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Singular fibers of stable maps and signatures of 4–manifolds

OSAMU SAEKI

TAKAHIRO YAMAMOTO

We show that for a C1 stable map of an oriented 4–manifold into a 3–manifold, the
algebraic number of singular fibers of a specific type coincides with the signature of
the source 4–manifold.

57R45; 57N13, 58K30, 58K15

1 Introduction

In [24] the first named author developed the theory of singular fibers of generic differ-
entiable maps between manifolds of negative codimension. Here, the codimension of a
map f W M !N between manifolds is defined to be k D dim N �dim M . For k � 0,
the fiber over a point in N is a discrete set of points, as long as the map is generic
enough, and we can study the topology of such maps by using the well-developed
theory of multi-jet spaces (see, for example, the article [13] by Mather). However, in
the case where k < 0, the fiber over a point is no longer a discrete set, and is a complex
of positive dimension �k in general. This means that the theory of multi-jet spaces is
not sufficient any more, and in [24] we have seen that the topology of singular fibers
plays an essential role in such a study.

In [24], as an explicit and important example of the theory of singular fibers, C1

stable maps of closed orientable 4–manifolds into 3–manifolds were studied and their
singular fibers were completely classified up to the natural equivalence relation, called
the C1 (or C 0 ) right-left equivalence (for a precise definition, see Section 2 of the
present paper). Furthermore, it was proved that the number of singular fibers of a
specific type (in the terminology of [24], singular fibers of type III8 ) of such a map is
congruent modulo two to the Euler characteristic of the source 4–manifold (see [24,
Theorem 5.1] and also Corollary 5.6 of the present paper).

In this paper, we will give an “integral lift” of this modulo two Euler characteristic
formula. More precisely, we consider C1 stable maps of oriented 4–manifolds into
3–manifolds, and we give a sign C1 or �1 to each of its III8 type fiber, using the
orientation of the source 4–manifold. Then we show that the algebraic number of III8
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type fibers coincides with the signature of the source oriented 4–manifold (Theorem
5.5).

For certain Lefschetz fibrations, similar signature formulas have already been proved by
Matsumoto [15; 16], Endo [6], etc. Our formula can be regarded as their analogue from
the viewpoint of singularity theory of generic differentiable maps. The most important
difference between Lefschetz fibrations and generic differentiable maps is that not
all manifolds can admit a Lefschetz fibration, while every manifold admits a generic
differentiable map. (In fact, a single manifold admits a lot of generic differentiable
maps.) Furthermore, it is known that similar signature formulas do not hold for arbitrary
Lefschetz fibrations, since there exist oriented surface bundles over oriented surfaces
with nonzero signatures (see Meyer [17]). In this sense, our formula is more general
(see Remark 7.7). Our proof of the formula is based on the abundance of such generic
maps in some sense.

More precisely, our proof of the formula goes as follows. We first define the notion
of a chiral singular fiber (for a precise definition, see Section 2). Roughly speaking,
if a fiber can be transformed to its “orientation reversal” by an orientation preserving
homeomorphism of the source manifold, then we call it an achiral fiber; otherwise,
a chiral fiber. On the other hand, we classify singular fibers of proper C1 stable
maps of orientable 5–manifolds into 4–manifolds by using methods developed in [24].
Then, for proper C1 stable maps of oriented 4–manifolds into 3–manifolds, and those
of oriented 5–manifolds into 4–manifolds, we determine those singular fibers in the
classification lists which are chiral. Furthermore, for each chiral singular fiber that
appears discretely, we define its sign .D˙1/.

Let us consider two C1 stable maps of 4–manifolds into a 3–manifold which are
oriented bordant. Then by using a generic bordism between them, which is a generic
differentiable map of a 5–manifold into a 4–manifold, and by looking at the III8 –fiber
locus in the target 4–manifold, we show the oriented bordism invariance of the algebraic
numbers of III8 type fibers of the original stable maps of 4–manifolds. Finally, we
verify our formula for an explicit example of a stable map of an oriented 4–manifold
with signature C1. (In fact, this final step is not so easy and needs a careful analysis.)
Combining all these, we will prove our formula.

The paper is organized as follows. In Section 2 we give some fundamental definitions
concerning singular fibers of generic differentiable maps, among which is the notion
of a chiral singular fiber. In Section 3 we recall the classification of singular fibers
of proper C1 stable maps of orientable 4–manifolds into 3–manifolds obtained in
[24]. In Section 4 we present the classification of singular fibers of proper C1 stable
maps of orientable 5–manifolds into 4–manifolds. In Section 5 we determine those
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singular fibers in the classification lists which are chiral. Furthermore, for each chiral
singular fiber that appears discretely, we define its sign by using the orientation of
the source manifold. In Section 6 we prove the oriented bordism invariance of the
algebraic number of III8 type fibers. This is proved by looking at the adjacencies of
the chiral singular fiber loci in the target manifold. In Section 7 we investigate the
explicit example of a C1 stable map of an oriented 4–manifold into a 3–manifold
constructed in [24]. In order to calculate the signature of the source 4–manifold, we
will compute the self-intersection number of the surface of definite fold points by using
normal sections coming from the surface of indefinite fold points. This procedure needs
some technical details so that this section will be rather long. By combining the result
of Section 6 with the computation of the example, we prove our main theorem. Finally
in Section 8, we define the universal complex of chiral singular fibers for proper C1

stable maps of 5–manifolds into 4–manifolds and compute its third cohomology group.
This will give an interpretation of our formula from the viewpoint of the theory of
singular fibers of generic differentiable maps as developed in [24].

Throughout the paper, all manifolds and maps are differentiable of class C1 . The
symbol “Š” denotes an appropriate isomorphism between algebraic objects. For a
space X , the symbol “idX ” denotes the identity map of X .

The authors would like to express their thanks to András Szűcs for drawing their
attention to the work of Conner–Floyd, and to Go-o Ishikawa for his invaluable com-
ments and encouragement. They would also like to thank the referee for helpful
comments. The first named author has been supported in part by Grant-in-Aid for
Scientific Research (No. 16340018), Japan Society for the Promotion of Science.

2 Preliminaries

Let us begin with some fundamental definitions. For some of the definitions, refer to
[24].

Definition 2.1 Let Mi be smooth manifolds and Ai �Mi be subsets, i D 0; 1. A
continuous map gW A0 ! A1 is said to be smooth if for every point q 2 A0 , there
exists a smooth map zgW V !M1 defined on a neighborhood V of q in M0 such that
zgjV\A0

D gjV\A0
. Furthermore, a smooth map gW A0!A1 is a diffeomorphism if it

is a homeomorphism and its inverse is also smooth. When there exists a diffeomorphism
between A0 and A1 , we say that they are diffeomorphic.

Definition 2.2 Let fi W Mi!Ni be smooth maps and take points yi 2Ni , i D 0; 1.
We say that the fibers over y0 and y1 are C1 equivalent (or C 0 equivalent) if for
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some open neighborhoods Ui of yi in Ni , there exist diffeomorphisms (respectively,
homeomorphisms) z'W .f0/

�1.U0/! .f1/
�1.U1/ and 'W U0! U1 with '.y0/D y1

which make the following diagram commutative:

.U0;y0/ .U1;y1/'
//

..f0/
�1.U0/; .f0/

�1.y0//

.U0;y0/

f0

��

..f0/
�1.U0/; .f0/

�1.y0// ..f1/
�1.U1/; .f1/

�1.y1//
z' // ..f1/

�1.U1/; .f1/
�1.y1//

.U1;y1/

f1

��

When the fibers over y0 and y1 are C1 (or C 0 ) equivalent, we also say that the map
germs f0W .M0; .f0/

�1.y0//! .N0;y0/ and f1W .M1; .f1/
�1.y1//! .N1;y1/ are

smoothly (or topologically) right-left equivalent.

When y2N is a regular value of a smooth map f W M!N between smooth manifolds,
we call f �1.y/ a regular fiber; otherwise, a singular fiber.

Definition 2.3 Let F be a C 0 equivalence class of a fiber of a proper smooth map in
the sense of Definition 2.2. For a proper smooth map f W M ! N between smooth
manifolds, we denote by F.f / the set consisting of those points of N over which lies
a fiber of type F. It is known that if the smooth map f is generic enough (for example
if f is a Thom map, see the book by Gibson, Wirthmüller, du Plessis and Looijenga
[7]), then F.f / is a union of strata1 of N and is a C 0 submanifold of N of constant
codimension (for details, see [24, Chapter 7]). Furthermore, this codimension �D �.F/
does not depend on the choice of f and we call it the codimension of F. We also say
that a fiber belonging to F is a codimension � fiber.

Let us introduce the following weaker relation for (singular) fibers.

Definition 2.4 Let fi W .Mi ; .fi/
�1.yi//! .Ni ;yi/ be proper smooth map germs

along fibers with nD dim Mi and pD dim Ni , i D 0; 1, with n� p . We may assume
that Ni is the p–dimensional open disk Int Dp and that yi is its center 0, i D 0; 1.
We say that the two fibers are C 0 (or C1 ) equivalent modulo regular fibers if there
exist .n�p/–dimensional closed manifolds Fi , i D 0; 1, such that the disjoint union
of f0 and the map germ �0W .F0 � Int Dp;F0 � f0g/! .Int Dp; 0/ defined by the
projection to the second factor is C 0 (respectively, C1 ) equivalent to the disjoint
union of f1 and the map germ �1W .F1 � Int Dp;F1 � f0g/! .Int Dp; 0/ defined by
the projection to the second factor.

1In the case where f is a Thom map, we consider the stratifications of M and N with respect to
which f satisfies certain regularity conditions. For details, see [7, Chapter I, Section 3].
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Note that by the very definition, any two regular fibers are C1 equivalent modulo
regular fibers to each other as long as their dimensions of the source and the target are
the same.

For the C 0 equivalence modulo regular fibers, we use the same notation as in Definition
2.3. Then all the assertions in Definition 2.3 hold for C 0 equivalence classes modulo
regular fibers as well.

The following definition is not so important in this paper. However, in order to compare
it with Definition 2.6, we recall it. For details, refer to [24].

Definition 2.5 Let F be a C 0 equivalence class of a fiber of a proper Thom map. Let
us consider arbitrary homeomorphisms z' and ' which make the diagram

.U0;y/ .U1;y/'
//

.f �1.U0/; f
�1.y//

.U0;y/

f

��

.f �1.U0/; f
�1.y// .f �1.U1/; f

�1.y//
z' // .f �1.U1/; f

�1.y//

.U1;y/

f

��

commutative, where f is a proper Thom map such that the fiber over y belongs to
F, and Ui are open neighborhoods of y . Note that then we have '.F.f /\U0/ D

F.f /\U1 . We say that F is co-orientable if ' always preserves the local orientation
of the normal bundle of F.f / at y .

We also call any fiber belonging to a co-orientable C 0 equivalence class a co-orientable
fiber.

In particular, if the codimension of F coincides with the dimension of the target of f ,
then ' above should preserve the local orientation of the target at y .

Note that if F is co-orientable, then F.f / has orientable normal bundle for every
proper Thom map f .

The following definition plays an essential role in this paper. Compare this with
Definition 2.5.

Definition 2.6 Let F be a C 0 equivalence class of a fiber of a proper Thom map of
an oriented manifold. We say that F is achiral if there exist homeomorphisms z' and
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' which make the diagram

(2–1)

.U0;y/ .U1;y/'
//

.f �1.U0/; f
�1.y//

.U0;y/

f

��

.f �1.U0/; f
�1.y// .f �1.U1/; f

�1.y//
z' // .f �1.U1/; f

�1.y//

.U1;y/

f

��

commutative such that the homeomorphism z' reverses the orientation and that the
homeomorphism

(2–2) 'jF.f /\U0
W F.f /\U0! F.f /\U1

preserves the local orientation of F.f / at y , where f is a proper Thom map such that
the fiber over y belongs to F, and Ui are open neighborhoods of y .

Note that if the codimension of F coincides with the dimension of the target of f ,
then the condition about the homeomorphism (2–2) is redundant. Note also that the
above definition does not depend on the choice of f or y .

Moreover, we say that F is chiral if it is not achiral.

We also call any fiber belonging to a chiral (respectively, achiral) C 0 equivalence class
a chiral fiber (respectively, achiral fiber).

Furthermore, we have the following.

Lemma 2.7 Suppose that the codimension of F is strictly smaller than the dimension
of the target. Then F is achiral if and only if there exist homeomorphisms z' and '
making the diagram (2–1) commutative such that the homeomorphism z' preserves the
orientation and that the homeomorphism (2–2) reverses the orientation.

Proof Let f W .M; f �1.y//! .N;y/ be a representative of F, which is a proper
Thom map. Let us consider the Whitney stratifications M and N of M and N

respectively with respect to which f satisfies certain regularity conditions [7, Chapter I,
Section 3]. We may assume that y belongs to a top dimensional stratum of F.f / with
respect to N . By our hypothesis, the dimension k of this stratum is strictly positive.
Let � be a small open disk of codimension k centered at y in N which intersects with
the stratum transversely at y . Set M 0 D f �1.�/. Note that f 0 D f jM 0 W M 0!� is
a proper Thom map.

By the second isotopy lemma (for example, see [7, Chapter II, Section 5]), we see that
the map germ

f W .M; f �1.y//! .N;y/
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is C 0 equivalent to the map germ

f 0 � idRk W .M 0
�Rk ; f 0

�1
.y/� 0/! .��Rk ;y � 0/:

Since k is positive, it is now easy to construct orientation reversing homeomorphisms
z' and ' making the diagram (2–1) commutative such that the homeomorphism (2–2)
reverses the orientation. Then the lemma follows immediately. This completes the
proof.

We warn the reader that even if a fiber is chiral, homeomorphisms z' and ' making the
diagram (2–1) commutative may not satisfy any of the following.

.1/ The homeomorphism z' preserves the orientation and the homeomorphism (2–2)
preserves the orientation.

.2/ The homeomorphism z' reverses the orientation and the homeomorphism (2–2)
reverses the orientation.

This is because f �1.Ui/ may not be connected.

For example, a regular fiber is achiral if and only if the fiber manifold admits an
orientation reversing homeomorphism. The disjoint union of an achiral fiber and an
achiral regular fiber is clearly achiral. The disjoint union of a chiral fiber and an achiral
regular fiber is always chiral.

In what follows, we consider only those maps of codimension �1 so that a regular fiber
is always of dimension 1. Note that every compact 1–dimensional manifold admits
an orientation reversing homeomorphism. Therefore, for two fibers which are C 0

equivalent modulo regular fibers, one is chiral if and only if so is the other. Therefore,
we can speak of a chiral (or achiral) C 0 equivalence class modulo regular fibers as
well.

3 Singular fibers of stable maps of 4–manifolds into 3–man-
ifolds

In this section, we consider proper C1 stable maps of orientable 4–manifolds into
3–manifolds and recall the classification of their singular fibers obtained in [24].

Let M and N be manifolds. We say that a smooth map f W M !N is C1 stable
(or stable for short) if the A–orbit of f is open in the mapping space C1.M;N /

with respect to the Whitney C1–topology. Here, the A–orbit of f 2 C1.M;N /

means the following. Let Diff M (or Diff N ) denote the group of all diffeomorphisms
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of the manifold M (respectively, N ). Then Diff M �Diff N acts on C1.M;N / by
.ˆ;‰/ �f D‰ ıf ıˆ�1 for .ˆ;‰/ 2 Diff M �Diff N and f 2 C1.M;N /. Then
the A–orbit of f 2 C1.M;N / means the orbit through f with respect to this action.
Note that a proper C1 stable map is always a Thom map.

Since .4; 3/ is a nice dimension pair in the sense of Mather [14], if dim M D 4 and
dim N D 3, then the set of all C1 stable maps is open and dense in C1.M;N / as
long as M is compact. In particular, every smooth map M !N can be approximated
arbitrarily well by a C1 stable map. This shows the abundance of such stable maps.

The following characterization of proper C1 stable maps of 4–manifolds into 3–
manifolds is well-known (for example, see [24]).

Proposition 3.1 A proper smooth map f W M ! N of a 4–manifold M into a
3–manifold N is C1 stable if and only if the following conditions are satisfied.

(i) For every q 2M , there exist local coordinates .x;y; z; w/ and .X;Y;Z/ around
q 2M and f .q/ 2N respectively such that one of the following holds:

.Xıf;Y ıf;Zıf /D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.x;y; z/ q a regular point

.x;y; z2Cw2/ q a definite fold point

.x;y; z2�w2/ q an indefinite fold point

.x;y; z3Cxz�w2/ q a cusp point

.x;y; z4Cxz2CyzCw2/ q a definite swallowtail point

.x;y; z4Cxz2Cyz�w2/ q an indefinite swallowtail point

(ii) Set S.f / D fq 2M W rank dfq < 3g, which is a regular closed 2–dimensional
submanifold of M under the above condition (i). Then, for every r 2 f .S.f //,
f �1.r/\S.f / consists of at most three points and the multi-germ

.f jS.f /; f
�1.r/\S.f //

is smoothly right-left equivalent to one of the six multi-germs as described in Figure
1: .1/ represents a single immersion germ which corresponds to a fold point, .2/ and
.4/ represent normal crossings of two and three immersion germs, respectively, each
of which corresponds to a fold point, .3/ corresponds to a cusp point, .5/ represents a
transverse crossing of a cuspidal edge as in .3/ and an immersion germ corresponding
to a fold point, and .6/ corresponds to a swallowtail point.

In the following, we assume that the 4–manifold M is orientable. Using Proposition
3.1, the first named author obtained the following classification of singular fibers [24].
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.1/ .2/ .3/

.4/ .5/ .6/

Figure 1: Multi-germs of f jS.f /

Theorem 3.2 Let f W M ! N be a proper C1 stable map of an orientable 4–
manifold M into a 3–manifold N . Then, every singular fiber of f is C1 (and hence
C 0 ) equivalent modulo regular fibers to one of the fibers as in Figure 2. Furthermore,
no two fibers appearing in the list are C 0 equivalent modulo regular fibers.

Remark 3.3 In Figure 2, � denotes the codimension of the relevant singular fiber
in the sense of Definition 2.3. Furthermore, I�; II� and III� mean the names of the
corresponding singular fibers, and “=” is used only for separating the figures. Note that
we have named the fibers so that each connected fiber has its own digit or letter, and
a disconnected fiber has the name consisting of the digits or letters of its connected
components. Hence, the number of digits or letters in the superscript coincides with
the number of connected components that contain singular points.

Remark 3.4 For proper C1 stable maps of 3–manifolds into the plane, a similar
classification of singular fibers was obtained by Kushner, Levine and Porto [10; 12],
although they did not mention explicitly the equivalence relation for their classification.
Their classification was in fact based on the “diffeomorphism modulo regular fibers”.

Remark 3.5 For proper C1 stable maps of general (possibly nonorientable) 4–
manifolds into 3–manifolds, a similar classification of singular fibers was obtained by
the second named author in [28; 27].
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� D 1 I0 I1

� D 2 II0;0 II0;1 II1;1

II2 II3 IIa

� D 3 III0;0;0 III0;0;1 III0;1;1

III1;1;1 III0;2 III0;3

III1;2 III1;3 III4

III5 III6 III7

III8 III0;a III1;a

IIIb IIIc IIId

IIIe

Figure 2: List of singular fibers of proper C1 stable maps of orientable
4–manifolds into 3–manifolds
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4 Singular fibers of stable maps of 5–manifolds into 4–man-
ifolds

In this section we give a characterization of C1 stable maps of 5–manifolds into
4–manifolds and present the classification of singular fibers of such maps.

First note that since .5; 4/ is a nice dimension pair in the sense of Mather [14], for a
5–manifold M and a 4–manifold N , the set of all C1 stable maps is open and dense
in the mapping space C1.M;N /, as long as M is compact.

By using standard methods in singularity theory (for example, see the book [8] by
Golubitsky and Guillemin), together with a result of Ando [1], we can prove the
following characterization of stable maps of 5–manifolds into 4–manifolds.

Proposition 4.1 A proper smooth map f W M ! N of a 5–manifold M into a
4–manifold N is C1 stable if and only if the following conditions are satisfied.

(i) For every q 2 M , there exist local coordinates .a; b; c;x;y/ and .X;Y;Z;W /

around q 2M and f .q/ 2N respectively such that one of the following holds:

.Xıf;Y ıf;Zıf;W ıf /D8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

.a; b; c;x/ q a regular point

.a; b; c;x2Cy2/ q a definite fold point

.a; b; c;x2�y2/ q an indefinite fold point

.a; b; c;x3Cax�y2/ q a cusp point

.a; b; c;x4Cax2CbxCy2/ q a definite swallowtail point

.a; b; c;x4Cax2Cbx�y2/ q an indefinite swallowtail point

.a; b; c;x5Cax3Cbx2Ccx�y2/ q a butterfly point

.a; b; c; 3x2yCy3Ca.x2Cy2/CbxCcy/ q a definite D4 point

.a; b; c; 3x2y�y3Ca.x2Cy2/CbxCcy/ q an indefinite D4 point

(ii) Set S.f / D fq 2M W rank dfq < 4g, which is a regular closed 3–dimensional
submanifold of M under the above condition (i). Then, for every r 2 f .S.f //,
f �1.r/\S.f / consists of at most four points and the multi-germ

.f jS.f /; f
�1.r/\S.f //

is smoothly right-left equivalent to one of the thirteen multi-germs as follows:

(1) A single immersion germ which corresponds to a fold point
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(2) A normal crossing of two immersion germs, each of which corresponds to a fold
point

(3) A cuspidal edge which corresponds to a single cusp point

(4) A normal crossing of three immersion germs, each of which corresponds to a
fold point

(5) A transverse crossing of a cuspidal edge and an immersion germ corresponding
to a fold point

(6) A map germ corresponding to a swallowtail point

(7) A normal crossing of four immersion germs, each of which corresponds to a fold
point

(8) A transverse crossing of a cuspidal edge and a normal crossing of two immersion
germs which correspond to fold points

(9) A transverse crossing of two cuspidal edges

(10) A transverse crossing of a swallowtail germ and an immersion germ correspond-
ing to a fold point

(11) A map germ corresponding to a butterfly point

(12) A map germ corresponding to a definite D4 point

(13) A map germ corresponding to an indefinite D4 point

We call a D4 point a †2;2;0 point as well.

Remark 4.2 The normal forms for D4 points are slightly different from the usual
ones (see, for example, the article [1] by Ando). We have chosen them so that at an
indefinite D4 point, f can be represented as

.a; �; �/ 7! .a; �;=.�3/C<.x��/C aj�j2/

by using complex numbers, where i D
p
�1, �D bC ic , � D xC iy , = means the

imaginary part, and < means the real part.

Set � D exp .2� i=3/. Then with respect to the chosen coordinates, we have

f ı z'� D '� ıf;

where z'� and '� are orientation preserving diffeomorphisms defined by

z'� .a; �; �/D .a; ��; ��/; and

'� .X;Y C iZ;W /D .X; �.Y C iZ/;W /
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respectively. This shows that an indefinite D4 point (or a local fiber through an
indefinite D4 point) has a (orientation preserving) symmetry of order 3.

Set � 0 D exp .� i=3/ so that we have � 02 D � . Then we have

f ı z'� 0 D '� 0 ıf;

where z'� 0 and '� 0 are diffeomorphisms defined by

z'� 0.a; �; �/D .�a;�� 0�; � 0�/; and

'� .X;Y C iZ;W /D .�X;�� 0.Y C iZ/;�W /

respectively. Note that z'� 0 is orientation reversing while '� 0 is orientation preserving.
This shows that an indefinite D4 point (or a local fiber through an indefinite D4 point)
has a symmetry of order 6 and that the generator reverses the “local orientation” of the
fiber. In fact, we have z'� D z'2

� 0 and '� D '2
� 0 .

Let us recall the following definition (for details, see [24, Chapter 8]).

Definition 4.3 Let f W M ! N be a proper smooth map between manifolds. Then
we call the proper smooth map

f � idRW M �R!N �R

the suspension of f . Furthermore, to the fiber of f over a point y 2 N , we can
associate the fiber of f � idR over y � f0g. We say that the latter fiber is obtained
from the original fiber by the suspension. Note that a fiber and its suspension are
diffeomorphic to each other in the sense of Definition 2.1.

Note that the map germs (1)–(6) in Proposition 4.1 correspond to the suspensions of
the map germs in Figure 1. The map germs (11)–(13) are as described in Figures 3–5
respectively, where in order to draw 3–dimensional objects in a 4–dimensional space,
we have depicted three “sections” by 3–dimensional spaces for each object.

Figure 3: Map germ corresponding to a butterfly point
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Figure 4: Map germ corresponding to a definite D4 point

Figure 5: Map germ corresponding to an indefinite D4 point

Let q be a singular point of a proper C1 stable map f W M !N of a 5–manifold M

into a 4–manifold N . Then, using the above local normal forms, we can easily describe
the diffeomorphism type of a neighborhood of q in f �1.f .q//. More precisely, we
easily get the following local characterizations of singular fibers.

Lemma 4.4 Every singular point q of a proper C1 stable map f W M ! N of a
5–manifold M into a 4–manifold N has one of the following neighborhoods in its
corresponding singular fiber (see Figure 6):

(1) isolated point diffeomorphic to f.x;y/ 2 R2 W x2Cy2 D 0g, if q is a definite
fold point,

(2) union of two transverse arcs diffeomorphic to f.x;y/ 2 R2 W x2�y2 D 0g, if q

is an indefinite fold point,

(3) .2; 3/–cuspidal arc diffeomorphic to f.x;y/ 2R2 W x3�y2D 0g, if q is a cusp
point,

(4) isolated point diffeomorphic to f.x;y/ 2 R2 W x4Cy2 D 0g, if q is a definite
swallowtail point,

(5) union of two tangent arcs diffeomorphic to f.x;y/ 2 R2 W x4�y2 D 0g, if q is
an indefinite swallowtail point,

(6) .2; 5/–cuspidal arc diffeomorphic to f.x;y/ 2 R2 W x5 � y2 D 0g, if q is a
butterfly point,

(7) non-disjoint union of an arc and a point diffeomorphic to f.x;y/ 2R2 W 3x2yC

y3 D 0g, if q is a definite D4 point,
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(8) union of three arcs meeting at a point with distinct tangents diffeomorphic to
f.x;y/ 2 R2 W 3x2y �y3 D 0g, if q is an indefinite D4 point.

.1/ .2/ .3/ .4/

.5/ .6/ .7/ .8/

Figure 6: Neighborhood of a singular point in a singular fiber

We note that in Figure 6, both the black dot (1) and the black square (4) represent
an isolated point; however, we use distinct symbols in order to distinguish them. We
also use the symbols as in Figure 6 (3) and (6) in order to distinguish a .2; 3/–cusp
from a .2; 5/–cusp. Furthermore, we put a dot on the arc as in Figure 6 (7) in order to
distinguish it from a regular fiber.

Then by an argument similar to that in [24, Chapter 3], we can prove the following,
whose proof is left to the reader.

Theorem 4.5 Let f W M ! N be a proper C1 stable map of an orientable 5–
manifold M into a 4–manifold N . Then, every singular fiber of f is C 0 equivalent
modulo regular fibers to one of the fibers as follows:

(1) The suspension of a fiber appearing in Theorem 3.2

(2) One of the disconnected fibers
IV0;0;0;0 , IV0;0;0;1 , IV0;0;1;1 , IV0;1;1;1 , IV1;1;1;1 , IV0;0;2 , IV0;1;2 , IV1;1;2 ,
IV0;0;3 , IV0;1;3 , IV1;1;3 , IV0;4 , IV0;5 , IV0;6 , IV0;7 , IV0;8 , IV1;4 , IV1;5 ,
IV1;6 , IV1;7 , IV1;8 , IV2;2 , IV2;3 , IV3;3 , IV0;0;a , IV0;1;a , IV1;1;a , IV0;b ,
IV1;b , IV2;a , IV3;a , IVa;a , IV0;c , IV0;d , IV0;e , IV1;c , IV1;d , IV1;e

(3) One of the connected fibers depicted in Figure 7

Furthermore, no two fibers appearing in the list .1/–.3/ above are C 0 equivalent
modulo regular fibers.
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IV9 IV10 IV11 IV12 IV13 IV14

IV15 IV16 IV17 IV18 IV19 IV20

IV21 IV22 IVf IVg IVh IVi

IVj IVk IVl IVm IVn IVo

IVp IVq

Figure 7: List of codimension 4 connected singular fibers of proper C1

stable maps of orientable 5–manifolds into 4–manifolds
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For the fibers in Theorem 4.5 (1), we use the same names as those of the corresponding
fibers in Theorem 3.2. Note that the names of the fibers are consistent with the
convention mentioned in Remark 3.3. Therefore, the figure corresponding to each fiber
listed in Theorem 4.5 (2) can be obtained by taking the disjoint union of the fibers in
Figure 2 corresponding to the digits or letters appearing in the superscript. For example,
the figure for the fiber IV0;0;0;1 consists of three dots and a “figure 8”.

In Figure 7, we did not use “=” as in Figure 2, since the depicted fibers are all connected
and are easy to recognize.

Note also that the codimensions of the fibers in Theorem 4.5 (1) coincide with those of
the corresponding fibers in Theorem 3.2. Furthermore, the fibers in Theorem 4.5 (2)
and (3) all have codimension 4.

Remark 4.6 The result of Theorem 4.5 holds for the classification up to C1 equiva-
lence as well. As a consequence, we see that two fibers are C 0 equivalent if and only
if they are C1 equivalent (for related results, refer to [24, Chapter 3]). This should be
compared with a result of Damon [4] about stable map germs in nice dimensions.

5 Chiral singular fibers and their signs

In this section we determine those singular fibers of proper stable maps of oriented
4–manifolds into 3–manifolds which are chiral. We also define a sign .D ˙1/ for
each chiral singular fiber of codimension 3.

Let us first consider a fiber of type III8 . Let f W .M; f �1.y//! .N;y/ be a map
germ representing the fiber of type III8 with f �1.y/ being connected, where M is
an orientable 4–manifold and N is a 3–manifold. We assume that M is oriented. Let
us denote the three singular points of f contained in f �1.y/ by q1; q2 and q3 .

Let us fix an orientation of a neighborhood of y in N . Then for every regular point
q 2 f �1.y/, we can define the local orientation of the fiber near q by the “fiber first”
convention; that is, we give the orientation to the fiber at q so that the ordered 4–tuple
hv; v1; v2; v3i of tangent vectors at q gives the orientation of M , where v is a tangent
vector of the fiber at q which corresponds to its orientation, and v1 , v2 and v3 are
tangent vectors of M at q such that the ordered 3–tuple hdfq.v1/; dfq.v2/; dfq.v3/i

corresponds to the local orientation of N at y . Note that the set of regular points in
f �1.y/ consists of six open arcs and each of them gets its orientation by the above
rule.
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qi

Figure 8: Orientations of the four arcs incident to a singular point

Each singular point qi is incident to four open arcs. We see easily that their orientations
should be as depicted in Figure 8 by considering the orientations induced on the nearby
fibers.

For each pair .qi ; qj /, i ¤ j , of singular points, we have exactly two open arcs of
f �1.y/ which connect qi and qj . Furthermore, the orientations of the two open arcs
coincide with each other in the sense that one of the two arcs goes from qi to qj if
and only if so does the other one. Then we see that the orientations on the six open
arcs define a cyclic order of the three singular points q1; q2 and q3 (see Figure 9). By
renaming the three singular points if necessary, we may assume that this cyclic order is
given by hq1; q2; q3i.

q1

q2 q3

Figure 9: Cyclic order of the three singular points

Let Di be a sufficiently small open disk neighborhood of qi in S.f /. Since the
multi-germ .f jS.f /; f

�1.y/\S.f // corresponds to the triple point as depicted in
Figure 1 (4), the images f .D1/; f .D2/ and f .D3/ are open 2–disks in N in general
position forming a triple point at y . They divide a neighborhood of y in N into
eight octants. For each octant ! , take a point in it and count the number of connected
components of the regular fiber over the point. It should be equal either to 1 or to 2
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and it does not depend on the choice of the point (for details, see [24, Figure 3.6]).
When it is equal to k .D 1; 2/, we call ! a k –octant.

Choose a 1–octant ! . Let wi be a normal vector to f .Di/ in N pointing toward !
at a point incident to that octant, i D 1; 2; 3 (see Figure 10).

f .D1/f .D2/

f .D3/

w1

w2

w3

y

!

Figure 10: Vectors wi normal to f .Di/ pointing toward !

We may identify a neighborhood of y in N with R3 . Then the local orientation at
y corresponding to the ordered 3–tuple of vectors hw1; w2; w3i depends only on the
cyclic order of the three open disks f .D1/, f .D2/ and f .D3/ and is well-defined,
once a 1–octant is chosen. Then we say that the fiber f �1.y/ is positive if the
orientation corresponding to hw1; w2; w3i coincides with the local orientation of N

at y which we chose at the beginning; otherwise, negative. We define the sign of the
fiber to be C1 (or �1) if it is positive (respectively, negative).

Lemma 5.1 The above definition does not depend on the choices of the following
data, and the sign of a III8 type fiber is well-defined as long as the source 4–manifold
is oriented:

.1/ the 1–octant ! ,

.2/ the local orientation of N at y .

Proof .1/ It is easy to see that any two adjacent octants have distinct numbers of
connected components of their associated regular fibers; that is, a 1–octant is adjacent
to 2–octants, but never to another 1–octant, and vice versa. Therefore, in order to
move from the chosen 1–octant to another 1–octant, one has to cross the open disks
f .D1/; f .D2/ and f .D3/ even number of times. Every time one crosses an open disk,
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the associated normal vector corresponding to that open disk changes the direction,
while the other two vectors remain parallel. Therefore, after crossing the open disks
even number of times, we get the same orientation determined by the associated ordered
normal vectors.

.2/ If we reverse the local orientation of N at y , then the regular parts of fibers get
opposite orientations. Therefore, in the above definition, the cyclic order of the three
singular points is reversed. Hence, the resulting local orientation at y determined by
the three normal vectors is also reversed. Thus, the sign of the fiber is well-defined.

For a fiber which is a disjoint union of a III8 type fiber and a finite number of copies
of a fiber of the trivial circle bundle (that is, for a fiber equivalent to a III8 type fiber
modulo regular fibers), we say that it is positive (respectively, negative) if the III8 –fiber
component is positive (respectively, negative). We define the sign of such a fiber to be
C1 (or �1) if it is positive (respectively, negative).

Remark 5.2 It should be noted that if we reverse the orientation of the source 4–
manifold, then the sign of a III8 type fiber necessarily changes.

Corollary 5.3 A fiber equivalent to a III8 type fiber modulo regular fibers is always
chiral.

Proof If it is achiral, then a representative of a III8 type singular fiber and its copy
with the orientation of the source 4–manifold being reversed are C 0 equivalent with
respect to an orientation preserving homeomorphism between the sources (that is, with
respect to a homeomorphism z' as in the diagram (2–1)). Let us take local orientations
at the target points so that the homeomorphism between the target manifolds (that is,
the homeomorphism ' in the diagram (2–1)) preserves the orientation. Then by our
definition of the sign, we see that the two III8 type fibers should have the same sign,
which is a contradiction in view of Remark 5.2. Therefore, the desired conclusion
follows. This completes the proof.

Let us now consider the other singular fibers appearing in Theorem 3.2. By using
similar arguments, we can determine the chiral singular fibers among the list. More
precisely, we have the following.

Proposition 5.4 A singular fiber of a proper C1 stable map of an oriented 4–manifold
into a 3–manifold is chiral if and only if it contains a fiber of type III5 , III7 or III8 .
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Proof For fibers of types III5 and III7 , we can define their signs as for a III8 type
fiber. Therefore, they are chiral. Details are left to the reader.

For the other fibers, we can find homeomorphisms z' and ' as in Definition 2.6. For
example, let us consider a II2 type fiber. Let f W .M; f �1.y//! .N;y/ be a proper
smooth map germ representing a fiber of type II2 , and let q1 and q2 be the two
singular points contained in f �1.y/, both of which are indefinite fold points. We fix
orientations of M and N near f �1.y/ and y respectively. Then the regular part of
f �1.y/ is naturally oriented by the “fiber first” convention.

It is easy to show that the involution of f �1.y/ as in Figure 11 reverses the orientation
of the regular part of f �1.y/. Note that this involution fixes the two singular points
q1 and q2 pointwise.

Figure 11: Orientation-reversing involution of a II2 type fiber

By Section 3, there exist coordinates .xi ;yi ; zi ; wi/ and .X;Y;Z/ around qi , i D 1; 2,
and f .qi/D y respectively such that f is given by

.x1;y1; z1; w1/ 7! .x1;y1; z
2
1 �w

2
1/

around q1 , and by
.x2;y2; z2; w2/ 7! .x2; z

2
2 �w

2
2 ;y2/

around q2 with respect to these coordinates. Then we may assume that the above
involution is consistent with the involutions defined by

.x1;y1; z1; w1/ 7! .x1;y1;�z1; w1/

around q1 and by
.x2;y2; z2; w2/ 7! .x2;y2;�z2; z2/

around q2 . Then we can extend this involution of a neighborhood of fq1; q2g to a
self-diffeomorphism z' of f �1.U / for a sufficiently small open disk neighborhood U
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of y in N so that the diagram

.U;y/ .U;y/
idU

//

.f �1.U /; f �1.y//

.U;y/

f

��

.f �1.U /; f �1.y// .f �1.U /; f �1.y//
z' // .f �1.U /; f �1.y//

.U;y/

f

��

is commutative, by using the relative version of Ehresmann’s fibration theorem (see
Ehresmann [5], Lamotke [11, Section 3], Bröcker–Jänich [2, Section 8.12], or the book
[24, Section 1] by the first named author), where idU denotes the identity map of U .
Note that the diffeomorphism z' thus constructed is orientation reversing. Hence, the
fiber f �1.y/ is achiral according to Definition 2.6.

We can use similar arguments for the other fibers to show that they are achiral. Details
are left to the reader.

Let us now state the main theorem of this paper. For a closed oriented 4–manifold, we
denote by �.M / the signature of M . Furthermore, for a C1 stable map f W M !N

into a 3–manifold N , we denote by jjIII8.f /jj the algebraic number of III8 type fibers
of f ; that is, it is the sum of the signs over all fibers of f equivalent to a III8 type
fiber modulo regular fibers.

Theorem 5.5 Let M be a closed oriented 4–manifold and N a 3–manifold. Then,
for any C1 stable map f W M !N , we have

�.M /D jjIII8.f /jj 2 Z:

The proof of Theorem 5.5 will be given in Section 7.

Since for an oriented 4–manifold, the signature and the Euler characteristic have the
same parity, we immediately obtain the following, which was obtained in [24].

Corollary 5.6 Let M be a closed orientable 4–manifold and N a 3–manifold. Then,
for any C1 stable map f W M ! N , the number of fibers of f equivalent to a III8

type fiber modulo regular fibers has the same parity as the Euler characteristic of M .

Note that in the proof of our main theorem, we do not use the above corollary. In
other words, our proof gives a new proof for the above modulo two Euler characteristic
formula.
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6 Cobordism invariance of the algebraic number of III8 type
fibers

In order to prove Theorem 5.5, let us first show that the algebraic number of III8 type
fibers is an oriented cobordism invariant of the source 4–manifold.

Let us begin by a list of chiral singular fibers of proper C1 stable maps of 5–manifolds
into 4–manifolds. We can prove the following proposition by an argument similar to
that in the previous section.

Proposition 6.1 A singular fiber of a proper C1 stable map of an oriented 5–manifold
into a 4–manifold is chiral if and only if it is C 0 equivalent modulo regular fibers to
a fiber of type III5 , III7 , III8 , IV0;5 , IV0;7 , IV0;8 , IV1;5 , IV1;7 , IV1;8 , IV10 , IV11 ,
IV12 , IV13 , IV18 , IVg , IVh , or IVk .

For example, in order to show that the fibers of types IVo , IVp and IVq are achiral,
we can use the symmetry of order 6 of an indefinite D4 point as in Remark 4.2. The
proof of Proposition 6.1 is left to the reader.

Note that for each chiral singular fiber of codimension 4, we can define its sign .D˙1/,
as long as the source 5–manifold is oriented. In what follows, we fix such a definition
of a sign for each chiral singular fiber of codimension 4 once and for all, although we
do not mention it explicitly.

Let F be a C 0 equivalence class modulo regular fibers. For a proper C1 stable map
f W M !N of an oriented 5–manifold M into a 4–manifold N , we denote by F.f /

the set of all y 2N over which lies a fiber of type F. Note that F.f / is a regular C1

submanifold of N of codimension �.F/, where �.F/ denotes the codimension of the
C 0 equivalence class modulo regular fibers F.

In general, if F is chiral, then F.f / is orientable. For F D III8 , we introduce the
orientation on III8.f / as follows.

Take a point y 2 III8.f /. Note that the singular value set f .S.f // near y consists of
three codimension 1 “sheets” meeting along III8.f / in general position. Let Dy be a
small open 3–disk centered at y in N which intersects III8.f / transversely exactly
at y and is transverse to the three sheets of f .S.f //. Put M 0 D f �1.Dy/, which is
a smooth 4–dimensional submanifold of M with trivial normal bundle and hence is
orientable. Let us consider the proper smooth map

hD f jf �1.Dy/
W M 0

!Dy ;
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which is a C1 stable map by virtue of Proposition 3.1. Note that the fiber of h over
y is of type III8 . Let M 00 be the component of M 0 containing the III8 type fiber.

Let OM 00 be the orientation of M 00 with respect to which the III8 type fiber is positive.
Then let O� be the orientation of the normal bundle � to M 00 in M such that O�˚OM 00

is consistent with the orientation of the 5–manifold M . By the differential df W TM !

TN at a point in M 00 , O� corresponds to a normal direction to Dy in N at y . Now we
orient III8.f / at y so that this direction is consistent with the orientation of III8.f /.

It is easy to see that this orientation varies continuously with respect to y 2 III8.f /

and hence defines an orientation on III8.f /.

Now let F be the C 0 equivalence class modulo regular fibers of one of the codimension
4 fibers appearing in Proposition 6.1; that is, F is a chiral singular fiber of codimension
4. Note that F.f / is a discrete set in N . Take a point y 2 F.f / and a sufficiently
small open disk neighborhood �y of y in N . We orient the source 5–manifold so
that the fiber over y gets the sign C1. Then �y \ III8.f / consists of several oriented
arcs which have a common end point at y . Let us define the incidence coefficient
ŒIII8
W F� 2 Z to be the number of arcs coming into y minus the number of arcs going

out of y . Note that this does not depend on the point y nor on the map f .

Remark 6.2 Let F be the C 0 equivalence class modulo regular fibers of a codimension
4 achiral singular fiber. Then we can define the incidence coefficient ŒIII8

W F� 2 Z

in exactly the same manner as above. However, this should always vanish, since the
homeomorphism ' as in (2–1) reverses the orientation of �y \ III8.f /.

Lemma 6.3 The incidence coefficient ŒIII8
W F� vanishes for every C 0 equivalence

class modulo regular fibers F of codimension 4 that is chiral.

Proof It is not difficult to see that for y 2 F.f /, �y \ III8.f / ¤ ∅ if and only if
FD IV0;8 , IV1;8 or IV18 . Furthermore, for each of these three cases, the number of
arcs of �y \ III8.f / is equal to 2 and exactly one of them is coming into y . Thus the
result follows.

Remark 6.4 The above lemma shows that the closure of III8.f / is a regular oriented
1–dimensional submanifold of N near the points over which lies a chiral singular
fiber of codimension 4. However, the closure of III8.f /, as a whole, is not even a
topological manifold in general. For example, suppose that f admits a IV22 type fiber.
Then the closure of III8.f / forms a graph (that is, a 1–dimensional complex) and each
point of IV22.f / is a vertex of degree 8, that is, it has 8 incident edges. Furthermore,
four of them are incoming edges and the other four are outgoing edges.
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Let us recall the following definition (for details, refer to Conner–Floyd [3].)

Definition 6.5 Let N be a manifold and fi W Mi !N a continuous map of a closed
oriented n–dimensional manifold Mi into N , i D 0; 1. We say that f0 and f1 are
oriented bordant if there exist a compact oriented .nC 1/–dimensional manifold W

and a continuous map F W W !N � Œ0; 1� with the following properties:

(1) @W is identified with the disjoint union of �M0 and M1 , where �M0 denotes
the manifold M0 with the reversed orientation, and

(2) F jMi
W Mi!N � fig is identified with fi , i D 0; 1.

We call the map F W W !N � Œ0; 1� an oriented bordism between f0 and f1 .

Note that if M0 DM1 , and f0 and f1 are homotopic, then they are oriented bordant.
Furthermore, if the target manifold N is contractible, then f0 and f1 are oriented
bordant if and only if their source manifolds M0 and M1 are oriented cobordant as
oriented manifolds.

For a given manifold N and a nonnegative integer n, the set of all oriented bordism
classes of maps of closed oriented n–dimensional manifolds into N forms an additive
group under the disjoint union. We call it the n–dimensional oriented bordism group
of N .

Note that in the usual definition, an oriented bordism is a map into N and not into
N � Œ0; 1�. However, it is easy to see that the above definition is equivalent to the usual
one.

As a consequence of Lemma 6.3, we get the following.

Lemma 6.6 Let N be a 3–manifold and fi W Mi !N a C1 stable map of a closed
oriented 4–manifold Mi into N , i D 0; 1. If f0 and f1 are oriented bordant, then we
have

jjIII8.f0/jj D jjIII8.f1/jj:

Proof Let F W W ! N � Œ0; 1� be an oriented bordism between f0 and f1 . Take
sufficiently small collar neighborhoods C0DM0� Œ0; 1/ and C1DM1� .0; 1� of M0

and M1 in W respectively. We may assume that

F jM0�Œ0;"/ D f0 � idŒ0;"/; and

F jM1�.1�";1� D f1 � id.1�";1�

for a sufficiently small ">0. Furthermore, we may assume that F is a smooth map with
F�1.N � .0; 1//D Int W . Then by a standard argument, we can approximate F by a
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generic map F 0 such that F 0jC0[C1
DF jC0[C1

and that F 0jInt W W Int W !N �.0; 1/

is a proper C1 stable map. In the following, let us denote F 0 again by F .

By Lemma 6.3, we see that the closure of III8.F / is a finite graph each of whose edge
is oriented. Furthermore, for each vertex lying in N � .0; 1/, the number of incoming
edges is equal to that of outgoing edges. Furthermore, its vertices lying in N �f0; 1g

have degree one and they coincide exactly with the union of

III8.F /\ .N � f0g/D III8.f0/ and

III8.F /\ .N � f1g/D III8.f1/:

Therefore, by virtue of Remark 5.2 we have

�jjIII8.f0/jjC jjIII8.f1/jj D 0;

since @W D .�M0/[M1 . Hence the result follows.

By combining Lemma 6.6 with a work of Conner–Floyd [3], we get the following.

Proposition 6.7 Let N be a 3–manifold and fi W Mi ! N a C1 stable map of
a closed oriented 4–manifold Mi into N , i D 0; 1. If M0 and M1 are oriented
cobordant as oriented 4–manifolds, then we have

jjIII8.f0/jj D jjIII8.f1/jj:

Proof Recall that the oriented cobordism groups �n of n–dimensional manifolds for
0� n� 4 satisfy the following:

�n Š

(
0; nD 1; 2; 3;

Z; nD 0; 4:

Furthermore, the 4–dimensional oriented bordism group of N is isomorphic toX
pCqD4

Hp.N I�q/

modulo (odd) torsion [3, Section 15]. Therefore, if the 4–dimensional manifolds M0

and M1 are oriented cobordant, then mf0 and mf1 are oriented bordant for some odd
integer m, where mfi denotes the map of the disjoint union of m copies of Mi into
N such that on each copy it is given by fi , i D 0; 1.

Thus by Lemma 6.6, we have

mjjIII8.f0/jj DmjjIII8.f1/jj;

which implies the desired equality. This completes the proof.
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7 An explicit example

In this section, we study an explicit example of a C1 stable map of a closed oriented
4–manifold with nonzero signature into R3 . Combining this with Proposition 6.7, we
will prove our main theorem of this paper.

In [24, Chapter 6], the first named author constructed an explicit example of a C1

stable map f W M ! R3 of a closed 4–manifold M with exactly one III8 type fiber
such that f has only fold points as its singularities. Recall that M is diffeomorphic to
CP2]2CP2 if we ignore the orientation. We would like to orient M and determine
the sign of this III8 type fiber.

In fact, by Proposition 6.7, we already know that there exists a constant c such that
the algebraic number of III8 type fibers is c times the signature of the source oriented
4–manifold (for details, see the argument in the proof of Theorem 5.5 below). In the
above-mentioned example, the algebraic number of III8 type fibers is equal to ˙1,
and the signature of the source 4–manifold is equal to ˙1. Therefore, this constant c

should be equal to ˙1. Thus, for the proof of our main theorem, it suffices to determine
the sign of the constant c .

This procedure might seem easy, but in fact it is not. As a matter of fact, the construction
of the above example in [24] was already very complicated, although the example itself
seems to be a natural one. Therefore, in this section, we carefully study the example and
determine the sign of the constant c . We will describe the argument in details, since the
technique in this section can be very useful in determining the self-intersection number
of the surface of singular point set in general situations. At the end of this section, we
give a new proof of the self-intersection number formula based on our study.

In the construction given in [24], the orientation of the source 4–manifold M was not
given explicitly. Here, we first orient the source 4–manifold so that the III8 type fiber
gets the positive sign, and then determine the signature of the source 4–manifold with
respect to the chosen orientation.

Lemma 7.1 If we orient the source 4–manifold M of the above example so that the
III8 type fiber is positive, then the signature of M is equal to C1.

Proof In general, let f W M ! R3 be a C1 stable map of a closed oriented 4–
manifold into the 3–dimensional Euclidean space which has only fold points as its
singularities. In view of a result in the first named author’s paper [23] (see also
Ohmoto–Saeki–Sakuma [19] or Sadykov [21]), we have

(7–1) 3�.M /D S0.f / �S0.f /;
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where S0.f / denotes the surface of definite fold singularities of f , and S0.f / �S0.f /

denotes its self-intersection number (or equivalently, its normal Euler number) in M .
Therefore, in order to determine the signature of the source 4–manifold of the explicit
example mentioned above, we have only to compute the self-intersection number
S0.f / �S0.f /.

Let us first consider the III8 type fiber and denote the three singular points in it by q1 ,
q2 and q3 as in Figure 9. Furthermore, we orient the regular part of the III8 type fiber
so that it corresponds to the cyclic order hq1; q2; q3i of the three singular points.

The image f .S.f // of the singular point set of f around the point y corresponding
to the III8 type fiber consists of three sheets f .D1/, f .D2/ and f .D3/, where Di

is a small disk neighborhood of qi in S.f /, i D 1; 2; 3. We may assume that the
three sheets f .D1/, f .D2/ and f .D3/ are situated as in Figure 10 and that the “front
octant” ! in the figure is a 1–octant; that is, the fiber over a point in the octant is
connected.

Let wi be a normal vector to the i -th sheet of f .S.f // in N pointing toward ! at a
point incident to that octant, i D 1; 2; 3. We orient R3 so that the ordered 3–tuple of
vectors hw1; w2; w3i is consistent with the orientation, that is, R3 is endowed with
the “right-handed orientation” in the usual sense.

Now we orient the source 4–manifold of f so that the regular part of the III8 type
fiber gets the orientation as indicated in Figure 9 in the sense of Section 5 by the “fiber
first” convention. Then the sign of the III8 type fiber is equal to C1.

Recall that S0.f / consists of three 2–spheres zS0 , zS1 and zS2 , and that the surface
S1.f / of indefinite fold points is a real projective plane whose image P Df .S1.f // is
Boy’s surface in R3 (see Figure 12). Furthermore, the embedded 2–sphere S0Df . zS0/

surrounds Boy’s surface, and the disjoint 2–spheres S1 D f . zS1/ and S2 D f . zS2/ are
contained in the bounded region of R3 nP so that S1 surrounds S2 (for details, see
[24, Chapter 6]).

We have obviously a continuous map h0W S0�Œ0; 1�!R3 with the following properties:

(1) h0jS0�f0g D idS0
W S0 � f0g ! S0 .

(2) h0jS0�.0;1/ is a diffeomorphism onto the region bounded by S0 and P .

(3) h0.S0 � f1g/D P .

(4) h0jS0�f1g is a homeomorphism outside of a 1–dimensional subcomplex C0 of
S0 as depicted in Figure 13. The image h0..S0 nC0/�f1g/ coincides with the
complement to the multiple point set of Boy’s surface P in P .
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attach

Figure 12: Boy’s surface P

C0

Figure 13: 1–dimensional subcomplex C0 on the 2–sphere S0

Set B D h0.S0 � Œ0; 1=2�/. Then N. zS0/D f
�1.B/ can be identified with a normal

disk bundle �0 to zS0 in M . In order to calculate the self-intersection number zS0 �
zS0

in M , let us consider the disk bundle z�0 over zS0 which is obtained from �0 by
identifying the antipodal points on each disk fiber. In other words, the S1 –bundle @z�0

associated with the disk bundle z�0 corresponds to the RP1 –bundle associated with
the real 2–plane bundle afforded by �0 . Note that the self-intersection number of the
zero section of �0 is equal to one half of the self-intersection number of that of z�0 .

Let us construct a section of the S1 –bundle @z�0 associated with z�0 over a certain
subset zX0 of zS0 . More precisely, for each point zx of zX0 , we will choose a pair of
antipodal points on the circle fiber of @�0 over zx continuously with respect to zx so
that the projection restricted to the set of all these points is a double covering map onto
zX0 , where @�0 is the S1 –bundle associated with the disk bundle �0 .
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Let N.C0/ be a regular neighborhood of C0 in S0 . Set zC0D f
�1.C0/ and N. zC0/D

f �1.N.C0//. Note that zC0 is a 1–dimensional subcomplex of zS0 and that N. zC0/ is
a regular neighborhood of zC0 in zS0 . We will first construct a section of the S1 –bundle
@z�0 over zS0 n Int N. zC0/.� zX0/ as follows.

Take a point zx 2 zS0 n Int N. zC0/ and set x D f .zx/ 2 S0 . Then h0.x; 1/ 2 P is the
image of a unique indefinite fold point. Therefore, f �1.h0.x; 1=2// can be considered
as a nearby fiber of the fiber over h0.x; 1/, which is of type I1 , and hence we can take
a pair of two antipodal points on f �1.h0.x; 1=2// canonically as in Figure 14. We can
thus construct a continuous section of @z�0 over each component of zS0 n Int N. zC0/.

f �1.h0.x; 1//
f �1.h0.x; 1=2//

Figure 14: Two points on a regular fiber near a singular fiber of type I1

Let us consider the twelve bands embedded in N. zC0/ as in Figure 15, where each band
is homeomorphic to Œ�1; 1�� Œ�1; 1�. Each band is also considered to be a 1–handle
attached to zS0 n Int N. zC0/ along f�1; 1g � Œ�1; 1�. We orient the core of each band
as in the figure, where a core is an arc properly embedded in a band corresponding
to Œ�1; 1�� f0g. The subset zX0 is the union of zS0 n Int N. zC / and the twelve bands.
Let us extend the section of @z�0 over zS0 n Int N. zC0/ constructed above through the
twelve bands as follows.

Take a band and let z̨ be its core. Set ˛D f .z̨/. Since ˛0 D h0.˛�f1=2g/ is close to
the transverse double point of f .S.f // as in Figure 1 (2), the regular fibers over the
two points @˛0 are close to a II3 –fiber. Furthermore, the pairs of antipodal points on
the circle fibers over the two points @z̨ associated with the above-constructed section
of @z�0 over zS0 n Int N. zC0/ are situated as in Figure 16. Let us extend the section of
@z�0 over zS0 n Int N. zC0/ through z̨ so that when one goes along z̨ in the direction
indicated as in Figure 15, the pair of antipodal points on the circle fibers of @�0 gets
the rotation through the angle �=2 in the positive direction of regular fibers. Then
we can naturally extend the section to the band. We apply this construction to all the
twelve bands to get a section of @z�0 over zX0 .
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N.�C0/

Figure 15: Twelve bands in N. zC0/

D

close

a II3–fiber

Figure 16: Two pairs of antipodal points

The complement of Int zX0 in zS0 consists of ten 2–disks: six rectangular disks corre-
sponding to the edges of zC0 and four hexagonal disks corresponding to the vertices of
zC0 . Note that the bundle z�0 over each 2–disk � is trivial, and using a trivialization, we
can define the degree of the above-constructed section over @�. The self-intersection
number of the zero section of z�0 is then equal to the sum of these “degrees” over
the boundaries of the ten 2–disks. Note that here zS0 should be oriented so that its
orientation together with the orientation of the 2–disk fiber gives the orientation of
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the total space. Since we have oriented the source 4–manifold by the “fiber first”
convention, we may assume that

(i) the induced orientation on a 2–disk fiber of the normal disk bundle �0 to zS0

in M is given by the orientation of the boundary regular fiber plus the “inward
normal”, and

(ii) the induced orientation OS0
on S0 satisfies that the “outward normal” plus OS0

is consistent with the right-handed orientation of R3 .

Hence OS0
is the “left-handed” orientation when viewed from outside (see Figure 15).

Here we adopt the convention that the figure of N. zC0/ (Figure 15) is consistent with
that of N.C0/ viewed from outside.

It is easy to see that for each of the six rectangular 2–disks of zS0 n Int zX0 , the degree
of the section of @z�0 over its boundary is equal to �1, since when we go around its
boundary in its positive direction, the pair of antipodal points on the circle fibers of
@�0 rotates through the angle �� .

Let us now consider the contribution of each of the other four regions of zS0 n Int zX0

that are hexagonal. The image H by h0.�; 1=2/ of its f –image is close to the triple
point y of f .S.f // and it lies in a 1–octant (see Figure 10). Recall that H is given
the “left-handed” orientation when viewed from outside. Therefore, when we go along
the boundary of the hexagonal disk H in the positive direction from a point near the
sheet f .D1/, then the second sheet that we pass by is the sheet f .D2/. In this process,
the pair of antipodal points on a circle fiber of @� corresponding to the sheet f .D1/

makes a rotation through the angle �=3 as in Figure 17, since the sign of the III8 type
fiber is positive. Therefore, the degree of the section of @z�0 over the boundary of the
hexagonal disk is equal to C1, since when we go around its boundary in its positive
direction, the pair of antipodal points on the circle fibers of @�0 rotates through the
angle � (see Figure 17). We also note that this argument can be equally applied to all
the four hexagonal regions (that is, the central hexagonal region is not an exception),
since the argument is local in nature in the target.

Thus the sum of the degrees is equal to

.�1/ � 6C .C1/ � 4D�2:

Therefore, the self-intersection number of the zero section of z�0 is equal to �2 and
that of �0 is equal to �2=2D�1.

The self-intersection numbers zS1 �
zS1 and zS2 �

zS2 can be computed by a similar method
as follows. Let �i be the normal disk bundle to zSi in M , i D 1; 2. We can construct
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D

1

2 3

1

2

3

Figure 17: Three pairs of antipodal points

the continuous map hi , i D 1; 2, for f . zSi/D Si satisfying the properties similar to
those for h0 . Then we take the 1–dimensional complexes Ci and zCi , their regular
neighborhoods N.Ci/ and N. zCi/ respectively, and the twelve bands in zSi , i D 1; 2,
as above, and define zXi to be the union of zSi n Int N. zCi/ and the twelve bands. Then
we can construct a section of @�i , i D 1; 2, over zXi by using an argument similar to
that for @z�0 . (Note that in the present case, we use �i itself, rather than its associated
RP1 –bundle.) More precisely, let us consider the regular fiber over the point hi.x; 1=2/

for a point zx 2 zSi n Int N. zCi/ with xD f .zx/. It consists of two circles `1 and `2 and
we can take a pair of points which lie on distinct components as in Figure 18.

`1

`2

f �1.hi.x; 1//

f �1.hi.x; 1=2//

Figure 18: Two points on a regular fiber which are on distinct connected components

We can extend this section through the twelve bands as in the case of zS0 . Let us
compute the sum of the degrees of the section over the components of @ zXi . First note
that the orientation on Si is the “left-handed” orientation when viewed from inside.
Then the contribution of each rectangular region is equal to C1, since when we go
along the core of a band, the chosen point on a connected component of a regular fiber
gets the rotation through the angle � (see Figure 19).

As to the other four hexagonal regions, they correspond to the triple point of f .S.f //.
When we go around the boundary, the chosen point gets the rotation through the angle
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close

a II3–fiber

Figure 19: Two pairs of points

�2� (see Figure 20). Hence its contribution to the self-intersection number is equal to
�1.

1

2 3

Figure 20: Three pairs of points

Therefore, the self-intersection number zSi �
zSi is equal to

.C1/ � 6C .�1/ � 4D 2

for i D 1; 2.

Thus the self-intersection number of S0.f / in M is equal to

S0.f / �S0.f /D zS0 �
zS0C

zS1 �
zS1C

zS2 �
zS2 D�1C 2C 2D 3:

Therefore, the signature of the source 4–manifold is equal to C1 according to the
formula (7–1). In other words, the source 4–manifold M is oriented diffeomorphic to
2CP2]CP2 . This completes the proof of Lemma 7.1.

Let us now proceed to the proof of our main theorem of this paper.
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Proof of Theorem 5.5 Let us fix a 3–manifold N . For a closed oriented 4–manifold
M and a C1 stable map f W M !N into N , let us consider the integer

 .M; f /D jjIII8.f /jj:

By virtue of Proposition 6.7,  depends only on the oriented cobordism class of M .
Therefore,  induces a map

 W �4! Z

of the 4–dimensional oriented cobordism group to the additive group of integers. This
is clearly a homomorphism.

Recall that �4 is an infinite cyclic group generated by the class of oriented 4–manifolds
with signature C1. In other words, the signature induces an isomorphism

� W �4! Z:

Let us consider the explicit example f W 2CP2]CP2! R3 given in Lemma 7.1. By
composing it with an embedding R3 ,!N , we get a C1 stable map of an oriented
4–manifold of signature C1 into N . This stable map has exactly one III8 type fiber,
whose sign is equal to C1. Therefore, the homomorphism

 ı ��1
W Z! Z

sends C1 to C1 and hence is the identity. Thus we have � D  . This completes the
proof.

We have a direct consequence of our main theorem as follows.

Corollary 7.2 Let M be a closed oriented 4–manifold and N a 3–manifold. Then
every C1 stable map of M into N has at least j�.M /j singular fibers of type III8 .

For example, if M is the underlying real 4–dimensional manifold of the complex K3
surface, then every C1 stable map of M into a 3–manifold has at least 16 fibers of
type III8 , although no explicit example of such a map is known. Construction of an
explicit example can be an interesting problem.

Our study of the explicit example gives a new proof to the following formula, which
has been proved by Ohmoto–Saeki–Sakuma [19] and Sadykov [21].

Corollary 7.3 Let f W M !N be a C1 stable map of a closed oriented 4–manifold
M into an orientable 3–manifold N . Then we have

S.f / �S.f /D 3�.M /;
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where S.f / �S.f / is the self-intersection number of the surface of singular point set
of f in M .

Note that the formula (7–1) follows from Corollary 7.3. We give a proof to the above
corollary without using the formula (7–1).

Proof of Corollary 7.3 It is not difficult to show that the self-intersection number
S.f / �S.f / is an oriented cobordism invariant of the source 4–manifold M (for this,
use the argument as in [21, Proof of Lemma 3.2] together with a result of Conner–Floyd
[3] as in the proof of Proposition 6.7). Therefore, there exists a constant c such that

S.f / �S.f /D 3c�.M /

holds for any C1 stable map f of a closed oriented 4–manifold M into an orientable
3–manifold N .

For the explicit example f studied above, we have2 S.f / �S.f /D˙3 and 3�.M /D

˙3. Therefore, the constant c must be equal to ˙1.

On the other hand, by a result of Sakuma [25] we have

S.f / �S.f /� 3�.M / .mod 4/:

Therefore, the constant c must be equal to C1. This completes the proof.

Recall that Sadykov [21] proved Corollary 7.3 by a characteristic class argument
together with Sakuma’s result [25].

Now some remarks concerning our result are in order.

Remark 7.4 For a closed oriented 4–manifold M , let nC and n� be arbitrary integers
such that �.M /D nC�n� . Then does there exist a C1 stable map f W M !N that
has exactly nC positive singular fibers of III8 type and n� negative ones? The authors
do not know the answer to the question.

Remark 7.5 In [22] the first named author proved that if f W M ! N is a C1

stable map of a closed oriented 4–manifold into a 3–manifold with only definite fold
singularities, then �.M /D 0. This follows from our main theorem as well.

Remark 7.6 The technique of this section to determine the self-intersection number
of the surface of definite fold points may be generalized in a more general setting. This
might give a new direct proof of our main theorem.

2We know that S.f / �S.f /D 3�.M /D 3 : however, in order to show this, we used the formula (7–1).
Here we are proving the corollary without using (7–1).
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Remark 7.7 It is known that there exist oriented surface bundles over oriented surfaces
with non-zero signatures (for example, see Meyer [17]). This means that we cannot
expect a similar signature formula for C1 stable maps of closed oriented 4–manifolds
into surfaces.

Note that if the fiber genus g � 2, then there is a signature formula for Lefschetz
fibrations in terms of singular fibers (see the work of Matsumoto [15; 16]). We also
have a similar formula for hyperelliptic Lefschetz fibrations of any genus (see Endo
[6]). It may be possible to prove these formulas by using our main theorem as follows.
Let M be a Lefschetz fibration over a surface B , and consider a line bundle N over
B . Note that N is a 3–manifold. Then we can consider a generic map f W M !N

which makes the diagram

B B

M

B
��

M N
f // N

B
��

commutative, where the vertical arrows are relevant fibration maps. In other words, we
consider a generic family of fiberwise functions. By applying our Theorem 5.5 to f ,
we might be able to get a signature formula for certain Lefschetz fibrations.

8 Universal complex of chiral singular fibers

In [24], the universal complex of singular fibers was introduced as a refinement of
Vassiliev’s universal complex of multi-singularities (see Vassiliev [26], Kazaryan [9]
or Ohmoto [18]), and it was shown that its cohomology classes give invariants of
cobordisms of singular maps in the sense of Rimányi and Szűcs [20]. In this section, we
study the universal complex (with integer coefficients) of singular fibers corresponding
to chiral singular fibers and give an interpretation of our main theorem in terms of the
theory of universal complex of singular fibers.

We can define the universal complex of chiral singular fibers for proper C1 stable
maps of oriented 5–manifolds into 4–manifolds by exactly the same procedure as in
[24] as follows.

For � with 3� � � 4, let C � be the free Z–module generated by the C 0 equivalence
classes modulo regular fibers of chiral singular fibers of codimension � . Note that
rank C 3 D 3 and rank C 4 D 14 according to Proposition 6.1. Since there exist no
chiral singular fibers of codimension � ¤ 3; 4, we put C � D 0 for � ¤ 3; 4. Note that
for � D 4, we take the C 0 equivalence classes modulo regular fibers of chiral singular
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fibers with positive signs as generators, and we consider those with negative signs to
be �1 times the corresponding class with positive sign.

The coboundary homomorphism ı3W C
3! C 4 is defined by

ı3.G/D
X

�.F/D4

ŒG W F�F

for every generator G of C 3 , where ŒG W F� 2 Z is the incidence coefficient which can
be defined by exactly the same method as for ŒIII8

W F� (see Section 6). Note that all
the other coboundary homomorphisms ı� , � ¤ 3, are necessarily trivial.

We call the resulting cochain complex .C � ; ı�/� the universal complex of chiral
singular fibers for proper C1 stable maps of oriented 5–manifolds into 4–manifolds.
Note that its unique cohomology group that makes sense is its third cohomology group,
and is nothing but the kernel of the coboundary homomorphism ı3 .

Then we get the following.

Proposition 8.1 The 3–dimensional cohomology group of the universal complex
of chiral singular fibers for proper C1 stable maps of oriented 5–manifolds into 4–
manifolds is an infinite cyclic group generated by the C 0 equivalence class modulo
regular fibers of III8 type fibers.

Proof Recall that we have exactly three C 0 equivalence classes modulo regular fibers
of chiral singular fibers of codimension 3, namely, III5 , III7 and III8 , by Proposition
6.1. By Lemma 6.3, the incidence coefficients involving III8 are all zero and hence
III8 is a cocycle. On the other hand, for the other two equivalence classes of chiral
singular fibers, we have, for example,

ŒIII5
W IV11�¤ 0; ŒIII5

W IV10�D 0;

ŒIII7
W IV11�D 0; ŒIII7

W IV10�¤ 0:

Therefore, a linear combination of III5 , III7 and III8 is a cocycle if and only if the
coefficients of III5 and III7 both vanish. Therefore, the kernel of the coboundary
homomorphism ı3 is infinite cyclic and is generated by III8 . This completes the
proof.

According to Proposition 8.1, we can interpret our main theorem (Theorem 5.5) as
follows. The 3–dimensional cohomology class represented by the cocycle III8 of the
universal complex of chiral singular fibers for proper C1 stable maps of oriented
5–manifolds into 4–manifolds gives a complete invariant of the oriented cobordism
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class of the source 4–manifold. In particular, for N DR3 , it gives a complete invariant
of the oriented bordism class of a C1 stable map of a closed oriented 4–manifold
into R3 .

For related discussions, see [24].

We also see that the fiber which satisfies the property as in Theorem 5.5 should
necessarily be the fiber of type III8 . This explains the reason why the III8 type fiber
appeared in the modulo two Euler characteristic formula in [24] (see Corollary 5.6 of
the present paper).

Remark 8.2 If we can realize the proof of our main theorem as mentioned in Remark
7.6 for arbitrary stable maps of closed oriented null-cobordant 4–manifolds into 3–
manifolds, then that would imply that III8 is a cocycle of the universal complex (see
[24, Section 12.2]). That is, it might be possible to prove that III8 is a cocycle without
even classifying the singular fibers.
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