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FI-modules over Noetherian rings
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FI-modules were introduced by the first three authors to encode sequences of rep-
resentations of symmetric groups. Over a field of characteristic 0 , finite generation
of an FI-module implies representation stability for the corresponding sequence of
Sn –representations. In this paper we prove the Noetherian property for FI-modules
over arbitrary Noetherian rings: any sub-FI-module of a finitely generated FI-module
is finitely generated. This lets us extend many results to representations in positive
characteristic, and even to integral coefficients. We focus on three major applications
of the main theorem: on the integral and mod p cohomology of configuration spaces;
on diagonal coinvariant algebras in positive characteristic; and on an integral version
of Putman’s central stability for homology of congruence subgroups.

20B30; 20C32

1 Introduction

In [6], the first three authors investigated the theory of FI-modules, which encode
sequences of representations of symmetric groups connected by families of linear maps.
The category of FI-modules defined in [6] admits a natural notion of finite generation,
which is central to the story told there. In particular, finitely generated FI-modules over
a field of characteristic 0 correspond to sequences of representations whose dimensions
and characters behave “eventually polynomially”. This turns out to be essentially
equivalent to the phenomenon that was called “representation stability” in the earlier
work of the first and third authors [7].

In much of [6] it was critical that we consider FI-modules over a field of characteristic 0.
Most notably, this was used in the proof there that the category of FI-modules over a
field of characteristic 0 is Noetherian; that is, any sub-FI-module of a finitely generated
FI-module is again finitely generated. This property is essential for many of the
applications in [6]. The main purpose of the present paper is to prove the Noetherian
property for FI-modules over arbitrary Noetherian rings R.

Published: 1 December 2014 DOI: 10.2140/gt.2014.18.2951

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=20B30, 20C32
http://dx.doi.org/10.2140/gt.2014.18.2951


2952 Thomas Church, Jordan S Ellenberg, Benson Farb and Rohit Nagpal

This allows us to generalize many of the applications in [6] beyond the case of fields
of characteristic 0, and to produce new applications as well. We discuss three such
results in this paper.

� We prove new theorems about the integral and mod p cohomology of configura-
tion spaces on manifolds, generalizing results of [6, Section 4].

� We characterize the dimensions of diagonal coinvariant algebras over fields of
positive characteristic, generalizing results of [6, Section 3.2].

� We prove a complement to a recent theorem of Putman [11] on the homology
groups of congruence subgroups. Putman shows that the mod p homology of
these subgroups satisfies a version of representation stability, with an explicit
stable range, for all primes p above a certain explicit threshold. We prove a
similar theorem, which does not provide an explicit range, but which holds for
coefficients of any characteristic, even when the coefficients are not a field.

1.1 The Noetherian property

Let FI be the category whose objects are finite sets and whose morphisms are injections.
The category FI is equivalent to its full subcategory whose objects are the sets f1; : : : ; ng
as n ranges over natural numbers n� 0. For simplicity we denote f1; : : : ; ng by Œn�
hereafter, with Œ0� WD∅.

Let R be a commutative ring.1 An FI-module over R is a covariant functor V from FI
to the category of R–modules. Given a finite set S we denote the R–module V .S/

by VS , and in particular we denote V .Œn�/ by Vn . Since EndFI.Œn�/ D Sn , any FI-
module V determines for each n � 0 an Sn –representation Vn (that is, an RŒSn�–
module). Moreover, the FI-module V determines linear maps Vm!Vn corresponding
to the injections Œm� ,! Œn�. The FI-module structure imposes no maps from Vm to Vn

when n<m. The usual notions from the theory of modules, such as submodule and
quotient module, carry over to FI-modules.

The applications in this paper are all based on the notion of finite generation of an
FI-module. An FI-module V is finitely generated if there is a finite set S of elements
in
`

i Vi so that no proper sub-FI-module of V contains S . This condition was put
to much use in [6]; in particular, over a field of characteristic 0, finite generation
of V implies representation stability in the sense of [7] for the sequence fVng of
Sn –representations.

1The restriction to commutative rings is probably not essential; see for instance the discussion of
FIŒG�–modules by Jimenez Rolland in [9].
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This paper has three main results; all three are proved in Section 2 below. When k is a
field of characteristic 0, Theorem A was proved earlier by Snowden [15, Theorem 2.3]
and also in [6, Theorem 2.60], and Theorem B was proved in [6, Theorem 2.67].

Theorem A (Noetherian property) If V is a finitely generated FI-module over a
Noetherian ring R and W is a sub-FI-module of V , then W is finitely generated.

Theorem B (Polynomial dimension) Let k be any field and let V be a finitely
generated FI-module over k . Then there exists an integer-valued polynomial P .T / 2

QŒT � so that for all sufficiently large n,

dimk Vn D P .n/:

Theorem C (Inductive description) Let V be a finitely generated FI-module over a
Noetherian ring R. Then there exists some N � 0 such that for all n 2N ,

(1) Vn D colim
S�Œn�
jS j�N

VS :

We emphasize that the colimit in (1) is taken over the poset of subsets S � Œn� satisfying
jS j �N under inclusion. In particular, the permutations do not play a role in defining
the right side of (1). However, Sn does act naturally on the right side, and thus
Theorem C does determine Vn as an Sn –representation.

Condition (1) in Theorem C can be viewed as a reformulation of Putman’s “central
stability” condition [11, Section 1]. One difference is that we have formulated it as
a global condition on the entire FI-module V , while Putman defines central stability
as a local condition on the adjacent terms Vn�1 , Vn , VnC1 , separately for each n.
Nevertheless, the notions are equivalent.

Remark 1.1 FI-modules were originally introduced to study various sequences fVng

of Sn –representations arising from algebra, combinatorics and geometry, about which
little explicit information is known. For instance, one often lacks even a formula for
the dimension of Vn .

The reason that Theorems A, B and C are so useful in practice is because many examples
arise as sub-FI-modules of FI-modules that are readily seen to be finitely generated.
In many cases we know nothing more about them except that they admit such an
embedding. Nonetheless, Theorems A and B tell us their dimensions are eventually
polynomial in n, and Theorem C guarantees that they can be built up inductively from
a finite amount of data.
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Remark 1.2 When char k D 0, we proved in [6, Theorem 2.67] that not only the
dimensions but also the characters of Vn are eventually polynomial. In the situation of
Theorem B, it is reasonable to expect that when k is a field of positive characteristic
the Brauer characters of Vn similarly have polynomial behavior. We do not pursue this
question here.

Remark 1.3 The analogue of Theorem A with FI replaced by a finite category was
proved by Lück [10, Lemma 16.10b]. However, his methods cannot be extended to
infinite categories such as FI.

The category of FI-modules over a commutative ring R naturally forms an abelian
category [6, Section 2.1]. As a consequence of Theorem A, the same is true if we
restrict to finitely generated FI-modules.

Corollary 1.1 If R is a Noetherian ring, the category of finitely generated FI-modules
over R is an abelian category.

When RDC , this property has been exploited by Sam and Snowden in [14], where
the abelian category of finitely generated FI-modules over C is studied extensively.

1.2 Applications

Theorems A, B and C can be applied to a variety of examples. In this paper we
concentrate on three important examples of FI-modules from algebra, topology and
combinatorics. We will prove that each is a finitely generated FI-module.

As a notational convention, we prepend “FI” to the name of a category to denote the
category of functors from FI to that category; so an FI-group is a functor from FI to
the category of groups, an FI-simplicial complex is a functor from FI to simplicial
complexes, and so forth. Similarly, a co-FI-space is a functor from FIop to the category
of topological spaces, and so on.

Application 1: Congruence subgroups Let R be a commutative ring and let GLn.R/

be the group of automorphisms of Rn . We can regard GL�.R/ as an FI-group, where an
inclusion f W Œn� ,! Œm� induces the homomorphism f�W GLn.R/! GLm.R/ defined
by

(2) .f�M /ij D

�
Mab i D f .a/; j D f .b/;

ıij fi; j g 6� f .Œn�/:

For any ideal p�R, the congruence subgroup �n.p/ is the kernel of the natural reduc-
tion map GLn.R/! GLn.R=p/; in other words, �n.p/ consists of those invertible
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matrices that are congruent to the identity matrix modulo p. The map (2) satisfies
f�.�n.p// � �m.p/, so these congruence subgroups also define an FI-group ��.p/.
In particular, for any coefficient ring A and any m � 0, the homology groups
Hm.�n.p/IA/ form an FI-module Hm.��.p/IA/ over A.

It is known for a wide class of rings R that GLn.R/ satisfies homological stability; that
is, Hm.GLn.R/IA/�Hm.GLnC1.R/IA/ for n�m. The corresponding statement
is false for �n.p/, whose homology with certain coefficient modules grows as n!1;
this phenomenon is identified as accounting for the “failure of excision in K–theory”
by Charney [4]. However, the striking results of Putman [11] show that in many
cases the FI-module Hm.��.p/IA/ is nevertheless finitely generated. Our results on
Hm.��.p/IA/ complement, and were inspired by, the results of Putman in [11].

Theorem D Let K be a number field, let OK be its ring of integers, and let p¨OK be
a proper ideal. Fix m� 0 and a Noetherian ring A. Then the FI-module Hm.��.p/IA/

is finitely generated.

The following two theorems are immediate corollaries of Theorem D, by applying
Theorems B and C, respectively.

Theorem 1.4 (Betti numbers of congruence subgroups) Let K be a number field
with ring of integers OK , and fix a proper ideal p ¨ OK . For any m � 0 and any
field k , there exists a polynomial P .T /DPp;m;k.T /2QŒT � so that for all sufficiently
large n,

dimk Hm.�n.p/I k/D P .n/:

Theorem 1.5 (An inductive description of Hm.�n.p/IZ/) Let K be a number field
with ring of integers OK and fix a proper ideal p¨OK . For any m� 0, there exists
N DNp;m � 0 such that for all n,

Hm.�n.p/IZ/D colim
S�Œn�
jS j�N

Hm.�S .p/IZ/:

Under the hypothesis that the characteristic of the coefficient field k is either 0 or at
least 9 �2m�1�3, Putman proved that Theorem 1.4 and a version of Theorem 1.5 hold
for all n� 9 � 2m� 7 [11, Theorems B and D]. One of the key tools used by Putman
is the representation theory of symmetric groups, especially the parallels between
representations over fields of characteristic 0 and over fields of positive characteristic.
It is the use of this theory that requires the exclusion of fields k of small characteristic.
The structural analysis of FI-modules behind Theorem A can be regarded as studying the
“stable representation theory of Sn over Z”, at least to such a degree as this is possible.
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Remark 1.6 The restriction to number rings OK was not present in [11], where the
corresponding theorem was proved for arbitrary commutative Noetherian rings of finite
Krull dimension. But for us this restriction is essential. The reason is that we need to
know a priori that Hm.�n.p/I k/ is a finitely generated k–module for all m� 0 and
n� 0.

For finite-index subgroups of GLn.OK / such as �n.p/, this is guaranteed by the
existence of the Borel–Serre compactification. For more general rings it is false; for
example, for RDCŒT � and pD .T /�R, the first homology H1.�n.p/IZ/ surjects
to sln.p=p

2/D slnC , which is definitely not a finitely generated abelian group. See
the proof of Theorem D in Section 3 for more details on how this assumption is used.

Remark 1.7 Theorem A allows us to extend Putman’s results to coefficients in an
arbitrary Noetherian ring; in particular, this confirms the conjecture in [11] that the
restriction on characteristic is unnecessary. But there is a cost: the argument presented
here does not provide an explicit stable range, as Putman’s does, so that neither theorem
implies the other. Furthermore, the methods in this paper only apply to number rings.
We remove these shortcomings, while maintaining Putman’s exponential stable range,
in the forthcoming paper of the first two authors [5].

Remark 1.8 Calegari [3] has recently determined the rate of growth of the mod p

Betti numbers of the level-pk congruence subgroup of SLn.OK /. For example, for
p > 3 and the congruence subgroup �n.p

k/� SLn.Z/, he proves [3, Lemma 3.5] that

dimFp
Hm.�n.p

k/IFp/D
� n2�1

m

�
CO.n2m�4/:

This result complements Theorem 1.4: we show that the dimension is exactly some
polynomial in n (for large enough n), while Calegari’s result gives the degree of this
polynomial and its leading terms. For other number rings OK of degree ŒK WQ�D d ,
he obtains a similar estimate (subject to some assumptions on how p splits in OK ) for
�n.p

k/� SLn.OK / in [3, Remark 3.6]:

dimFp
Hm.�n.p

k/IFp/D
n2md

m!
CO.n2d.m�1//:

Application 2: Configuration spaces Let M be any connected, oriented manifold.
For any finite set S , let ConfS .M / denote the space Inj.S;M / of injections S ,!M .
An inclusion f W S ,!T induces a restriction map f �W ConfT .M /!ConfS .M /; this
is nothing more than the composition of injections Inj.S;T /�Inj.T;M /! Inj.S;M /.
We can therefore regard Conf.M / as a co-FI-space, ie a contravariant functor from FI
to topological spaces.
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When S D Œn�, the space of injections Œn� ,!M can be identified with the classical
configuration space Confn.M / of ordered n–tuples of distinct points in M :

Confn.M / WD f.p1; : : : ;pn/ 2M n
j pi ¤ pj g

Understanding the cohomology of configuration spaces, and in particular its behavior
as n!1, is a fundamental problem in topology. Since cohomology is contravariantly
functorial, the cohomology groups H m.Confn.M /IR/ together form an FI-module
H m.Conf.M /IR/ over R. Our main theorem on the cohomology of configuration
spaces states that this FI-module is finitely generated.

Theorem E Let R be a Noetherian ring, and let M be a connected orientable manifold
of dimension � 2 with the homotopy type of a finite CW–complex (eg M compact).
For any m� 0, the FI-module H m.Conf.M /IR/ is finitely generated.

Applying Theorems B and C, respectively, we obtain the following two corollaries.

Theorem 1.9 (Betti numbers of configuration spaces) Let k be any field, and let M

be an connected orientable manifold of dimension greater than or equal to 2 with the
homotopy type of a finite CW–complex. For any m � 0 there exists a polynomial
P .T /D PM;m;k.T / 2QŒT � so that for all sufficiently large n,

dimk H m.Confn.M /I k/D P .n/:

Theorem 1.10 (An inductive description of H m.Confn.M /IR/) Let R be a Noe-
therian ring, and let M be a connected orientable manifold of dimension greater than
or equal to 2 with the homotopy type of a finite CW–complex. For any m� 0, there
exists N DNM;m � 0 such that for all n,

H m.Confn.M /IR/D colim
S�Œn�
jS j�N

H m.ConfS .M /IR/:

When k has characteristic 0, Theorem 1.9 follows from [6, Theorem 1.9]; see Jimenez
Rolland [9, Theorem 1.1] for the case dim M D 2. When M is an open manifold,
stronger results hold. In this case Theorem 1.9 was proved in [6, Theorem 4.8], in the
stronger form that dim H m.Confn.M /I k/D P .n/ for all n� 0. Similarly, when M

is open, Theorem 1.10 can be deduced from [6, Theorems 2.24 and 4.7]; moreover in
this case we can take NM;m Dm if dim M � 3 [6, Theorem 4.2] and NM;m D 2m if
dim M D 2 [6, Remark 4.4].
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Application 3: Diagonal coinvariant algebras Let k be an arbitrary field, let r

and n be positive integers, and consider the algebra

kŒX .r/.n/� WD kŒx
.1/
1
; : : : ;x.1/n ; : : : ;x

.r/
1
; : : : ;x.r/n �

of polynomials in r sets of n variables. The permutation group Sn acts on kŒX .r/.n/�

diagonally. Let In be the ideal of kŒX .r/.n/� generated by Sn –invariant polynomials
with vanishing constant term. The r –diagonal coinvariant algebra is the k–algebra

R.r/.n/ WD kŒX .r/.n/�=In:

The polynomial algebra kŒX .r/.n/� is naturally endowed with an r –fold multigrading,
where a monomial has multigrading J D .j1; : : : ; jr / if its total degree in the variables
x
.i/
1
; : : : ;x

.i/
n is ji . This multigrading is Sn –invariant, and thus descends to an Sn –

invariant multigrading

R.r/.n/D
M

J

R
.r/
J
.n/

on the r –diagonal coinvariant algebra R.r/.n/.

When k has characteristic 0, the Sn –representations R
.r/
J
.n/ have been intensively

studied. However, when r > 1 very little is explicitly known about the representa-
tions R

.r/
J
.n/, or even their dimensions, except for small J or n; see, eg [6, Section 1]

for a brief summary. In [6, Theorem 1.12] it was proved that when char k D 0,
the dimension dimk.R

.r/
J
.n// is a polynomial in n for n sufficiently large. We are

not aware of any literature on diagonal coinvariant algebras over fields of positive
characteristic. In this paper, we show that the polynomial behavior of dimension
extends to this context.

The key fact which allows us to apply the results of this paper is that for fixed r ,
the coinvariant algebras R.r/.n/ can be viewed as forming a co-FI-algebra R.r/ , as
follows. Fix a commutative Noetherian ring A and a positive integer r .

If T is a finite set, write AŒX .r/.T /� for the free commutative A–algebra on generators
indexed by Œr ��T . This algebra naturally has a Zr

�0
–valued grading, where the i th

component records the total degree in the generators x.i;t/ . An injection f W S ,! T

induces a ring homomorphism

(3) f �W AŒX .r/.T /�!AŒX .r/.S/�; x.i;t/ 7!

�
x.i;s/ if f .s/D t;

0 if t 62 imf:

In other words, AŒX .r/� can be regarded as a Zr
�0

–graded co-FI-algebra, ie a con-
travariant functor from FI to graded A–algebras.
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Noting that EndFIop.T / is the group of permutations ST , we have an action of ST on
the graded algebra AŒX .r/.T /�. Define IT to be the ideal of ST –invariant polynomials
with zero constant term, and define R.r/.T / to be the quotient of AŒX .r/.T /� by IT .
Since IT is a homogeneous ideal, the grading on AŒX .r/.T /� descends to a Zr

�0
–

valued grading on R.r/.T /. The homomorphisms f � of (3) satisfy f �.IT /� IS , so
they descend to ring homomorphisms f �W R.r/.T /! R.r/.S/. We obtain a Zr

�0
–

graded co-FI-algebra R.r/ , which sends the finite set f1; : : : ; ng to the usual coinvariant
algebra R.r/.n/.

We denote by .R.r//_ the graded dual of R.r/ ; that is, for any J 2Zr
�0

and any finite
set T , take .R.r/

J
/_.T / to be the dual R–module R

.r/
J
.T /_ D Hom.R.r/

J
.T /;R/.

Since R
.r/
J

is a co-FI-module over A, .R.r/
J
/_ is an FI-module over A. Our main

theorem on diagonal coinvariant algebras is the following.

Theorem F Let A be a commutative Noetherian ring, and fix r � 1. For any J 2Zr
�0

,
the FI-module .R.r/

J
/_ is finitely generated.

Applying Theorems B and C, respectively, we obtain the following two corollaries.

Theorem 1.11 (Multigraded Betti numbers of diagonal coinvariant algebras) Let k

be any field. For each fixed r � 1 and fixed r –multigrading J , there is an integer-
valued polynomial P .T /D Pr;J ;k.T / 2QŒT � so that for all sufficiently large n, the
dimension of the J–graded piece of the r –diagonal coinvariant algebra is given by

dimk R
.r/
J
.n/D P .n/:

We do not know any of these polynomials explicitly, except in trivial cases, and it
would be very interesting to compute them. It would be intriguing to understand
their connection to problems in combinatorics, which has been so fruitful in the
characteristic 0 case.

Theorem 1.12 (An inductive description of .R.r/
J
/_ ) Let A be a commutative Noe-

therian ring, and fix r � 1. For each J 2 Zr
�0

, there exists N DNr;J ;A � 0 such that
for all n,

R
.r/
J
.n/_ D colim

S�Œn�
jS j�N

R
.r/
J
.S/_:

Remark 1.13 Finally, we remark that Theorem A has recently been used by the
first author and Putman in [8]. The main result of that paper is that the Johnson
filtration of the mapping class group is “finitely generated” in a certain sense (more
precisely, generated by elements supported on subsurfaces of uniformly bounded genus).
Theorem A is a key technical tool in the proof, and without it the result would not be
possible.

Geometry & Topology, Volume 18 (2014)



2960 Thomas Church, Jordan S Ellenberg, Benson Farb and Rohit Nagpal

Acknowledgements We are grateful to Wolfgang Lück for helpful conversations
regarding this paper and its relation to [10, Section 16], to Jesper Grodal for suggesting
that Theorem C could be formulated as in (1), and to Rita Jimenez Rolland for useful
comments and corrections. We are very grateful to the anonymous referee for their
thorough and careful reading, and for thoughtful suggestions that greatly improved the
organization of the paper. The first, second and third authors gratefully acknowledge
support from the National Science Foundation. The second author’s work was partially
supported by a Romnes Faculty Fellowship.

2 Noetherian and polynomial properties of FI-modules

To make this portion of the paper self-contained, we will recall all necessary definitions
from our earlier paper [6], and all results that we will use in Section 2 will be proved.

2.1 General results on FI-modules

Fix a commutative ring R, and let FI-Mod denote the category of FI-modules over R,
ie the category of functors V W FI ! R-Mod. The category FI-Mod is an abelian
category, with kernels and cokernels computed pointwise; that is, given F W V !W ,
the FI-modules ker.F / and coker.F / satisfy ker.F /S D ker.F W VS ! WS / and
coker.F /S D coker.F WD VS !WS /.

If V is an FI-module, we a sub-FI-module of V is an FI-module W endowed with an
injection W ,! V . Identifying W with its image, such a sub-FI-module consists of
sub-R–modules WS � VS for each finite set S , with the property that f�W VS ! VT

satisfies f�.WS /�WT for all f 2 HomFI.S;T /.

Finite generation We recall the characterizations of finitely generated FI-modules
that we will use in this paper.

Definition 2.1 (Finitely generated FI-modules) Let V be an FI-module. We define
an FI-module V to be finitely generated (resp. generated in degree � d ) if there exists
a finite set fv1; : : : ; vkg �

`
n�0 Vn (resp. a set fvi j i 2 Ig �

`
n�d Vn ) contained in

no proper sub-FI-module of V ; see [6, Definitions 2.14 and 2.15]. We say that V is
generated in finite degree if it is generated in degree � d for some finite d .

It is useful in practice to understand finite generation in terms of “free” objects. To this
end we make the following definition; see [6, Definition 2.5].
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Definition 2.2 (Free FI-modules) For any d � 0, the FI-module M.d/ takes a finite
set S to the free R–module M.d/S on the set of injections Œd � ,! S . In other words,
M.d/DRŒHomFI.Œd �;�/�; by the Yoneda lemma, M.d/ is uniquely determined by
the natural identification

HomFI-Mod.M.d/;V /Š Vd :

An FI-module is free if it is isomorphic to a direct sum
L

i2I M.di/.

Given v 2 Vd , we denote by FvW M.d/! V the homomorphism corresponding to v
under this identification; conversely, given F W M.d/! V we denote by vF 2 Vd

the image of id 2M.d/d under F . By the Yoneda lemma, the image im.Fv/ is the
sub-FI-module of V defined by im.Fv/S D spanff�.v/ j f 2 HomFI.Œd �;S/g; this is
the smallest sub-FI-module W � V for which v 2Wd .

Proposition 2.1 (Characterization of finite generation) Let V be an FI-module.

(1) V is finitely generated if and only if there exists a surjection
kM

iD1

M.di/� V

for some integers di � 0.

(2) V is generated in degree � d if and only if there exists a surjectionM
i2I

M.di/� V with all di � d:

The direct sum in the second part of the proposition may be infinite, as long as the
integers di are uniformly bounded by d .

Proof The Yoneda lemma guarantees that M.d/ is finitely generated by the element
id 2M.d/d . Therefore the free FI-module

L
i2I M.di/ is finitely generated if I is

finite, and is generated in degree � d if di � d for all i 2 I . Conversely, a subset
fvi j i 2 Ig �

`
n�0 Vn determines a canonical map F D

L
Fvi
W
L

i2I M.di/! V .
The image of F is the smallest sub-FI-module of V containing fvi j i 2 Ig. The
proposition follows.

In particular, Proposition 2.1 implies that the quotient of a finitely generated FI-module
is finitely generated, and similarly for generation in degree � d .

Definition 2.3 (The functor H0 [6, Definition 2.18]) Given an FI-module V , the
FI-module H0.V / is the quotient of V defined by

H0.V /S WD VS=him.f�W VT ! VS / j f W T ,! S; jT j< jS ji:
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In other words, the FI-module H0.V / is the largest quotient of V with the property that
for all f W T ,! S with jT j< jS j, the map f�W H0.V /T !H0.V /S is the zero map.

Lemma 2.1 If H0.V / D 0 then V D 0. Furthermore, the functor H0W FI-Mod!
FI-Mod reflects surjections: a homomorphism F W V !W is a surjection if and only
if H0.F /W H0.V /!H0.W / is a surjection.

Proof To prove the first claim, assume that V ¤ 0 and let nD inffn 2N j Vn ¤ 0g.
Since VT D 0 for any T with jT j< n, the quotient defining H0.V /n is the quotient
by the zero submodule, and thus H0.V /n D Vn ¤ 0.

For the second claim, if F W V !W is surjective, the canonical surjections V�H0.V /

and W �H0.W / show that H0.F / is surjective. In other words, H0 is right exact.
For the converse, right-exactness implies that coker H0.F /DH0.coker F /. If H0.F /

is a surjection we thus have H0.coker F /D coker H0.F /D 0. Applying the first claim,
we conclude that coker F D 0, as desired.

Lemma 2.2 Let V be an FI-module.

(1) In each row below, the conditions (a), (b) and (c) are equivalent.

.a/ .b/ .c/

V is a finitely gen-
erated FI-module

H0.V / is a finitely gen-
erated FI-module

L1
nD0 H0.V /n is a finitely

generated R–module

V is generated in
degree � d

H0.V / is generated in
degree � d

H0.V /n D 0 for all n> d

V is generated in
finite degree

H0.V / is generated in
finite degree

H0.V /n D 0 for n� 0

(2) Assume that Vn is a finitely generated R–module for all n � 0. Then V is
finitely generated if and only if V is generated in finite degree.

Proof (1) To start, we observe that each condition in the third row simply asserts
that the corresponding condition in the second row holds for some d 2N . Therefore
the equivalence of the third row follows from the equivalence of the second row.

(a) D) (b) If V is finitely generated or generated in degree � d , the same is true of
any quotient of V by definition. Since H0.V / is a quotient of V , (a) implies (b).

(b) D) (c) Let M D
L

i2I M.di/ be a free module, and consider a surjection
M � H0.V /. By the defining property of H0.M /, this map factors through
M � H0.M /� H0.V /. We have H0.M /D

L
i2I H0.M.di//. Each summand
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H0.M.d// has the property that H0.M.d//T vanishes unless jT j D d , in which case
H0.M.d//T DM.d/T is a free R–module of rank d!.

If H0.V / is finitely generated, we can take I to be finite, so
L1

nD0 H0.M /n is a free
R–module of rank

P
i2I di !. In particular this R–module is finitely generated, and

so the same is true of its quotient
L1

nD0 H0.V /n . This shows that (b) implies (c) in
the first row. If H0.V / is generated in degree � d , we can assume that di � d for
all i 2 I . In this case H0.M /n D 0 for n> d , and so the same is true of its quotient
H0.V /n . This shows that (b) implies (c) in the second row.

(c) D) (a) Let wi 2
`

n H0.V /n be generators of
L1

nD0 H0.V /n indexed by i 2 I ,
and define di 2 N so that wi 2 H0.V /di

. Set M WD
L

i2I M.di/, and define
the homomorphism � W

L
i2I M.di/ ! V by sending idŒdi � 2 M.di/di

to any el-
ement of Vdi

lifting wi . By construction, H0.�/ sends idŒdi � 2 H0.M.di//di
to

wi 2H0.V /di
. Since H0.V /d is generated by the elements wi for which di D d , we

see that H0.�/d W H0.M /d !H0.V /d is surjective for all d , ie H0.�/ is surjective.
By Lemma 2.1, the homomorphism � W M D

L
i2I M.di/! V is surjective itself.

If
L1

nD0 H0.V / is finitely generated, we can assume that I is finite; in this case, the
surjection � W M � V verifies that V is finitely generated. Similarly if H0.V /n D 0

for n > d , we can assume that di � d for all i 2 I , so � W M � V demonstrates
that V is generated in degree � d . Therefore (c) implies (a).

(2) If V is finitely generated, it is automatically generated in finite degree. Conversely,
assume that Vn is a finitely generated R–module for all n � 0. Since H0.V /n is a
quotient of Vn , it is also a finitely generated R–module. If V is generated in finite
degree, then H0.V / � 0 by the equivalence of the third row, ie for some d � 0 we
have H0.V /n D 0 for n > d . Therefore the sum

L1
nD0 H0.V /n D

Ld
nD0 H0.V /d

is finite. It follows that
L1

nD0 H0.V /n is finitely generated as an R–module, so by
the equivalence of the first row, V is finitely generated.

Positive shifts The following “shift functors” on FI-modules will be essential in the
proofs of Theorems A, B and C. Unlike some other parts of the FI-module formalism,
these functors would not exist if FI were replaced with an arbitrary diagram category;
they depend on the symmetric monoidal structure that comes from taking the disjoint
union of finite sets.

We recall from [6, Definition 2.30] the definition of the “positive shift” functors

SCaW FI-Mod �! FI-Mod :

Let the functor tW Sets�Sets! Sets be the coproduct in the category of sets, ie the
disjoint union of sets. This should be formalized in some fixed functorial way; for
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example, we could take S t T WD .f0g � S/[ .f1g � T /. But since the coproduct
is unique up to canonical isomorphism, nothing will depend on the details of this
definition.

Since f tgW StS 0!T tT 0 is injective if f W S!T and gW S 0!T 0 are injective, t
restricts to a functor tW FI�FI! FI. Since S and T are canonically identified with
subsets of S tT , we will often abuse notation and treat S and T as subsets of S tT .

Definition 2.4 For a� 0, let Œ�a� denote the set f�1; : : : ;�ag, and let „aW FI! FI
be the functor

„aW FI! FI; „a WD �t Œ�a�:

Explicitly, „aS is the finite set S t Œ�a�, and „af W „aS ,!„aT is f t idŒ�a� , the
extension of f by the identity on Œ�a�. Let i�aW Œ�a� ,! Œ�.aC 1/� be the standard
inclusion i�aW f�1; : : : ;�ag ,! f�1; : : : ;�a;�.aC 1/g.

Our choice of the set f�1; : : : ;�ag for Œ�a� is irrelevant, since the disjoint union
S tT is defined even if S and T are not disjoint; it is chosen just for psychological
purposes, to minimize collision with the sets the reader likely has in mind. Any other
set of cardinality a would work equally well.

Definition 2.5 (Positive shift functor SCa ) Given an FI-module V and an integer
a� 1, the functor SCaW FI-Mod! FI-Mod is defined by SCa D�ı„a ; that is, the
FI-module SCaV is the composition

SCaV WD V ı„aW FI
„a
�! FI

V
�!R-Mod :

Since kernels and cokernels are computed pointwise, SCa is an exact functor.

Remark 2.1 Comparing the Sn –representation .SCaV /n with the SnCa –representa-
tion VnCa , we have an isomorphism of Sn –representations

.SCaV /n Š ResSnCa

Sn
VnCa:

Indeed, the effect of the functor SCa is to perform this restriction consistently for all n,
in such a way that the resulting representations still form an FI-module.

Definition 2.6 (The morphism XaW V !SCaV ) The natural inclusion �T of T into
„aT D T t Œ�a� induces a natural transformation idFID)„a . For any FI-module V ,
this yields a natural homomorphism of FI-modules

(4) XaW V �! SCaV:
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Explicitly, Xa is defined by

XaW VT

V .�T /
����! VTtŒ�a� D .SCaV /T :

Similarly, the inclusion idt i�aW T t Œ�a� ,! T t Œ�.aC 1/� induces a natural homo-
morphism YaW SCaV ! SC.aC1/V satisfying XaC1 D Ya ıXaW V ! SC.aC1/V .

Definition 2.7 (V � W ) If V and W are FI-modules, we write V � W if
SCaV Š SCaW for some a � 0. This notation is most often used in this paper
in the form V � 0, which simply means that Vn vanishes for all sufficiently large n.
For example, in this language Lemma 2.2(1) states that V is generated in finite degree
if and only if H0.V /� 0. If X and Y are FI-simplicial complexes, we write X � Y

if for each k , the k –skeleta satisfy SCaX .k/ Š SCaY .k/ for some a depending on k .

2.2 The Noetherian property (Proof of Theorem A)

The shift functors SCa take on a particularly simple form when applied to the FI-
modules M.d/.

Proposition 2.2 For any a� 0 and any d � 0, there is a natural decomposition

(5) SCaM.d/DM.d/˚Qa;

where Qa is a free FI-module, finitely generated in degree � d � 1.

Although this proposition appears unassuming, this is the key combinatorial fact about
the category FI that makes possible our approach to the Noetherian property for FI-
modules. For comparison, if FI were replaced by the category of finite-dimensional
F –vector spaces and linear injections for some field F , the analogous proposition
would not hold (even if the field F were finite), and so our proof of the Noetherian
property does not extend to this case.

Proof of Proposition 2.2 Recall that a basis for M.d/S is given by HomFI.Œd �;S/, so
a basis for .SCaM.d//S consists of the injections f W Œd � ,! S t Œ�a�. We can stratify
these according to the subset T D f �1.Œ�a�/� Œd � and the restriction f jT W T ,! Œ�a�.
Given gW S ,! S 0 , the map g�W SCaM.d/S ! SCaM.d/S 0 is induced by the com-
position

g�f D .gt idŒ�a�/ ıf;

so the subset f �1.Œ�a�/ D T and the restriction f jT are not changed by the com-
position f 7! g�f . Therefore our stratification of SCaM.d/S in fact defines a
decomposition of SCaM.d/ as a direct sum of FI-modules.
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For fixed T � Œd � and hW T ,! Œ�a�, let M T;h � SCaM.d/ be spanned by those
f W Œd � ,! S t Œ�a� satisfying f �1.Œ�a�/D T and f jT D h. These injections f are
distinguished by the restrictions f jŒd ��T W Œd ��T ,! S , and we have .g�f /jŒd ��T D

g ı f jŒd ��T . Choosing a bijection Œd �� T Š Œd � jT j�, we obtain an isomorphism
M T;h ŠM.d � jT j/, and thus a decomposition

SCaM.d/D
M

T�Œd �

M.d � jT j/˝R RŒHomFI.T; Œ�a�/�

which is natural up to the choice of identifications Œd ��T Š Œd � jT j�. In particular,
the summand with T D∅ is canonically isomorphic to M.d/; singling out this factor
gives the claimed decomposition.

Corollary 2.1 [6, Proposition 2.31] If V is generated in degree � d , then SCaV is
generated in degree � d . Conversely, if SCaV is generated in degree � d , then V is
generated in degree � d C a.

Proof Choosing a surjection
L

M.di/� V with di � d , and given that SCaV is
exact, it suffices to prove the first claim for V DM.di/. This follows immediately
from Proposition 2.2.

For the second claim we use Lemma 2.2(1), which says that SCaV is generated in
degree � d if and only if H0.SCaV /n D 0 whenever n > d . We will exhibit in the
next paragraph a surjection of R–modules H0.SCaV /n � H0.V /nCa . From this
surjection we deduce that H0.V /m D 0 for all m > d C a; applying Lemma 2.2(1)
again, we conclude that V is generated in degree � d C a as desired.

We now exhibit the claimed surjection, in the form H0.SCaV /T � H0.V /TtŒ�a� .
By Definition 2.3, H0.SCaV /T is the quotient of .SCaV /T D VTtŒ�a� by˝

im.f t idŒ�a�/�W VStŒ�a�! VTtŒ�a�

ˇ̌
f W S ,! T; jS j< jT j

˛
while H0.V /TtŒ�a� is the quotient of VTtŒ�a� by˝

im g�W VS 0 ! VTtŒ�a�

ˇ̌
gW S 0 ,! T t Œ�a�; jS 0j< jT jC a

˛
:

The former is contained in the latter, so H0.V /TtŒ�a� is a quotient of H0.SCaV /T
as claimed.

Definition 2.8 We define

(6) �aW SCaM.d/�M.d/

to be the projection determined by (5). Concretely, a basis for .SCaM.d//T consists
of injections Œd � ,! T t Œ�a�, and the projection �a simply sends to 0 any injection
whose image is not contained in T .
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The projection �a is related to the decomposition of M.d/n given by splitting up the
injections f1; : : : ; dg ,!f1; : : : ; ng according to their image. Each d –element subset S

of f1; : : : ; ng gives a summand isomorphic to M.d/d , yielding the decomposition

(7) M.d/n 'M.d/

L
.n

d/
d

as R–modules. In degree d , the projection �a yields a map from .SC.n�d/M.d//d '

M.d/n to M.d/d ; this is just the projection of (7) onto a single factor of the right
side.

Proof of Theorem A We prove by induction on d 2 N that if V is an FI-module
finitely generated in degree � d , then every sub-FI-module of V is finitely generated.
Such an FI-module V is a quotient of a finite direct sum of FI-modules

Lk
iD1 M.di/

with di � d . Since the Noetherian property descends to quotients and is preserved
under direct sum, it suffices to prove the theorem for V DM.di/, and by induction it
suffices to prove it for V DM.d/.

Reduction to W a Fix a sub-FI-module W of M.d/; our goal is to prove that W

is finitely generated. For each n 2 N we have that M.d/n is a finitely generated
R–module; since R is a Noetherian ring, its submodule Wn is also finitely generated
as an R–module. Therefore by Lemma 2.2(2) it suffices to prove that W is generated
in finite degree. By Corollary 2.1 it suffices to prove that SCaW is finitely generated
for some a� 0.

Let us therefore consider the FI-module SCaW . For any a � 0, the decomposition
from Proposition 2.2 gives an exact sequence

0 �!Qa �! SCaM.d/ �!M.d/ �! 0:

Since SCa is exact, we can think of SCaW as a sub-FI-module of SCaM.d/. Thus
the above induces an exact sequence

0 �!WQ;a �! SCaW �!W a
�! 0;

where WQ;a WDQa\ .SCaW / and W a WD �a.SCaW /�M.d/.

For any a we know that WQ;a is a sub-FI-module of Qa , which is finitely generated
in degree � d �1 by Proposition 2.2. Therefore we can apply the inductive hypothesis
to conclude that WQ;a is finitely generated for any a. To prove that SCaW is finitely
generated, it thus suffices to show that W a is finitely generated. We will do this, and
thus prove the theorem, by showing that there exists some N � 0 such that W N is
finitely generated in degree � d .
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Finding N such that W N is generated in degree � d The sequence of sub-FI-
modules W a �M.d/ is increasing: W a � W aC1 . Indeed, we have that the map
YaW SCaM.d/ ! SC.aC1/M.d/ of Definition 2.6 satisfies �aC1 ı Ya D �a and
Ya.SCaW / � SC.aC1/.W /, from which it follows that W a � W aC1 . Let W1

denote the sub-FI-module
S

a W a �M.d/.

We will show below that W1 is generated by W1
d

(that is, the only submodule
X � W1 with Xd D W1

d
is X D W1 ). Since W1

d
is a sub-R–module of

M.d/d ŠRŒSd �, it is itself finitely generated as an R–module, so the claim implies
that W1 is finitely generated in degree � d . Moreover, the chain

Wd DW 0
d �W 1

d �W 2
d � � � � �W1d D

[
a

W a
d

is a chain of RŒSd �–submodules of M.d/d Š RŒSd �. Since RŒSd � is a finitely
generated R–module and R itself is Noetherian, there must be some N such that
W N

d
DW1

d
. Since W1 is generated by W1

d
, it follows that W N DW1 , and thus

that W N is finitely generated in degree � d as desired.

Proving that W 1 is generated by W 1
d

Let us investigate the sub-FI-modules
W a � M.d/. Expanding the definition of W a , we have the following concrete
condition: an element

x D
X

f W Œd �,!T

rf f 2M.d/T

lies in W a if and only if there is an element

(8) w D
X

gW Œd �,!TtŒ�a�

r 0gg 2WTtŒ�a� �M.d/TtŒ�a�

such that r 0g D rg whenever the image of g lies in T . The element x 2M.d/T lies
in W1 if there is some a� 0 and some w 2WTtŒ�a� for which (8) holds.

For each a � 0, let U a be the smallest sub-FI-module of W a containing W a
d

. We
will show that for any a� 0 and any n� aC d we have

W aCd�n
n � U a

n �M.d/n:

Given x 2 W aCd�n
n �M.d/n , write x D

P
f W Œd �,!Œn� rf f as above, and for each

subset S � Œn� of cardinality d , denote by xS the sum

xS WD

X
imfDS

rf f 2M.d/S :

We have x D
P

S iS .xS /, where iS W S ,! Œn� is the natural inclusion.
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Since x 2W aCd�n
n , there exists w 2WŒn�tŒ�.aCd�n/� so that, writing

w D
X

gW Œd �,!Œn�tŒ�.aCd�n/�

r 0gg

as in (8), we have r 0g D rg for all g with image contained in Œn�. But then it is a
fortiori true that r 0g D rg for all g with im g D S . Choosing a bijection between
.Œn�� S/ t Œ�.aC d � n/� and Œ�a�, we can think of w as an element of WStŒ�a�

which witnesses that xS 2W a
S

as in (8).

Since jS j D d , we have W a
S
DU a

S
by definition. Since xD

P
S iS .xS /, we conclude

that x 2U a . Since this holds for all x 2W aCd�n
n , we see that W aCd�n

n is contained
in U a , as claimed above. Passing to the limit as a!1 and setting U1 WD

S
a U a ,

we see that W1n is contained in U1n for all n 2N . Since U1 is contained in W1

by definition, this shows that U1 DW1 ; in other words, W1 is generated by W1
d

,
which was the remaining claim to be proved.

2.3 Dimensions of finitely generated FI-modules (Proof of Theorem B)

Let V be an FI-module. The torsion submodule of V , denoted T .V /, consists of
those v 2 VS for which f�.v/D 0 for some finite set S 0 and some (whence every)
f 2 HomFI.S;S

0/. Alternatively, it can be written as

T .V /D
[
a�0

ker.XaW V ! SCaV /:

We say that V is torsion free if T .V /D 0. It is clear that V =T .V / is always torsion
free. When k DC , the functor T is discussed by Sam and Snowden [14, Section 4.4],
where it appears as the left exact functor H 0

m whose derived functors provide a local
cohomology theory for FI-modules.

Lemma 2.3 If V is a finitely generated FI-module over a Noetherian ring, then
T .V /� 0; in other words, T .V /n D 0 for all sufficiently large n.

Proof By Theorem A, the submodule T .V / is finitely generated, say by v1; : : : ; vk

with vi 2 Vdi
. Therefore T .V /S is spanned by

S
iff�.vi/ j f W Œdi �! Sg for every

finite set S . For each i there exists some ai for which vi 2 ker.Xai
W V ! SCai

V /.
Setting Mi D di C ai , this implies that f�.vi/ D 0 for any f 2 Hom.Œni �;S/ with
jS j �Mi . Taking M WDmax Mi , we see that as long as jS j �M we have f�.vi/D 0

for any i and any f 2 Hom.Œni �;S/. Since these elements generate T .V /S , this
implies that T .V /S D 0 whenever jS j �M . Therefore T .V /� 0 as desired.
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Proof of Theorem B We will prove the stronger statement that if V is finitely gener-
ated in degree � d , then dimk Vn is eventually equal to an integer-valued polynomial
of degree � d . The proof is by induction on d . We say that V is generated in
degree ��1 if V D 0, and that a polynomial is of degree ��1 if it vanishes; we can
thus take as our base case d D�1.

By Lemma 2.3, the torsion-free quotient V 0 D V =T .V / has dimk V 0n D dimk Vn for
n� 0, and being a quotient of V we know that V 0 is still generated in degree � d .
Thus we can assume without loss of generality that V is torsion free. Under this
assumption, the natural map X1W V ! SC1V is injective. Let DV denote the cokernel
of this map.

We show that DV is finitely generated in degree � d�1. First, if V DM.m/ for some
m�d , then Proposition 2.2 shows that DVDQ1 is finitely generated in degree �m�1.
A general FI-module V is finitely generated in degree � d if there is a surjection
M WD

Lk
iD1 M.di/� V with di � d . Since SC1 is exact, SC1M � SC1V is

surjective. We conclude that the quotient DM surjects to DV , so the general claim
follows from the special case V DM.m/ proved above.

By induction, we can conclude that dimk DVn is eventually a polynomial of degree at
most d � 1. But if we write f .n/ for dimk Vn , we have

dim DVn D dim.SC1V /n� dim Vn D f .nC 1/�f .n/:

Therefore we have just proved that the discrete derivative f .nC1/�f .n/ is eventually
a polynomial of degree at most d � 1. It follows that f .n/ is eventually a polynomial
of degree at most d , which is the statement to be proved.

2.4 Inductive description of finitely generated FI-modules
(Proof of Theorem C)

Our goal here is to understand when an FI-module V admits an inductive description

Vn D colim
S¨Œn�

VS ;

at least for large enough n. As we will see, such a description is equivalent to the
exactness of the sequence

zS�2V �! zS�1V �! V �! 0;

where zS�2 and zS�1 are certain functors defined below. In fact, we will define an entire
complex

zS��V D � � � �! zS�aV �! zS�.a�1/ �! � � � �!
zS�2V �! zS�1V �! V �! 0:

Geometry & Topology, Volume 18 (2014)



FI-modules over Noetherian rings 2971

This complex also appeared in Putman [11, Section 4], where it arose in a very different
way, and will be used in Section 3.

Ordered negative shifts Ba We begin by defining functors BaW FI-Mod!FI-Mod
and a complex

B�V D � � � �! BaV �! Ba�1V �! � � � �! B2V �! B1V �! V �! 0:

We will then define zS�aV as a quotient of BaV in such a way that the complex B�V

descends to the desired complex zS��V .

Definition 2.9 (Ordered negative shift functor Ba ) Given an FI-module V and an
integer a�0, we define BaV to be the FI-module which maps a set S to the direct sum

(9) .BaV /S D
M

f W Œa�,!S

VS�f .Œa�/:

We denote by .BaV /S;f the summand corresponding to f in the decomposition (9).
The map g�W .BaV /S ! .BaV /T induced by gW S ,! T takes the factor .BaV /S;f
to the factor .BaV /T;gıf by the map .gjS�f .Œa�//�W VS�f .Œa�/! VT�gıf .Œa�/ . The
assignment V 7! BaV defines the exact functor BaW FI-Mod! FI-Mod.

Lemma 2.4 For any d � 0 and any a� 0 there is a natural isomorphism BaM.d/'

M.aC d/.

Proof Given an injection f W Œa� ,! S , a basis for the summand .BaM.d//S;f D

M.d/S�f .Œa�/ consists of the injections f 0W Œd � ,! S � f .Œa�/. Therefore a basis for
.BaM.d//S consists of pairs .f W Œa� ,! S; f 0W Œd � ,! S/ with f .Œa�/\f 0.Œd �/D∅.
Fixing an isomorphism Œa�t Œd �' ŒaC d �, the isomorphism BaM.d/!M.aC d/

is defined by sending .f; f 0/ 2 BaM.d/S to f t f 0W ŒaC d � ,! S . An injection
gW S ,!T acts on BaM.d/ by g�.f; f

0/D .gıf;gıf 0/, so since .gıf /t.gıf 0/D
gı.f tf 0/, we indeed have an isomorphism of FI-modules BaM.d/'M.aCd/.

Since Ba is exact, it follows from Lemma 2.4 that if V is generated in degree � d ,
then BaV is generated in degree �aCd . In particular, we have the following corollary.

Corollary 2.2 If V is finitely generated, BaV is finitely generated for any a� 0.
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The complex B�V We can package all the BaV together as a single object BV .
Given an FI-module V , let BV be the functor BV W FIop

�FI!R-Mod defined by

BV .U;S/D
M

f WU ,!S

VS�f .U /:

Write BV .U;S; f / for the corresponding factor of BV .U;S/. For a morphism
g 2 HomFI.S;T /, we have that the map g�W BV .U;S/ ! BV .U;T / is given on
factors BV .U;S; f /!BV .U;T;gıf / as described in Definition 2.9. To a morphism
h2HomFIop.U;Z/, ie an injection hW Z ,!U , we associate the map h�W BV .U;S/!

BV .Z;S/ which is given on factors BV .U;S; f / ! BV .Z;S; f jZ / by the map
i�W VS�f .U /! VS�f .Z/ , where i denotes the inclusion of the subset S �f .U / into
S �f .Z/. Then BaV is the FI-module BV .Œa�;�/.

For 1� i � a, let si be the order-preserving inclusion from Œa�1� to Œa� whose image
misses i . Considering si as a morphism in FIop from Œa� to Œa�1�, it naturally induces
a map of FI-modules BV .Œa�;�/! BV .Œa� 1�;�/, ie a map di W BaV ! Ba�1V .
The functors BaV fit together into a natural complex of FI-modules

(10) B�V WD � � � �! B3V �! B2V �! B1V �! V �! 0

with differential d W BaV ! B.a�1/V given by the alternating sum
P
.�1/idi . The

familiar identity si ı sj D sjC1 ı si of inclusions Œa� 2� ,! Œa� (for 1 � i � j < a)
implies that dj ı di D di ı djC1 , from which it follows that d2 D 0.

Twisted negative shifts zS�a We defined BV W FIop
�FI!R-Mod above, and noted

that BaV is given by BV .Œa�;�/. Therefore the group of automorphisms AutFIop.Œa�/

gives a natural action of Sa on BaV by FI-module automorphisms; explicitly, this
action permutes the factors .BaV /S;f by precomposing the injections f W Œa� ,! S

with permutations of Œa�.

Definition 2.10 (Negative shift functor zS�a ) Let "a denote the sign representation
of Sa ; that is, the RŒSa�–module which as an R–module is simply R, and on which a
permutation � acts by .�1/� . We define

zS�aV D BaV ˝RŒSa� "a:

The effect is that . zS�aV /S has one summand VT for each subset T � S with
jT j D jS j � a, on which permutations of T act as they usually do on VT , and on
which permutations of S �T act by their sign. The surjection RŒSa�� "a induces
a surjection BaV � zS�aV , so as a consequence of Corollary 2.2 we obtain the
following.

Lemma 2.5 If V is finitely generated, zS�aV is finitely generated for any a� 1.
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The complex zS��V Since the differential d W BaV ! Ba�1V was defined as the
alternating sum

P
.�1/idi , it descends to a differential d W zS�aV ! zS�.a�1/V . We

thus obtain a natural complex of FI-modules

(11) zS��V WD � � � �! zS�3V �! zS�2V �! zS�1V �! V �! 0:

Remark 2.2 In a sequel to this paper [5] we interpret the homology Ha. zS��V / of
this complex as the “FI-module homology” of V , and use this to give quantitative
bounds on the stable range in Theorems 1.4 and 1.5. We point out that the same
complex was considered independently by Putman [11], where the degreewise slices
. zS��V /M appear as the “M–central stability chain complex” [11, Lemma 4.4] in the
context of central stability for representations of Sn over a field.

In fact, the complex zS��V seems to arise naturally from three independent perspec-
tives: as the “central stability chain complex” which governs the central stability of
a sequence of Sn –representations [11]; as the Koszul resolution which computes the
FI-module homology H FI

i of an FI-module V [5]; and from the equivariant chains
of the complex of split unimodular sequences constructed by Charney in [4]. The
approach of Putman [11] rests on the relation between the first and third, while the
approach of [5] is based on the second and third.

In a sense, the present paper uses all three perspectives on the complex zS��V : the
first in Lemmas 2.6 and 2.7 and the proof of Theorem C, the second in Proposition 2.3,
and the third in the proof of Theorem D. However, to keep this paper self-contained,
we will derive all necessary properties of Ha. zS��V / from their definition in terms of
the complex zS��V of (11).

Identifying H0. zS��V / and H1. zS��V / For a finite set T , let C�T denote the
poset of subsets S � T under inclusion. We can consider C�T as a subcategory of FI,
and in fact the inclusions iS W S ,! T let us consider C�T as a subcategory of the
over-category FI =T . Therefore for any FI-module V and any subposet D � C�T ,
we have a D–indexed diagram VS , and the maps iS

� W VS ! VT induce a canonical
homomorphism

colim
D

VS �! VT :

In general, this homomorphism of R–modules will be neither injective nor surjective.
However, the following lemmas demonstrate that when D D C ¨T , the injectivity and
surjectivity of the homomorphism

(12) colim
S¨T

VS �! VT

are computed by H1. zS��V / and H0. zS��V / respectively.
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Lemma 2.6 Let V be an FI-module. Then H0. zS��V /DH0.V /; moreover, for each
finite set T we have

H0. zS��V /T D coker
�

colim
S¨T

VS ! VT

�
DH0.V /T :

Proof Comparing the definitions of the three R–modules in question, we have by
definition that H0. zS��V /T D coker. zS�1V ! V /T is the quotient of VT by the
submodule ˝

im iS
� W VS ! VT

ˇ̌
S � T; jS j D jT j � 1

˛
;

while coker.colimS¨T VS ! VT / is the quotient of VT by the submodule˝
im iS
� W VS ! VT

ˇ̌
S � T; jS j< jT j

˛
;

and H0.V /T is the quotient of VT by the submodule˝
imf�W VU ! VT

ˇ̌
f W U ,! T; jU j< jT j

˛
:

Therefore it suffices to prove that these three submodules coincide.

By definition, the first submodule is contained in the second, and the second submodule
is contained in the third. Conversely, for any f W U ,!T with jU j< jT j, set SDf .U /.
Then f factors as iS ı f 0 , where f 0W U ! f .U /D S is the corestriction of f . It
follows that imf� is contained in im iS

� , demonstrating that the third submodule is
contained in the second. Similarly, for any S � T with jS j < jT j, choose S 0 such
that S � S 0 � T and jS 0j D jT j � 1. Then iS D iS 0 ı iS;S 0 , demonstrating that the
second submodule is contained in the first.

Lemma 2.7 Let V be an FI-module. For each finite set T ,

H1. zS��V /T D ker
�

colim
S¨T

VS ! VT

�
:

Proof Let C ¨T be the poset of proper subsets S ¨T under inclusion, and let DT be
the poset of subsets S �T with jT j�2�jS j� jT j�1. We begin by observing that the
inclusion of categories DT � C ¨T is final, which means that for any C ¨T –indexed
diagram F , the natural map

colim
DT

F �! colim
C ¨T

F

is an isomorphism; see Riehl [13, Definition 8.3.2].

By the standard characterization of final functors (see Riehl [13, Lemma 8.3.4]), the
inclusion DT � C ¨T is final if and only if for every object U 2 C ¨T , the under-
category U=DT is nonempty and connected. In our case, U is a proper subset
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U ¨ T , and U=DT is simply the poset of subsets S such that U � S � T and
jT j � 2� jS j � jT j � 1. If U lies in DT , it is initial in U=DT , so U=DT is not just
connected but contractible. Otherwise, since U ¨ T , there exists some S0 � U with
jS0j D jT j�2, so U=DT is nonempty. For any other S 2U=DT with jS�S0j � 2k ,
there exists a chain S0 � S 0

0
� S1 � � � � � Sk � S in U=DT with jSi j D jT j� 2 and

jS 0i j D jT j�1, so U=DT is connected. Therefore DT �C ¨T is final as claimed, and
so colimS¨T VS can be computed instead as colimS2DT VS .

Consider the standard coequalizer formula for the colimit over DT ,

(13) colim
S2DT

VS D

M
S2DT

VS=hu�f�.u/ j f 2 HomDT .U;S/;u 2 VU i:

Since u�id� uD0, we can restrict to nonidentity morphisms f 2HomDT .U;S/ in (13).
Such morphisms exist only when jU j D jT j � 2, in which case there exist precisely
two subsets S1

U
and S2

U
for which there exist nonidentity morphisms i1

U
W U ! S1

U

and i2
U
W U ! S2

U
. If we use the relations u� .i2

U
/�.u/, then we can remove those

U 2DT with jU j D jT j � 2 from the sum (13), reducing it to

colim
S2DT

VS D

M
S�T

jS jDjT j�1

VS=h.i
1
U /�.u/� .i

2
U /�.u/ j U � T; jU j D jT j � 2;u 2 VU i

D . zS�1V /T = im.d W . zS�2V /T ! . zS�1V /T /

D coker.d W zS�2V ! zS�1V /T :

By definition, H1. zS��V /T is the kernel of the map coker.d W zS�2V ! zS�1V /T !VT

induced by d W zS�1V ! zS�0V D V . Since d sends the factor VS of zS�1V to VT by
iS
� , this induced map coincides with the universal map colimS2DT VS ! VT of (12).

Since colimS¨T VS D colimS2DT VS , we conclude that

H1. zS��V /T D ker
�

colim
S2DT

VS ! VT

�
as claimed.

Since T is terminal in the poset C�T , the map colimS�T VS ! VT is always an
isomorphism. Therefore as a consequence of Lemmas 2.6 and 2.7, we have the following
corollary.

Corollary 2.3 Let V be an FI-module. Then for each finite set T ,

H0. zS��V /T D 0 and H1. zS��V /T D 0 () colim
S¨T

VS D VT :
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The homology Ha. zS��V / The FI-module H0.V / has the property that the natural
map X1W H0.V / ! SC1H0.V / vanishes; in fact, from Definition 2.3 we see that
H0.V / is the largest quotient of V with this property. In particular, H0.V / is a torsion
FI-module. The main content of the following proposition is that the homology groups
Ha. zS��V / enjoy the same property for every a.

Proposition 2.3 Let V be an FI-module. Then Ha. zS��V / is a torsion FI-module
for any a� 0. If V is a finitely generated FI-module over a Noetherian ring, we have
furthermore that Ha. zS��V /� 0 for each a� 0.

Proof We begin by proving that Ha. zS��V / is torsion; in fact, we will prove the
stronger assertion that the map X1W Ha. zS��V /!SC1Ha. zS��V / is zero for all a� 0.
The naturality of X1 implies that this map is induced by a map of FI-complexes

X1W
zS��V �! SC1

zS��V:

We will show that X1 induces the zero map on homology by exhibiting an explicit
chain homotopy from X1 to 0.

If f W Œa� ,! S is an injection of finite sets, we let xf W ŒaC 1� ,! S t f�1g be the map
defined by

xf .i/D

�
�1 if i D 1;

f .i � 1/ otherwise.

We then define zGW BaV ! SC1BaC1V by

zGW BV .Œa�;S; f /D VS�f .Œa�/

D
�! V

StŒ�1�� xf .ŒaC1�/
D BV .ŒaC 1�;S t f�1g; xf /:

We have

d zGW BV .Œa�;S; f /! BV .ŒaC 1�;S t f�1g; xf /L
.�1/i di
�������!

aC1M
iD1

BV .Œa�;S t f�1g; xf ı si/;

zGd W BV .Œa�;S; f /!

aM
iD1

BV .Œa� 1�;S; f ı si/L
.�1/i di
�������!

aM
iD1

BV .Œa�;S t f�1g; f ı si/;

where the summands labeled by i are twisted by .�1/i coming from d D
P
.�1/idi .

We have the identity f ı si D
xf ı siC1 for 1� i � a, so in the sum d zGC zGd these

terms cancel, leaving us with the map

d zGC zGd W BV .Œa�;S; f / �! BV .Œa�;S t f�1g; xf ı s1/:
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But xf ı s1W Œa� ,! S tf�1g is just the composition xf ı s1 D iŒ�1� ıf of f W Œa� ,! S

with the natural inclusion iŒ�1�W S ,! S tf�1g. By definition, X1 is the map induced
by iŒ�1� , so we conclude that

d zGC zGd D .�1/1X1 D�X1W BaV �! SC1BaC1V:

Since the inclusion of Sa into SaC1 defined by Œa� ,! Œa� t Œ�1� preserves .�1/� ,
the map zG descends to a map GW zS�aV ! SC1

zS�.aC1/V . The computation above
descends to the identity

dGCGd D�X1W
zS��V �! SC1

zS��V:

Therefore G exhibits a chain homotopy from X1 to 0 on zS��V . It follows that
X1W Ha. zS��V /! SC1Ha. zS��V / is 0, and thus in particular, Ha. zS��V / is torsion.

Now suppose that V is a finitely generated FI-module over a Noetherian ring. By
Lemma 2.5 we know that zS�aV is finitely generated, so Theorem A implies that its
subquotient Ha. zS��V / is finitely generated as well. Since Ha. zS��V / is torsion, this
implies that Ha. zS��V /� 0 by Lemma 2.3.

Remark 2.3 A version of Proposition 2.3 (with the additional assumptions that V is
finitely presented in some sense, and also that V is an FI-module over a field whose
characteristic is larger than the location of the “relations” of V ) was proved by Putman
in [11, Proposition 4.5].

We are now ready to prove Theorem C, whose statement we recall.

Theorem C Let V be a finitely generated FI-module over a Noetherian ring R. Then
there exists some N � 0 such that for all n 2N ,

Vn D colim
S�Œn�
jS j�N

VS :

We will prove the equivalent statement that for any finite set T ,

(�T ) the natural map colim
S�T
jS j�N

VS �! VT is an isomorphism.

Proof of Theorem C Under our assumptions, Proposition 2.3 states Ha. zS��V /� 0

for all a � 0. In particular, we can fix some N � 0 such that H0.V /n D 0 and
H1.V /n D 0 for all n > N . We will prove that for this N the claim (�T ) holds
for all finite sets T , by induction on jT j. Our base case is jT j � N . In this case
the condition jS j � N is vacuous, and the claim (�T ) asserts that the natural map
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colimS�T VS ! VT is an isomorphism. This is true for any V , since T is terminal
in the poset fS � T g.

Fix a finite set T with jT j > N , and assume that (�U ) holds whenever jU j < jT j.
For any map of posets gW P !Q and any P –indexed diagram F , it holds that

colim
p2P

F.p/D colim
q2Q

colim
p2P

g.p/�q

F.p/:

Applying this to the inclusion of fS � T j jS j �N g into fU ¨ T g, we find that

(14) colim
S�T
jS j�N

VS D colim
U ¨T

colim
S�U
jS j�N

VS :

Applying the inductive assumption (�U ) gives

colim
S�U
jS j�N

VS D VU

for each U ¨ T . Therefore (14) simplifies to colimU ¨T VU . Since jT j>N we have
H0.V /T DH1.V /T D 0, so Corollary 2.3 states that colimU ¨T VU D VT . Summing
up, we have

colim
S�T
jS j�N

VS D colim
U ¨T

colim
S�U
jS j�N

VS D colim
U ¨T

VU D VT :

This concludes the proof of (�T ).

3 Congruence FI-groups (Proof of Theorem D)

In this section we prove Theorem D on the homology of the congruence FI-group ��.p/.

The congruence FI-group ��.p/ Given a commutative ring R, let M.1/DM.1/=R
denote the FI-module taking a finite set S to the free R–module with basis fes j s 2Sg,
and let M.1/� denote the FI-module taking a finite set S to HomR.M.1/S ;R/. Their
tensor product is the endomorphism FI-algebra End M.1/DM.1/˝M.1/� , and the
invertible endomorphisms form the FI-group GL.M.1//; this definition agrees with
the FI-group GL�.R/ defined by (2) in the introduction.

Remark 3.1 There is an isomorphism of FI-modules from M.1/ to M.1/� which
sends es to the functional �sW M.1/S ! R defined by �s.et / D ıst . Nevertheless,
we maintain the distinction because the natural actions of GL.M.1// on M.1/ and
on M.1/� are not equivalent. Taking S D Œn�, we have canonical isomorphisms
M.1/n 'M.1/�n ' Rn and GL.M.1//n ' GLn.R/; the action on M.1/ is by the
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standard representation of GLn.R/ on Rn , while the action on M.1/� is by the dual
representation g 7! .g�1/> .

For any ideal p�R, the natural reduction map from R to F WDR=p induces maps
M.1/=R !M.1/=F and GL.M.1/=R/! GL.M.1/=F /. As in the introduction, the
congruence FI-group ��.p/ is defined by the short exact sequence of FI-groups,

1 �! ��.p/ �! GL.M.1/=R/ �! GL.M.1/=F /:

Proof of Theorem D Fix a number field K with ring of integers OK , and let
p¨OK be a proper ideal. Fix also a Noetherian ring A, and consider the FI-module
Hm WDHq.��.p/IA/ over A; our goal is to prove that Hm is finitely generated.

We work with a more naive version of the complex used by Putman in [11]. Consider
M.1/ �M.1/� D M.1/=OK

�M.1/�
=OK

as an FI-set (ignoring any additive struc-
ture). Our complex X� will be an FI-simplicial complex with vertex set contained in
M.1/�M.1/� .

Consider the FI-simplicial complex ���1 which assigns to any finite set S the full
simplicial complex ���1.S/ with vertex set S . Thus ���1.n/ is the standard .n�1/–
simplex �n�1 , its FI-endomorphisms act by the standard action of Sn on �n�1 , and
any injective map S ,!T of sets induces a simplicial inclusion ���1.S/!���1.T /.
See [6, Example 2.11] for more on this FI-simplicial complex.

Let D� denote the FI-simplex ���1 , considered as embedded in M.1/�M.1/� as
the full simplex on the elements f.es; �s/ j s 2 Sg �M.1/S �M.1/�

S
. We define the

FI-simplicial complex X� to be

X� WD ��.p/ �D�:

In other words, X� is the simplicial complex with vertex set contained in M.1/�M.1/�

consisting of all of those simplices lying in the ��.p/–orbit of D� .

No element of ��.p/ takes any simplex of D� to a different simplex of D� , as these
simplices are distinguished by their reduction in M.1/=F�M.1/�

=F , which is preserved
by the action of ��.p/. (This is where we use that p is a proper ideal of OK .) Thus D�
is by definition a fundamental domain for the action of ��.p/ on X� , and we have a
canonical identification

X�=��.p/'D�:

From such an action we obtain in the usual way (see Brown [2, Equation VII.7.2]) a
spectral sequence converging to the equivariant homology H��.p/

� .X�/. Although our
complex X� differs from the complex SBn.OK ; p/ considered by Putman, he notes
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in [11, Lemma 3.2] that X� � SB�.OK ; p/ since OK satisfies Bass’s stable range
condition S3 . In particular, Putman deduces from Charney [4, Theorem 3.5] that the
complex SBn.OK ; p/ is .n

2
� 2/–acyclic [11, Lemma 3.1], so we have zHm.X�/� 0

for all m� 0. This implies (see [2, Proposition VII.7.3]) that

H��.p/
m .X�/�Hm.��.p//DHmI

in other words, the equivariant homology computed by the spectral sequence is asymp-
totically identical with the ordinary homology FI-module Hm that is our object of
study here.

Let us consider the E1 page of this spectral sequence more closely. Since D� is a
fundamental domain for the action, we have (see [2, Equation VII.7.7])

(15) E1
pq D

M
� a p–simplex

of D�

Hq.Stab��.p/.�/IR/D)H��.p/
m .X�/�HpCq:

Each p–simplex � of DS is the full simplex on f.eu; �u/ j u2U g �M.1/S �M.1/�
S

for some U � S with jU j D pC1. Let T D S �U . The FI-group structure on ��.p/
yields an inclusion �T .p/ ,! �S .p/, and the stabilizer in �S .p/ of the simplex �U is
precisely the subgroup �T .p/. This shows that

.E1
pq/S D

M
T�S

jT jDjS j�p�1

Hq.�T .p/IR/:

Since a permutation of U D S � T acts on the orientation of the p–simplex �U

according to its sign, comparing with Definition 2.10, we see that we can identify E1
pq

with zS�p�1.Hq/; more than this, we can identify the qth row (E1
�;q; d

1/ with the
complex zS���1Hq from (11), excluding the last term zS�0Hq D Hq . We have in
particular E1

0;m
D zS�1Hm , and the edge map E1

0;m
!H��.p/

m .X�/ factors as

(16) zS�1.Hm/DE1
0;m�E10;m ,!H��.p/

m .X�/�Hm:

The composition of these maps is just the boundary map zS�1.Hm/!Hm in (11).

We now prove by induction on m that Hm is a finitely generated FI-module. For the
base case, we have H0 DM.0/, which is finitely generated by definition.

Suppose we know Hq is finitely generated for all q < m. The cokernel of the map
E1

0;m
!H

��.p/
m .X�/ has a filtration whose graded quotients are isomorphic to E1p;m�p

for 1� p �m. Since E2
pq DHp. zS��Hq/ and R is Noetherian, Proposition 2.3 tells

us E2
pq � 0 for all p� 0 and all q <m. Since E1pq is a subquotient of E2

pq , it follows
that E1pq � 0 for all p � 0 and all q <m. This shows that

coker
�
E10;m �!H��.p/

m .X�/
�
� 0:
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Via (16), we have coker. zS�1.Hm/!Hm/� 0. By Lemma 2.6 this says H0.Hm/� 0,
which by Lemma 2.2(1) is equivalent to saying Hm is generated in finite degree.

The existence of the Borel–Serre compactification [1] implies that Hm.�n.p/IR/ is a
finitely generated R–module for all m� 0 and all n� 0. Thus, by Lemma 2.2(2), Hm

is generated in finite degree if and only if Hm is finitely generated. This shows Hm is
finitely generated, completing the inductive step of the proof.

Remark 3.2 The homology groups Hm.�n.p/IZ/ do not merely carry an action
of Sn , but of the larger linear group SLn.F/, in which Sn is contained as a subgroup.
(This uses the nontrivial result that the mod–p reduction SLnOK ! SLnF is actually
surjective.) In keeping with the philosophy of [7, Section 8] one might ask whether
the groups Hm.�n.p/IZ/ obey an appropriate notion of “representation stability” with
respect to the action of the family fSLnFg. This has recently been carried out by
Putman and Sam [12].

4 Configuration co-FI-spaces (Proof of Theorem E)

Let R be a Noetherian ring and let M be a connected orientable manifold of dimension
greater than or equal to 2 with H�.M IR/ finitely generated. We recall from the intro-
duction that Conf.M / is the co-FI-space sending a finite set S to the space Inj.S;M /

of injections of S into M . Let M � be the co-FI-space defined by M S DMap.S;M /.
There is a natural inclusion i W Conf.M / ,!M � as co-FI-spaces.

Lemma 4.1 Let M be a connected space with the homotopy type of a CW–complex
with finitely many cells in each dimension. Then for all m � 0, the FI-module
H m.M �IR/ is generated in finite degree.

Proof When R is a field k , the lemma can be deduced without difficulty from the
Künneth theorem and the results of [6], since H�.M �I k/DH�.M I k/˝� . However
for general R, the relation between the cohomology of M n and that of M is more
complicated; we handle this by working directly at the level of cochains.

We have assumed that M is homotopy equivalent to a CW–complex; since M is
connected, we may assume that this CW–complex has only a single 0–cell. Let C�
be the corresponding cellular chain complex over R; this is a bounded-below chain
complex of finitely generated projective R–modules with C0 DR.

We recall from [6, Definition 2.71] the definition of the co-FI-chain complex C˝�� . By
definition, in degree n it is .C˝�� /Œn� WDC˝n

� , which is a bounded-below chain complex
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of finitely generated projective R–modules. An injection f W Œn� ,! Œm� induces the
map f �W C˝m

� ,!C˝n
� which on each factor lying in Œm��f .Œn�/ is the projection

onto C0 DR, and permutes the remaining factors according to f �1 (with appropriate
sign based on the grading).

The Eilenberg–Zilber theorem states that the singular chain complex C�.M
n/ of M n is

quasi-isomorphic to the n–fold derived tensor product C�.M /˝
Ln . Since C� is quasi-

isomorphic to C�.M / we have C�.M /˝
Ln D .C�/

˝Ln . But .C�/˝
Ln D .C�/

˝n ,
since C� is a complex of projective R–modules. Therefore .C�/˝n is quasi-isomorphic
to C�.M

n/. In other words, since C� consists of projective modules and coincides
with C�.M / in the derived category Db.R/, the co-FI-chain complexes .C�/˝� and
C�.M

�/ define the same co-FI-object of Db.R/.

In particular, the cohomology H�.M �IR/D Ext�.C�.M �/;R/ can be computed as
the cohomology of the complex Hom..C�/˝�;R/, which is now an FI-chain complex
of finitely generated projective R–modules. Denote the piece of this complex in grading
m by Hom..C�/˝�;R/m :

Hom..C�/˝n;R/m D
M

m1C���CmnDm

Hom.Cm1
˝ � � �˝Cmn

;R/:

When n > m every such factor must have mi D 0 for some i , and thus lies in the
image of f� for some f W Œn� 1� ,! Œn�. Therefore the FI-module Hom..C�/˝�;R/m

is finitely generated in degree m. Since H m.M �/ is a subquotient of this finitely
generated FI-module, it is finitely generated by Theorem A.

Proof of Theorem E We consider the inclusion of co-FI-spaces i W Conf.M / ,!M � ,
and the resulting Leray spectral sequence of FI-modules over R,

E
p;q
2
DH p.M �

IRqi�.R//D)H pCq.Conf.M /IR/:

Our first goal is to verify that E
p;q
2

is finitely generated as an FI-module for each
p; q � 0. Over Q this argument was given in the proof of Theorem 4.1 in [6], and the
same outline works here; the main difference over a general Noetherian ring R was in
Lemma 4.1.

Totaro describes the E2 page of this spectral sequence [16, Theorem 1], and in particular
he shows that E

�;�
2

is generated by the subalgebras E
�;0
2

and E
0;�
2

(see the proof
of [6, Theorem 4.1] for more details). The former is isomorphic to H�.M �IR/, which
is finitely generated by Lemma 4.1.

Totaro proves the subalgebra E
0;�
2

is generated by E
0;d�1
2

, which is generated in
degree 2 (by the element G12 in Totaro’s notation). Since this is a first-quadrant spectral
sequence, only finitely many terms along each axis can multiply to any given entry.
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Each entry E
p;q
2

is thus the quotient of a finite direct sum of finite tensor products of
finitely generated FI-modules. By [6, Proposition 2.61], such a finite tensor product is
itself finitely generated. It follows that E

p;q
2

is finitely generated as well.

Since E
p;q
1 is a subquotient of E

p;q
2

, Theorem A implies that E
p;q
1 is finitely generated

for each p� 0 and q� 0. The cohomology FI-module H m.Conf.M /IR/ has a finite-
length filtration whose graded quotients are of this form, so by [6, Proposition 2.17]
the FI-module H m.Conf.M /IR/ is itself finitely generated, as desired.

5 Coinvariant co-FI-algebras (Proof of Theorem F)

Fix a commutative Noetherian ring A, and fix an integer r � 1. We recall from the
introduction that AŒX .r/� is the Zr

�0
–graded co-FI-algebra which sends a finite set S

to the free commutative A–algebra on generators indexed by Œr � � S . Its quotient
by the ideal of Aut.S/–invariant polynomials with zero constant term defines the
Zr
�0

–graded co-FI-algebra R.r/ , the r –diagonal coinvariant co-FI-algebra.

Proof of Theorem F The co-FI-algebra AŒX .r/� is the free commutative A–algebra
generated by the co-FI-module M.1/_ , so the FI-algebra AŒX .r/�_ is the free commu-
tative A–algebra generated by the FI-module M.1/. In particular, if J D .j1; : : : ; jr /,
the graded piece AŒX .r/�_

J
is isomorphic to Symj1 M.1/˝� � �˝Symjr M.1/. This is a

quotient of M.1/˝jJ j , which is finitely generated by [6, Proposition 2.61], so AŒX .r/�_
J

is a finitely generated FI-module over A.

Since R
.r/
J

is a quotient of AŒX .r/�J , its dual .R.r/
J
/_ naturally embeds as a sub-FI-

module of AŒX .r/�_
J

. Thus, Theorem A implies .R.r/
J
/_ is finitely generated.
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