�
f0g
D 1. Hence, � is a complex number which

coincides with the graded determinant Detgr;� .Beven/ D Detgr;� .B
.0;1/
even /. This case

was studied in [9].

8 Relationship with the �–invariant

In this section, we study the relationship between the graded determinant (7–10) and
the �–invariant of B.�;1/even . For the special case when B is bijective and �D 0 this
relationship was established in [9, Section 7].

To simplify the notation set

(8–1) �� D ��.r;g
M / WD �.B.�;1/even /;

and

(8–2)

�� D ��.r;g
M ; �/ WD 1

2

d�1X
jD0

.�1/j LDet2�
�
BC;.�;1/

d�j�1
ıBC;.�;1/j

�

D
1
2

d�1X
jD0

.�1/j LDet2�
�
.�r/2

ˇ̌̌
�
j

C;.�;1/
.M;E/

�
;

where � 2 .��=2; 0/ and both, � and � C� , are Agmon angles for Beven (hence, 2�

is an Agmon angle for B2
even ).

It is shown in [9, Section 8.4] that 4

(8–3)

�� WD
1
2

dX
jD0

.�1/jC1j LDet2�
h
.B.�;1//2

ˇ̌̌
�
j

.�;1/
.M;E/

i

D
1
2

dX
jD0

.�1/jC1j LDet2�
h�
.�r/2C .r�/2

�ˇ̌̌
�
j

.�;1/
.M;E/

i
:

4In [9] we only considered the case when B is bijective and �D 0 . But the arguments leading to [9,
formula (8.7)] work without any changes in our more general situation.
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Set

(8–4) dj ;� WD dim�
j

Œ0;��
.M;E/; j D 0; : : : ; d:

Proposition 8.1 Let r be a flat connection on a vector bundle E over a closed
Riemannian manifold .M;gM / of odd dimension d D 2r �1. Assume � 2 .��=2; 0/
is an Agmon angle for the odd signature operator B D B.r;gM / such that there are
no eigenvalues of B in the solid angles L.��=2;�� and L.�=2;�C�� . Then, for every
�� 0,

(8–5) LDetgr;� .B.�;1/even /D ��� i����
i�

2

dX
jD0

.�1/j jdj ;�:

Proof Since the operator B
.�;1/
even has no zero eigenvalues, we conclude from (6–38),

that to prove (8–5) it is enough to show the following two identities

2�� D LDet2� .BC;.�;1/even /2�LDet2� .B�;.�;1/even /2I(8–6)

�2�
�
0; .BC;.�;1/even /2

�
� �2�

�
0; .B�;.�;1/even /2

�
D

dX
jD0

.�1/j jdj ;�:(8–7)

A verbatim repetition of the arguments which led to [9, formula (7.17)] implies that

(8–8) �2�
�
s; .BC;.�;1/even /2

�
� �2�

�
s; .B�;.�;1/even /2

�
D

dX
jD0

.�1/jC1j �2�

�
s; .B.�;1//2

ˇ̌̌
�j .M;E/

�
:

From (8–3) and (8–8) we obtain

(8–9) 2�� D
d

ds

ˇ̌̌
sD0

h
�2�
�
s; .BCeven/

2
�
� �2�

�
s; .B�even/

2
�i
:

Hence (8–6) is established.

Combining (8–8) and Proposition 6.5 we obtain (8–7).

9 The metric anomaly of � and the definition of the refined
analytic torsion

In this section we study the dependence of the element �D�.r;gM / defined in (7–15)
on the Riemannian metric gM . In particular, we show that, if dim M D 2r � 1 �
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1.mod 4/, then � is independent of gM . We then use these results to construct the
refined analytic torsion – a canonical element of Det

�
H �.M;F /

�
which is independent

of the metric, ie, is a differential invariant of the flat vector bundle .E;r/.

9.1 Relationship between �.t/ and the �–invariant

Suppose that gM
t , t 2 R, is a smooth family of Riemannian metrics on M . Let

(9–1) �.t/D �.r;gM
t / 2 Det

�
H �.M;E/

�
be the canonical element defined in (7–15).

Let �t denote the chirality operator corresponding to the metric gM
t , cf (7–1), and let

B.t/D B.r;gM
t / denote the odd signature operator corresponding to the Riemannian

metric gM
t .

Fix t0 2R and choose �� 0 so that there are no eigenvalues of B.t0/2 whose absolute
values are equal to �. Then there exists ı > 0 such that the same is true for all
t 2 .t0 � ı; t0 C ı/. In particular, if we denote by ��

Œ0;��;t
.M;E/ the span of the

generalized eigenvectors of B.t/2 corresponding to eigenvalues with absolute value
� �, then dim��

Œ0;��;t
.M;E/ is independent of t 2 .t0� ı; t0C ı/. We set

(9–2) dj ;� WD dim�
j

Œ0;��;t
.M;E/; j D 0; : : : ; d; t 2 .t0� ı; t0C ı/:

By definition (7–15),

(9–3) �.t/D Detgr;�
�
B.�;1/even .t/

�
� �
�t;Œ0;��

:

For each t 2 .t0 � ı; t0C ı/ and � 2 .��=2; 0/, such that � and � C� are Agmon
angles for B.�;1/.t/, let us introduce the following short notation for the quantities
introduced in (8–1) and (8–2)

��.t; �/ WD ��.r;g
M
t ; �/; ��.t/ WD ��.r;g

M
t /:

Assume that �0 2 .��=2; 0/ is an Agmon angle for B.t0/DB.r;gM
t0
/ such that there

are no eigenvalues of B.t0/ in the solid angles L.��=2;�0� and L.�=2;�0C�/ . Choose
ı , if necessary, smaller, so that for every t 2 .t0 � ı; t0C ı/ and every j D 0; : : : ; d

both, �0 and �0C� , are Agmon angles of B.�;1/j .t/. For t 6D t0 it might happen that
there are eigenvalues of B.�;1/.t/ in L.��=2;�0/ and/or L.�=2;�0C�/ . Hence, (8–5)
is not necessarily true, in general, for t 6D t0 . However, from (6–16) and (8–2), we
conclude that for every angle � 2 .��=2; 0/, so that � and � C� are Agmon angles
for B.�;1/.t/ (and, hence, 2� is an Agmon angle for B.�;1/.t/2 ),

(9–4) ��.t; �/� ��.t; �0/ mod� i;
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Thus, from (8–5), we obtain

(9–5) �.t/D˙e��.t;�0/ � e�i���.t/ � e�
i�
2

Pd
jD0.�1/j jdj ;� � �

�t;Œ0;��
:

Lemma 9.2 Under the above assumptions, the product

e��.t;�0/ � �
�t;Œ0;��

2 Det
�
H �.M;F /

�
is independent of t 2 .t0� ı; t0C ı/.

Proof Recall that we have chosen �� 0 and ı > 0 so that there are no eigenvalues of
B.t/2 with absolute value � for any t 2 .t0� ı; t0C ı/.

We shall use the following notation (cf, for example, [11, Section 2]): Suppose f .s/ is
a function of a complex parameter s which is meromorphic near s D 0. We call the
zero order term in the Laurent expansion of f near s D 0 the finite part of f at 0 and
denote it by F: p:sD0 f .s/. A verbatim repetition of the proof of [9, formula (9.13)]
shows that
(9–6)

d

dt
��.t; �0/D

1
2

dX
jD0

.�1/j F: p:sD0 Tr
h
P�t�t

��
B.�;1/.t/

�2��s

2�0

ˇ̌̌
�
j

.�;1/
.M;E/

i
:

Since B2.t/ is an elliptic differential operator, the dimension of ��
Œ0;��

.M;E/ is finite.

Let " 6D 0 be a small enough real number so that B.t/2C " is bijective and 2�0 is an
Agmon angle for .B.�;1/.t//2C ". Then, for each j D 0; : : : ; d , we have

(9–7) F: p:sD0 Tr
h
P�t�t

��
B.�;1/.t/

�2��s

2�0

ˇ̌̌
�
j

.�;1/
.M;E/

i
D F: p:sD0 Tr

h
P�t�t

��
B.�;1/.t/

�2
C "

��s

2�0

ˇ̌̌
�j .M;E/

i
�Tr

h
P�t�t

ˇ̌̌
�
j

Œ0;��
.M;E/

i
:

By a slight generalization of a result of Seeley [31], which is discussed in Ray–Singer
[29] and, in greater generality, in Grubb–Seeley [20], the first summand on the right
hand side of (9–7) is given by a local formula ie by the integral

R
M �t of a differential

form �t , whose value at any point x 2M depends only on the values of the components
of the metric tensor gM

t and a finite number of their derivatives at x . Moreover, since
the dimension of the manifold M is odd, the differential form �t vanishes identically.
Thus we obtain from (9–6) and (9–7)

(9–8)
d

dt
��.t; �0/D�

1
2

dX
jD0

.�1/j Tr
h
P�t�t

ˇ̌̌
�
j

Œ0;��
.M;E/

i
:
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Combining this equation with Proposition 4.9, we get

d

dt
e��.t;�0/ � �

�t;Œ0;��
D 0:

9.3 Dependence of the �–invariant on the metric

From (9–5) and Lemma 9.2 we see that the dependence of �.t/ on t 2 .t0� ı; t0C ı/

is determined up to a sign by the dependence of ��.t/ on t .

Lemma 9.4 For any t1; t2 2 .t0� ı; t0C ı/ we have

(9–9) ��.t1/� ��.t2/� �
�
Beven.t1/

�
� �

�
Beven.t2/

�
; mod Z:

Proof Recall that ��
Œ0;��;t

.M;E/ denotes the span of the generalized eigenvectors of

B.t/2 corresponding to eigenvalues with absolute value � � and that � and ı were
chosen so that

(9–10) dim�
j

Œ0;��;t
.M;E/D const; t 2 .t0� ı; t0C ı/; j D 0; : : : ; d:

Since the dimension of the space �even
Œ0;��;t

.M;E/ is finite, formula (6–34) says that
�
�
0;BŒ0;��even .t/

�
is equal to the sum of the algebraic multiplicities of the eigenvalues of

BŒ0;��even .t/ with positive real parts minus the sum of the algebraic multiplicities of the
eigenvalues of BŒ0;��even .t/ with negative real parts. It then follows from (6–35) that

(9–11) �
�
BŒ0;��even .t/

�
�

1
2

dim�even
Œ0;��;t .M;E/; mod Z:

By the definition of the �–invariant,

�
�
Beven.t/

�
� ��.t/D �

�
BŒ0;��even .t/

�
:

Hence, from (9–10) and (9–11), we conclude that, modulo Z,

�
�
Beven.t/

�
� ��.t/� const

for t 2 .t0� ı; t0C ı/.

We now need to study the dependence of �.Beven.r;g
M // on the Riemannian metric

gM . Fortunately, this was essentially done in [2] and [19]. Below we present a brief
review of the relevant results.

Let Btrivial D Btrivial.g
M /W �even.M /! �even.M / denote the even part of the odd

signature operator corresponding to the metric gM and the trivial line bundle over M

endowed with the trivial connection. Set

(9–12) �trivial D �trivial.g
M / WD 1

2
�
�
0;Btrivial.g

M /
�
:

Geometry & Topology, Volume 11 (2007)



Refined analytic torsion as an element of the determinant line 193

Since the operator Btrivial is self-adjoint, �trivial is a real number. Moreover, since all
the eigenvalues of Btrivial are real, it follows from (6–24) that

�trivial D �.Btrivial/�
1
2
m0.Btrivial/D �.Btrivial/�

1
2

r�1X
pD0

dim H 2p.M;C/:

Also, if dim M � 1.mod 4/, then �trivial D 0, cf [1].

It is shown in [19, page 52] (see also [2, Theorem 2.4] where the case of unitary
connection is established) that modulo Z the difference

(9–13) �
�
Beven.r;g

M /
�
� .rank E/�

�
Btrivial.g

M /
�

is independent of the Riemannian metric.

9.5 Removing the metric anomaly

We are now ready to state the main result of this section.

Theorem 9.6 Let E be a flat vector bundle over a closed oriented odd-dimensional
manifold M . Let N be an oriented manifold whose oriented boundary is the disjoint
union of two copies of M . The element

(9–14) �.r;gM / � ei�.rank E/�trivial.g
M /
2 Det.H �.M;E//;

where �.r;gM / 2 Det.H �.M;E// is defined in (7–15), is independent of gM .

In particular, if dim M � 1.mod 4/, then �trivial D 0 and, hence, �.r;gM / is indepen-
dent of gM .

Proof Let gM
t , .t 2 R/ be a family of Riemannian metrics on M . We shall use the

notation of Section 9.1. From (9–5) we obtain for t 2 .t0� ı; t0C ı/

�.t/ � ei�.rank E/�trivial.g
M /
D

˙ e��.t/ � e�i���.t/ � e�
i�
2

Pd
jD0.�1/j jdj ;� � �

�t;Œ0;��
� ei�.rank E/�trivial.g

M /:

Combining this latter equality with Lemma 9.2 and the metric independence of the
reduction of (9–16) modulo Z we conclude that for any t1; t2 2 .t � ı; t C ı/

(9–15) �.t1/ � e
i�.rank E/�trivial.g

M /
D˙�.t2/ � e

i�.rank E/�trivial.g
M /

Since the function t 7! �.t/ � ei�.rank E/�trivial.g
M / is continuous and nonzero the sign

in the right hand side of (9–15) must be positive. Hence, the theorem is proven.
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9.7 The definition of the refined analytic torsion

We now arrive to the main definition of the paper.

Definition 9.8 Let E be a complex vector bundle over a closed, oriented, odd-
dimensional manifold M and let r be the flat connection on E . The refined analytic
torsion �an D �an.r/ is the element of Det.H �.M;E// defined by (9–14).

It follows from Theorem 9.6 that the refined analytic torsion is independent of any
choices made in its definition, ie, it is a differential invariant of the flat vector bundle
.E;r/.

Remark 9.9 Since dim M is odd, there exists an oriented manifold N whose oriented
boundary is the disjoint union of two copies of M (with the same orientation), cf Wall
[38], Rudyak [30, Theorem IV.6.5]. Then, cf [9, Section 11], the signature theorem for
manifolds with boundary implies that, modulo Z,

(9–16) ��.t/�
1
2

rank E

Z
N

L.p;gM
t /;

where L.p;gM / is the Hirzebruch L–polynomial in the Pontrjagin forms of any
Riemannian metric on N 0 which near M is the product of gM and the standard metric
on the half-line, is independent of t 2 .t0� ı; t0C ı/. The same arguments as in the
proof of Theorem 9.6 show that the element

(9–17) �0an.r/ WD �.r;gM / � exp
�
i� � 1

2
rank E

Z
N

L.p;gM /
�

is independent of the Riemannian metric gM . It can be used as an alternative definition
of the refined analytic torsion. It has an advantage that the second factor in (9–17) is
much easier to compute than the second factor in (9–14). Note, however, that �0.r/
does depend on the choice of the manifold N . However, it is easy to see that �0an.r/

is defined up to multiplication by ik�rank E .k 2 Z/. If rank E is even then �0an.r/ is
well defined up to a sign, and if rank E is divisible by 4, then �an.r/ is a well defined
element of Det.H �.M;E//.

(Here a quantity being well defined means that it depends only on M , E and r .)

10 A duality theorem for the refined analytic torsion

In this section we establish a relationship between the refined analytic torsion corre-
sponding to a flat connection and that of its dual. This result is used in the next section
in order to calculate the Ray–Singer norm of the refined analytic torsion, but it is also
of independent interest.
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10.1 The dual connection

Suppose M is a closed oriented manifold of odd dimension d D 2r � 1. Let E!M

be a complex vector bundle over M and let r be a flat connection on E . Fix a
Hermitian metric hE on E . Denote by r 0 the connection on E dual to the connection
r . It is defined by the formula

dhE.u; v/D hE.ru; v/C hE.u;r 0v/; u; v 2 C1.M;E/:

For !1; !22�
�.M;E/ of the form !iD si˝�i with si 2C1.M;E/; �i 2�

�.M;R/,
define

(10–1) hE
�
.s1˝�1/^ .s2˝�2/

�
WD hE.s1; s2/ ��1 ^�2:

Then hE extends in a canonical way to a sesquilinear map

(10–2) hE
W ��.M;E/���.M;E/ �!��.M;C/:

For each j D 0; : : : ; d , we then obtain a sesquilinear pairing

(10–3) �j .M;E/��d�j .M;E/ �! C; .!1; !2/ 7!

Z
M

hE.!1 ^!2/:

We denote by E0 the flat vector bundle .E;r 0/, referring to E0 as the dual of the flat
vector bundle E . The pairing (10–3) induces a non-degenerate sesquilinear pairing

H j .M;E0/˝H d�j .M;E/ �! C; j D 0; : : : ; d;

and, hence, identifies H j .M;E0/ with the dual space of H d�j .M;E/. Using the
construction of Section 3.4 with � W C! C being the complex conjugation) we thus
obtain an anti-linear isomorphism

(10–4) ˛W Det
�
H �.M;E/

�
�! Det

�
H �.M;E0/

�
:

10.2 The duality theorem

Fix a compact oriented manifold N whose boundary is diffeomorphic to two disjoint
copies of M . From (9–13), we conclude that the number

(10–5) exp
�
2i�

�
�.r;gM /� .rank E/�trivial.g

M /
��
;

where � denotes the complex conjugate of �, is independent of the choice of the
Riemannian metric gM .

The main result of this section is the following duality theorem.
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Theorem 10.3 Let E!M be a complex vector bundle over a closed oriented odd-
dimensional manifold M and let r be a flat connection on E . Let r 0 denote the
connection dual to r with respect to a Hermitian metric hE on E . Let N be a compact
oriented manifold whose boundary is diffeomorphic to two disjoint copies of M . Then

(10–6) ˛
�
�an.r/

�
D �an.r

0/ � e2i�
�
�.r;gM /�.rank E/�trivial.g

M /
�
;

where ˛ is the anti-linear isomorphism (10–4), gM is any Riemannian metric on
M , and L.p;gM / is the Hirzebruch L–polynomial in the Pontrjagin forms of any
Riemannian metric on N which near M is the product of gM and the standard metric
on the half-line.

In particular, if dim M � 1.mod 4/, then

(10–7) ˛
�
�an.r/

�
D �an.r

0/ � e2i��.r;gM /:

The rest of this section is concerned with the proof of Theorem 10.3.

10.4 Choices of the metric and the spectral cut

Till the end of this section we fix a Riemannian metric gM on M and set BDB.r;gM /

and B0DB.r 0;gM /. We also fix an Agmon angle � 2 .��=2; 0/ for the odd signature
operator B D B.r;gM / such that there are no eigenvalues of B in the solid angles
LŒ����;��=2� , L.��=2;�� , LŒ��;�=2/ , and L.�=2;�C�� .

Let B0 denote the odd signature operator associated to the connection r 0 and the metric
gM . One easily checks, cf [3, Proposition 3.58], that

(10–8) r
�
D �r 0� and .r 0/� D �r�:

Using (7–2), (10–8), and the equality �� D � (cf [3, Proposition 3.58]), one readily
sees that the adjoint B� of B satisfies

(10–9) B� D B0:

Our choice of the angle � guarantees that ˙2� are Agmon angles for the operator

.�r 0/2 D
�
.�r/2

��
:

In particular, for each � � 0, the number ��.r 0;gM ; �/ can be defined by formula
(8–2), with the same angle � and with r replaced by r 0 everywhere.
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10.5 A choice of �

Since the leading symbol of B is self-adjoint, there are at most finitely many purely
imaginary eigenvalues of B . Hence, there exists �� 0 such that there are no purely
imaginary eigenvalues of B with absolute value �

p
�. In other words, the operator

B.�;1/ does not have purely imaginary eigenvalues. Moreover, our assumptions on �
in Section 10.4 imply that no eigenvalue of B.�;1/ lies in the solid angles LŒ����;��
and LŒ��;�C�� . It follows that no eigenvalue of the operator .B.�;1//2 lies in the solid
angle LŒ�2�;2�C2�� .

Lemma 10.6 Let � be as in Section 10.4 and let � � 0 be big enough so that the
operator B.�;1/ does not have purely imaginary eigenvalues. Then

(10–10) ��.r
0;gM ; �/D ��.r;g

M ; �/;

and

(10–11) ��.r
0;gM /D ��.r;g

M /;

where z denotes the complex conjugate of the number z 2 C.

Proof Let B0.�;1/ denote the restriction of B0 to the span of the generalized eigen-
vectors of .B0/2 corresponding to the eigenvalues whose absolute values are greater
than �. From (10–9), we obtain

(10–12)
�
B0.�;1/

��
D B.�;1/:

Hence, with our assumptions on � , we have, for any j D 0; : : : ; d ,

(10–13)

LDet02�
��
B0.�;1/

�2ˇ̌
�
j

.�;1/
.M;E/

�
D LDet0

�2�

���
B0.�;1/

���2ˇ̌
�
j

.�;1/
.M;E/

�
D LDet0

�2�

��
B.�;1/

�2ˇ̌
�
j

.�;1/
.M;E/

�
:

Since there are no eigenvalues of
�
B.�;1/

�2 in the solid angle LŒ�2�;2�C2�� ,

LDet0
�2�

��
B.�;1/

�2ˇ̌
�
j

.�;1/
.M;E/

�
D LDet02�

��
B.�;1/

�2ˇ̌
�
j

.�;1/
.M;E/

�
:

The equality (10–10) follows now from (10–13) and the definition (8–3) of ��.r;gM; �/.

Let …> (resp. …< ) denote the spectral projection of B onto the span of all generalized
eigenvectors of B corresponding to eigenvalues with positive (resp. negative) real part.
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Let Q denote the spectral projection of B onto the span of all generalized eigenvectors
of B corresponding to eigenvalues whose absolute value is larger than �. Let …0> ,
…0< , and Q0 be similarly defined spectral projections of B0 . Then, since the operators
B.�;1/ and B0.�;1/ have no purely imaginary eigenvalues, we conclude from (6–34)
and (6–35) that

(10–14)
2��.r;g

M /D �� .0;Q…>;Beven/� �� .0;Q…<;Beven/;

2��.r
0;gM /D �� .0;Q

0…0>;B0even/� �� .0;Q
0…0<;B0even/:

From (10–12) and our assumptions on � , we obtain

(10–15)
�� .s;Q

0…0>;B0even/D �� .xs;Q…>;Beven/;

�� .s;Q
0…0<;B0even/D e�2� is

� �� .xs;Q…<;Beven/:

The equality (10–11) follows immediately from (10–14) and (10–15).

10.7 Small eigenvalues of B and B0

Let ��
Œ0;��

.M;E0/ � ��.M;E/ denote the span of the eigenvectors of .B0/2 cor-
responding to the eigenvalues with absolute value � �. Then ��

Œ0;��
.M;E0/ is a

subcomplex of .��.M;E/;r 0/ preserved by the chirality operator � .

The pairing (10–3) defines a non-degenerate sesquilinear pairing

(10–16) �
j

Œ0;��
.M;E0/��

d�j

Œ0;��
.M;E/ �! C;

and, hence, identifies ��
Œ0;��

.M;E0/ with the dual complex of ��
Œ0;��

.M;E/.

As in Section 8, set, for j D 0; : : : ; d ,

dj ;� D dim�
j

Œ0;��
.M;E/; d 0j ;� D dim�

j

Œ0;��
.M;E0/:

Since �2 D 1, we obtain from (7–2), Bj D � ıBd�j ı� and, hence,

�
�
�

j

Œ0;��
.M;E/

�
D�

d�j

Œ0;��
.M;E/; j D 0; : : : ; d:

Therefore

(10–17) dj ;� D dd�j ;�; j D 0; : : : ; d:

Hence,

(10–18)
dX

jD0

.�1/j jdj ;�D

r�1X
pD0

�
2p�.d�2p/

�
d2p;�D 4

r�1X
pD0

pd2p;��d

r�1X
pD0

d2p;�:

Geometry & Topology, Volume 11 (2007)



Refined analytic torsion as an element of the determinant line 199

In particular,

(10–19)
dX

jD0

.�1/j jdj ;� �

r�1X
pD0

d2p;� D dim�even
Œ0;��.M;E/; mod 2Z:

From (10–9), we conclude that dj ;�Dd 0
d�j ;�

.j D 0; : : : ; d/. Combining this equality
with (10–17), we get dj ;� D d 0

j ;�
. Hence, by (10–19),

(10–20)
dX

jD0

.�1/j jd 0j ;� � dim�even
Œ0;��.M;E/; mod 2Z:

From (8–1), (9–11), and (10–20), we obtain, modulo 2Z,

2�.Beven.r;g
M //D 2�.B.�;1/even .r;gM //C 2�.BŒ0;��even .r;g

M //

� 2��.r;g
M /C

dX
jD0

.�1/j jdj ;�:

Similarly,

(10–21) 2�.Beven.r
0;gM //� 2��.r

0;gM /C

dX
jD0

.�1/j jdj ;�; mod 2Z:

Proof of Theorem 10.3 Let�0
�Œ0;��

be the refined torsion of the complex ��
Œ0;��

.M;E0/

associated to the restriction of � to ��
Œ0;��

.M;E0/.

Since ��D� (cf [3, Proposition 3.58]), we obtain from Lemma 4.11 and the definition
(10–4) of ˛ ,

(10–22) �0
�Œ0;��

D ˛.�
�Œ0;��

/:

From (7–15), (8–5), and Definition 9.8, we obtain

(10–23) �an.r/D ��Œ0;�� � exp
�
��.r;g

M ; �/� i���.r;g
M /

�
i�

2

dX
jD0

.�1/j jdj ;�C i�.rank E/�trivial.g
M /
�
:
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Since ˛ is an anti-linear isomorphism, ˛.�an � z/D ˛.�an/ � z for any z 2 C. Hence,
from (10–22) and (10–23) we get

(10–24) ˛
�
�an.r/

�
D �0

�Œ0;��
� exp

�
��.r;g

M ; �/C i���.r;g
M /

C
i�

2

dX
jD0

.�1/j jdj ;�� i�.rank E/�trivial.g
M /
�
:

Using Lemma 10.6 and the analogue of (10–23) for �an.r
0/, we obtain from (10–24)

(10–25) ˛
�
�an.r/

�
D �an.r

0/ � exp
�
2i���.r;g

M /

C i�

dX
jD0

.�1/j jdj ;�� i�.rank E/�trivial.g
M /
�
:

From (10–25) and (10–21) we obtain (10–6).

11 Comparison with the Ray–Singer torsion

In this section we calculate the Ray–Singer norm k�ank
RS
Det.H �.M;E//

of the refined
analytic torsion. In particular, we show that, if r is a Hermitian connection, then
k�ank

RS
Det.H �.M;E//

D 1.

11.1 The Ray–Singer torsion

Let E!M be a complex vector bundle over a closed oriented manifold M of odd
dimension d D 2r � 1 and let r be a flat connection on E . Fix a Riemannian metric
gM on M and a Hermitian metric hE on E . Let r� denote the adjoint of r with
respect to the scalar product h�; �i on ��.M;E/ defined by hE and the Riemannian
metric gM . Let

(11–1) �Dr�r Crr�

be the Laplacian. We denote by �k the restriction of � to �k.M;E/.

The Ray–Singer torsion T RS of E , [29; 4; 11], is the positive real number defined by
5

(11–2) T RS
D T RS.r/ WD exp

�
1
2

dX
kD0

.�1/kk LDet0��.�k/
�
:

5Our sign convention is different from [29], [11], and [9] but is consistent with [4]. In our notations,
the torsion defined in [29; 11; 9] is equal to 1=T RS .
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Note that �k is a self-adjoint, non-negative operator. Therefore, all its eigenvalues are
non-negative and LDet0��.�k/ is well defined.

More generally, suppose I is an interval of the form Œ0; ��; .�; ��, or .�;1� (����0)
and let …�k ;I be the spectral projection of � corresponding to I , cf Section 6.10. Set

L�k
I.M;E/ WD…�k ;I

�
��.M;E/

�
� L��.M;E/:

Let �I
k

denote the restriction of �k to L�k
I.M;E/ and define

(11–3) T RS
I D T RS

I .r/ WD exp
�1

2

dX
kD0

.�1/kk LDet0��.�
I
k/
��
:

In particular, by (11–2), T RSD T RS
.0;1/

. By (6–15), for any non-negative, real numbers
�� �� 0,

(11–4) T RS
.�;1/ D T RS

.�;�� �T
RS
.�;1�:

11.2 The Ray–Singer metric on the determinant line of cohomology

If the connection r is acyclic, that is, if the cohomology H �.M;E/ vanishes, then
the Ray–Singer torsion is independent of the Hermitian metric hE and the Riemannian
metric gM , cf [29; 4]. If the cohomology does not vanish, then T RS , in general,
depends on the choice of the two metrics. To construct a metric independent invariant
of the flat vector bundle E one needs to take into account the contribution of the space
of harmonic forms. An elegant way to do this, which was proposed by Quillen [28],
is to construct a norm k � kRS

Det.H �.M;E//
on the determinant line of H �.M;E/, called

the Ray–Singer metric, which is independent of gM and hE . We now briefly recall
this construction.

For each �� 0, the cohomology of the finite dimensional complex
�
L��
Œ0;��

.M;E/;r
�

is naturally isomorphic to H �.M;E/. Identifying these two cohomology spaces, we
then obtain from (2–14) an isomorphism

(11–5) �� D � L��
Œ0;��

.M;E/
W Det

�
L��Œ0;��.M;E/

�
�! Det

�
H �.M;E/

�
:

The scalar product h�; �i on L��
Œ0;��

.M;E/���.M;E/ defined by gM and hE induces

a metric on the determinant line Det
�
L��
Œ0;��

.M;E/
�
. Let k � k� denote the metric on

Det
�
H �.M;E/

�
such that the isomorphism (11–5) is an isometry. It is well known,

cf, for example, [4, Theorem 1.1], that for 0� �� �

(11–6) k � k� D k � k� �T
RS
.�;��:
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The Ray–Singer metric on Det
�
H �.M;E/

�
is defined by the formula

(11–7) k � k
RS
Det.H �.M;E// WD k � k� �T

RS
.�;1/; �� 0:

It follows immediately from (11–4) and (11–6) that k � kRS
Det.H �.M;E//

is independent
of the choice of �� 0.

Theorem 11.3 Let E be a complex vector bundle over a closed, oriented, odd-
dimensional manifold M and let r be a flat connection on E . Then

(11–8) k�ank
RS
Det.H �.M;E// D e� Im�.r;gM /;

where
�.r;gM /D �

�
Beven.r;g

M /
�
:

In particular, if r is a Hermitian connection, then �.r;gM / 2 R and

(11–9) k�ank
RS
Det.H �.M;E// D 1:

The rest of this section is concerned with the proof of Theorem 11.3.

11.4 Choice of the spectral cut

The determinants in (11–2) and (11–3) are defined using the spectral cut R�� along
the negative real axis. Since the spectrum of the operator �k lies on the positive real
axis, we can replace R�� with a spectral cut R for any nonzero �� �  <� without
changing the value of Det0

�
.�k/. In particular, we can take the spectral cut along R2� ,

where � 2 .��=2; 0/ is any Agmon angle for the odd signature operator BDB.r;gM /

such that there are no eigenvalues of B in the solid angles LŒ����;��=2� , L.��=2;�� ,
LŒ��;�=2/ , and L.�=2;�C�� . We fix such an angle � till the end of this section.

11.5 The Ray–Singer metric and the dual connection

Let r 0 be the connection dual to r with respect to the Hermitian metric hE , cf Section
10.1, and let E0 denote the flat bundle .E;r 0/. Let

�0 D .r 0/�r 0Cr 0.r 0/�;

denote the Laplacian of the connection r 0 . For �� 0, we denote by

L��Œ0;��.M;E0/���.M;E/

the image of the spectral projection …�0;Œ0;�� , cf Section 6.10. As in Section 11.2, we
use the scalar product induced by gM and hE on L��

Œ0;��
.M;E0/ to construct a metric
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k � k0
�

on Det.H �.M;E0// and we define the Ray–Singer metric on Det.H �.M;E0//

by the formula

(11–10) k � k
RS
Det.H �.M;E0// WD k � k

0
� �T

RS
.�;1/.r

0/:

11.6 Comparison between the Ray–Singer metrics associated to a connec-
tion and to its dual

From (10–8) we conclude that

�0 D � ı� ı�:

Hence, for each �� 0, j D 0; : : : ; d ,

(11–11) �
�
L�

j

Œ0;��
.M;E0/

�
D L�

d�j

Œ0;��
.M;E/:

Recall that the notation hE.˛^ˇ/ was introduced in (10–1). It follows from (11–11)
and (10–1) that the map

(11–12) .!0; !/ 7!

Z
M

hE.�!0 ^!/; ! 2 L��Œ0;��.M;E/; !0 2 L��Œ0;��.M;E0/

defines a non-degenerate sesquilinear pairing between L��
Œ0;��

.M;E0/ and L��
Œ0;��

.M;E/

and, hence, identifies L��
Œ0;��

.M;E0/ with the dual space of L��
Œ0;��

.M;E/. More-

over, this identification preserves the scalar products induced by gM and hE on
L��
Œ0;��

.M;E0/ and on the dual to L��
Œ0;��

.M;E/. Hence, the anti-linear isomorphism
(10–4) is an isometry with respect to the metrics k � k� and k � k0

�
. In particular,

k�an.r/k� D k˛.�an.r//k
0
�:

It follows now from (10–6) that

(11–13) k�an.r/k� D k�an.r
0/k0� � e

2� Im�.r;gM /:

A verbatim repetition of the proof of [9, Lemma 8.8] yields that for each �� 0

(11–14) T RS
.�;1/.r

0/D T RS
.�;1/.r/:

Hence, from (11–7), (11–10), and (11–13), we conclude that

(11–15) k�an.r/k
RS
Det.H �.M;E// D k�an.r

0/kRS
Det.H �.M;E0// � e

2� Im�.r;gM /:
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11.7 Direct sum of a connection and its dual

Let
zr D

�
r 0

0 r 0

�
;

denote the flat connection on E˚E obtained as a direct sum of the connections r
and r 0 . Clearly, for each �� 0,

(11–16)
��.zr;g

M ; �/D ��.r;g
M ; �/C ��.r

0;gM ; �/;

��.zr;g
M /D ��.r;g

M /C ��.r
0;gM /:

From Lemma 4.7 we obtain for �� 0

(11–17) �
�
Œ0;��

.zr;gM /D�H �.M;E/;H �.M;E0/

�
�
�
Œ0;��

.r;gM /˝�
�
Œ0;��

.r 0;gM /
�
:

Hence, in view of (7–15), (8–5), and Definition 9.8, we obtain

(11–18) �an.zr/D �H �.M;E/;H �.M;E0/

�
�an.r/˝ �an.r

0/
�
:

Let z�D zr� zrC zr zr� be the Laplacian of the connection zr and let L��
Œ0;��

.M;E˚E0/

denote the span of the eigenvectors of z� corresponding to eigenvalues which are
� �. As in Section 11.2, we use the scalar product induced by gM and hE on
L��
Œ0;��

.M;E˚E0/ to construct a metric k�k
�

�
on Det.H �.M;E˚E0// and we define

the Ray–Singer metric on Det.H �.M;E˚E0// by the formula

(11–19) k � k
RS
Det.H �.M;E˚E0// WD k � k

�

� �T
RS
.�;1/.

zr/:

Since
L��Œ0;��.M;E˚E0/D L��Œ0;��.M;E/˚ L��Œ0;��.M;E0/;

it follows from the definition (2–5) of the fusion isomorphism that, for any h 2

H �.M;E/ and h0 2H �.M;E0/,

(11–20) k�H �.M;E/;H �.M;E0/.h˝ h0/k
�

� D khk� � kh
0
k
0
�:

Therefore, we obtain from (11–18)

(11–21) k�an.zr/k
�

� D k�an.r/k� � k�an.r
0/k0�:

Since
T RS
.�;1/.

zr/D T RS
.�;1/.r/ �T

RS
.�;1/.r

0/;

we conclude from (11–19) and (11–21) that
(11–22)
k�an.zr/k

RS
Det.H �.M;E˚E0// D k�an.r/k

RS
Det.H �.M;E// � k�an.r

0/kRS
Det.H �.M;E0//:
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Combining the later equality with (11–15), we get

(11–23) k�an.zr/k
RS
Det.H �.M;E˚E0// D

�
k�an.r/k

RS
Det.H �.M;E//

�2
� e�2� Im�.r;gM /:

Hence, (11–8) is equivalent to the equality

(11–24) k�an.zr/k
RS
Det.H �.M;E˚E0// D 1:

11.8 Deformation of the chirality operator

We will prove (11–24) by a deformation argument. For t 2 Œ��=2; �=2� introduce the
rotation Ut on

�� WD��.M;E/˚��.M;E/;

given by

Ut D

�
cos t � sin t

sin t cos t

�
:

Note that U�1
t D U�t . Denote by z�.t/ the deformation of the chirality operator,

defined by

(11–25) z�.t/D Ut ı

�
� 0

0 ��

�
ıU�1

t D � ı

�
cos 2t sin 2t

sin 2t � cos 2t

�
:

Then

(11–26) z�.0/D

�
� 0

0 ��

�
; z�.�=4/D

�
0 �

� 0

�
:

11.9 Deformation of the odd signature operator

Consider a one-parameter family of operators zB.t/W �� ! �� (t 2 Œ��=2; �=2�)
defined by the formula

(11–27) zB.t/ WD z�.t/zr C zrz�.t/:

Then

(11–28) zB.0/D
�
B 0

0 �B0
�

and

(11–29) zB.�=4/D
�

0 �r 0Cr�

�r Cr 0� 0

�
:
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Hence, using (10–8), we obtain

(11–30) zB.�=4/2 D
�
� 0

0 �0

�
D z�:

Set

��C.t/ WD Ker zr z�.t/I

��� WD Ker zr D Kerr ˚Kerr 0:

Note that ��� is independent of t . Since the operators zr and z�.t/ commute with
zB.t/, the spaces ��C.t/ and ��� are invariant for zB.t/.

Let I be an interval of the form Œ0; ��; .�; ��, or .�;1� (�� �� 0). Denote

��I.t/ WD… zB.t/2;I
�
��.t/

�
���.t/;

where … zB.t/2;I is the spectral projection of zB.t/2 corresponding to I , cf Section 6.10.

For j D 0; : : : ; d , set �j
I.t/D�

�
I.t/\�

j and

(11–31) �
j
˙;I.t/ WD�

j
˙
.t/\�

j
I.t/:

For each �� 0, t 2 .��=2; �=2/, the space ��
.�;1/

.t/ is invariant by zB.�;1/.t/ and

the operator zB.�;1/.t/W ��
.�;1/

.t/! ��
.�;1/

.t/ is bijective. Since the range of the

restriction of z�.t/zr to ��
.�;1/

.t/ is contained in ��
C;.�;1/

.t/ whereas the range of

the restriction of zr z�.t/ to ��
.�;1/

.t/ is contained in ��
�;.�;1/

.t/, it follows from the

surjectivity of zB.�;1/.t/ that

(11–32) ��
C;.�;1/.t/C�

�
�;.�;1/.t/D�

�
.�;1/.t/; t 2 Œ��=2; �=2�:

Since the kernel of the restriction of zr z�.t/ to ��
.�;1/

.t/ is equal to ��
C;.�;1/

.t/

whereas the kernel of the restriction of z�.t/zr to ��
.�;1/

.t/ is equal to ��
�;.�;1/

.t/,

it follows from the injectivity of zB.�;1/.t/ that

(11–33) ��
C;.�;1/.t/\�

�
�;.�;1/.t/D f0g; t 2 Œ��=2; �=2�:

Combining (11–32) and (11–33) we obtain

(11–34) ��.�;1/.t/D�
�
C;.�;1/.t/˚�

�
�;.�;1/.t/; t 2 Œ��=2; �=2�:

We define zBIj .t/; zB
I
even.t/;

zBIodd.t/;
zB˙;Ij .t/; zB˙;Ieven.t/; zB˙;Iodd .t/, etc. in the same way as

the corresponding maps were defined in Section 7.6.

Geometry & Topology, Volume 11 (2007)



Refined analytic torsion as an element of the determinant line 207

11.10 The graded determinant of the deformed odd signature operator

By Definition 5.5 and Definition 6.13, for every I of the form Œ0; ��; .�; ��, or .�;1�
(�� �� 0), the graded determinant of zBIeven.t/ is given by the formula

(11–35) Det0gr;�

�
zBIeven.t/

�
WD e

LDet0gr;� .
zBIeven.t//;

where � is an Agmon angle for zBIeven.t/ and

(11–36) LDet0gr;�

�
zBIeven.t/

�
WD LDet0�

�
zBC;Ieven.t/

�
�LDet0�

�
� zB�;Ieven.t/

�
2 C:

Since z�.t/ commutes with zB.t/, we easily obtain

zBC;Ij .t/D z�.t/ ı zB�;I
d�j

.t/ ı z�.t/; j D 0; : : : ; d:

Therefore, (11–36) can be rewritten as

(11–37) LDet0gr;�

�
zBIeven.t/

�
WD

dX
jD0

.�1/j LDet0�
�
.�1/j zBC;Ij .t/

�
:

Lemma 11.11 Suppose that � 2 .��=2; 0/ is an Agmon angle for the operator
zB.�;1/even .�=4/. Then, for each �� 0,

(11–38)
ˇ̌
Detgr;�

�
zB.�;1/even .�=4/

�ˇ̌
D

1

T RS
.�;1/

.zr/
:

Proof It follows from (11–29) that the operator zB.�;1/even .�=4/ is self-adjoint. Hence,
�
�
0; zB.�;1/even .�=4/

�
and �2� .0; zB

.�;1/
even .�=4/2

�
are real, cf, for example, [9, Theorem

A.2]. Thus, from (11–30), (11–37), and (6–38), we conclude that

(11–39) Re LDetgr;�
�
zB.�;1/even .�=4/

�
D

1
2

dX
jD0

.�1/j LDet2�
�
z�.�;1/

ˇ̌
�
j

C;.�;1/
.�=4/

�

D
1
2

dX
jD0

.�1/j LDet��
�
z�
.�;1/
j

ˇ̌
�
j

C;.�;1/
.�=4/

�
:

As on [11, page 340] (see also [9, Section 8.4]), one shows that the right hand side of
(11–39) is equal to

1
2

dX
jD0

.�1/jC1j LDet��
�
z�
.�;1/
j

�
:

Hence, equality (11–38) follows from(11–3) and (11–35).
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11.12 Deformation of the canonical element of the determinant line

Since the operators zr and zB.t/2 commute, the space ��I.t/ is invariant under zr , ie,
it is a subcomplex of �� . The same arguments as in the proof of Lemma 5.9 show
that, for every �� 0, the complex ��

.�;1/
.t/ is acyclic and, hence, the cohomology

of the finite dimensional complex ��
Œ0;��

.t/ is naturally isomorphic to

H �.M;E˚E0/'H �.M;E/˚H �.M;E0/:

Let z�Œ0;��.t/ denote the restriction of z�.t/ to ��
Œ0;��

.t/. As z�.t/ and zB.t/2 commute,

it follows that z�Œ0;��.t/ maps ��
Œ0;��

.t/ onto itself and, therefore, is a chirality operator
for ��

Œ0;��
.t/. Let

(11–40) �
z�Œ0;��.t/

.t/ 2 Det
�
H �.M;E˚E0/

�
denote the refined torsion of the finite dimensional complex

�
��
Œ0;��

.t/; zr
�

correspond-

ing to the chirality operator z�Œ0;��.t/, cf Definition 4.3.

For each t 2 .��=2; �=2/ fix an Agmon angle � D �.t/ 2 .��=2; 0/ for zBeven.t/ and
define the element �.t/ 2 Det

�
H �.M;E˚E0/

�
by the formula

(11–41) �.t/ WD Detgr;�
�
zB.�;1/even .t/

�
� �
z�
Œ0;��

.t/
.t/;

where � is any non-negative real number. It follows from Proposition 5.10 that �.t/ is
independent of the choice of �� 0.

11.13 The Ray–Singer norm of �.t/

For t 2 Œ��=2; �=2�, �� 0, set

��.t; �/ WD
1
2

dX
jD0

.�1/jC1j LDet2�
�
zB.�;1/even .t/2

ˇ̌
�
j

.�;1/
.t/

�
;(11–42)

��.t/ WD �
�
zB.�;1/even .t/

�
:(11–43)

From (6–16), we see that Re ��.t; �/ is independent of the choice of the angle � 2
.��=2; 0/ such that both � and � C� are Agmon angles for zB.t/. Hence, for any
such angle � 2 .��=2; 0/, we obtain from (11–41) and (8–5),
(11–44)
k�.t/kRS

Det.H �.M;E˚E0// D
�
z�
Œ0;��

.t/
.t/ � e��.t;�/

RS
Det.H �.M;E˚E0//

� e� Im��.t/:
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Since the rank of the operator zBŒ0;��even .t/ is finite, �
�
zBŒ0;��even .t/

�
2

1
2

Z. Hence,

Im ��.t/D Im
�
�
�
zBeven.t/

�
� �

�
zBŒ0;��even .t/

��
D Im �

�
zBeven.t/

�
is independent of �� 0. We conclude now from (11–44) that�

z�
Œ0;��

.t/
.t/ � e��.t;�/

RS
Det.H �.M;E˚E0//

is independent of �� 0.

11.14 The Ray–Singer norm of �.0/

By (11–28),
��.0/D �

�
B.�;1/even

�
C �

�
�B0.�;1/even

�
:

Since the operator B0.�;1/even is invertible m0.B0.�;1/even / D 0 (see Section 6.15 for the
definition of m0 ). It then follows from the definition (6–35) of the �–invariant that

(11–45) �
�
�B0.�;1/even

�
D��

�
B0.�;1/even

�
:

Hence, using definition (8–1) of ��.r;gM / and formula (10–11) for ��.r 0;gM /, we
get

(11–46) ��.0/D ��.r;g
M /� ��.r

0;gM /D 2i Im ��.r;g
M /:

Using again the invertibility of B.�;1/even , we obtain from (6–38) and (11–45) (and (8–1)
and (10–11)), that

Detgr;�
�
�B0.�;1/even

�
D Detgr;�

�
B0.�;1/even

�
� e2� i�.B0.�;1/even /

D Detgr;�
�
B0.�;1/even

�
� e2� i�.r;gM /:

Hence, from (11–28), we get

(11–47) Detgr;�
�
zB.�;1/even .0/

�
D Detgr;�

�
B.�;1/even

�
�Detgr;�

�
B0.�;1/even

�
� e2�i��.r;g

M /:

From (11–28) we conclude that ��
Œ0;��

.0/D��
Œ0;��

.M;E/˚��
Œ0;��

.M;E0/. It follows
now from (11–26) and (4–6) that

(11–48) �
z�
Œ0;��

.0/
.0/D �H �.M;E/;H �.M;E0/

�
�
�
Œ0;��

.r;gM /˝ �
��
Œ0;��

.r 0;gM /
�
:

From (4–1) and definition (4–3) of the element � , we conclude that

(11–49) �
��
Œ0;��

.r 0;gM /D .�1/
Pr�1
jD0 dim�j

Œ0;��
.M;E0/

� �
�
Œ0;��

.r 0;gM /:
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Hence, by (11–20) and (11–48), we have

(11–50)
�
z�
Œ0;��

.0/
.0/
RS

Det.H �.M;E˚E0//

D
�

�
Œ0;��

.r;gM /
RS

Det.H �.M;E0//
� k�

�
Œ0;��

.r 0;gM /kRS
Det.H �.M;E0//:

Combining (11–41), (11–47), and (11–50) with (7–15) and (9–14) (definition of the
refined analytic torsion), we conclude that

(11–51) k�.0/kRS
Det.H �.M;E˚E0//

D k�an.r/k
RS
Det.H �.M;E0// � k�an.r

0/kRS
Det.H �.M;E0// � e

2� Im��.r;gM /:

Hence, by (11–22),

(11–52) k�.0/kRS
Det.H �.M;E˚E0// D k�an.zr/k

RS
Det.H �.M;E˚E0// � e

2� Im��.r;gM /:

11.15 The Ray–Singer norm of �.�=4/

Recall that the norm k � k
�

�
was defined in Section 11.7. From (11–30) and Lemma 4.5,

we obtain �
z�Œ0;��.�=4/

.�=4/
�
�
D 1:

Hence, from Lemma 11.11, (11–41), and (11–19), we obtain

(11–53)
�.�=4/RS

Det.H �.M;E˚E0//
D 1:

Proof of Theorem 11.3 From (11–44), (11–46), and (11–52), we obtain

(11–54)
�
z�
Œ0;��

.0/
.0/ � e��.0;�/

RS
Det.H �.M;E˚E0//

D k�an.zr/k
RS
Det.H �.M;E˚E0//:

By (11–29), the operator zB.�;1/even .�=4/ is self-adjoint. Hence, ��.�=4/2R . Therefore,
we get from (11–44) and (11–53) that

(11–55)
�
z�
Œ0;��

.�=4/
.�=4/ � e��.�=4;�/

RS
Det.H �.M;E˚E0//

D 1:

From (11–54) and (11–55) we conclude that in order to prove (11–24) (and, hence,
(11–8)) it suffices to show that

(11–56)
�
z�
Œ0;��

.t/
.t/ � e��.t;�/

RS
Det.H �.M;E˚E0//

is independent of t .

Fix t0 2 Œ��=2; �=2� and let � � 0 be such that the operator zBeven.t0/
2 has no

eigenvalues with absolute value �. Choose an angle � 2 .��=2; 0/ such that both
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� and � C � are Agmon angles for zB.t0/. Then there exists ı > 0 such that for
all t 2 .t0� ı; t0C ı/\ Œ��=2; �=2�, the operator zBeven.t/

2 has no eigenvalues with
absolute value � and both � and � C� are Agmon angles for zB.t/.

A verbatim repetition of the proof of Lemma 9.2 shows that

(11–57)
d

dt
�
z�
Œ0;��

.t/
.t/ � e��.t;�/ D 0:

Hence, (11–56) is independent of t .
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[15] P Deligne, Le déterminant de la cohomologie, from: “Current trends in arithmetical
algebraic geometry (Arcata, Calif., 1985)”, Contemp. Math. 67, Amer. Math. Soc.,
Providence, RI (1987) 93–177 MR902592

[16] M Farber, Absolute torsion and eta-invariant, Math. Z. 234 (2000) 339–349
MR1765885

[17] M Farber, V Turaev, Absolute torsion, from: “Tel Aviv Topology Conference: Rothen-
berg Festschrift (1998)”, Contemp. Math. 231, Amer. Math. Soc., Providence, RI (1999)
73–85 MR1705576
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