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The convex core of quasifuchsian
manifolds with particles

CYRIL LECUIRE

JEAN-MARC SCHLENKER

We consider quasifuchsian manifolds with “particles”, ie cone singularities of fixed
angle less than � going from one connected component of the boundary at infinity
to the other. Each connected component of the boundary at infinity is then endowed
with a conformal structure marked by the endpoints of the particles. We prove that
this defines a homeomorphism between the space of quasifuchsian metrics with n

particles (of fixed angle) and the product of two copies of the Teichmüller space of a
surface with n marked points. This extends the Bers double uniformization theorem
to quasifuchsian manifolds with “particles”.

Quasifuchsian manifolds with particles also have a convex core. Its boundary has
a hyperbolic induced metric, with cone singularities at the intersection with the
particles, and is pleated along a measured geodesic lamination. We prove that any two
hyperbolic metrics with cone singularities (of prescribed angle) can be obtained, and
also that any two measured bending laminations, satisfying some obviously necessary
conditions, can be obtained, as in Bonahon and Otal [12] in the nonsingular case.

20H10, 57M50

1 Introduction

1.1 Convex cocompact manifolds with particles

Quasifuchsian manifolds A quasifuchsian manifold is a complete hyperbolic man-
ifold M diffeomorphic to S �R, where S is a closed, oriented surface of genus at
least 2, which contains a nonempty, compact, convex subset; see Thurston [54]. Such a
manifold has a boundary at infinity, which is the union of two copies of S . Each of those
two copies has a conformal structure, �C and �� , induced by the hyperbolic metric on
M . A celebrated theorem of Bers [1; 8] asserts that the map sending a quasifuchsian
metric to .�C; ��/ determines a parametrization of the space of quasifuchsian metrics
on M by the product of two copies of the Teichmüller space of S .

A quasifuchsian manifold M contains a smallest nonempty convex subset, called its
convex core C.M /. Here we say that a subset K �M is convex if any geodesic
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segment in M with endpoints in K is contained in K . This implies that the inclusion
of K in M is a homotopy equivalence.

The boundary of C.M / is again the union of two copies of S , and each is a pleated
surface in M , with a hyperbolic induced metric mC;m� and a measured bending
lamination �C; �� . (There is a special “Fuchsian” case where C.M / is a totally
geodesic surface. The two pleated surfaces mentioned here are then the same, mCDm� ,
and �C D �� D 0.)

It is known that any two hyperbolic metrics can be obtained in this way; this follows from
Epstein and Marden [26] or from Labourie [37]; however, it is not known whether any
couple .mC;m�/ can be obtained uniquely. Similarly, any two measured laminations
�C; �� can be obtained in this manner if the weight of any leaf is less than � and if
�C and �� fill S (Bonahon and Otal [12]), but it is not known whether uniqueness
holds. Recall that �� and �C fill S if there exists � > 0 such that for any closed curve
c in S , i.��; c/C i.�C; c/� � .

The main goal here is to extend those results to quasifuchsian manifolds with “particles”,
that is, cone singularities of a certain type connecting the two connected components
of the boundary at infinity, as described below.

Note that all the results mentioned here are actually known in the more general context
of convex cocompact hyperbolic manifolds, ie interiors of compact manifolds with
boundary, with a complete hyperbolic metric, containing a nonempty, compact, convex
subset (or even more generally for geometrically finite hyperbolic manifolds), the result
concerning the measured bending lamination of the boundary can then be found in
Lecuire [38]. We stick here to the quasifuchsian setting for simplicity.

Cone-manifolds We consider here hyperbolic cone-manifolds of a special kind, which
have cone singularities along curves (a more general notion is defined in [54], allowing
for singularities along graphs). Let � 2 .0; �/. We call H 3

�
the hyperbolic manifold

with cone singularities obtained by isometrically gluing the two faces of a hyperbolic
wedge of angle � (the closed domain in H 3 between two half-planes having the same
boundary line). There is a unique such gluing that is the identity on the “axis” of the
wedge. We will be using here the following (restrictive) definition.

Definition 1.1 A hyperbolic cone-manifold is a manifold along with a metric for
which each point has a neighborhood modeled on H 3

�
for some � 2 .0; �/.

Let M be a hyperbolic cone-manifold. It has two kind of points: those which have a
neighborhood isometric to a neighborhood of a point of some H 3

�
outside the cone
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singularity are called regular points, and those which are called singular points or cone
points. The set of regular points will be denoted by Mr and the set of singular points
by Ms . By definition, Ms is a union of curves; if M is complete then those curves can
be either closed curves or infinite lines. To each of those curves is associated an angle
� 2 .0; �/ — such that all points have a neighborhood isometric to a neighborhood of
the cone singularity in H 3

�
— which is called its cone angle or simply its angle.

Recall the usual notion of convexity, which differs from other possible notions (eg the
local convexity of the boundary of a domain).

Definition 1.2 Let M be a hyperbolic cone-manifold. A subset K �M is convex if
any locally geodesic segment in M with endpoints in K is contained in K .

A nonempty convex subset of M is homotopically equivalent to M and contains all
closed geodesics of M ; see Moroianu and Schlenker [43, Lemma A.12].

Quasifuchsian manifolds with particles Quasifuchsian manifolds with particles are
defined in the same way as nonsingular quasifuchsian manifold.

Definition 1.3 A quasifuchsian manifold with particles is a complete hyperbolic cone-
manifold M isometric to the product S �R, where S is a closed, orientable surface
endowed with a complete hyperbolic metric with cone singularities of angles in .0; �/
on the lines fxig�R for distinct points x1; : : : ;xn0

in S , and S contains a nonempty,
compact, convex subset. We require that n0 � 4 if S is a sphere, ie that M has at
least 4 singularities, and that n0 � 1 if S is a torus.

Notice that the definition also makes sense if S is a sphere and n0 D 3 but then the
metric would be uniquely defined (up to isotopy) by the cone angles. We do not consider
this case for technical reasons but also because there is not much to say about it.

Given a nonempty convex subset K of a quasifuchsian manifold with particles, then
K contains all closed geodesics of M (see [43, Lemma A.12]) and the inclusion of K

in M is a homotopy equivalence (this is proved below).

Geometrically, quasifuchsian manifolds with particles can be considered as I –bundles
in the category of hyperbolic 3–manifolds with cone singularities. The term “particle”
comes from physical motivations. Quasifuchsian manifolds have Lorentzian siblings
called anti-de Sitter (AdS) globally hyperbolic (GH) manifolds, which share many of
the key properties recalled above; see Mess [40], and Andersson, Barbot, Benedetti,
Bonsante, Goldman, Labourie, Scannell and Schlenker [3]. From a physics viewpoint,
GH AdS 3–manifolds are a 3–dimensional toy model for gravity, as they model an
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empty space with negative cosmological constant. To go beyond an empty model,
massive point particles can be added and modeled as cone singularities along time-
like lines; see eg ’t Hooft [30; 31]. The resulting GH AdS manifolds with particles
display some properties that are parallel to those obtained here; see Bonsante and
Schlenker [13].

The restrictions on the cone angles — they are supposed to be in .0; �/ — are necessary
at several points here, as they were in [43]. They seem to be physically relevant too.
We will mention some points where this hypothesis is useful below as they occur. We
do not know whether Theorem 1.7, for instance, can be extended to cone angles less
than 2� . In the parallel Lorentzian theory concerning globally hyperbolic anti-de Sitter
manifolds, new phenomena arise when the cone angles are larger than � ; see Barbot,
Bonsante and Schlenker [5; 6].

Quasifuchsian manifolds with particles are always considered here up to isotopies.

Convex cocompact manifolds with particles The previous definition can be ex-
tended to a definition of convex cocompact manifolds with particles.

Definition 1.4 A convex cocompact hyperbolic manifold with particles is a complete
hyperbolic cone-manifold M such that:

� M is homeomorphic to the interior of a compact manifold with boundary N .

� The singular locus corresponds under the homeomorphism to a disjoint union of
curves in N with endpoints on @N .

� The angle at each singular curve is less than � .

� M contains a nonempty compact subset that is convex.

A further extension to geometrically finite manifolds with particles is possible; we leave
the details to the interested reader. We consider here only quasifuchsian manifolds
(with particles) although some of the intermediate statements can be extended to convex
cocompact manifolds with particles. There is also some hope to extend the main results
to this more general setting, however some technical hurdles have to be overcome
before this can be achieved.

Note that there is another possible notion of quasifuchsian manifolds with cone sin-
gularities: those which are singular along closed curves, as studied in particular by
Bromberg [19; 20]. Although there are similarities between those two kinds cone-
manifolds (in particular concerning their rigidity), the questions considered here are
quite different from those usually associated to those considered for quasifuchsian
cone-manifolds with singularities along closed curves (drilling of geodesics etc).
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1.2 The conformal structure at infinity

Conformal structures and hyperbolic metrics on surfaces Let us fix some notation.

Definition 1.5 Let S be a closed orientable surface, let x1; : : : ;xn0
2 S be distinct

points with n0 � 4 if S is a sphere and n0 � 1 is S is a torus, and let �1; : : : ; �n0
be

in .0; �/. We then call:

� TS;x the space of conformal structures on S , considered up to isotopies of S

fixing the xi .

� HS;x;� the space of hyperbolic metrics on S with cone singularities at the xi ,
where the angle is �i , considered up to isotopies fixing the xi .

There is a one-to-one map between TS;x and HS;x;� , because any conformal structure
contains a unique hyperbolic metric with cone singularities at the xi of prescribed
angle (see Troyanov [56]). We keep distinct notations for clarity.

Notice again that these definitions also make sense when S is a sphere and n0 D 3

provided that
Pn0

iD1
�i � 2� < 0. In this case the spaces TS;x and HS;x;� are points.

The statements considered here are already well understood when n0 D 0, so we will
focus below on the case n0 � 1.

The conformal structure at infinity Non-singular quasifuchsian manifolds have a
natural conformal structure at infinity, which can be defined by considering the action
of their fundamental group on their discontinuity domain; see [54]. This definition
cannot be used directly for quasifuchsian manifolds with particles. However it is still
possible to define a conformal structure at infinity; see [43, Section 3.2].

Therefore, to each quasifuchsian metric g 2 QF�1;:::;�n0
are associated two points

�C; �� 2 TS;n0
corresponding to the conformal structures — marked by the endpoints

of the “particles” — on the upper, respectively lower, connected component of the
boundary at infinity.

Note that we always implicitly consider conformal structures on the boundary at infinity
up to isotopy. (It is therefore not necessary to consider markings.)

A compactness lemma for the conformal structure at infinity We consider again a
closed surface S along with n0 distinct points (n0 � 1) x1; : : : ;xn0

2 S and angles
�1; : : : ; �n0

2 .0; �/ so that

2��.S/�

n0X
iD1

.2� � �i/ < 0:
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Proposition 1.6 Let .gn/n2N be a sequence of quasifuchsian metrics on S �R with
particles (cone singularities) on the lines fxig �R, of angle equal to �i . Suppose that
the conformal structures at infinity, ��;n; �C;n 2TS;n0

, converge to conformal structures
��;1; �C;1 . Then .gn/n2N has a subsequence converging to a quasifuchsian metric
with particles.

The proof is contained in Section 6.2; it is based on the compactness results described
below (in Section 3) relative to the induced metric and bending lamination on the
boundary of the convex core.

A Bers-type theorem with particles Using the previous proposition, along with the
main result of [43], leads to an extension to quasifuchsian manifolds with particles of a
classical result of Bers [8] on “double uniformization”.

Theorem 1.7 The map from QFS;x;� to TS;x � TS;x sending a quasifuchsian hyper-
bolic metric to the conformal structures at C1 and at �1 (marked by the endpoints
of the particle) is a homeomorphism.

1.3 The geometry of the convex core

Measured laminations We refer the reader to Casson and Bleiler [22], Penner and
Harer [28] and Otal [44] for the definition and main properties of measured laminations
on closed (nonsingular) surfaces as well as the topology on the space of measured
laminations. There are two possible definitions. One is geometric, in terms of measured
geodesic laminations on hyperbolic surfaces with a transverse measure, while the other
definition is topological and can involve the boundary at infinity of the universal cover
of the surface. The two definitions are equivalent, basically because in a closed (or
finite volume) hyperbolic surface any closed curve can be realized uniquely as a closed
geodesic. We have the following proposition (see [13, Lemma 2.2] for a proof).

Proposition 1.8 Let † be a hyperbolic surface with cone singularities, where the
angle is less than � . Let � be a (topological) lamination on †. Then � can be realized
uniquely as a geodesic lamination.

The space of measured geodesic laminations on a hyperbolic surface with cone singu-
larities of angle less than � therefore does not depend on the cone angles.

Definition 1.9 We call MLS;n0
the space of measured lamination on S with n0

marked points.

Thus, for any hyperbolic metric m on S with n cone singularities of angle less than � ,
MLS;n0

can be canonically identified with the space of measured geodesic laminations
on .S;m/.
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The convex core The following basic proposition can be found in the appendix of [43].

Proposition 1.10 Let M be a convex cocompact hyperbolic manifold with particles,
and let K and K0 be two nonempty convex subsets. Then K \K0 is a nonempty
convex subset.

It leads to a natural definition.

Definition 1.11 Let M be a quasifuchsian manifold with particles. Its convex core
C.M / is the smallest nonempty convex subset contained in it.

By construction, C.M / is a “minimal” convex subset of M and it follows from
general arguments (see [54]) that its boundary is, outside the singular curves, a pleated
surface (a locally convex, ruled surface). It turns out that, under the condition that the
cone angles are less than � , the boundary of C.M / intersects the cone singularities
orthogonally, and is even totally geodesic in the neighborhood of each such intersection;
see [43, Lemma A.15].

It follows that there is a well-defined notion of closest-point projection from M to
C.M /. As a consequence, the inclusion of C.M / in M is a homotopy equivalence.
The same holds for any nonempty convex subset of M .

Therefore, given a quasifuchsian metric with particles g 2QFS;� , the induced metrics
on the upper and lower boundary components of C.M / (which might coincide in special
cases) are two hyperbolic metrics mC;m� 2HS;x;� . Moreover, those two boundary
components are pleated along measured bending laminations lC; l� 2MLS;n0

.

A remark on the hypothesis A well-known fact concerning hyperbolic surfaces with
cone singularities is that as long as the cone angles are less than � , then any homotopy
class of closed curves in the regular part contains a unique geodesic (see, eg, Dryden and
Parlier [24]). A fairly direct consequence is that, as for closed surfaces, any topological
measured lamination (in the complement of the cone singularities) can be uniquely
realized as a measured geodesic lamination.

This is one reason — albeit not the only one — why it is relevant to consider here cone
singularities of angle less than � , rather than less than 2� . Indeed for cone singularities
of angle less than 2� , the induced metric on the boundary of the convex core might
also have cone singularities of angle between � and 2� , and for those metrics the
one-to-one relation between measured laminations and measured geodesic laminations
is lost.
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1.4 Prescribing the bending lamination

Results in the nonsingular case For nonsingular convex cocompact hyperbolic man-
ifolds an existence and uniqueness theorem for metrics with a given rational measured
bending lamination was proved by Bonahon and Otal [12]. (Recall that a lamination
is rational if its support is a disjoint union of closed curves.) When the lamination is
not rational, an existence result was proved in [12] for manifolds with incompressible
boundary. It was extended in [38] to manifolds with compressible boundary.

Rational laminations with particles As for quasifuchsian manifolds (without parti-
cles), it is possible to give an existence and uniqueness statement concerning the bending
lamination on the boundary of the convex core, but only for rational laminations.

Theorem 1.12 Let S be a closed orientable surface, let x1; : : : ;xn0
2 S be distinct

points, and let �1; : : : ; �n0
be in .0; �/. Suppose that n0 � 4 if S is a sphere, and

that n0 � 1 if S is a torus. Let ��; �C 2MLS;x be measured laminations, each with
support a disjoint union of closed curves. Suppose that

� �� and �C fill S ,
� each closed curve in the support of �� (respectively �C ) has weight less than � .

Then there exists a metric g 2QFS;x;� such that the measured bending lamination on
the upper (respectively lower) boundary component of the convex core of .S �R;g/ is
�C (respectively �� ). Moreover g is unique up to isotopies.

The proof, which is given in Section 4, is based on the rigidity theorem of Hodgson
and Kerckhoff [29] for closed hyperbolic manifolds with cone singularities. We prove
in Lemma 4.3 that the hypothesis are necessary conditions.

General laminations When considering laminations which are not necessarily ratio-
nal, we obtain only a weaker result, because we can only claim existence, but not
uniqueness (this remains an open problem even in the nonsingular case; see [12; 38]).

Theorem 1.13 Let S be a closed surface, let x1; : : : ;xn0
2 S be distinct points, and

let �1; : : : ; �n0
be in .0; �/. Let ��; �C 2MLS;x . Suppose that

� �� and �C fill S ,
� each closed curve in the support of �� (respectively �C ) has weight less than � .

Then there exists a metric g 2QFS;x;� such that the measured pleating lamination on
the upper (respectively lower) boundary component of the convex core of .S �R;g/ is
�C (respectively �� ).
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The two conditions on ��; �C in this theorem are easily seen to be necessary when g

is not Fuchsian; see Lemma 4.3. Note that both Theorem 1.12 and Theorem 1.13 are
restricted to quasifuchsian manifolds with particles, rather than more general convex
cocompact manifolds with particles.

1.5 The induced metric on the boundary of the convex core

The Bers-type result on the conformal metric at infinity can be used to obtain an
existence result concerning the prescription of the induced metric on the boundary of
the convex core.

Theorem 1.14 Let m�;mC 2 HS;n0;� , where � D .�1; : : : ; �n0
/ 2 .0; �/n . There

exists a quasifuchsian metric with particles on S �R, with particles of angle �i at the
lines fxig �R, for which the induced metric on the boundary of the two connected
components of the convex core are m� and mC .

In the smooth case — ie for quasifuchsian hyperbolic manifolds without conical sin-
gularities — the corresponding result is well known; it follows either from results of
Labourie [37] or from a partial answer, first given by Epstein and Marden [26], to a
conjecture of Sullivan. (The conjecture made by Sullivan turned out to be wrong — see
Epstein and Markovic [27] — but the result proved by Epstein and Marden is sufficient
to prove Theorem 1.14 in the nonsingular context.)

As for the conformal structure at infinity, it might be possible to extend this statement
to cover convex cocompact (respectively geometrically finite) manifolds with particles.
The uniqueness remains elusive, as in the nonsingular case.

1.6 Applications

Quasifuchsian manifolds can be used as tools in Teichmüller theory. By extension, the
quasifuchsian manifolds with particles considered here can be used as tools for the
study of the Teichmüller space of hyperbolic metrics with cone singularities (of angle
less than � ) on a surface.

One such application is through the renormalized volume of those quasifuchsian
manifolds with particles, as considered in Krasnov and Schlenker [33; 35]. In the
nonsingular case this renormalized volume is equal to the Liouville functional (see
Takhtajan and Zograf [52; 53] and Takhtajan and Teo [51]); it is a Kähler potential
on HS;x;� . Other applications of closely related tools, in the nonsingular context, for
the global geometry of the Weil–Petersson metric on Teichmüller space, can be found
in McMullen [39]. Yet other applications to some properties of the grafting map are
considered in Krasnov and Schlenker [34], and the manifolds with particles considered
here should allow for an extension to the grafting map on HS;x;� .
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1.7 Outline of the proofs

We now turn to a description of the main technical points of the proofs.

Measured bending laminations Theorem 1.12 is proved by an argument strongly
influenced by the proof given by Bonahon and Otal [12] for nonsingular convex
cocompact manifolds. Thanks to a doubling trick, the infinitesimal rigidity of the
convex cores of convex cocompact manifolds with particles, with respect to the (rational)
measured bending lamination, is reduced to an important infinitesimal rigidity result
proved for hyperbolic cone-manifolds by Hodgson and Kerckhoff [29]. A deformation
argument then provides the proof of the theorem.

The existence result for general laminations on quasifuchsian manifolds with particles
(Theorem 1.13) can then be obtained by an approximation argument, as in the nonsingu-
lar case in [12; 38]. The key step of the proof is a compactness statement, showing that
if the measured bending laminations converge to a limit having good properties, then the
quasifuchsian metrics converge after extracting a subsequence. However the arguments
developed in [12; 38] cannot be used in the context of quasifuchsian manifolds with
particles, because they rely heavily on the representation of the fundamental group.
Different arguments are therefore used here, which are more differential-geometric in
nature.

Those arguments are sometimes technically involved because of the added difficulties
induced by the particles. However, after stripping the proof of the elements which are
needed only because of the particles (for instance the multiple cover argument used in
Section 3.4 to find simplicial surfaces with given boundary in the convex core), the
compactness proof given here is simpler than the one in [12; 38].

Prescribing the induced metric on the boundary of the convex core We give in
Section 6 a rather elementary proof of Theorem 1.14, which has two parts. Call t�
(respectively tC ) the hyperbolic metric in the conformal class �� (respectively �C )
with cone angles �i at xi . The first part is an upper bound on the length of the curves
in the hyperbolic metric at infinity t˙ , following Bridgeman [15], and Bridgeman and
Canary [16].

Now recall that, by Thurston’s earthquake theorem (Kerckhoff [32] and Thurston [55]),
there exists a unique right earthquake sending a given hyperbolic metric to another
one. This extends to hyperbolic metrics with cone singularities of angle less than � ;
see [13]. In particular there is a unique measured lamination �C such that the right
earthquake along �C , applied to mC , yields the hyperbolic metric tC . The second
part of our proof is a bound on the length of �C for mC (see Proposition 5.2).
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This is then used in Section 6 to prove Theorems 1.7 and 1.14. The proof of Theorem 1.7
also uses another main ingredient, the local rigidity of quasifuchsian manifolds with
particles proved in [43].

Quasi-conformal estimates There is another possible way to prove Theorem 1.14,
closer to the argument used in the nonsingular case (as seen in [15; 16; 26]). It uses a
bound on the quasi-conformal factor between the conformal structure at infinity � and
the conformal class of the induced metric m on the boundary of the convex core, both
understood as elements of TS;n0

.

Proposition 1.15 There exists a constant C > 0 (depending only on the topology of
M) such that � is C –quasiconformal to m.

This proposition is not formally necessary to obtain the main results presented here; its
proof can be found in the appendix.

As mentioned above, the proof of Theorem 1.14 through Proposition 1.15 would be
much closer to the proof(s) known in the nonsingular case. It can be pointed out
that the proof given in Section 6 is quite parallel, but in the context of Teichmüller
theory understood as the study of hyperbolic rather than complex surfaces. From this
viewpoint, Proposition 5.2 is a direct analog of Proposition 1.15, with quasiconformal
deformations replaced by earthquakes.

What follows Section 2 presents the definition of the convex core of a convex cocom-
pact manifold with particles, and some of its simple properties, extending well-known
properties with no cone singularity. In Section 3 we state and prove a key compactness
statement with respect to the measured bending lamination on the boundary of the
convex core. Section 4 contains the proof of Theorem 1.12, using a local rigidity
statement of Hodgson and Kerckhoff [29] and the compactness lemma of Section 3.
Section 5 contains the proof of Theorem 1.13, and Section 6 contains the proof of
Theorem 1.7 and of Theorem 1.14. Section 7 contains some remarks on the analogy
with corresponding problems in anti-de Sitter geometry and on applications to the Weil–
Petersson metric of the Teichmüller space of hyperbolic metrics with cone singularities
of prescribed angles on a closed surface (see [33; 35; 34]). Finally, the appendix
contains the proofs of Proposition 1.15, based on the estimates on the length of the
earthquake lamination obtained in Section 5.

2 The geometry of the convex core

This section contains some basic statements necessary to understand the geometry of
convex cocompact manifolds with particles, concerning in particular the convex core
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and its boundary. We consider here such a convex cocompact manifold with particles,
M , and denote by Mr its regular part and by Ms its singular part (the union of the
singular lines).

We exclude below the simplest case where M is Fuchsian, that is, where it is the warped
product of hyperbolic surfaces with cone singularities .S; h/ by R, with the metric
dt2C cosh.t/2h. In this Fuchsian case the convex core is a surface, corresponding
to t D 0, and it is totally geodesic outside the intersection with the particles, and
orthogonal to those particles.

2.1 Surfaces orthogonal to the singular locus

We define here a natural notion of pleated surface orthogonal to the singular locus
in M . The first step is to define the notion of totally geodesic plane orthogonal to a
cone singularity in a hyperbolic cone-manifold. The first condition is that the surface
is totally geodesic outside its intersections with the particles. The second condition
is local, in the neighborhood of the intersections with the particles; there, the surface
should correspond to the image in H 3

�
of the restriction to the wedge (used to define

H 3
�

) of a plane orthogonal to the axis of the wedge.

Definition 2.1 Let † be a pleated surface in Mr and let †0 be its closure as a subset
of M ; suppose that †0 n†�Ms . We say that †0 is orthogonal to the singular locus if
any x 2†0n† has a neighborhood in †0 which is a totally geodesic surface orthogonal
to the singular locus.

This definition can be extended to encompass more general surfaces, ie surfaces which
are neither pleated nor totally geodesic in the neighborhood of the singular locus. In
this more general case the definition can be given in terms of the convergence of the
unit normal vector to a vector “tangent” to the singular locus at its intersection with
the surface. This will however not be needed here.

2.2 The convex core of a manifold with particles

Among the defining properties of a quasifuchsian cone-manifold M is the fact that it
contains a compact subset K which is convex in the (strong) sense that any geodesic
segment in M with endpoints in K is contained in K . We have already seen that it is
possible to define the convex core of M as the smallest compact subset of M which is
convex, denoted by C.M /.

Theorem 2.2 Suppose that C.M / is not a totally geodesic surface. Then its boundary
is the disjoint union of surfaces which are orthogonal to the singular locus. Each
connected component of the singular locus of M intersects C.M / along a segment.
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The proof is a consequence of two lemmas, both stated under the hypothesis of the
theorem. The second lemma in particular gives more precise information on the
geometry of the convex core; it is taken from [43, Lemma A.14].

Lemma 2.3 The boundary of C.M / is a surface orthogonal to the singular locus.

Let x 2M . We denote by Lx the link of M at x , that is, the space of directions of
geodesic rays starting from x , with its natural angle distance. When x is a regular point
of M , Lx is isometric to the 2–dimensional sphere S2 with its round metric. When x

is contained in a singular line of angle � , Lx can be described as the metric completion
of the quotient by a rotation of angle � of the universal cover of the complement of
two antipodal points in S2 .

Definition 2.4 Let K �M be convex, and let x 2M . The link of K at x is the set
of directions v 2 Lx such that there is a (small) geodesic ray starting from x in the
direction v which is contained in K . It is denoted by Lx.K/.

Clearly Lx.K/D∅ when x is not contained in K , while Lx.K/DLx when x is
contained in the interior of K .

To go further, we define the oriented normal bundle of @C.M /, denoted by N 1
r @C.M /,

as the set of .x; n/ 2 TM such that x 2 @C.M / is not in the singular locus of M and
n is a unit vector such that its orthogonal is a support plane of C.M / at x , and n is
oriented towards the exterior of C.M /.

Let x 2M be a nonsingular point, let v 2 TxM and let t 2RC . For t small enough,
it is possible to define the image of .x; tv/ by the exponential map: it is the point
exp.x; tv/ WD g.t/, where g is the geodesic, parametrized at constant speed, such that
g.0/x and g0.0/D v . As t grows, exp.x; tv/ remains well-defined until g intersects
the singular set of M .

Lemma 2.5 The exponential map is a homeomorphism from N 1
r @C.M /� .0;1/ to

the complement of C.M / in Mr . The map

exp1W N
1
r @C.M /! @1M;

.x; v/ 7! lim
t!1

exp.x; tv/

is a homeomorphism from N 1
r @C.M / to the complement in @1M of the endpoints

of the singular curves in M .
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This follows directly from [43, Lemma A.11].

The proof of Theorem 2.2 clearly follows from Lemma 2.3 and Lemma 2.5, since
Lemma 2.5 shows that the cone singularities cannot re-enter the convex core after
exiting it.

2.3 The geometry of the boundary

By construction, C.M / is a minimal convex set in M , and it follows as in the nonsin-
gular case (see [54]) that its boundary is a “pleated surface” except at its intersections
with the singular curves.

Lemma 2.6 The surface @C.M / has an induced metric that is hyperbolic (ie it has
constant curvature �1) with conical singularities at the intersections of @C.M / with
the singular curves of M , where the total angle is the same as the total angle around
the corresponding singular curve. It is “pleated” along a measured lamination � in the
complement of the singular points. Moreover the distance between the support of �
and the intersection of the singular set of M with @C.M / is strictly positive.

Proof Since C.M / is a minimal convex subset, its boundary is locally convex and
ruled, therefore developable (see Spivak [50, Chapter 3] for the Euclidean analogue or
Thurston [54]) so that its induced metric is hyperbolic. The fact that its intersection
points are conical singularities, with a total angle which is the same as the total angle
around the corresponding singularities, is a consequence of the fact that @C.M / is
orthogonal to the singularities.

Similarly, the fact that @C.M / is pleated along a measured lamination is a direct
consequence of the fact that it is ruled and locally convex, ie that each point in @C.M /

is in either a complete hyperbolic geodesics or a totally geodesic ideal triangle. The
support of � is a disjoint union of embedded maximal geodesics, and it is well known
(see [24]) that (under the hypothesis that the angles at the cone singularities are strictly
less than � ) embedded geodesics remain at positive distance from the singular locus.
So the distance between the support of � and the singular locus of @C.M / is strictly
positive.

2.4 The distance between the singular curves

We state and prove here some elementary statements on the distance between singular
points in the boundary of C.M / and between singular curves in M . They will be
useful at several points below.
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Lemma 2.7 Let � 2 .0; �/. There exist � > 0 and � > 0, depending on � , such that:

(1) In a complete hyperbolic surface with cone singularities of angles less than �
(not homeomorphic to a sphere with three singularities), two cone singularities
are at distance at least � from each other.

(2) If D is a closed 2–dimensional geodesic disk of radius � centered at a singular
point x0 of cone angle � , and if � � D is a convex subset whose closure
intersects the boundary of D , then � contains all points of D at distance at
most � from x0 .

In particular, it follows from point .1/ that no embedded geodesic in D can come
within distance less than � from the cone singularity.

Proof The first point is well known; see [24]. The interested reader can construct an
elementary proof based on Dirichlet domains, as in 3–dimensional manifolds in the
proof of the second point below.

For the second point, let x1 2 @D\� and let 
 be the minimizing geodesic segment
from x0 to x1 . Since D contains no other singular point by the first point, the
complement of 
 in D is isometric to an angular sector in the disk of radius � in
H 2 . This angular sector has three vertices; one corresponding to x0 and the other
two corresponding to x1 . Since � < � , it is convex at the vertex corresponding to x0 .
Let s be the geodesic segment joining the two vertices corresponding to x1 . Then �,
being convex, contains the projection in D of the triangle bounded by s and by the
two geodesic segments in the boundary of D joining x0 to the two vertices projecting
to x1 . This proves the statement, with � equal to the distance between x0 and s .

We now turn to a similar lemma, but concerning 3–dimensional manifolds with particles.
Although we include a short proof, it is a consequence of Boileau, Leeb and Porti [10,
Theorem 5.3].

Lemma 2.8 Let �; � 0 2 .0; �/. There exists � > 0, depending on � , such that, if M

is a quasifuchsian manifold with particles of angles more than � 0 and less than � , then
any two particles in M are at distance at least � from each other.

Proof We reason by contradiction, that is, we fix � 2 .0; �/ and assume that for any
n> 0 there is a quasifuchsian manifold Mn with particles of angles less than � , and a
length minimizing segment sn with length less than 1=n joining two particles pn and
p0n or one particle pn with itself and no length minimizing segment shorter than sn .
Let xn be the midpoint of sn . We call Dn the Dirichlet domain in Mn centered at xn .
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We call .M 0
n;xn/ the pointed cone-manifold obtained by performing on .Mn;xn/

a homothety of ratio 1=L.sn/, so that M 0
n has constant curvature L.sn/

2 � 1=n2 .
Let D0n be the Dirichlet domain centered at xn in M 0

n , so that D0n is obtained by
performing a homothety of ratio 1=L.sn/ on Dn .

By construction the cone singularities in M 0
n are at distance at least 1, so that, after ex-

tracting a subsequence, .M 0
n;xn/ converges in the pointed Gromov–Hausdorff topology

to a pointed manifold .M 0;x/. Still by construction, M 0 is a noncompact orientable
Euclidean cone 3–manifold and either M 0 contains at least one cone singularity p

with cone angle less than � , the limit of pn , and a geodesic loop limit of sn or M 0

contains at least two cone singularities p and p0 with cone angle less than � , the limits,
respectively, of pn and p0n . Let D0 be the Dirichlet domain centered at x in M 0 . Then
.D0;x/ is the limit of the .D0n;xn/ in the pointed Gromov–Hausdorff topology. By
definition all D0n are unbounded, so D0 is also unbounded.

It follows from Thurston’s classification of noncompact orientable Euclidean cone
3–manifolds (see Boileau and Porti [11] or Cooper, Hodgson and Kerckhoff [23]) that
the only possibility for M 0 is a thick turnover S2.˛; ˇ; 
 /�R, where S2.˛; ˇ; 
 / is
a 2–sphere with 3 singular points with angles .˛; ˇ; 
 / such that ˛C ˇC 
 D 2� .
Therefore, for n large enough Mn is homeomorphic to the product of a sphere by a
line with three singularities. But this is impossible since the Mn are quasifuchsian
manifolds with particles, and the definition explicitly excludes such manifolds.

We now call �0 > 0 the number � associated by the previous two lemmas to the
maximum of the �i , and �0 the corresponding value of � .

3 Compactness statements

3.1 Main statement

The main goal of this section is to prove the following compactness lemma.

Lemma 3.1 Let Mn be a sequence of quasifuchsian manifolds with particles with
the same topological type and converging angles. Let �n be the measured bending
laminations on the boundary of the convex core of Mn . Suppose that �n! �1 , where
�1 satisfies the hypothesis of Theorem 1.13. Then, after taking a subsequence, Mn

converges to a quasifuchsian manifold with particles of the common topological type,
the limit particles and measured bending lamination �1 .
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Let us explain the definitions used in this statement. The topological type of a quasifuch-
sian manifold with particles M has the form .S;x1; : : : ;xn0

/, where S is a compact
surface with genus at least 2 and x1; : : : ;xn0

are distinct points on S . A quasifuchsian
manifold with particles M has topological type .S;x1; : : : ;xn0

/ if M is isometric to
the product S �R endowed with a complete hyperbolic metric with cone singularities
of angles � i 2 .0; �/ on the lines fxig �R.

Consider a sequence of quasifuchsian manifolds Mn with particles with the same
topological type .S;x1; : : : ;xn0

/. Denote by � i
n 2 .0; �/ the cone angles of the metric

of Mn on fxig �R. Then the sequence Mn has converging angles if and only if � i
n

converges in .0; �/ when n goes to 1 for any i � n0 .

Notice that since the �n converge to �1 , �n is eventually nontrivial. In particular the
manifolds Mn are not Fuchsian (ie their convex cores are not surfaces) except maybe
for finitely many of them. Throughout this section, when we consider a quasifuchsian
manifold with particles, we will assume that it is not Fuchsian so that its convex core
is a 3–dimensional manifold with boundary.

The convex core C.M / of M is homeomorphic to S � I . Thus @C.M / is homeo-
morphic to S tS and each copy of S in this union has n0 marked points x1; : : : ;xn0

corresponding to the endpoints of the particles. The measured bending lamination on
the boundary of C.M / is an element of the space

MLS;n0
�MLS;n0

of measured laminations on two copies of S with n0 marked points. The space
MLS;n0

is endowed with the topology of weak-� convergence of measures on compact
transversals and MLS;n0

�MLS;n0
is endowed with the product topology. In simple

terms, we can fix a finite but sufficiently large set of curves ci that are either closed
curves or segments between two singular points; then, two measured laminations are
close if and only if their intersection with each of the ci are close.

Although Lemma 3.1 is a generalization of the “lemme de fermeture” of [12], the proof
is very different. The reason is that the two main ingredients of the proof in Bonahon
and Otal’s paper are the Culler–Morgan–Shalen compactification of the character variety
by actions on R–trees and the covering theorem of Canary. Since both these results
hardly extend to manifolds with particles we had to use different arguments. Since our
proof also works without particles, we get a new proof of the main result of [12].

3.2 A finite cover argument

We work under the assumption that the cone angle around each singularity is less
than � . This assumption guarantees that the singularities are never too close to each
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other (see Lemma 2.8) and that the boundary of the convex core is well-defined and is
orthogonal to the singularities. On the other hand, cone singularities with cone angles
less than � can be viewed as singularities with concentrated positive curvature. But
some of the results we will use are easier to prove when the curvature is negative. To
overcome this difficulty, we will use a branched cover for which the cone angles are all
greater than 2� .

Let M be a quasifuchsian manifold with particles. A branched cover M ! M

branched along the singularities is negatively curved if the cone angles around the
singularities of the metric induced on M are all greater than 2� . We call M a
negatively curved branched cover of M .

This name comes from the fact that a singularity with cone angle greater than 2�

can be viewed as a set of concentrated negative curvature. More precisely M can be
approximated by Riemannian manifolds with curvature bounded above by �1 (in the
bilipschitz topology). It follows that M has properties of negatively curved manifolds,
in particular the uniqueness of the geodesic segment joining two given points in a given
homotopy class.

We will construct such branched covers for sequences. Consider a sequence of quasi-
fuchsian manifold with particles Mn with the same topological type .S;x1; : : : ;xn0

/

(as defined in the preceding section). We denote by gn the metric of Mn and by � i
n

the cone angles of gn on the component �i of the singular locus corresponding to xi .
Assume that the sequence Mn has converging angles, namely � i

n converge to some
� i 2 .0; �/ for any i � n0 .

For each singularity xi , we choose an integer ki such that 2�=ki is less than the
angle � i (the limit of � i

n ). The surface S with cone angle 2�=ki at the point xi is
a hyperbolic orbifold. As such it has a manifold cover hW xS ! S that is a branched
cover so that the lifts of the point xi have a branching index equal to ki . The branched
cover hW xS ! S extends naturally to a branched cover hW xS � I ! S � I .

For a fixed n, we have the metric gn on S � R with cone singularities � i
n along

fxig �R. If we pull back gn using the map h, we get a hyperbolic metric xgn with
cone singularities on xS �R for which the covering transformations are isometries.
Let M n D . xS �R; xgn/ be the manifold with cone singularities thus obtained. By the
choice of fk1; : : : ; kn0

g, for n large enough, we have ki�
i
n � 2� , hence the cone angle

of xgn around each singularity of M is at least 2� . Thus for n large enough, M n is
a negatively curved branched cover of Mn and the topological type of M n does not
depend on n.
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3.3 Pleated annuli

A technical device that will be useful later on is a simplicial annulus bounded by two
given curves. As was mentioned above, when we consider a quasifuchsian manifold
with particles, we assume that it is not Fuchsian.

Let us first fix some notations. We consider a quasifuchsian manifold with particles
M with topological type .S;x1; : : : ;xn0

/. We denote by g the complete hyperbolic
metric with cone singularities of M and by C.M / the convex core of M . We will
use a negatively curved branched cover M of M (as defined in the previous section).
The construction of such a cover is explained above for a sequence Mn , here we take
the constant sequence, Mn DM for any n, to define M . We denote by C.M /�M

the preimage of the convex core C.M / of M under the covering projection, by x� its
bending measured geodesic lamination and by xm the induced metric on @C.M /. We
will use this notation throughout this section.

Now let us construct our simplicial annulus.

Lemma 3.2 Let M be a quasifuchsian manifold with particles and M a negatively
curved branched cover of M . Let xd ; xd 0 be homotopic simple closed geodesics, respec-
tively on the upper and on the lower boundary components of C.M /. There exists
an immersed annulus xA in C. xM / bounded by xd [ xd 0 � @C. xM / such that the metric
induced on xA by gn is a hyperbolic metric with cone singularities with angles at least
2� . The area of xA is at most minfl xm.xd/C l xm.xd

0/; i.x�; xd/C i.x�; xd 0/g.

Proof Let us specify that l xm.xd/, respectively l xm.xd
0/, is the length of xd , respectively

xd 0 , with respect to the metric xm induced by xg on @C.M /.

Since xd and xd 0 are disjoint homotopic simple closed curves, there is an embedded
annulus xA�C.M / with @ xAD xd[ xd 0 . If the bending laminination of C.M / intersects
xd and xd 0 finitely many times, then xd and xd 0 are piecewise geodesics. If not, we
approximate them by piecewise geodesic curves and work on the approximations.
Consider a triangulation T of xA whose vertices are all contained in xd [ xd 0 and such
that any vertex of xd and xd 0 (when considered as piecewise geodesics) is a vertex of
T . As we have said before, in M , there is a unique geodesic segment joining 2 given
points in a given homotopy class. It follows that we can change xA by a homotopy so
that each edge of T is a geodesic segment in C.M /. Next, for each triangle Ti of T ,
we choose a vertex v and we substitute Ti by the geodesic cone from v to the edge
ev of Ti not containing v . This geodesic cone is the union of the geodesic segments
joining v to the edge ev of Ti (the homotopy class of such segment is defined by
the corresponding segment of Ti ). Again the existence of this cone follows from the
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uniqueness of geodesic paths. From now on we denote this cone by Ti . By construction,
it is a locally ruled surface and as such has negative curvature:

Claim 3.3 Let M be a hyperbolic manifold with cone singularities with cone angles
bigger than 2� . Given a point v 2M and a geodesic segment ev �M , a geodesic
cone Ti �M from v to ev is an union of polygons with curvature �1. Furthermore,
the sum of the angles of the polygons meeting at an interior vertex is at least 2� .

Proof The surface Ti meets the singular locus M s of M along segments and at
points. For each component � of M s \ Ti we consider the two extremal segments
joining v to ev and intersecting � . Doing this for each component of M s\Ti , we get
a family of segments which are geodesic for the metric of .M ; xg/ and hence for the
induced metric on Ti . We add the components of M s \Ti that are segments to this
family and get a new family of geodesic segments. The closure of each complementary
region is a polygon, ie a disc with piecewise geodesic boundary (see Figure 1). By
construction each such polygon is a locally ruled surface in H3 hence it has curvature
�1. Thus we have proved the first sentence of this claim.

M s \Ti

Figure 1: Decomposition of Ti into hyperbolic polygons

By construction, given an interior vertex v of this decomposition into polygons, there
is a geodesic segment (for the metric of .M ; xg/) which passes through v . On each
side of this segment, the sum of the angles of the polygons has to be at least � . Thus,
we can conclude that the sum of the angles of the polygons around v is at least 2� .

We change the annulus xA so that it is a union of geodesic cones as described in
Claim 3.3. Thus the induced metric is hyperbolic with cone singularities with angles
greater than 2� . By the Gauss–Bonnet formula, the area of xA is at most the bending
of @ xA, namely Area. xA/� i.@ xA; x�n/D i.xd ; x�n/C i.xd 0; x�n/.
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It remains to prove that Area. xA/ � l xm.xd/C l xm.xd
0/. By construction, xA is a union

of triangles Ti such that one edge of each Ti lies in xd [ xd 0 and by Claim 3.3, the
induced metric on each such triangle is a hyperbolic metric with cone singularities
with angles greater than 2� . It follows that the induced metric can be approximated by
Riemannian metrics with curvature at most �1. Let T h

i be a hyperbolic triangle (ie a
geodesic triangle in H2 ) such that the length of the edges of T h

i are the same as the
length of the edges of Ti . Since the induced metric on Ti as curvature at most �1, we
have Area.Ti/� Area.T h

i /. On the other hand the area of a hyperbolic triangle is less
than the length of any of its edges (see [54, Lemma 9.3.2]). It follows that Area.Ti/

is less than the length of any of its edges; in particular it is less than the length of the
edge of Ti lying in xd [ xd 0 . Since this holds for all the triangles composing xA, we
have Area. xA/� l xm.xd/C l xm.xd

0/.

3.4 Long geodesics in M

In this section, we will show that, under the hypothesis of Lemma 3.1, the induced
metrics on @C.Mn/ are bounded. In order to do that we will show that if some geodesic
is long in the boundary of C.M /, then the boundary of some annulus is almost not
bent or the bending lamination tends to have a leaf with a weight greater than or equal
to � . Since this would contradict the conditions on �1 , it will follow that any given
simple closed curve on @C.Mn/ has bounded length. As earlier, when we consider a
quasifuchsian manifold with particles, we assume that it is not Fuchsian.

Throughout this section we use the following notation. We have a sequence of quasi-
fuchsian manifolds with particles Mn with the same topological type .S;x1; : : : ;xn0

/.
We denote by .gn/n2N the metric of Mn . We assume that the sequence Mn has
converging angles, namely the � i

n converge in .0; �/ for any i � n0 . Since Mn is
quasifuchsian (with particles), C.Mn/ is homeomorphic to S � I . We denote by
S and S 0 the two components of @C.Mn/. S 0 is homeomorphic to S . Let mn be
the metric defined on S t S 0 by the identification with @C.Mn/ endowed with the
metric induce by the gn –length of paths. This metric mn is a hyperbolic metric with
cone singularities of angles � i

n at the points fxig 2 S and fx0ig 2 S 0 . We denote by
�n 2MLS;n0

�MLS;n0
the bending measured geodesic lamination of @C.Mn/.

We will make use of the branched covers M n defined in Section 3.2. Recall that,
for n large enough, M n is a negatively curved branched cover of Mn and that the
topological type of M n does not depend on n. We denote by C.M n/, xmn and x�n the
preimages of C.Mn/, mn and �n under the covering map M n!Mn .

We will use the next lemma to prove that, under the right hypothesis on �1 , the induced
metric on @C.Mn/ is bounded.
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Lemma 3.4 Let Mn be a sequence of quasifuchsian manifolds with particles with
the same topological type and converging angles. Assume that .�n/ converges to
�1 (without any hypothesis on �1 ). Consider a simple closed curve d � S . Let
dn � @C.Mn/ be the closed mn –geodesic freely homotopic to d . If lmn

.dn/!1,
then either �1 contains a leaf with a weight greater than or equal to � , or there is a
sequence of essential annuli En such that i.�n; @En/! 0.

Proof Let S 0 be the other boundary component of C.M / (ie not S ) and let d 0n be
the closed mn –geodesic freely homotopic to d lying in S 0 . Let M n be a negatively
curved branched cover of Mn so that for n large enough the topological type of M n

does not depend on n. Let xdn and xd 0n � @C.M n/ be homotopic lifts of dn and d 0n
respectively under the covering projection M !M . The preimage x�n 2ML.@M /

of �n is the bending measured lamination of C.M n/. Furthermore x�n converges to
the preimage x�1 of �1 .

First we will show that if xdn is long compared to the area of an annulus An bounded
by xdn[

xd 0n then there are shortcuts in An . Namely xdn[
xd 0n contains points that are

close to each other in M n but far in xdn[
xd 0n . This can happen for instance if dn and

d 0n are close to each other in C.Mn/.

Claim 3.5 Let Mn be a sequence of quasifuchsian manifolds with particles and let
M n be a negatively curved branched cover of Mn such that the topological type of
M n does not depend on n. Assume that .x�n/n2N converges to x�1 . Let xd � xS be a
simple closed curve and denote by xdn �

xS � @C.M n/ the simple closed xmn –geodesic
in the homotopy class of xd .

If l xmn
.dn/!1, then there is a geodesic arc xkn � C.M n/ such that lgn

.xkn/! 0 and
that either xkn joins the two components of @C.M n/ or the xmn –geodesic arc x�n �

xdn

in the homotopy class of xkn relative to its boundary satisfies l xmn
.x�n/!1.

Proof Denote by xd 0n the closed xmn –geodesic lying in xS 0�@C.M n/ that is homotopic
to xdn in C.M n/. Consider the annulus xAn with @ xAn D

xdn[
xd 0n that was constructed

in Lemma 3.2. Since l xmn
.xdn/!1, there is "n ! 0 and a segment xsn �

xdn such
that l xmn

.xsn/!1 and i.xsn; x�n/� "n . Let xtn � C.M n/ be the xgn –geodesic segment
homotopic to xsn relative to its endpoints. Since xsn is almost not bent, its length is
very close to the length of xtn (see [38, Lemme A2]). In particular, lxgn

.xtn/ ! 1.
Furthermore, for the same reason, any point in xtn is close to xsn . Namely there is
�nD �."n/! 0 such that for any point xzn�xtn , there is xxn�xsn with dxgn

.xxn;xzn/� �n

(see [38, Affirmation A3]).
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Since .x�n/n2N converges to x�1 , the bending i.x�n; @ xAn/ of @ xAn converges. By
Lemma 3.2 the area of xAn is bounded. Now, in xdn , we replace xsn by xtn . If needed,
we approximate xd 0n and this new curve xdn by piecewise geodesic curves and consider
an annulus xAn between xdn and xd 0n with a triangulation that respects the piecewise
geodesic structures of xdn and xd 0n (as described in Lemma 3.2). We change xAn so
that it is a union of geodesic cones. It follows from the assumption that .x�n/n2N

converges to x�1 , from Lemma 3.2 and from the previous paragraph that Area. xAn/ is
a bounded sequence. For any point in xtn that is at distance at least 1

3
lxgn
.xtn/ from @xtn ,

we consider in xAn an arc orthogonal to xtn that either hits @ xAn at distance less than �n

from its basepoint or has length �n (�n will be specified later on). Let xZn �
xAn be the

union of those arcs that have length �n and let xzn be the union of their starting points (ie
their intersection with xtn ). The set xZn is embedded and its area is the same as the area
of a strip of length lxgn

.xzn/ and width �n . Notice that since the singularities of xAn have
cone angles at least 2� , the area of this strip is at least the area of a hyperbolic strip
with the same length and width, ie it is at least lxgn

.xzn/ sinh.�n/. Let K be a number
larger than the area of xAn for any n. Taking �n such that sinh.�n/ > 3K=lxgn

.xtn/,
we get

K � Area. xZn/� lxgn
.xzn/ sinh.�n/ >K

3lxgn
.xzn/

lxgn
.xtn/

:

Hence lxgn
.xzn/ <

1
3
lxgn
.xtn/. It follows that there exists an arc with length less than �n

orthogonal to xtn whose starting point xx0n � xtn is at a distance at least 1
3
lxgn
.xtn/ from

@xtn (distance measured on xtn ) and which hits @ xAn in a point xyn � @ xAn .

As we have seen in the previous paragraph there is a point xxn 2 xsn very close to xx0n . It
follows that xxn 2

xdn and xyn 2
xdn[
xd 0n are joined in C.M n/ by an arc xkn satisfying

lgn
.xkn/! 0.

If xyn 2
xd 0n then we are done. Otherwise xxn and xyn both lie in xdn . By construction

xkn lies in an annulus connecting xdn to xd 0n . It follows that there is a xmn –geodesic arc
x�n �

xdn that is homotopic to xkn relative to fxxng [ fxyng. Since xxn is at distance at
least l xmn

.xtn/=3 from the points in @xsn , we have

l xmn
.x�n/�

l xmn
.xtn/

3
!1 :

Consider the points xxn and xyn constructed in Claim 3.5 and extract a subsequence such
that either xyn 2

xdn for any n or xyn 2
xd 0n for any n. We will show below that if xyn lies

in xdn then �1 has a leaf with a weight greater than or equal to � and that if xyn lies
in xd 0n then there is a sequence of essential annuli En �M such that i.�n; @En/! 0.

In the next step we are going to construct xmn –geodesic loops based at xxn and xyn that
are almost not bent.
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Claim 3.6 Let Mn be a sequence of quasifuchsian manifolds with particles and let
M n be a negatively curved branched cover of Mn such that the topological type of M n

does not depend on n. Consider 2 points xxn; xyn 2 @C.M n/ away from the singularities
and a xgn –geodesic arc xkn � C.M n/ joining xxn to xyn such that lxgn

.xkn/! 0 and that
either xxn and xyn lie on different components of @C.Mn/ or there is a xmn –geodesic
arc x�n 2 @C.M n/ that is homotopic to xkn relative to its boundary fxxng[fxyng and that
satisfies l xmn

.x�n/!1.

Consider a loop xln on @C.M n/ based at xxn , which is geodesic for xmn (except at
xxn ). Let xfn � @C.M n/ be the xmn –geodesic loop based at xyn that is homotopic to xln .
Assume that l xmn

.xln/ is bounded. Then the bending of xln and xfn tends to 0, namely
i.xln; x�n/! 0 and i. xfn; x�n/! 0.

Proof When saying that xxn and xyn are away from the singularities we mean that
there is a uniform lower bound on their distance to the singular locus of M n .

Let �Mn be the universal cover of M n : it is a simply connected hyperbolic 3–manifold
with cone singularities. Let C. �Mn/ be the lift of C.M n/ to �Mn . Let zln , zkn , zxn , zyn

be lifts of xln , xkn , xxn and xyn with zxn 2
zln and zxn[ zynD @zkn . The point xx0nD @zln n zxn

is the image of xxn under a covering transformation. Consider the zmn –geodesic arc
zfn � @C. �Mn/ joining xyn to its image xy0n under this covering transformation.

Let us first assume that there are no singularities in M n . Then �Mn is isometric to
H3 and we choose the isometry so that zxn is identified with a fixed point of H3

(independently of n). Let ….zxn/ be a support plane for C. �Mn/ at zxn , namely a totally
geodesic plane that intersects C. �Mn/ only along @C. �Mn/ and contains zxn . Up to
moving xxn slightly, we may assume that it is disjoint from x�n so that there is only one
support plane at zxn . The convex set C. �Mn/ lies in a half-space E.zxn/ bounded by
….zxn/. Similarly let ….zyn/ be a support plane at zyn and let E.zyn/ be the half-space
bounded by ….zyn/ that contains C. �Mn/.

If xxn and xyn lie on different components of @C.Mn/ then ….zxn/ and ….zyn/ are
disjoint.

If xxn and xyn lie on the same component of @C.Mn/, since l xmn
.x�n/!1, either

….zxn/ and ….zyn/ are disjoint or their intersection goes to 1 with n (namely the
sequence ….zxn/\….zyn/ lies outside larger and larger compact sets in H3 ).

In both cases, since lxgn
.xkn/! 0, zyn converges to zxn (viewed as a fixed point in H3 )

and, up to extracting a subsequence, ….zxn/ and ….zyn/ converges to the same plane
…1 in H3 . Furthermore E.zxn/ converges to a half-space E.zx1/ bounded by …1
and E.zyn/ converges to the other half-space E.zy1/ bounded by …1 .
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Let ….zx0n/ be a support plane at zx0n . Since l xmn
. xfn/ is bounded, up to extracting a

subsequence, zx0n converges in H3 . Again since either xx0n and xyn lie on different
components of @C.Mn/ or d zmn

.zx0n; zyn/!1, ….zyn/\….zx
0
n/ either is empty or

goes to infinity. It follows that ….zx0n/ also converges to …1 and that E.zx0n/ converges
to E.zx1/. The external dihedral angle between ….zxn/ and ….zx0n/ is an upper bound
for i.xln; x�n/, hence i.xln; x�n/! 0.

It remains to show that i. xfn; x�n/! 0.

By construction, dzgn
.zx0n; zy

0
n/D dzgn

.zx0n; zy
0
n/D `xgn

.xkn/! 0, hence ….zx0n/ and ….zy0n/
converge to the same plane …1 in H3 . If xxn and xyn lie on different components
of @C.Mn/ then ….zx0n/ and ….zy0n/ are disjoint. It follows that E.zy0n/ converges to
E.zy1/ while E.zx0n/ converges to E.zx1/, which implies i. xfn; x�n/! 0 as above. If
xxn and xyn lie on the same component of @C.Mn/ then

d zmn
.zx0n; zy

0
n/D d zmn

.zxn; zyn/!1:

It follows that E.zy0n/ converge to E.zy1/, which again implies i. xfn; x�n/! 0.

When the M n have singularities, we cannot define support planes, but we can define
local support planes at points that are disjoint from the singularities. Thus we can locally
use the same arguments as in the nonsingular case, leading to the same conclusion.

Let us choose for xln a shortest xmn –geodesic loop based at xxn . Since the area of
. xS t xS 0; xmn/ is bounded, there is a constant Q > 0 such that ` xmn

.xln/ � Q. By
Claim 3.6, we have i.xln; x�n/! 0. Let xfn be the xmn –geodesic loop based at xyn that
is homotopic to xln . By Claim 3.6, we have i. xfn; x�n/! 0. Since xln and xfn are freely
homotopic in C.M n/, there is an annulus xEn bounded by xln and xfn .

If xyn lies in xd 0n , then xln and xfn lie in different components of @M . In particular xEn is
an essential annulus for any n. Furthermore, we have i.x�n; @ xEn/� i.xln; x�n/Ci. xfn; x�n/,
and the second member tends to 0.

Consider the projection En of xEn to C.Mn/. Although En may not be embedded,
it follows from the annulus theorem [57] that any neighborhood of En contains an
embedded annulus, which we still denote by En . We have then i.�n; @En/! 0.

Thus we have proved:

Claim 3.7 Let Mn be a converging sequence of quasifuchsian manifolds with parti-
cles with the same topological type and converging angles. Consider a geodesic arc
kn � C.Mn/ joining the two components of @C.Mn/ such that `mn

.kn/! 0. Then
there is a sequence of essential annuli En such that, up to extracting a subsequence,
i.�n; @En/! 0.
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If xyn lies in xdn then xln and xfn are homotopic on @C.M n/. We are going to show
that in this case �n tends to have a leaf with a weight greater than or equal to � .

Claim 3.8 Let Mn be a sequence of quasifuchsian manifolds with converging angles
and let M n be a negatively curved branched cover of Mn such that the topological
type of M n does not depend on n. Consider a xgn –geodesic arc xkn�C.M n/ such that
`xgn

.xkn/! 0 and that there is a xmn –geodesic arc x�n 2 @C.M n/ that is homotopic to
xkn relative to its boundary and that satisfies ` xmn

.x�n/!1. Then lim inf i.x�n; x�n/�� .

Proof The curve xkn [x�n is a skew polygon (up to approximating x�n by piecewise
geodesic segments) and bounds a disc in C.M n/. Consider the geodesic cone xDn

from xxn to xkn [ x�n . As in the proof of Lemma 3.2, the induced metric on xDn is a
hyperbolic metric with cone singularities with cone angles of at least 2� . Since xkn

is short, the local support planes at the endpoints xxn and xyn of xkn are close to each
other (compare with the proof of Claim 3.6). It follows that the sum of the internal
angles of xDn at xxn and xyn is close to being greater than � , namely there is "n! 0

such that the sum of these 2 angles is greater than � � "n . Now the Gauss–Bonnet
formula shows that lim inf i.x�n; x�n/� � .

Using this claim, we will now show that under the right hypothesis, �n tends to have a
leaf with a weight greater than or equal to � .

Claim 3.9 Let Mn be a sequence of quasifuchsian manifolds with particles with the
same topological type S�I and converging angles. Let d �S be a simple closed curve
and consider its geodesic representative dn on one component of @C.Mn/. Consider
an arc �n � dn and denote by kn the geodesic arc in Mn in the homotopy class of �n

relative to its boundary. If `gn
.kn/! 0, `mn

.�n/!1 and �n converges, its limit
�1 has a leaf with a weight greater than or equal to � .

Proof Let M n be a negatively curved branched cover of Mn whose topological type
does not depend on n. Let x�n and xkn be lifts of �n and kn respectively. Let xxn and
xyn be the endpoints of x�n and let xln � @C.M n/ be a shortest geodesic loop based
at xxn . Let xfn � @C.Mn/ be the geodesic loop based at xyn that is homotopic to xln
on @C.M n/. Let zSn be the universal cover of the connected component of @C.M n/

containing xxn , endowed with the induced metric. Pick a connected component zln � zSn

of the preimage of xln under the covering projection. This broken geodesic zln is invariant
under a primitive covering transformation 
n , and we denote by zfn the component of
the preimage of xfn that is also invariant under 
n . The lines zln and zfn are disjoint and
bound an infinite band zBn ; they are connected by a lift z�n of x�n , and by its translates
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by 
 k
n ; k 2Z. Pick a simple closed geodesic xen� @C.M n/ and let zen be a lift of xen to

zSn . It is easy to check that a component zan of zen\
zBn , which is an arc connecting zln to

zfn , satisfies i.zan; z�n/� i.z�n; z�n/�#fzan\
S

k gk
nz�ng.i.xln; x�n/Ci. xfn; x�n//, where z�n

is the preimage of x�n under the covering projection. By Claim 3.6, i.xln; x�n/! 0 and
i. xfn; x�n/! 0, and by Claim 3.8, lim inf i.x�n; x�n/� � . Notice that #fzan\

S
k gk

nz�ng

is bounded except if xen spirals more and more toward cn . If, for example, we assume
that xen and cn converge to intersecting geodesic laminations, xen does not spiral toward
cn and we find that lim inf i.xen; x�n/� i.xen; cn/� .

We will now use this inequality to conclude that, when the x�n converge, its limit x�1
has a leaf with a weight greater than or equal to � .

Let us notice that, up to extracting a subsequence, the homotopy class of cn does not
depend on n. Otherwise there is a simple closed curve xe � xS such that i.xe; xcn/!1.
To see that, extract a subsequence such that the cn converge in the Hausdorff topology,
pick a simple closed curve xe that intersects this limit transversally and apply the
inequality above to fxeng D fxeg. But i.xe; cn/!1 would contradict the assumption
that x�n converges.

Let c � S be a simple closed curve in the homotopy class defined by cn . By the
inequality above, we have lim inf i.xe; x�n/� i.xe; c/� for any simple closed curve xe . It
follows easily that c is a leaf of x�n with a weight greater than or equal to � . Taking the
quotient, we conclude that �1 has a leaf with a weight greater than or equal to � .

It is now easy to conclude the proof of Lemma 3.4. Under the assumptions of Lemma 3.4,
namely when there is a simple closed curve d such that `mn

.dn/!1, it follows from
Claims 3.5, 3.7 and 3.9 that either there is a sequence of essential annuli En � C.Mn/

such that i.�n; @An/! 0 or �1 contains a leaf with a weight equal to at least � .

We can now deduce from Lemma 3.4 that under the assumptions of Lemma 3.1, the
sequence of induced metrics .mn/n3N on @C.Mn/ is bounded.

Lemma 3.10 Let Mn be a sequence of quasifuchsian manifolds with particles with
the same topological type and converging angles. Let �n be the measured bending
laminations on the boundary of the convex core of Mn and suppose that �n! �1 .
Let �˙ be the respective restrictions of �1 to the two components of the boundary
@C.Mn/ of the convex core of Mn . Suppose that

� �� and �C fill S ,
� each closed curve in the support of �� (respectively �C ) has weight less than � .

Then the sequence of induced metrics .mn/n2N on @C.Mn/ is bounded.
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Proof If .mn/ is unbounded, then there is a simple closed curve d � S with geodesic
representative dn � @C.Mn/ such that lmn

.dn/ is unbounded. By Lemma 3.4 and
the assumptions on �, there is a sequence En of essential annuli such that i.�n; @En/

tends to 0. Such a sequence of annuli contradicts the assumption that �� and �C
fill S .

3.5 Convergence of convex cores

The last step in the proof of Lemma 3.1 is to show that, under the assumption that
the sequence of metrics on the boundary are bounded, a subsequence of convex cores
converges for the bilipschitz topology. Before starting the proof, we will discuss the
Margulis lemma for quasifuchsian manifolds with particles. Let us first review the
Margulis lemma for manifolds with variable curvature.

Theorem 3.11 (Margulis lemma) Given n 2N there are constant �D�.n/ > 0 and
I.n/2N with the following property. Let X be an n–dimensional Hadamard manifold
that satisfies the curvature condition �1 � K � 0 and let � be a discrete group of
isometries acting on X . For x 2X , let ��.x/D f
 2 � j d
 .x/��g be the subgroup
generated by the elements 
 with d
 .x/� �. Then ��.x/ is almost nilpotent, thus it
contains a nilpotent subgroup of finite index. The index is bounded in I.n/.

This statement is taken from Ballmann, Gromov and Schroeder [4, Section 8.3]. Since
we are considering a manifold M homeomorphic to S�I , an almost nilpotent subgroup
of �1.M / is cyclic.

Theorem 3.11 does not hold for hyperbolic manifolds with cone singularities since the
curvature is not defined at the singularities. On the other it is not hard to replace the
metric in a neighborhood of the singular locus with a Riemannian metric. Furthermore,
if the cone angle is at least 2� , one can choose the Riemannian metric so that it has
negative curvature with a lower bound depending on the cone angles and the choice
of the neighborhood of the singularities. Now we consider a quasifuchsian manifold
with particles M and a negatively curved branched cover M of M . By Lemma 2.8,
there are R, " > 0 such that any closed curve with length at most " is at distance at
least R from the singularities. We replace the R–neighborhood of the singularities
with a smooth Riemannian metric and apply Theorem 3.11 to the resulting manifold.
Notice that the lower bound on the curvature of the Riemannian metric thus obtained
will depend on R and the cone angle. Thus we get " depending on R and the cone
angles so that for a given point x in the universal cover �M of M the subgroup of
�1.M / generated by the set f
 2�1.M / j d.x; 
x/� "g is cyclic. Since M is a finite
branched cover, we have a similar statement for M , replacing " with "=p , where p is
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the index of the cover, which depends on the cone angles of the singularities of M .
It follows that we have a Margulis decomposition for quasifuchsian manifolds with
particles:

Lemma 3.12 Let Mn be a sequence of quasifuchsian manifolds with particles with
the same topological type and converging angles. There is an " depending on the limit
angles such that, for n large enough, each component of the "–thin part of Mn is a
neighborhood of a closed geodesic.

Notice that the Margulis tubes we obtain here are disjoint from the singularities so they
are isometric to regular neighborhoods of geodesics in hyperbolic 3–manifolds. This
result also follows from [10, Theorem 5.3]. We can now discuss the convergence of
quasifuchsian manifolds with particles.

Lemma 3.13 Let Mn be a sequence of quasifuchsian manifolds with particles with
the same topological type and converging angles. Suppose that the sequence .mn/n2N

(the induced metrics on the boundary of the convex cores) converges. Then, after taking
a subsequence, .Mn/n2N converges to a quasifuchsian manifold with particles with
the same topological type as Mn .

Proof First notice that since the cone angles are less than � , by Lemma 2.8 there
is a positive lower bound for the distance between two components of the singularity
locus. Consider a point xn 2 C.Mn/, extract a subsequence such that the sequence
.xn;Mn/ converges in the Gromov–Hausdorff topology (such a subsequence always
exists). By [11, Proposition 3.2.6], the limit .x1;M1/ is a hyperbolic manifold with
cone singularities. By [11, Proposition 3.3.1], the sequence .xn;Mn/ converges to
.x1;M1/ in the bilipschitz topology.

It remains to show that M1 has the same topological type as Mn and that its metric is
convex cocompact. To do that we will show that the diameter of C.Mn/ is uniformly
bounded. It will follow that C.Mn/ converges to a convex set with the same topological
type.

Lemma 3.14 Let .Mn/n2N be a sequence of quasifuchsian manifolds with particles
with the same topological type and converging angles. Suppose that the sequence of
induced metrics .mn/n2N on the boundary of the convex cores converges. Then the
diameter of C.Mn/ is uniformly bounded.
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Proof Consider a negatively curved ramified cover M n of Mn whose topological
type does not eventually depend on n. It follows from the Margulis lemma that a very
short geodesic in M n lies in a very deep embedded tube. Using this observation we will
show that there is a uniform lower bound on the length of any fixed curve in C.M n/.

Claim 3.15 Let Mn be a sequence of quasifuchsian manifolds with particles and let
M n be a negatively curved ramified cover of Mn whose topological type does not
depend on n. Suppose that the sequence . xmn/n2N converges. Let c � xS be a simple
closed curve. Then there is Q > 0 such that if cn � C.M n/ denotes the geodesic
representative of c , lxgn

.xcn/�Q for any n 2N .

Proof Assume the contrary, that is (after extracting a subsequence), lim lxgn
.cn/D 0.

Then cn is the core of a deep Margulis tube T n . Notice that since . xmCn ; xm
�
n /n2N

converges, there is no short curve in @C.M n/. More precisely, there is a uniform lower
bound on the length of simple closed geodesics on @C.M n/. Since the induced metric
on @C.M n/ is negatively curved, it can have a large diameter only if it contains a
short curve. Thus the uniform lower bound on the length of simple closed geodesics on
@C.M n/ provides us with a bound on the diameter of each component of @C.M n/.
It follows that @C.M n/ does not go too deep into a Margulis tube (compare with
Minsky [42, Lemma 6.3]): let "0 be a Margulis constant for the sequence Mn as
provided by Lemma 3.12, namely the "0 –thin part M

<"0
n of Mn is a union of Margulis

tubes for n large enough. By Meyerhoff [41] and Brooks and Matelski [21] (see also
[42, Lemma 6.1]), given " small enough, the diameter of M

<"0
n �M<"

n is large. In
particular, if a component of @C.M n/ intersects M<"

n for a small ", it has a large
diameter. Hence the bound on the diameter of each component of @C.M n/ provides
us with a constant " (depending on the sequence Mn ) so that @C.M n/ is disjoint from
the thin part M<"

n .

If we take T n to be an "–Margulis tube, we get that T n lies entirely in the interior
of C.M n/. Consider a simple closed curve xd � xS that intersects c essentially. By
Lemma 3.2, there is an essential annulus An � C.M n/, which is in the homotopy
class defined by xd � I such that the area of An is at most ` xmCn .xdC/C ` xm�n .

xd�/. In
particular, since the sequence . xmn/n2N converges, the area of An is bounded. On the
other hand, since xd intersects c essentially, An intersects cn essentially. In particular,
An intersects T n along a disc Dn . When the length of cn tends to 0, d.cn; @T n/!1

(see [21; 41; 42, Lemma 6.1]). It follows that the diameter of Dn , and hence its area,
tends to 1 when the length of cn tends to 0. Thus an upper bound for the area of
An � Dn yields a lower bound for the length of cn . This concludes the proof of
Claim 3.15.
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Consider now two simple closed curves c; xd � xS such that the components of xSn.c[xd/
are discs. Two such curves are said to fill the surface xS . Consider essential annuli
An and Bn in C.M n/ in the homotopy classes defined by c and xd , constructed as
in Lemma 3.2. In particular An and Bn have bounded area. Since An and Bn have
bounded areas and negative curvature, the only way for them to have a large diameter
is to have a very short core curve. But this would contradict Claim 3.15. Thus we can
conclude that An and Bn have uniformly bounded diameters.

Let B1�k�p be the closure of the components of xS �I n.c�I [ xd �I/. Our manifold
xN D xS � I is the union of the Bk and the Bk are all balls. Define a surjective map
fnW
xS � I ! C.M n/ that maps c � I and xd � I to An and Bn respectively and such

that the restriction of fn to each Bk is an immersion. For each k , the image of @Bk

lies in An[Bn[ @C.Mn/. Since An and Bn have bounded diameters and since the
induced metric on @C.M n/ is bounded, the diameter of fn.@Bk/ is bounded for any
k . It follows that fn.Bk/ has a bounded diameter for any k . Since fn is surjective,
this implies that C.M n/ has a uniformly bounded diameter. Since the index of the
cover M n!Mn does not depend on n, C.Mn/ has a bounded diameter.

It remains to show that the convex core of M1 is compact and homeomorphic to
S � I (when Mn is homeomorphic to S �R). Once again we will use the negatively
curved ramified cover M n . Since .xxn;M n/ converges to .xx1;M1/, there is a
sequence Rn!1 and a sequence of bilipschitz maps �nW B.xxn;Rn/!B.xx1;Rn/

such that the bilipschitz constants tend to 1. By Lemma 3.14, for n large enough,
C.M n/�B.xn;Rn/. Given a geodesic segment 
n�C.M n/, �n.
n/ almost realizes
the distance between its endpoints. Since M n is a hyperbolic manifold with cone sin-
gularities, �n.
n/ is very close to the geodesic segment joining its endpoints. It follows
that, for n large enough, the convex hull of �n.C.M n// lies in a small neighborhood
Vn.�n.C.M n/// of �n.C.M n//. This convex hull has to contain C.M1/ since it is
the smallest convex set. Thus we have C.M1/ � Vn.�n.C.M n///. It follows that
C.M1/ is compact. Furthermore, since the induced metric on @C.M n/ is bounded,
Vn.�n.C.M n/// is homeomorphic to xS�I for n large enough. It follows that C.M1/

is homeomorphic to xS �I . Thus we have proved that M1 is a quasifuchsian manifold
with cone singularities with the same topological type as Mn .

In contrast to the other results of this section, we do not need to assume that the
quasifuchsian manifolds under consideration in Lemma 3.13 are not fuchsian.
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3.6 The bending lamination of the convex core

To finish the proof of Lemma 3.1 we only have to check that the induced bending
lamination on the boundary of the convex core of the limit manifold is the limit of the
bending laminations. We can state the result as follows.

Lemma 3.16 Let N D S �R, let x1; : : : ;xn0
be distinct points on S , and let �i D

fxig � R; 1 � i � k . Let .gn/n2N be a sequence of quasifuchsian metrics on N

with particles of angles � i
n along �i , 1 � i � k . Let �n , respectively mn , be the

measured bending laminations, respectively the induced metric, on the boundary of the
convex core of .N;gn/. Suppose that .gn/ converges in bilipschitz topology towards
a quasifuchsian metric with particles g on N , with cone angles � i 2 .0; �/ along
�i . Then .mn/n2N converges to the induced metric m on the boundary of the convex
core of .N;g/, while .�n/n2N converges to the measured bending lamination � of the
boundary of the convex core of .N;g/.

Proof Set M D .N;g/ and Mn D .N;gn/ and denote by C.M / the convex core
of M and by C.Mn/ the convex core of Mn . We consider as above the finite cover
xN of N ramified along the cone singularities, chosen so that all cone angles in xN

have angle larger than 2� . This is useful below since we will use negative curvature
arguments, in particular the existence of a geodesic segment in a homotopy class with
fixed endpoints. Clearly it is sufficient to prove the lemma for xN , where the “convex
core” considered is C.M n/, the lift to xN of C.Mn/, since once the result is obtained
in xN , we can take the quotient by the group of deck transformations to obtain the
result on N .

Let .
n/n2N be a sequence of segments in xN , with 
n geodesic for xgn for all n 2N .
Suppose that .
n/n2N converges to a segment 
 . We know that xgn ! xg in the
bilipschitz topology and, in hyperbolic geometry, any segment which is close to realizing
the distance between its endpoints is close to a geodesic segment. So 
 is geodesic for
xg . Conversely, any geodesic segment for xg is a Hausdorff limit of geodesic segments
for the gn . The same holds for closed geodesics.

Let .�n/n2N be a sequence of compact subsets of xN such that, for all n 2N , �n is
convex for xgn . Suppose that �n!� in the Hausdorff topology. The definition of a
convex subset and the previous paragraph show that � is convex, since any geodesic
segment 
 in . xN ; xg/ with endpoints in the interior of � is the limit of a sequence
of geodesic segments 
n , with 
n geodesic for xgn . Since 
n has endpoints in �n

(for n large enough) and �n is convex for xgn , 
n ��n , and therefore x
 ��, and
� is convex for xg . Conversely, a similar argument shows that any compact convex
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subset for xg is the Hausdorff limit of a sequence of compact convex subsets of the
metrics xgn .

For all n, C.M n/ contains all closed geodesics in . xN ; xgn/. Given a nontrivial homo-
topy class ˛ in xNr (the complement of the singular curves in xN ), it is realized for
each n 2N by a (unique) closed geodesic 
n in . xN ; xgn/, and the sequence .
n/n2N

converges to the closed geodesic 
 , which realizes ˛ in . xN ; xg/. For each n 2 N ,

n � C.M n/. Moreover we have seen that the diameter of the C.M n/ is bounded.
It follows that .C.M n//n2N converges — after extracting a subsequence — to a limit
subset C 0 , which contains all closed geodesics in . xN ; xg/.

Since C 0 is the limit of a sequence of convex subset of the . xN ; xgn/, it is convex.
Moreover if � � C 0 is convex, then it is the limit of a sequence of convex subsets
�n�C.M n/. But then .�n\C.M n//n2N is a sequence of convex subsets converging
to �. Because the C.M n/ are minimal convex subsets, �n\C.M n/D C.M n/ for
all n, so that �D C 0 . So C 0 D C.M /. This shows that C.M / is the Hausdorff limit
of the C.M n/.

Note that it is not clear at this point whether @C.M n/! @C.M / in the C 1 topology.
However, a general fact is that, if �W S!H 3 is a smooth embedding of a surface, and
if .�n/n2N is a sequence of Lipschitz embeddings of S in H 3 which converges to
� in the C 0 topology, then the distance dn induced on S by the �n are larger in the
limit than the distance d induced by � :

(1) lim sup
n!1

dn.x;y/� d.x;y/ for all x;y 2 S:

The same holds if � is Lipschitz with locally convex image rather than smooth; see
Aleksandrov and Zalgaller [2]. Moreover, in case of equality in Equation (1), and if the
�n also have locally convex images, then the convergence of .�n/ to � is stronger, in
the sense that the tangent plane to �n.S/ converges almost everywhere to the tangent
plane to �.S/.

Coming back to @C.M n/, the C 0 convergence towards @C.M / (together with the
bilipschitz convergence of xgn to xg ) is sufficient to insure that the metric xmn on
@C.Mn/ is larger in the limit than the metric xm induced by xg on @C.M /. In other
terms, if x;y 2 @C.M / and xn;yn 2 @C.M n/ are such that lim xn D x; lim yn D y ,
then there exists for each � > 0 some N0 2N such that, for all n�N0 ,

d xmn
.xn;yn/� .1� �/d xm.x;y/:

It follows that the lengths of the closed geodesics in S for xmn are bounded from below
by .1� �/ times their lengths for xm.
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Since the metrics xmn and xm are hyperbolic metrics with cone singularities of fixed
angles, this shows, using standard arguments based for instance on pants decompositions,
that xmn! xm (see Section A.2 or [24]).

It then follows that as n!1, xmn is bounded from above by .1C �/ xm: under the
same hypothesis as above,

(2) d xmn
.xn;yn/� .1C �/d xm.x;y/:

Since xmn! xm in this sense of Equation (2), and moreover @C.M n/! @C.M / in
the C 0 topology, it follows that the convergence is actually stronger, and the tangent
plane to @C.M n/ converges almost everywhere to the tangent plane to @C.M / (both
exist almost everywhere by convexity). This implies that the measured laminations �n

of @Cn converge to �.

4 Prescribing the measured bending lamination on the
boundary of the convex core

The goal of this section is to prove Theorem 1.12 and then Theorem 1.13. The proof
of Theorem 1.12 is largely based on a well-known doubling argument already used
for nonsingular manifolds, which reduces the infinitesimal rigidity with respect to
the measured lamination (when the support of the lamination is along closed curves)
to a rigidity statement proved by Hodgson and Kerckhoff [29] for hyperbolic cone-
manifolds.

Theorem 1.13 is then a consequence, using the compactness statement proved in
Section 3.

4.1 A doubling argument

Let M be convex cocompact manifold with particles, and let C.M / be its convex core.
Suppose that the support of the measured bending lamination of C.M / is a disjoint
union of closed curves.

Definition 4.1 The doubled convex core of M is the 3–dimensional hyperbolic
manifold with cone singularities DC.M / obtained by gluing two copies of C.M /

isometrically using the identification of their boundaries.

We have seen that the singular locus of M does not intersect the support of the bending
lamination on the boundary of the convex core; actually it even remains at a distance
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that is bounded from below by a constant depending only on the cone angles. So the
“particles” intersect the boundary of the convex core inside faces, and moreover they
do so orthogonally. It follows that the singular locus of DC.M / is a disjoint union of
closed curves, which are of two types:

� Each “particle” p of M corresponds to a cone singularity along a closed curve
in DC.M /, of length equal to twice the length of the intersection of p with
C.M /.

� Each closed curve in the support of the measured bending lamination of the bound-
ary of C.M / corresponds to a closed curve (of the same length) in DC.M /.

Still by definition, DC.M / admits an isometric involution — exchanging the two
copies of C.M / which are glued to obtain DC.M / — and the set of fixed points
of this involution is a (not connected) closed surface S , which corresponds to the
boundaries of both copies of C.M /. This surface is orthogonal to the singularities of
the first kind, and contains the singularities of the second kind.

4.2 Local deformations

The doubling trick explained above leads directly to a rigidity statement. We consider
again a convex cocompact manifold M with particles, for which the measured bending
lamination of the convex core is along closed curves 
1; : : : ; 
N , for which the bending
angles are equal to ˛1; : : : ; ˛N 2 .0; �/. As in the introduction, we call �1; : : : ; �n0

the cone angles at the “particles”, and let � D .�1; : : : ; �n0
/.

Lemma 4.2 There exists a neighborhood U of .˛1; : : : ; ˛N / in .0; �/N and a neigh-
borhood V of the hyperbolic metric g on M in QFS;n0;� such that, if .˛0

1
; : : : ; ˛0

N
/

lies in U , there is a unique g0 2 V for which the support of the measured bending
lamination on C.M / is 
1[ � � � [ 
N and the bending angle on 
i is ˛0i , 1� i �N .

Proof Hodgson and Kerckhoff [29] proved a local deformation result for hyperbolic
cone-manifolds. It follows from their result that there exists a unique cone-manifold
close to DC.M / with the same topology as DC.M / (including the singular locus),
the same angles at the cone singularities corresponding to the particles in M , and
angles 2˛0

1
; : : : ; 2˛0

N
instead of 2˛1; : : : ; 2˛N at the cone singularities corresponding

to the pleating lines of C.M /.

The uniqueness of D0 shows that it has the same symmetry as DC.M /, that is, it
admits an isometric involution fixing a surface S 0 isotopic to the surface S fixed
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by the isometric involution on DC.M /. By an easy symmetry argument, the cone
singularities in D0 corresponding to the particles in M still have to be orthogonal to
S 0 , while those corresponding to the pleating lines of @C.M / have to be contained in
S 0 (see [12, Section 8] for details on the uniqueness part of this argument; the same
argument can basically be used when particles are present).

Therefore, D0 is the double of a hyperbolic manifold with convex boundary (obtained
as the metric completion of one half of the complement of S 0 in D0 ) with cone
singularities orthogonal to the boundary. The boundary of this manifold is convex
with no extremal point, so that it is the convex core of a quasifuchsian manifold with
particles M 0 , with the same cone angle as M at the particles and such that @C.M 0/ is
pleated along the same lines as @C.M /, but with pleating angles ˛0

1
; : : : ; ˛0

N
instead

of ˛1; : : : ; ˛N .

The uniqueness of such a manifold, in the neighborhood of M , follows from the
uniqueness of D0 in the neighborhood of DC.M /.

4.3 Proof of Theorem 1.12

Let 
1; : : : ; 
N be the curves in the support of �, considered as curves in @N . Following
the doubling construction above, we define a closed manifold D.N / by gluing two
copies of N along their boundary. D.N / contains two families of curves, which we still
call c1; : : : ; cn0

(corresponding to the particles in N ) and 
1; : : : ; 
N (corresponding
to the pleating lines on the boundary of the convex core).

Let � 0
1
; : : : ; � 0n0

2 .0; �/ and ˛0
1
; : : : ; ˛0

N
2 .0; �/ be chosen such that:

� For all i 2 f1; : : : ; n0g, 0� � 0i � �i , and � 0i D �=ki for some ki 2N .

� For all j 2 f1; : : : ;N g, 0� ˛0j � j̨=2, and ˛0j D �=2lj for some lj 2N .

The orbifold hyperbolization theorem for cyclic orbifolds (initially stated by Thurston,
and proved in [11; 23]) can be applied to show that there is a unique hyperbolic orbifold
structure on D.N / with singularities of angles � 0i on the ci and 2˛0j on the 
j . Since
it is unique, it has an isometric involution exchanging the two copies of N glued to
obtain D.N / and thus is the double of the convex core of a quasifuchsian manifold
with particles.

Let .�t /t2Œ0;1� D .�1;t ; : : : ; �n0;t /t2Œ0;1� and .˛t /t2Œ0;1� D .˛1;t ; : : : ; ˛N;t /t2Œ0;1� be
the 1–parameter families defined by

�i;t D .1� t/� 0i C t�i ; 1� j � n0;

j̨ ;t D .1� t/˛0j C t j̨ ; 1� j �N:
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Let I 2 Œ0; 1� be the maximal interval containing 0 such that, for all t 2 I :

� There exists a hyperbolic structure on D.N / with cone singularities of angle
�i;t on ci , 1� i � n0 , and a cone singularity of angle 2 j̨ ;t on 
j , 1� j �N .

� This hyperbolic structure has an isometric involution exchanging the two copies
of N glued to obtain D.N /.

By construction, I ¤∅. Lemma 4.2 shows that I is open, while Lemma 3.1 shows
that I is closed. So I D Œ0; 1�; this proves the existence part of the statement because
D.N /, with the hyperbolic cone-structure for t D 1, is obtained by doubling the
convex core of a convex cocompact hyperbolic manifold with particles of angles �i

and pleating angles ˛i on the boundary, as needed.

For the uniqueness, the same deformation argument can be used to start from a cone-
manifold structure on D.N / and decrease the angles along the curves 
j , 1 � j �

N , from 2 j̨ to 2˛0j . Lemma 4.2 shows that the corresponding deformation of the
hyperbolic cone-manifold structure exists and is unique. Since the endpoint of the
deformation is unique (by the Orbifold Hyperbolization Theorem) there can be only
one cone-manifold structure on D.N / with angles �i on the curves ci , 1 � i � n0 ,
angle 2 j̨ on the curve 
j , 1� j �N , and the necessary symmetry property.

4.4 Proof of Theorem 1.13

Given ��; �C 2MLS;x satisfying the hypothesis of Theorem 1.13, both are limits
of a sequence of measured laminations .��;n/n2N ; .�C;n/n2N with support along a
union of closed curves, which satisfy the hypothesis of Theorem 1.12.

For all n, Theorem 1.12 shows that ��;n and �C;n are the upper and lower measured
bending laminations of the boundary of the convex core for a unique quasifuchsian
hyperbolic structure with particles gn on S�R. Lemma 3.1, applied to this sequence of
hyperbolic structures, shows that it has a subsequence that converges to a quasifuchsian
hyperbolic structure with particles, for which the lower and upper measured bending
laminations of the boundary of the convex core are �� and �C , respectively.

4.5 The conditions are necessary

Finally we check here that the hypothesis in Theorem 1.13 are necessary. It obviously
follows that the hypothesis in Theorem 1.12 are also necessary.

Lemma 4.3 Let M be a non-Fuchsian quasifuchsian manifold with particles, let � be
the measured bending lamination on the boundary of its convex core. Then � satisfies
the hypothesis of Theorem 1.13.
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Proof The hypothesis that the weights of each closed curve in the support of ��
and �C is less than � is clearly a consequence of the fact that C.M / is convex and
compact.

Suppose by contradiction that �� and �C do not fill S . There exists then a sequence
.cn/n2N of simple closed curve in S such that

i.��; cn/C i.�C; cn/! 0:

Let c�n and cCn be the geodesic representatives of cn in the lower and upper boundary
components of C.M /, respectively.

Let c �n and cCn be lifts of c�n and cCn , respectively, to xM , corresponding to the same
lift of c . Lemma 3.2 shows that there exists an annulus An �

xM bounded by c �n and
cCn on which the induced metric is hyperbolic with cone points of negative singular
curvature (cone angle larger than 2� ). Moreover, the boundary of An is convex (for
the induced metric) and its total curvature goes to 0 as n!1. By Lemma 3.2 the area
of An goes to 0 as n!1. Since the lengths of the c �n and cCn are bounded from
below, this means that the distance between c �n and cCn in An goes to 0 as n!1.
Therefore, the distance between the upper and lower boundary of C.M / is zero, a
contradiction because we have supposed that M is not Fuchsian.

5 Earthquakes estimates

In this section we consider a convex cocompact manifold with particles M . The
arguments in this more general case are the same as in the specific situation of quasi-
fuchsian manifolds with particles. Its boundary @M has a number of marked points
x1; : : : ;x2n0

, which are the endpoints of the n0 “particles”, and to each is attached an
angle �k 2 .0; �/, 1� k � 2n0 , which is the angle at the corresponding particle.

We identify @M with the boundary of its convex core (see Lemma 2.5). We will use
the following notation.

� � is the measured bending lamination of the boundary of the convex core.

� m is its induced metric.

� t is the (unique) hyperbolic metric in the conformal class at infinity � , with cone
singularities of prescribed angle �k at the marked point xk .

� G�.m/ is the metric obtained by grafting the hyperbolic metric m along the
measured lamination �, so that G�.m/ has curvature in Œ�1; 0�. If for instance
� is rational, then G�.m/ is obtained by inserting a flat annulus in .@M;m/ for
each closed curve in the support of �; see Dumas [25].
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This section contains a basic estimate relating t to m. It will be useful in proving the
compactness of a certain map and Theorem 1.7. Its statement is based on the following
extension to hyperbolic surfaces with cone singularities of Thurston’s earthquake
theorem (as found in [32; 55]).

Theorem 5.1 [13] For any h; h0 2 T†;x;� , there is a unique measured lamination
� 2ML†;x such that the right earthquake along � sends h to h0 .

The main estimate proved in this section, and the main tool for the proof of Theorems 1.7
and 1.14, is the following.

Proposition 5.2 There exists a constant C > 0 (depending only on the topology of
M ) such that, if � 2ML@M;x is the measured lamination such that t D Er .�/.m/,
then the length Lm.�/ is at most C .

This proposition is proved in Section 5.4, after some preliminary considerations. It is
used below in Section 6.

5.1 The average curvature of geodesics

In this part we prove a technical statement that is useful at several points below. It is
an extension to convex cocompact manifolds with particles of a result proved earlier
by Bridgeman [15] for the convex core of nonsingular convex cocompact manifolds, or
more generally of pleated surfaces in H 3 . However the argument used here is inspired
by Bonahon and Otal [12].

We consider a quasifuchsian manifold with particles M and call �1; : : : ; �n0
the cone

angles at the particles. By definition, �1; : : : ; �n0
2 .0; �/. Here S is one of the

connected components of @C.M /.

Proposition 5.3 There exists a constant C0 > 0 such that if 
 is a geodesic segment
on S transverse to �, i.
; �/� C0.lm.
 /C 1/.

Note that C0 depends on the �i (at least the argument we use here does depend on the
maximum of the �i ) but not otherwise on M .

Proposition 5.3 will follow from the following lemma. We use here the constant �0

coming from Lemmas 2.7 and 2.8.

Lemma 5.4 There exists �1 > 0 such that if 
 is at distance at least �0=2 from the
intersection of S with the singular set of M and if lm.
 /� �0=4, then i.�; 
 /� �1 .
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The proof of this lemma is based on some intermediate steps. The first is a consequence
of Lemmas 2.7 and 2.8.

Claim 5.5 There exists �0 > 0 such that any point in S at distance at least �0 in S

from the singular points of S is also at distance at least �0 in M from the singular set
of M .

Proof Let x 2 S , which is at distance at least �0 from the singular points of S ;
suppose that it is at distance strictly less than �0 from a particle p . Let y be a point in
p that is closest to x , and let D be the totally geodesic disk of radius �0 orthogonal
to p at y . This disk does not encounter any other particle by Lemma 2.8. Moreover
x 2D because y is at minimal distance from x among the points of p .

Let � equal to the intersection of D with the convex core C.M / of M . Notice that
@D\�¤∅ for otherwise we would have @�� @C.M / and @� would bound a disc
�0 in @C.M /. Since D is totally geodesic and C.M / is convex, there would be a
point x 2 �0 such that the link of C.M / at x is contained in an open hemisphere.
This is impossible since @C.M / is ruled.

We can therefore apply the second point in Lemma 2.7 to D , with � as defined above,
ie equal to the intersection of D with the convex core of M . The result follows.

Corollary 5.6 Let x 2 S be contained in the support of the bending lamination �,
and let D0 be the totally geodesic disk of radius �0 in M orthogonal to � at x . Then
D0 does not intersect the singular set of M .

After taking �0 smaller if necessary, we have another simple statement which will be
necessary below.

Claim 5.7 Let y 2 � be a point in the connected component of x in the intersection
of S with D0 , and let gy be the geodesic segment in the support of � centered at y

and of length 2�0 . Then the angle between gy and D0 at y is at least �=4.

Proof We call gx the geodesic segment contained in the support of � centered at x

and of length 2�0 . gx is disjoint from gy on S while x is at distance at most �0 from
y ; it follows that there exists c> 0 (depending on �0 and �0 , and going to 0 as �0! 0

for fixed �0 ) such that the distance to gx in S of any point of gy.Œ��0C�0; �0��0�/

is at most c�0 . The same estimate holds in zM , the universal cover of M . If �0 is
small enough — relative to �0 — the result follows.

Remark 5.8 There exists k0 > 0, depending only on �0 , such that, if � is a convex
subset in the disk of radius �0 in H 2 , the total curvature of the boundary of � is at
most k0 .
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Proof This follows from the Gauss–Bonnet theorem applied to �, with k0 equal to
2� plus the area of the hyperbolic disk of radius �0 .

Proof of Lemma 5.4 If 
 does not intersect the support of � the statement obviously
holds, so we suppose that some point x 2 
 is in the support of �. Let D be the totally
geodesic disk of radius �0=2 centered at x and orthogonal, at x , to the support of �.
By construction D is disjoint from Ms .

Remark 5.8 shows that the total curvature of the connected component c of D \S

containing x is at most k0 . By Claim 5.7, each geodesic in the support of � that
intersects c makes an angle of at least �=4 with D . It follows that i.c; �/�2k0 . It also
follows, since the length of 
 is less than �0=4, that 
 can be deformed transversally
to � to a segment of c , so that i.
; �/ � i.c; �/. Therefore i.
; �/ � 2k0 , and this
proves the lemma.

Proof of Proposition 5.3 Notice first that Lemma 5.4, although stated only for geo-
desic segments 
 that are at distance at least �0=2 from the cone singularities, actually
applies without this hypothesis. This is because, by Lemma 2.7, the support of � cannot
enter the �0 –neighborhood of the singular points, so that any part of 
 at distance less
than �0 from the singular set of S has zero intersection with �.

Let n 2N be the unique integer such that n�0=4� lm.
 / < .nC 1/�0=4. Then 
 can
be cut into a sequence of segments 
1; : : : ; 
n of length �0=4 and one last segment

nC1 of length smaller than �0=4. Lemma 5.4 can be applied to each of those segments:
it yields that i.�; 
i/� �1 , 1� i � nC 1, so that

i.�; 
 /� .nC 1/�1 �

�
4lm.
 /

�0

C 1

�
�1 :

This proves the proposition.

5.2 The grafted metric and the hyperbolic metric at infinity

We consider here the relation between the grafted metric G�.m/ and the hyperbolic
metric at infinity t .

We first recall the definition of the grafting map

GWML� T ! T ;
.l;m/ 7!Gl.m/

on a closed surface S .
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The definition of Gl.m/ is simpler when l is a weighted multicurve, that is, its support
is a disjoint union of closed curves c1; : : : ; cN . The transverse measure is then described
by a positive weight wi on ci , for 1� i �N . Then Gl.m/ is obtained by realizing
each curve ci as a closed geodesics in .S;m/, cutting S open along each ci , and
gluing in a flat strip of width wi . Thurston showed that this map extends by continuity
from weighted multicurves to measured laminations; see Kulkarni and Pinkall [36].

We now return to the setting where m and � are the induced metric and measured
bending lamination of the convex core of a quasifuchsian manifold M . The grafted
metric G�.m/ is then isometric to the induced metric on the unit normal bundle of
C.M / in the unit tangent bundle of M . (The unit normal bundle of C.M / is the
space of unit vectors at points of @C.M / that are the oriented normals of a support
plane of C.M /.)

One of the key properties of the grafted metric G�.m/ (see [36]) is that it is in the
conformal class � at infinity; more precisely, there is a natural “Gauss map” defined
from the unit normal bundle of @C.M / with its “grafted metric” to the boundary
at infinity of M , which is conformal. This means that G�.m/ is conformal to t .
Moreover, since the angles �i are in .0; �/, the intersection of the boundary of the
convex core with the particles is at nonzero distance (for m) from the support of �,
so that the cone angles of the grafted metric at the intersections with the particles of
the boundary of the convex core are equal to the cone angles of the corresponding
singularities.

The fact that t is conformal to G�.m/ translates as t D e2uG�.m/, where uW @M !R
is a function.

Lemma 5.9 The function u is nonpositive on @M .

Proof Consider two metrics g and g0 with g0 D e2ug , and let K and K0 be their
curvatures. Then (see Besse [9, Chapter 1])

K0 D e�2u.�uCK/:

We can apply this formula here with g DG�.m/ and g0 D t , so that K0 D�1 while
K 2 Œ�1; 0�. It takes the form

�uD�K� e2u
D jKj � e2u

with K 2 Œ�1; 0� (this equation is understood in a distributional sense).

Since the cone angles are the same for t and for G�.m/, u is continuous and bounded
at the singular points (see [56]). Let xM 2S be a point where u achieves its maximum.
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Suppose first that xM is not a singular point. Then u is C 2 at xM by elliptic regularity
(see [56]). Moreover �u � 0 at xM since xM is a maximum of u. It follows that
e2u � jKj � 1, so that u � 0. To complete the proof it is sufficient to prove that u

cannot achieve a positive maximum at a singular point of S . So we consider a singular
point x0 of S , and suppose that u > 0 at x0 . We will show that u cannot have a
maximum at x0 .

Let D be the geodesic disk of radius r centered at x0 in .S;G�.m//. Since � does
not enter a small neighborhood of x0 , D is hyperbolic, with only one cone singularity
at x0 , if r is small enough. Let i0 be the isometric map between D , with the metric
G�.m/, and the hyperbolic disk H 2

˛ with one cone singularity of angle ˛ , where ˛ is
the cone angle of S at x0 . Let i1W D!H 2

˛ be the isometric embedding of .D; t/ in
H 2
˛ . Call v0 the vertex of H 2

˛ , ie its singular point. Since u> 0 at x0 , if r is small
enough, then

d.i1.x/; v0/ > d.i0.x/; v0/ for all x 2D n fx0g:

There is a natural complex map �W H 2
˛ !H 2 , given in holomorphic coordinates cen-

tered at the singular point by z! z2�=˛ . It is conformal and multiplies the metric by
a factor .2�=˛/2d.x; v0/

2.2�=˛�1/ . Consider the composition

ˆ WD � ı i1 ı i�1
0 ı�

�1
W .� ı i0/.D/! .� ı i1/

�1.D/:

It is a conformal map, with conformal factor equal to

.2�=˛/2d.i1.x/; v0/
2.2�=˛�1/e2v.2�=˛/�2d.i0.x/; v0/

�2.2�=˛�1/;

with v D u ı .� ı i0/
�1 . This can be written as�

d.i1.x/; v0/

d.i0.x/; v0/

�2.2�=˛�1/

e2v

and is bigger than 1 since u> 0 and d.i1.x/; v0/ > d.i0.x/; v0/.

Since ˆ is a conformal map between two hyperbolic domains, its conformal factor
cannot have a local maximum bigger than 1 at an interior point, by the argument given
at the beginning of this proof. Therefore, u cannot have a positive maximum at x0 .

The following notion will be useful in this section and the next.

Definition 5.10 A c–curve on @M is either a closed curve or a segment with endpoints
at cone singularities, which does not contain any singular point (except at its endpoints
if it is not a closed curve).
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We will sometimes implicitly consider c–curves up to homotopy in the complement
of the singular points in @M . Each homotopy class (with fixed endpoints) contains
a unique geodesic for any nonpositively curved metric on @M (in particular for m; t

and G�.m/). Given a c–curve 
 , we will denote by Lm.
 / (respectively Lt .
 /,
LG�.m/.
 /) the length of that geodesic for the corresponding metric.

Corollary 5.11 Let 
 be a c–curve in @M , then Lt .
 /�LG�.m/.
 /.

This follows directly from Lemma 5.9, since any minimizing c–curve in .S;G�.m//
has shorter length for t , and the minimizing curve in .S; t/ in the same homotopy class
is even shorter. Note also that for any c–curve 
 , i.�; 
 / � CLm.
 /. This follows
from Proposition 5.3, and by the fact that the lengths of the c–curves that are segments
between two singular points of S are bounded from below.

5.3 An upper bound on the lengths of the curves at infinity

The second step in the proof of Proposition 5.2 is a comparison between the lengths of
c–curves in the metrics t and m.

Proposition 5.12 There exists a constant C > 0 (independent of M ) such that:

(1) For each c–curve 
 in @M , Lt .
 /� CLm.
 /.

(2) For each long tube T in the thin part of .@M;m/, T might also be a long tube
for t , but its length for t is at most its length for m plus C .

The proof uses some simple statements on the geometry of long hyperbolic tubes in
.S; t/. Recall (see [24]) that the Margulis lemma applies to hyperbolic surfaces with
cone singularities of angle at most � , when � 2 .0; �/: there exists a constant cM ,
depending on � only, such that the set of points where the injectivity radius is less than
cM is a disjoint union of cusps, disks centered at a cone singularity, and tubes with
core of length less than 2cM .

We consider in this subsection a hyperbolic tube T , which can be described as isometric
to the set of points at distance at most L (for some L > 0) from the unique simple
closed geodesic in the quotient of the hyperbolic plane H 2 by a hyperbolic translation
of length l . Moreover l is supposed to be small and L large, so that the lengths of the
boundary components of T — which are both equal to l cosh.L/ — are equal to cM .
We call � the core of T , in other terms the unique simple closed geodesic contained
in T , and we denote by �M the cM –neighborhood of � : the set of points at distance
at most cM from � in T .
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We will say that a properly embedded geodesic segment in T goes through T if it
enters T by one boundary component and exits by the other. In this case it intersects
� exactly once. This description applies to any properly embedded geodesic segment
that enters �M . The fact that a segment is properly embedded means that it has its
endpoints in @T .

Lemma 5.13 There exists a constant C > 0 such that i.�; @�M / � Ce�L : the
intersection of � with the boundary of �M is at most Ce�L .

Proof Any properly embedded geodesic segment in the intersection of the support
of � with T , and going through T intersects � exactly once, but also each of the
two connected components of @�M . It follows that the intersection with � of each of
the connected components of @�M is equal to i.�; �/. But since the length l of �
satisfies l � cM e�L , Proposition 5.3 — applied to long segments that wrap many times
around � — shows that i.�; �/� Ce�L .

Lemma 5.14 There exists a constant C > 0 such that, if g is a properly embedded ge-
odesic segment in T , then the length of the orthogonal projection on � of g\.T n�M /

is at most C .

Proof If g� � , then g\ .T n�M /D∅ and the result applies. We suppose from here
on that g is not contained in � . If g is contained in one connected component of the
complement of � in T then, since g is embedded, its orthogonal projection on � is
injective, so that the length of its orthogonal projection is bounded by the length of � .
Otherwise, it follows from standard hyperbolic geometry arguments that g intersects
� exactly once.

Consider the universal cover zT of T ; it is isometric to the set of points at distance at
most L from a geodesic z� �H 2 , which is the lift of � . Choose one of the connected
components, say zg , of the lift of g to zT . It intersects the lift of @�M with an angle
that is bounded from below; otherwise g could not intersect � . It follows from this,
and from elementary geometric properties of the hyperbolic plane, that the length of
the orthogonal projection on z� of each of the segments of zg outside the lift of �M is
bounded from above by a constant.

Corollary 5.15 There exists a constant C > 0 such that, whenever g0 is a properly
embedded geodesic segment in T such that the orthogonal projection of g0 on � is
injective, then i.�jT n�M

;g0/� C .
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Proof Let c be a properly embedded geodesic segment in the intersection with T of
the support of �, and let c0 be one of the connected components of c\T n�M . Since
both c and g0 are geodesic segments, the union of the orthogonal projections on �
of the segments of g0 and of c between two successive intersections between them
covers � .

It follows that the number of intersections between c0 and g0 is at most equal to
.lc0 C lg0

/= l , where lc0 is the length of the orthogonal projection of c0 on � and lg0

is the length of the orthogonal projection of g0 on � (and l is the length of � ).

But the hypothesis on g0 shows that lg0
� l , while Lemma 5.14 shows that lc0 � C .

So the number of intersections between c0 and g0 is at most CeL , where C is some
positive constant.

Since this inequality applies to all geodesic segments in the support of �, we find that

i.�T n�M
;g0/� CeLi.�; @�M /

and Lemma 5.13 then shows that i.�T n�M
;g0/ is bounded by a positive constant.

Proof of Proposition 5.12 Let 
 be a c–curve in @M . It follows from Proposition 5.3
that

LG�.m/.
 /�Lm.
 /C i.�; 
 /� C.Lm.
 /C 1/;

where here again C is a constant depending only on the topology of M . Moreover
Corollary 5.11 indicates that

Lt .
 /�LG�.m/.
 /

and point (1) follows.

For point (2) consider a closed geodesic 
 contained in the union of T and of the thick
part of @M , such that:

� The intersection of 
 with T has two connected components 
1 and 
2 .

� The intersection of 
 with the thick part of @M (for m) has two connected
components 
 0

1
and 
 0

2
, and each has length bounded by C .

If T separates the boundary component of @M containing it, 
 has to go through T

twice, otherwise it is not necessary but it is still possible to choose 
 with this property,
and both cases can then be treated in a uniform manner.

Once such a curve 
 has been found, it is possible to change it by Dehn twists so
that, in addition to the conditions above, the segments 
1 and 
2 “wrap” at most
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once around T , ie their orthogonal projection to the core � of T is injective. This is
achieved by “untwisting” 
 as much as is necessary.

Denote as above by � the core of T , and by �M the set of points at distance at most
cM from � . Since 
 wraps at most once around T , the length of the intersection of

1 and 
2 with �M is at most 3cM . It then follows from Proposition 5.3 that

i.�j�M
; 
 /� C;

where C is some positive constant. By the same proposition, the intersection of 

with the restriction of � to the thick part of .@M;m/ is at most C . But Corollary 5.15
shows that

i.�jT n�M
; 
 /� C:

Putting together those estimates we obtain that i.�; 
 /� C , where C is yet another
positive constant. The definition of the grafted metric then proves that

LG�.m/.
 /�Lm.
 /CC:

Finally Lemma 5.9 indicates that the length of 
 for t is less than that for G�.m/. The
result follows.

5.4 A bound on the length of the earthquake lamination

We now switch from 3–dimensional to 2–dimensional geometry to show that an upper
bound on the length of curves in .@M; t/ — relative to the length of the same curves in
.@M;m/, as stated in Proposition 5.12 — implies a lower bound on the same lengths.
Proposition 5.2 will follow.

We consider a closed surface †, with some marked points x1; : : : ;xn0
, and an angle

�i 2 .0; �/ attached to xi .

Proposition 5.16 For each C > 0 there is a constant C 0 > 0 as follows. Consider two
hyperbolic metrics h; h0 2H†;x;� such that:

(1) For each c–curve 
 in †, Lh0.
 /� CLh.
 /.

(2) For each long tube T in the thin part of .†; h/, T might also be a long tube for
h0 , but its length for h0 is at most its length for h plus C .

Let � 2M†;x be the measured lamination such that h0 DEr .�/.h/. Then the length
Lh.�/ is at most C 0 .

The proof of Proposition 5.16 will use a basic estimate on the variation of the length of
curves under an earthquake, essentially taken from [13].
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Proposition 5.17 Let m 2ML†;x be a measured lamination, let g 2 H†;x;� be a
hyperbolic metric with cone singularities, and let g0 WD Er

m.g/. Let 
 be a c–curve.
Then

jLg.
 /�Lg0.
 /j � i.m; 
 /�Lg.
 /CLg0.
 /:

Proof The upper bound on i.m; 
 / can be found in [13, Lemma 7.1, page 76]; it is
stated there for closed curves, but the proof extends directly to segments between two
singular points.

For the lower bound on i.m; 
 /, suppose first that the support of m is a disjoint union
of simple closed curves. Consider the geodesic (for g ) 
0 homotopic to 
 in †x ,
and let 
1 be its image by the earthquake Er

m , along with the union of the segments
in the support of m between two points corresponding — after the earthquake — to
one intersection of m with 
0 . 
1 is homotopic to 
0 in †x . Clearly Lg0.
1/ D

Lg.
 /Ci.m; 
 /, while Lg0.
 /�Lg0.
1/. It follows that Lg0.
 /�Lg.
 /Ci.m; 
 /.
The same inequality also holds with g and g0 exchanged, and the lower bound on
i.m; 
 / follows. The result when m is a general lamination — not rational — holds by
density of the rational laminations in ML†;x .

We now return to the notation used in Proposition 5.16. Note that the support of � is a
geodesic lamination in .†;g/. It is therefore possible to consider the intersection of �
with the thin (respectively thick) part of † for g , which we call �t (respectively �T ).
The same decomposition can be done for g0 , leading to �0t and �0

T
.

We first state a basic property of hyperbolic surfaces, which is necessary below.

Lemma 5.18 There exist r > 0, C > 0 and �0 2 .0; �/, depending only on the
supremum �M of the �i and on the genus of †, such that, for any x 2 †T and any
geodesic segment 
0 of length 2r centered at x , there exists a closed geodesic in † of
length at most C intersecting 
0 with angle at least �0 .

Proof Note that any maximal segment in the thick part of a topologically nontrivial
hyperbolic surface (with cone singularities of angle less than � ) intersects some closed
geodesic, of length bounded by a constant C .

The statement therefore follows from a straightforward compactness argument. Indeed,
if the constant � < �M did not exist, there would be a sequence of thick hyperbolic
surfaces with boundary †T;n (with cone singularities of angles less than � ), for which
the optimal value of r would go to infinity, or the optimal value of � would go to � ,
as n!1. This sequence could be taken of fixed topology, and the diameter of those
surfaces would then be bounded, so that r would necessarily be bounded.
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We could then choose a converging subsequence, and obtain a thick hyperbolic surface
(with cone singularities of angle less than �M ) for which some maximal geodesic
segment intersects no closed geodesic of length less than C transversally, a contradiction.

Lemma 5.19 There exists a constant C (depending only on the genus of †) so that
the length of �T is at most C .

Proof Let r0 > 0 be smaller than the injectivity radius of .†; h/ at each point of †T .
There exists another number r1 2 .0; r0/ with the following property: if 
0 and 
1 are
two disjoints geodesics in H 2 and x 2 
0 is at distance at most r1 from 
1 , then any
geodesic intersecting 
0 at distance less than r1 from x and making an angle bigger
than �0 with 
0 intersects 
1 at distance at most r0 from x .

Choose a large constant C1 > 0. If the length of �T were bigger than some large
constant, the sum of the weights of the segments of the support of � intersecting some
geodesic disk of radius r1 and center x 2 supp.�/\†T would be bigger than C1 .
Applying the previous lemma, with 
0 equal to a segment containing x in the support
of � , would yield a closed curve c in †T , of bounded length, such that i.c; �/ is
arbitrarily large.

Proposition 5.17 would then show that the length of c for h0 is much larger than the
length of c for h, contradicting point (1) in the hypothesis of Proposition 5.16.

Lemma 5.20 There exists a constant C > 0 as follows. Let 
 � †T be a geodesic
segment of length at most cM . Then

i.�; 
 /� CL.�T /:

Proof We will consider the case when � is rational; the general case follows by
density of the rational measured laminations.

Let r be the injectivity radius of †T . Let �
 be the union of the intersections with †T

of all geodesic segments centered at a point x 2 
 , of length 2r , in the support of � .
Each of those segments has length at least r , since at least one side of x is contained
in †T .

By definition of r , those segments intersect 
 exactly once. Moreover, the length of
�T is larger than the sum over the segments of their length times their weight (this sum
is finite since � is rational). But this sum is at least r i.�; 
 /, so that L.�T /� r i.�; 
 /.
This proves the lemma.

Geometry & Topology, Volume 18 (2014)



2358 Cyril Lecuire and Jean-Marc Schlenker

Lemma 5.21 There exists a constant C > 0 such that, if T is a tube of length 2L in
.†t ; h/, with core � , then i.�; �/� Ce�L .

Proof Lh.�/ D c1e�L , where c1 is some constant. Point (1) in the hypothesis of
Proposition 5.16 shows that the length of � for h0 is at most c2e�L , where c2 is
another positive constant. But Proposition 5.17 then yields the result.

Recall that we call �M the set of points at distance at most cM from � .

Lemma 5.22 There exists a constant C > 0 such that, if T is a tube of length 2L in
.†t ; h/, with core � , then the length for h of the restriction of � to �M is at most C .

Note that there is no reason to believe that this statement is optimal; indeed, it appears
quite reasonable to think that the bound could be improved to Ce�L . The bound given
here, however, is both sufficient for our needs and easier to obtain.

Proof We know by Lemma 5.21 that i.�; �/ � C1e�L , where C1 > 0 is some
constant. It follows that, if Lh.�j�M

/ is larger than some constant C2 , then each leaf
of � intersects � with a very small angle, and for any geodesic segment 
 going
through T and intersecting � with angle bigger than �=4, i.
; �j�M

/� C2eL .

Let 
1 be a closed geodesic in .†; h/ that has two segments in †T and two segments
going through T . Furthermore we choose 
1 with the smallest length. Since †T has
bounded diameter, there is C > 0 such that `h.
1/� C C 2T . Since 
1 has minimal
length, it intersects � with angle at most �=4 at each of the two intersections. Then
i.�; 
1/ � 2C2eL so that, by Proposition 5.17, Lh0.
1/ is much larger than Lh.
1/.
This contradicts the hypothesis of Proposition 5.16.

Proof of Proposition 5.16 According to Lemma 5.19 the length of the restriction of �
to the thick part of † is bounded by a constant (depending only on the genus of †). †
is the union of †T , a finite set of neighborhoods of cusps and cone singularities (which
can be disregarded because geodesic laminations do not enter them), and a finite set of
long thin tubes, the number of those tubes being at most 3g� 3, where g is the genus
of †. Let T be one of those tubes and let � be its core. Then L.�j�M

/ is bounded
by a constant by Lemma 5.22. Moreover, the length of each maximal segment of the
support of � in T n �M is at most 2eL , and each is contained in a maximal segment
in T (contained in the support of � ) which intersects � once. Since i.�; �/� CeL ,
the length of the restriction of � to T n �M is at most 4C . Summing all contributions
to the length of � yields the desired result.

Proof of Proposition 5.2 The statement clearly follows from Proposition 5.12 and
from Proposition 5.16.
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6 The conformal structure at infinity

This section contains the proof of Theorems 1.7 and 1.14, mostly as a consequence of
Proposition 5.2.

6.1 A topological lemma

We first state a simple topological lemma, necessary below to apply Proposition 5.2
as directly as possible. We fix a closed surface S of genus at least 2, a n0 –tuple of
points x D .x1; : : : ;xn0

/ and a n0 –tuple of angles � D .�1; : : : ; �n0
/ 2 .0; �/n0 .

Lemma 6.1 Let c > 0, and let K � HS;x;� be a compact subset. The set of all
elements of HS;x;� obtained by a right earthquake along a measured lamination of
length at most c on an element of K is relatively compact.

Proof Let m 2K . The set of measured laminations l 2ML of length less than c

for m is compact in MLS;x . Since the earthquake map is continuous relative to the
measured lamination factor, the set

Er .fl 2MLS;x jLm.l/� cg � fmg/

is compact in HS;x;� .

Again because the earthquake map Er is continuous, it follows that there is a neigh-
borhood Um of m in HS;x;� such that the image by Er of

f.l;m0/ 2MLS;x �Um jLm0.l/� C g

is relatively compact.

Since K is compact, it is covered by finitely many such neighborhoods Umi
, for mi

in K . The result follows.

6.2 Compactness relative to the conformal structure at infinity

The previous considerations lead to a simple proof of Proposition 1.6 from Proposition
5.2 and Lemma 3.13.

Consider a sequence .gn/n2N of quasifuchsian metrics with particles, as in Proposition
1.6. Let .mn/n2N be the sequence of induced metrics on the boundary of the convex
core, and let tn be the sequence of hyperbolic metrics in the conformal class at infinity
�n . Since .�n/n2N converges by the hypothesis of Proposition 1.6, .tn/n2N converges
to a limit t , so it remains in a compact subset of HS;x;� �HS;x;� .
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But mn is obtained from tn by an earthquake along a measured lamination �n which, by
Proposition 5.2, has bounded length. Lemma 6.1 therefore shows that .mn/n2N remains
in a compact subset of HS;x;� �HS;x;� . We can therefore extract a subsequence so
that .mn/n2N converges.

Lemma 3.13 then shows that .gn/n2N has a subsequence that converges to a quasi-
fuchsian metric with particles. This proves the proposition.

6.3 Proof of Theorem 1.7

We are now ready to prove Theorem 1.7. It is helpful to introduce additional notation:

� MS;x WD
S
�2.0;�/N MS;x;� is the space of quasifuchsian metrics with particles

on S �R with a fixed number of particles but with varying angles.

� HS;x WD
S
�2.0;�/N HS;x;� is the space of hyperbolic metrics on S with a fixed

number of cone singularities but with varying angles.

� �S;x WD
S
�2.0;�/N HS;x;� �HS;x;� is a kind of diagonal with respect to the

angle variable in HS;x �HS;x .

Note that, by a result of Troyanov [56] already mentioned above, HS;x can be naturally
identified with TS;x � .0; �/

N . The notation is nonetheless useful in the argument
presented here.

Consider the natural map

ˆS;x WMS;x!HS;x �HS;x

sending a hyperbolic metric with particles on S �R (with cone angles given by the
�i ) to the conformal structures at ˙1. It follows from the definition that the image of
ˆS;x is contained in �S;x .

Let ˆS;x;� be the restriction of ˆS;x to MS;x;� , for a fixed � 2 .0; �/N . The main
result of [43] is that — in a slightly more general context, allowing for more topology
and for singularities along a graph — ˆS;x;� is a local homeomorphism from MS;x;�

to HS;x;� �HS;x;� . It follows that ˆS;x is a local homeomorphism from MS;x

to �S;x . Moreover, ˆS;x is proper by Proposition 1.6, so that it is a covering of
TS;x;� � TS;x;� .

To prove that ˆS;x is a (global) homeomorphism we need to show that some elements
of the target space have exactly one inverse image. Suppose that for all i 2 f1; : : : ;N g,
�i D 2�=ki , where ki 2N , ki � 2. Let �C; �� 2HS;x;� . There exists a finite covering
� W S ! S , with ramification of order ki at the xi , such that �C (respectively �� )
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lifts to a nonsingular hyperbolic metric �C (respectively �� ). By the Bers double
uniformization theorem [8] �C and �� are in the conformal class at infinity of a unique
quasifuchsian hyperbolic metric, say g , on S �R. Since it is unique, g is invariant
under the deck transformations of � , so that g is the pull-back to S�R of a hyperbolic
metric g on S �R, with cone singularities of angle �i along fxig �R, 1 � i � N .
This construction also shows that g is unique since any other hyperbolic metric with
particles of the given angles would lift to a nonsingular quasifuchsian metric on S �R,
which would have to be g . This shows that .�C; ��/ has a unique inverse image by
ˆS;x , so that ˆS;x is a homeomorphism from MS;x to �S;x .

6.4 Proof of Theorem 1.14

We need another natural map.

Definition 6.2 Let ‰S;x;� W HS;x;� �HS;x;� !HS;x;� �HS;x;� be defined as fol-
lows. Given .tC; t�/ 2HS;x;� �HS;x;� and � D .�1; : : : ; �n0

/ 2 .0; �/n , there is by
Theorem 1.7 a unique quasifuchsian metric with particles g 2MS;x;� such that we
have ˆS;x;� .g/D .ŒtC�; Œt��/. Then

‰S;x;� .tC; t�/D .mC;m�/;

where mC and m� are the conformal classes of the induced metrics on the upper and
lower boundary components of the convex core of .S �R;g/, respectively.

According to Proposition 5.2 and Lemma 6.1, if .mC;m�/ D ‰S;x;� .tC; t�/, then
mC is Cq –quasi-conformal to tC , and m� is Cq –quasi-conformal to t� . This shows
that ‰S;x;� is proper and extends continuously to a map that is the identity on the
boundary at infinity of HS;x;� �HS;x;� , so that it is onto. This proves Theorem 1.14.

7 Some questions and remarks

7.1 Some questions

The quasifuchsian cone-manifolds described above are direct extensions of the “usual”
quasifuchsian hyperbolic manifolds, which have received much attention over the last
couple of decades. It is quite natural to wonder whether some properties that have been
conjectured in the smooth case can be extended to the singular setting.

Question 7.1 Does uniqueness hold in Theorem 1.14?
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Another natural question, which is “dual” to the previous one in a precise sense (see
Schlenker [47]) concerns the measured bending lamination on the boundary of the
convex core.

Question 7.2 Does uniqueness hold in Theorem 1.13?

The same questions can be asked for submanifolds of quasifuchsian cone-manifolds
that are convex but have a smooth boundary, which is orthogonal to the singular locus.
In the smooth case it is known (Schlenker [48]) that one can prescribe the induced
metric on the boundary, as well as the its third fundamental form (the smooth analog
of the measured bending lamination) and that each is obtained uniquely, it would be
interesting to know whether the same is true for quasi-fuchsian cone-manifold. The
methods of [48] do not appear to extend directly to the singular case.

Since the Ahlfors–Bers theorem extends as Theorem 1.7 to quasifuchsian manifolds
with particles, it is quite natural to ask whether the ending lamination conjecture (see
Brock, Canary and Minsky [17] and Brock, Masur and Minsky [18]) can also be
extended to hyperbolic manifolds with particles. A natural starting point would be to
consider manifolds homeomorphic to S �R, where S is a closed surface of genus at
least 2.

Note also that those questions are not necessarily restricted to quasifuchsian cone-
manifolds, and could also be asked for “convex cocompact cone-manifolds”, if that
term is understood in a proper way.

7.2 AdS manifolds with particles

Mess [3; 40] discovered a remarkable analogy between quasifuchsian hyperbolic 3–
manifolds and globally hyperbolic maximal compact (GHMC) AdS manifolds. In
particular he proved an analog of the Bers double uniformization theorem form GHMC
AdS manifolds: on a manifold homeomorphic to S �R, where S is a closed surface
of genus at least 2, the space of GHMC AdS manifolds is parametrized by the product
of two copies of the Teichmüller space of S , through the “left” and “right” parts of the
holonomy representation.

GHMC AdS manifolds also have a convex core, whose boundary has a hyperbolic
induced metric, as in the quasifuchsian setting, and is pleated along a measured lam-
ination. The analog of Theorem 1.13 holds in that context [14]: any two measured
laminations that fill S can be obtained as the bending lamination of the boundary of
the convex core. But the uniqueness remains elusive, as in the quasifuchsian setting.
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Moreover, the analog of Theorem 1.14 is also conjectured to be true but no result is
known.

It is also possible to consider GHMC AdS manifolds with “particles”, ie cone singular-
ities along time-like geodesics, for which the angle is less than � . The analog of the
Bers double uniformization theorem (more directly, the analog of Theorem 1.7) holds
in this AdS setting [13]. The analog of Theorem 1.13 is also true in that setting [14].
However no analog of Theorem 1.14 is known.

Still in the AdS setting, new phenomena can occur when the singularity is along a
graph (so that the particles are allowed to interact); see [5; 6]. One can associate to a
GHMC AdS manifold with a graph of interacting particles a sequence of pairs of points
in the Teichmüller space of the underlying surface, with each pair corresponding to a
“slice” where no interaction occurs. It would be interesting to know whether any analog
of this description holds for quasifuchsian hyperbolic manifolds with cone singularities
along a graph (perhaps with some conditions on the cone angles, for instance cone
angles less than 2� ).

7.3 The renormalized volume

Theorem 1.7 for quasifuchsian manifolds with particles has possible applications to
the Teichmüller theory of hyperbolic surfaces with cone singularities (of fixed angles)
on a surface. Indeed it was remarked in [33] that the definition of the renormalized
volume of a quasifuchsian 3–manifolds extends to manifolds with particles. Knowing
Theorem 1.7, it is possible to remark that the key property of the renormalized volume —
to be a Kähler potential for the Weil–Petersson metric on Teichmüller space — extends
to the natural Weil–Petersson metric on the Teichmüller space of hyperbolic metrics
with cone singularities (of prescribed angle less than � ) on a surface; the proof from
[33; 35] directly extends to this setting.

One direct consequence is that this Weil–Petersson metric is Kähler, as was discovered
by Schumacher and Trapani [49] by other means. This metric, however, seems to
depend on the choice of the cone angles.

Another possible application is to some properties of the grafting map considered on
hyperbolic surfaces with cone singularities of angle less than � , as considered in [34;
35]. This is however less directly related to what we are doing here, since it only uses
the geometry of 3–dimensional hyperbolic ends — rather than quasifuchsian metrics —
with particles.
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Appendix A: Quasiconformal estimates

This appendix contains the proof of Proposition 1.15. The first step is a simple extension
to hyperbolic surfaces with cone singularities of some classical tools concerning pants
decompositions.

A.1 Pants decompositions

The content of this subsection is probably well known; see [24] for closely related
considerations. We include this material for completeness.

Let S be a closed surface, and let h be a hyperbolic metric on S with cone singularities
at some points x1; : : : ;xn0

, with cone angles �1; : : : ; �n0
2 .0; �/. If h had cusps —

or geodesic boundary components — at the xi rather than cone singularities, it would
be quite natural to consider pants decompositions of .S; h/. With cone singularities of
angles less than � , it remains possible.

Definition A.1 A singular pair of pants is a hyperbolic surface with geodesic boundary,
possibly containing cone singularities of angle less than � , which is either:

� A hyperbolic pair of pants (with geodesic boundary) containing no cone singu-
larity.

� A hyperbolic annulus with geodesic boundary containing exactly one cone
singularity.

� A hyperbolic disk with geodesic boundary containing exactly two cone singular-
ities.

Given a singular hyperbolic pair of pants, its three geodesic boundary components or
cone singularities will be called its legs. We hope that the reader will excuse us for this
weird and perhaps confusing terminology.

Definition A.2 A pants decomposition of S is a decomposition S D S1[� � �[Sn of
S as the union of finitely many subsurfaces with disjoint interior, each of which is a
singular pair of pants.

It is implicit in this definition that the boundary of the Si contains no cone singularities;
the cone singularities are each contained in the interior of one of the singular pairs of
pants.

Lemma A.3 There exists a constant Cp > 0 such that, for any choice of S and h,
.S; h/ has a pants decomposition with all boundary curves of length less than Cp .

Geometry & Topology, Volume 18 (2014)



The convex core of quasifuchsian manifolds with particles 2365

Sketch of the proof A standard recursive argument (see Benedetti and Petronio [7])
reduces the proof to showing that, for any hyperbolic surface with cone singularities (of
angle less than � ) and geodesic boundary, there is a simple closed geodesic of length
at most Cp that is not homotopic to a singular point or to a boundary component.

This in turn follows from other standard arguments, for instance based on comparing
the area of the surface (given by a suitable Gauss–Bonnet formula; see [56]) to the area
of embedded geodesic disks.

Definition A.4 Let P be a singular pant. Its leg invariants are the length of its
geodesic boundary components and the angles at its cone singularities.

For instance, the boundary invariants of a (nonsingular) hyperbolic pair of pants are
the lengths of its boundary components.

Lemma A.5 Each hyperbolic pair of pants is uniquely determined, up to isometry, by
its leg invariants and by the type of its “legs”, whether they are boundary components
or cone singularities.

The proof follows the classical arguments used for nonsingular hyperbolic pairs of
pants; it is based on elementary properties of some hyperideal hyperbolic triangles
stated below in three propositions (the first two have probably been known since
Lobachevsky).

Recall that a hyperideal triangle can be defined, using the projective model of the
hyperbolic plane, as a triangle that might have its vertices either in the hyperbolic plane,
on its ideal boundary, or outside the closure of the hyperbolic plane (considered as the
interior of a disk in the projective plane), but with all edges intersecting the hyperbolic
plane. A vertex is then ideal if it is on the ideal boundary, and strictly hyperideal if it is
outside the closed disk.

Recall also that given a point v0 outside the closure of the projective model of H 2

(in the projective plane), there is a unique hyperbolic geodesic, v�
0

, such that any the
intersection with the projective model of H 2 of any projective line containing v0 is
orthogonal to v�

0
. This geodesic is called the line dual to v0 .

We introduce here a slightly restricted notion of hyperideal triangle.

Definition A.6 An extended hyperbolic triangle is a hyperbolic triangle with one or
more strictly hyperideal vertices and its other vertices in the “interior” of the hyperbolic
plane. A truncated hyperbolic triangle is the intersection of an extended hyperbolic
triangle with the hyperbolic half-planes bounded by the lines dual to its strictly hy-
perideal vertices (and not containing the endpoints of the edges going towards those
vertices).
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For instance, a right-angle hyperbolic hexagon can be considered — in two ways — as a
truncated hyperbolic triangle, with three strictly hyperideal vertices. Given a hyperbolic
triangle, its angles are the hyperbolic angles at the nonhyperideal vertices and the
length of its intersections with the lines dual to the strictly hyperideal vertices. Note
that those lengths can quite naturally be considered as angles (they are then imaginary
numbers) but it is not necessary to enter such considerations here (see Schlenker [45;
46] for more details).

There is a natural way to define the edge lengths of an extended hyperbolic triangle.
The length of the edge joining two vertices v and v0 is:

� The hyperbolic distance between v and v0 , if neither v nor v0 is strictly hyper-
ideal.

� The hyperbolic distance between v and the line dual to v0 , when v0 is hyperideal
but v is not.

� The distance between the lines dual to v and v0 , when both are strictly hyperideal.

It is useful to remark that the lengths and angles of an extended hyperbolic triangle
satisfy a natural extension of the cosine formula. Moreover it is quite easy to check that
an extended hyperbolic triangle, with vertices of given type, is uniquely determined by
two lengths and one angle, or by two angles and one length.

The three next lemmas are easy extensions of classical results and their proofs are left
to the reader.

Lemma A.7 An extended hyperbolic triangle is uniquely determined by the type of
its vertices — whether they are “usual” or strictly hyperideal vertices — and its edge
lengths.

Lemma A.8 An extended hyperbolic triangle is uniquely determined by the type of
its vertices — whether they are “usual” or strictly hyperideal vertices — and its angles.
The angles at the “usual” vertices can take any value in .0; �=2/, while the “angles” at
the strictly hyperideal vertices can be any numbers in .0;1/.

Lemma A.9 Each singular pair of pants has a unique decomposition as the union of
two copies of a truncated hyperbolic triangle (glued along their common boundary).

Proof of Lemma A.5 By Lemma A.8, the two extended triangles glued to obtain
a hyperbolic pair of pants are uniquely determined by their angles, which can take
any value as long as the angles at the “usual” vertices are less than �=2. This shows
that hyperbolic pairs of pants are uniquely determined by their leg invariants, and any
values are possible as long as the angles at the singular points are less than � .
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We now turn to the parametrization of hyperbolic metrics with cone singularities
by Fenchel–Nielsen type coordinates. We first state a lemma on the existence and
uniqueness of a pants decomposition from topological data, leaving the proof to the
reader since it is the same as in the nonsingular case.

Lemma A.10 A pants decomposition is uniquely determined by the choice of the
boundary curves 
1; : : : ; 
N , considered as simple closed curves in S n fx1; : : : ;xn0

g,
under the hypothesis that:

� The 
i can be realized as pairwise disjoint curves.

� Each connected component of their complement is either a pair of pants con-
taining none of the xi , or a cylinder containing exactly one of the xi , or a disk
containing exactly two of the xi .

Finally we state the main consequence, on the parametrization of hyperbolic metrics
with cone singularities of fixed angle by Fenchel–Nielsen coordinates, again leaving the
proof to the reader. Note that the Dehn twist parameters are defined only in a relative
way, however this is exactly the same as in the nonsingular case (see [7]).

Corollary A.11 Given a (topological) pants decomposition of S with boundary curves

1; : : : ; 
N , there is a homeomorphism

TS;x;� ! .R>0 �R/N

sending a hyperbolic metric to the length and fractional Dehn twist parameters at the 
i .

The fractional Dehn twist parameters used here are the translation length of one side
with respect to the other so that, for a boundary curve of length l , a parameter equal
to l corresponds to a “usual” Dehn twist (the other possibility is to use an “angle”
parameter, where 2� corresponds to full Dehn twist).

A.2 Proof of Proposition 1.15

It is now possible to use the pants decomposition provided by Lemma A.3 to prove
Proposition 1.15: the induced metric on the boundary of the convex core is (uniformly)
quasi-conformal to the conformal structure at infinity.

The starting point is that a pants decomposition of .@M;m/ with boundary curves
of bounded length defines a pants decomposition of .@M; �/ with boundary curves
of approximately the same length. Recall that the constant Cp was introduced in
Lemma A.3.
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Lemma A.12 There exists a constant C > 0 as follows. Let 
1; : : : ; 
N be simple
closed curves on @M , defining a pants decomposition, of lengths less than Cp for m.
Then

for all i 2 f1; : : : ;N g;
Lm.
i/

C
�L� .
i/� CLm.
i/:

Proof The upper bound is a direct consequence of the first point in Proposition 5.12.
If 
i is short for m — ie it is the core of a long tube in the thin part of .@M;m/ — then
the second point of Proposition 5.12 proves the lower bound for 
i .

Suppose now that 
i is realized in .@M;m/ as a closed geodesic in the thick part of
@M . Then there exists a closed geodesic 
 0 intersecting 
i of length at most Cp . If
the length of 
i in .@M; �/ were small, than 
i would be realized in .@M; �/ as the
core of a long tube T in the thin part of .@M; �/. But then 
 0 would have to be long
(at least as long as the T ). This would contradict the first point in Proposition 5.12,
and this proves the lower bound for 
i .

Lemma A.13 There exists a constant C > 0 such that, for each of the 
i , the dif-
ference in the Dehn twist parameter corresponding to 
i in m and in � is at most
C.jlog.Lm.
i//jC 1/.

The precise form of the estimate is important only if 
i is short for m (and therefore
for � ), in which case jlog.Lm.
i//j is half the length of the tube in the thin part of
.@M;m/ containing 
i .

Proof Suppose first that 
i is not short. Then it is contained in the thick part of
.@M;m/, and there exists another curve 
 0 , intersecting 
i , of uniformly bounded
length. A Dehn twist parameter bigger than some constant would extend the length of

 0 by more than is allowed by Proposition 5.12; this proves the lemma in this first case.

The same argument can be used when 
i is short (ie when it is the core of a long thin
tube): then, 
 0 can be chosen to have length bounded by a constant time jlog.Lm.
i//j,
and this defines the maximal Dehn twist parameter along 
i .

Proof of Proposition 1.15 Let 
1; : : : ; 
N be disjoint closed curves, defining a
pants decomposition of .@M;m/ with boundary curves of length less than Cp , as
in Lemma A.3. Let l1; : : : ; lN be the length of the 
i for m, and let d1; : : : ; dN be
the Dehn twist parameters for the same curves.

Lemma A.10 shows that the 
i also define a pant decomposition of .@M; �/, let l 0i be
the length of the 
i for � , and let d 0i be their Dehn twist parameters. Lemma A.12
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indicates that the l 0i are within a fixed multiplicative constant of the li , while by
Lemma A.13

(3) jd 0i � di j � C.jlog.li/jC 1/;

where C is some positive constant.

Let m0 be the hyperbolic metric with cone singularities obtained by gluing pairs of
pants with boundary lengths equal to the li , but with Dehn twist parameters equal to
the d 0i .

Note that m0 is C1 –quasi-conformal to m, for some uniform constant C1 > 0. To
prove this, remark that for each i 2 f1; : : : ;N g the set of points at distance at most
C.j log.Lm.
i//jC cM / from 
i is an annulus, and that those annuli are disjoint. One
can therefore build a C1 –quasi-conformal diffeomorphism between m and m0 that is
an isometry in the complement of those annuli around the 
i , and which is “twisted”
in those annuli, with a twisting parameter that is an affine function of the distance to
the 
i .

The second and last step is to show that m0 is C3 –quasi-conformal � . Since those
two metrics differ only by the lengths of the boundary curves 
i , and in view of
Equation (3), this follows again from a simple and explicit construction, which we
leave to the interested reader.

Note that it might be possible to prove Proposition 1.15 using the same type of arguments
as those used by Epstein and Marden [26] in the nonsingular case. This would have the
advantage of providing directly a quasiconformal constant independent on the genus of
the boundary.
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