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Orbifold points on Teichmüller curves and
Jacobians with complex multiplication

RONEN E MUKAMEL

For each integer D � 5 with D � 0 or 1 mod 4 , the Weierstrass curve WD is an
algebraic curve and a finite-volume hyperbolic orbifold which admits an algebraic
and isometric immersion into the moduli space of genus two Riemann surfaces. The
Weierstrass curves are the main examples of Teichmüller curves in genus two. The
primary goal of this paper is to determine the number and type of orbifold points on
each component of WD . Our enumeration of the orbifold points, together with Bain-
bridge [2] and McMullen [19], completes the determination of the homeomorphism
type of WD and gives a formula for the genus of its components. We use our formula
to give bounds on the genus of WD and determine the Weierstrass curves of genus
zero. We will also give several explicit descriptions of each surface labeled by an
orbifold point on WD .

32G15; 14K22

1 Introduction

Let Mg be the moduli space of genus g Riemann surfaces. The space Mg can be
viewed as both a complex orbifold and an algebraic variety and carries a complete Finsler
Teichmüller metric. A Teichmüller curve is an algebraic and isometric immersion of a
finite-volume hyperbolic Riemann surface into the moduli space,

f W C DH=�!Mg:

The modular curve H=SL2.Z/!M1 is the first example of a Teichmüller curve.
Other examples emerge from the study of polygonal billiards (see Veech [29] and Masur
and Tabachnikov [17]) and square-tiled surfaces. While the Teichmüller curves in M2

have been classified (see McMullen [20]) much less is known about Teichmüller curves
in Mg for g > 2; see Bainbridge and Möller [3] and Bouw and Möller [7].

The main source of Teichmüller curves in M2 are the Weierstrass curves. For each
integer D � 5 with D � 0 or 1 mod 4, the Weierstrass curve WD is the moduli space
of Riemann surfaces whose Jacobians have real multiplication by the quadratic order
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� stabilizing a holomorphic one-form with double zero up to scale.
The curve WD is a finite-volume hyperbolic orbifold and the natural immersion

WD !M2

is algebraic and isometric and has degree one onto its image; see Calta [9] and Mc-
Mullen [18]. The curve WD is a Teichmüller curve unless D> 9 with D� 1 mod 8, in
which case WDDW 0

D
tW 1

D
is a disjoint union of two Teichmüller curves distinguished

by a spin invariant in Z=2Z [19]. A major challenge is to describe WD as an algebraic
curve and as a hyperbolic orbifold. To date, this has been accomplished only for certain
small D ; see Bouw and Möller [6], McMullen [18] and Lochak [15].

The purpose of this paper is to study the orbifold points on WD . Such points la-
bel surfaces with automorphisms commuting with OD . The first two Weierstrass
curves W5 and W8 were studied by Veech [29] and are isomorphic to the .2; 5;1/–
and .4;1;1/–orbifolds. The surfaces with automorphisms labeled by the three
orbifold points are drawn in Figure 1.

Our primary goal is to give a formula for the number and type of orbifold points on WD

(Theorem 1.1). Together with [19; 2], our formula completes the determination of the
homeomorphism type of WD and gives a formula for the genus of WD . We will use
our formula to give bounds for the genera of WD and W �

D
(Corollary 1.3) and list

the components of
S

D WD of genus zero (Corollary 1.4). We will also give several
explicit descriptions of the surfaces labeled by orbifold points on WD (Theorem 1.8),
giving the first examples of algebraic curves labeled by points of WD for most D

(Theorem 1.10).

Main results Our main theorem determines the number and type of orbifold points
on WD .

Theorem 1.1 For D > 8, the orbifold points on WD all have order two, and the
number of such points e2.WD/ is the weighted sum of the class numbers of imaginary
quadratic orders shown in Table 1.

We also give a formula for the number of orbifold points on each spin component.

Theorem 1.2 Fix D � 9 with D � 1 mod 8. If D D f 2 is a perfect square, then all
of the orbifold points on WD lie on the spin .f C 1/=2 mod 2 component:

e2
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W
.fC1/=2

D

�
D

1
2
zh.�4D/; e2

�
W
.f�1/=2

D

�
D 0:

Otherwise, e2.W
0

D
/D e2.W

1
D
/D 1

4
zh.�4D/.
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D mod 16 e2.WD/

1; 5; 9 or 13 1
2
zh.�4D/

0 1
2
.zh.�D/C 2zh.�D=4//

4 0

8 1
2
zh.�D/

12 1
2
.zh.�D/C 3zh.�D=4//

Table 1: For D > 8 , the number of orbifold points of order two on WD is
given by a weighted sum of class numbers. The function zh.�D/ is defined
below.

When D is not a square and WD is reducible, the spin components of WD have
algebraic models defined over Q.

p
D/ and are Galois conjugate [6]. Theorem 1.2

confirms that the spin components have the same number and type of orbifold points.

The class number h.�D/ is the order of the ideal class group H.�D/ for O�D

and counts the number of elliptic curves with complex multiplication by O�D up to
isomorphism. The weighted class number

zh.�D/D 2h.�D/=jO�
�D j

appearing in Table 1 is the number of elliptic curves with complex multiplication
weighted by their orbifold order in M1 . Note that zh.�D/D h.�D/ unless D D 3

or 4. The class number h.�D/ can be computed by enumerating integer points on a
conic. We will give a similar method for computing e2.WD/ in Theorem 1.9. When D

is odd, the orbifold points on WD are labeled by elements of the group H.�4D/=ŒP �

where ŒP � is the ideal class in O�4D representing the prime ideal with norm two.

The orbifold Euler characteristics of WD and W �
D

were computed in [2] and the cusps
on WD were enumerated and sorted by component in [19]. Theorems 1.1 and 1.2
complete the determination of the homeomorphism type of WD and give a formula for
the genera of WD and its components.

Corollary 1.3 For any � > 0, there are constants C� and N� such that

C�D
3=2C� > g.V / >D3=2=650;

whenever V is a component of WD and D �N� .

Modular curves of genus zero play an important role in number theory; see Tits [28].
We also determine the components of Weierstrass curves of genus zero.
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Figure 1: The first two Weierstrass curves W5 and W8 are isomorphic to
the .2; 5;1/– and .4;1;1/–orbifolds. The point of orbifold order two is
related to billiards on the L–shaped table (left) corresponding to the golden
mean  D .1C

p
5/=2 . The points of orbifold order five (center) and four

(right) are related to billiards on the regular pentagon and octagon.

Corollary 1.4 The genus zero components of
S

D WD are the 23 components ofS
D�41WD and the curves W 0

49
, W 1

49
and W 1

81
.

We include a table listing the homeomorphism type of WD for D� 225 in Appendix B.

Orbifold points on Hilbert modular surfaces Theorem 1.1 is closely related to the
classification of orbifold points on Hilbert modular surfaces we prove in Section 3.
The Hilbert modular surface XD is the moduli space of principally polarized abelian
varieties with real multiplication by OD . The period map sending a Riemann surface
to its Jacobian embeds WD in XD .

Central to the story of the orbifold points on XD and WD are the moduli spaces
M2.D8/ and M2.D12/ of genus two surfaces with actions of the dihedral groups of
orders 8 and 12:

D8 D hr;J j r
2
D .Jr/2 D J 4

D 1i; D12 D hr;Z j r
2
D .Zr/2 DZ6

D 1i

The surfaces in M2.D8/ (respectively M2.D12/) whose Jacobians have complex
multiplication have real multiplication commuting with J (respectively Z ). The
complex multiplication points on M2.D8/ and M2.D12/ give most of the orbifold
points on

S
D XD .

Theorem 1.5 The orbifold points on
S

D XD which are not products of elliptic curves
are the two points of orbifold order five on X5 and the complex multiplication points
on M2.D8/ and M2.D12/.
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Since the Z–eigenforms on D12 –surfaces have simple zeros and the J–eigenforms on
D8 –surfaces have double zeros (cf Proposition 2.3), we have the following.

Corollary 1.6 The orbifold points on
S

D WD are the point of orbifold order five
on W5 and the complex multiplication points on M2.D8/.

Corollary 1.6 explains the appearance of class numbers in the formula for e2.WD/.
As we will see Section 2, the involution r on a D8 –surface X has a genus one
quotient E with a distinguished base point and point of order two and the family
M2.D8/ is birational to the modular curve Y0.2/. The Jacobian Jac.X / has complex
multiplication by an order in Q.

p
D; i/ if and only if E has complex multiplication

by an order in Q.
p
�D/. The formula for e2.WD/ follows by sorting the 3zh.�D/

surfaces with D8 –action covering elliptic curves with complex multiplication by O�D

by their orders for real multiplication.

The product locus PD A recurring theme in the study of the Weierstrass curves is
the close relationship between WD and the product locus PD � XD . The product
locus PD consists of products of elliptic curves with real multiplication by OD and is
isomorphic to a disjoint union of modular curves.

The cusps on WD were first enumerated and sorted by spin in [19] and, for non-
square D , are in bijection with the cusps on PD . The Hilbert modular surface XD has
a meromorphic modular form with a simple pole along PD and a simple zero along WD .
This modular form can be used to give a formula for the Euler characteristic of WD .
For nonsquare D , the Euler characteristic of WD is given by [2, Corollary 10.4],

�.WD/D �.PD/� 2�.XD/:

Our classification of the orbifold points on XD and WD in both Theorem 1.5 and
Corollary 1.6 show that all of the orbifold points of order two on XD lie on WD or PD ,
giving the following.

Theorem 1.7 For nonsquare D , the homeomorphism type of WD is determined by
the homeomorphism types of XD and PD and D mod 8.

The D8 –family A secondary goal of our analysis is to give several explicit descrip-
tions of D8 –surfaces and to characterize those with complex multiplication. We now
outline the facts about M2.D8/ which we prove in Section 2; we will outline a similar
discussion for M2.D12/ in Appendix A. For a genus two surface X 2M2 , the
following are equivalent.

Geometry & Topology, Volume 18 (2014)
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(1) Automorphisms The automorphism group Aut.X / admits an injective homo-
morphism �W D8! Aut.X /.

(2) Algebraic curves The field of meromorphic functions C.X / is isomorphic to

Ka DC.z;x/ with z2
D .x2

� 1/.x4
� ax2

C 1/;

for some a 2C n f˙2g.

(3) Jacobians There is a number � 2H such that the Jacobian Jac.X / is isomorphic
to the principally polarized abelian variety

A� DC2=ƒ� ;

where

ƒ� D Z

� 
�

� C 1

!
;

 
�

�� � 1

!
;

 
� C 1

�

!
;

 
� C 1

��

!�
and A� is polarized by the symplectic form� 

a

b

!
;

 
c

d

!�
D� Im.axcC b xd/=2 Im.�/:

(4) Pinwheels The surface X is isomorphic to the surface X� obtained from the
polygonal pinwheel P� (Figure 2) for some � in the domain

U D
˚
� 2H

ˇ̌
� ¤ ˙1Ci

2
; j� j2 � 1

2
and jRe � j � 1

2

	
:

It is straightforward to identify the action of D8 in most of the descriptions above.
The field Ka has automorphisms r.z;x/ D .z;�x/ and J.z;x/ D .iz=x3; 1=x/.
Multiplication by the matrices  

1 0

0 �1

!
;

 
0 1

�1 0

!

preserves the polarized lattice ƒ� giving automorphisms r and J of A� . The sur-
face X� obtained from P� has an obvious order four automorphism J� and a genus
two surface with an order four automorphism automatically admits a faithful action of
D8 (cf Proposition 2.2).

The function relating the number � determining the polygon P� and abelian variety A�
to the number a determining the field Ka is the modular function

a.�/D�2C
1

�.�/�.� C 1/
:

Geometry & Topology, Volume 18 (2014)
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�

.1C i/=2

0

Figure 2: For � in the shaded domain U , the pinwheel P� is the polygon
with vertices at z D .1˙ i/=2 , .�1˙ i/=2 , ˙� and ˙i� . Gluing together
opposite sides on P� by translation gives a genus two surface admitting an
action of D8 . The one-form !� induced by dz is a J–eigenform and has a
double zero.

The function �.�/ is the modular function for �.2/D ker.SL2.Z/! SL2.Z=2Z//,
covering the isomorphism �W H=�.2/

�

�!Cnf0; 1g sending the cusps �.2/ �0, �.2/ �1
and � �1 to 0, 1 and 1 respectively. In Sections 2 and 3 we will prove the following.

Theorem 1.8 Fix � 2 U . The surface X� obtained from the polygon P� admits a
faithful D8 –action and satisfies

Jac.X� /ŠA� ; C.X� /ŠKa.�/:

The Jacobian Jac.X� / has complex multiplication if and only if � is imaginary qua-
dratic.

Enumerating orbifold points on WD In addition to the formula in terms of class
numbers for e2.WD/ appearing in Theorem 1.1, in Section 4 we give a simple method

Geometry & Topology, Volume 18 (2014)
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for enumerating the orbifold points on WD . We define a finite set of proper pinwheel
prototypes E.D/ consisting of triples of integers .e; c; b/ satisfying D D�e2C 2bc

along with certain additional conditions (see Equation (4-1)) and show the following.

Theorem 1.9 Fix a discriminant D � 5. For any .e; c; b/ 2E.D/, the surface

X� with � D .eC
p
�D/=2c

is labeled by an orbifold point on WD . For discriminants D > 8, the set E.D/ is in
bijection with the points of orbifold order two on WD .

Since the field automorphisms of C permute the set of D8 –surfaces with real mul-
tiplication by OD and the modular function aW Y0.2/! C is defined over Q, the
following is a corollary of Theorem 1.9.

Theorem 1.10 For D � 5, the polynomial

fD.t/D
Y

.e;c;b/2E.D/

�
t � a

�eC
p
�D

2c

���
t � a

�
�eC

p
�D

2b

��
has rational coefficients. If a is a root of fD.t/, then the algebraic curve with
C.X /ŠKa is labeled by an orbifold point on WD .

For example, when D D 76 we have

E.76/D f.�2; 2; 20/; .�2; 4; 10/; .2; 4; 10/g;

and the orbifold points on W76 label the surfaces X
.�1C

p
�19/=2

, X
.�1C

p
�19/=4

and
X
.1C
p
�19/=4

. Setting q D e2�i� and using the q–expansion

a.�/D�2� 256q� 6144q2
� 76800q3

� 671744q4
C � � �

we can approximate the coefficients for f76.t/ to high precision to show that

f76.t/D t3
C 3t2

C 3459t C 6913:

Table 4 in Appendix C lists the polynomials fD.t/ for D � 56 computed by similar
means.

Geometry & Topology, Volume 18 (2014)
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Outline We conclude this Introduction with an outline of the proofs of our main
results.

(1) In Section 2, we define and study the family M2.D8/. The moduli space M2.D8/

parametrizes pairs .X; �/, where X 2M2 and �W D8! Aut.X / is injective. There
our main goal is to prove the precise relationship between the surface X� , the field
Ka.�/ and the abelian variety A� stated in Theorem 1.8. We do so by showing that for
.X; �/ 2M2.D8/, the quotient X=�.r/ has genus one, a distinguished base point and
a distinguished point of order two (Proposition 2.5), giving rise to a holomorphic map
gWM2.D8/! Y0.2/. We then compute C.X / and Jac.X / in terms of g.X; �/ and
show that the surface X� admits a D8 –action �� with g.X� ; �� / equal to the genus
one surface E� DC=Z˚ �Z with the distinguished base point Z� D 0CZ˚ �Z and
a point T� D 1=2CZ˚ �Z of order two.

(2) In Section 3, we define and study the Hilbert modular surface XD and its orbifold
points. Orbifold points on XD correspond to abelian varieties with automorphisms
commuting with real multiplication. It is well known that there are only a few possibil-
ities for the automorphism group of a genus two surface (cf Table 2 in Section 2), that
the automorphism group of X 2M2 equals the automorphism group Jac.X / and that
every principally polarized abelian surface is either a product of elliptic curves or a
Jacobian. Our classification of orbifold points on

S
D XD in Theorem 1.5 is obtained

by analyzing these possibilities.

(3) In Section 4, we turn to the Weierstrass curve WD . Our classification of the
orbifold points on WD in Corollary 1.6 follows by analyzing which automorphism
groups of genus two surfaces contain automorphisms which fix a Weierstrass point.

(4) We then prove the formula in Theorem 1.1 by sorting the D8 –surfaces with
complex multiplication by their orders for real multiplication commuting with J. To
do so, we embed the endomorphism ring of Jac.X / in the rational endomorphism ring
End.X=�.r/�X=�.r//˝Q, allowing us to relate the order for real multiplication on
Jac.X / to the order for complex multiplication on X=�.r/.

(5) We conclude Section 4 by giving a simple method for enumerating the � 2 U

for which X� is labeled by an orbifold point on WD . For � 2Q.
p
�D/, we choose

integers e , k , and c so � D .eC k
p
�D/=.2c/. There is a rational endomorphism

T 2 End.Jac.X� //˝Q commuting the order four automorphism J� and generated
real multiplication by OD . By writing down how T acts on H1.X� ;Q/, we determine
the conditions on e , k and c which ensure that T preserves the lattice H1.X� ;Z/.

(6) In Section 5, we sort the orbifold points on WD by spin component when we
have D � 1 mod 8. For such discriminants, the orbifold points on WD are labeled by

Geometry & Topology, Volume 18 (2014)
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elements of the ideal class group H.�4D/. We define a spin homomorphism

�0W H.�4D/! Z=2Z

which is the zero map if and only if D is a perfect square. We then relate the spin
invariant of the orbifold point corresponding to the ideal class ŒI � to the value �0.ŒI �/

to give the formula in Theorem 1.2.

(7) Finally, in Section 6, we collect the various formulas for topological invariants
of WD and bound them to give bounds on the genus of WD and its components.

Open problems While the homeomorphism type of WD is now understood, describ-
ing the components of WD as Riemann surfaces remains a challenge.

Problem 1 Describe WD as a hyperbolic orbifold and as an algebraic curve.

Our analysis of the orbifold points on WD has given explicit descriptions of some
complex multiplication points on WD . By the André–Oort conjecture (see Klinger and
Yafaev [12]) there are only finitely many complex multiplication points on WD and it
would be interesting to find them.

Problem 2 Describe the complex multiplication points on WD .

The complex multiplication points on M2.D8/ lie on Teichmüller curves and the
complex multiplication points on M2.D12/ lie on complex geodesics in M2 with
infinite fundamental group. It would be interesting to find other examples of Shimura
varieties whose complex multiplication points lie on interesting complex geodesics.

Problem 3 Find other Shimura varieties whose complex multiplication lie on Teich-
müller curves.

The divisors supported at cusps on modular curves generate a finite subgroup of the
associated Jacobian; see Manin [16]. It would be interesting to know if the same is
true for Teichmüller curves. The first Weierstrass curve with genus one is W44 .

Problem 4 Compute the subgroup of Jac.W44/ generated by divisors supported at the
cusps and points of order two.

Algebraic geometers and number theorists have been interested in exhibiting explicit
examples of algebraic curves whose Jacobians have endomorphisms. A parallel goal is
to exhibit Riemann surfaces whose Jacobians have endomorphisms as polygons in the
plane glued together by translations as we did for the complex multiplication points on
M2.D8/ and M2.D12/.

Geometry & Topology, Volume 18 (2014)
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Problem 5 Exhibit surfaces whose Jacobians have complex multiplication as polygons
in C glued together by translation.

There are very few Teichmüller curves C !Mg whose images under the period
mapping sending a surface to its Jacobian parametrize Shimura curves and they are
classified in Möller [22]. The families M2.D8/ and M2.D12/ are examples of
Teichmüller curves whose images under the period mapping are dense in Shimura
curves. Jacobians of D8 – and D12 –surfaces are dense in Shimura curves because they
are characterized by their endomorphism ring. The family M2.D8/ (resp. M2.D12/)
is a Teichmüller curve because the map X ! X=�.J / (resp. X ! X=�.Z/) is
branched over exactly four points. It would be interesting to have a classification of
such curves.

Problem 6 Classify the Teichmüller curves whose images under the period mapping
are dense in Shimura curves.

Notes and references For a survey of results related to the Teichmüller geodesic flow,
Teichmüller curves and relations to billiards, see Kerckhoff, Masur and Smillie [11],
Masur and Tabachnikov [17], Kontsevich and Zorich [13] and Zorich [30]. Background
about abelian varieties, Hilbert modular surfaces and Shimura varieties can be found
in van der Geer [10], Shimura [25; 24] and Birkenhake and Lange [4]. The orbifold
points on XD are studied in Prestel [23] and the family M2.D8/ has been studied in
various settings, eg in Silhol [26].

Acknowledgments The author would thank C McMullen for many helpful conver-
sations throughout this project as well as A Preygel and V Gadre for several useful
conversations. The author was partially supported in part by the National Science
Foundation as a postdoctoral fellow, award number DMS-1103654.

2 The D8–family

In this section we define and study the moduli space M2.D8/ parametrizing pairs
.X; �/, where X 2M2 and �W D8! Aut.X / is injective. In Section 1, we defined
a domain U , a polygon P� and a surface X� with order four automorphism J� for
each � 2 U , a field Ka for a 2 C n f˙2g, an abelian variety A� for � 2 H and a
modular function aW H!C . Our main goal for this section is to prove the following
proposition, establishing the claims in Theorem 1.8 relating these different descriptions
of D8 –surfaces.
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Proposition 2.1 Fix � 2 U . There is an injective homomorphism �W D8! Aut.X� /
with �.J /D J� and X� satisfies

C.X� /ŠKa.�/; Jac.X� /ŠA� :

For any .X; �/ 2M2.D8/, there is a � 2 U so that there is an isomorphism X !X�
intertwining �.J / and J� .

We prove Proposition 2.1 by studying the quotients E� D X=�.r/ as .X; �/ ranges
in M2.D8/. We show that E� has genus one, a distinguished base point Z� and
point of order two T� (cf Proposition 2.5), allowing us to define a holomorphic map
gWM2.D8/! Y0.2/ by g.X; �/ D .E�;Z�;T�/. We compute C.X / and Jac.X /
in terms of g.X; �/ (Propositions 2.11 and 2.13) and then show that X� admits a D8 –
action �� with g.X� ; �� /D .C=Z˚�Z; 0CZ˚�Z; 1=2CZ˚�Z/ (Proposition 2.14).

Surfaces with automorphisms Let G be a finite group. We define the moduli space
of G –surfaces of genus g to be the space

Mg.G/D f.X; �/ jX 2Mg and �W G! Aut.X / is injectiveg=� :

We will call two G–surfaces .X1; �1/ and .X2; �2/ equivalent and we will write
.X1; �1/ � .X2; �2/ if there exists an isomorphism f W X1 ! X2 which satisfies
�1.x/D f

�1ı�2.x/ıf for each x 2G. The set Mg.G/ has a natural topology and a
unique holomorphic structure so that the natural map Mg.G/!Mg is holomorphic.

Group homomorphisms and automorphisms Any injective group homomorphism
hW G1 ! G2 gives rise to a holomorphic map Mg.G2/!Mg.G1/. In particular,
the automorphism group Aut.G/ acts on Mg.G/. The inner automorphisms of G

fix every point on Mg.G/ so the Aut.G/–action factors through the outer automor-
phism group Out.G/D Aut.G/= Inn.G/. Note that Out.D8/ is isomorphic to Z=2Z
with the automorphism �.J / D J and �.r/ D Jr representing the nontrivial outer
automorphism.

Hyperelliptic involution and Weierstrass points Now let X be a genus two Rie-
mann surface and �.X / be the space of holomorphic one-forms on X. The canonical
map X ! P�.X /� is a degree two branched cover of the sphere branched over six
points. The hyperelliptic involution � on X is the Deck transformation of the canonical
map and the Weierstrass points X W are the points fixed by �. Any holomorphic one-
form ! 2�.X / has either two simple zeros at points P and Q 2X with P D �.Q/

or has a double zero at a point P 2X W .
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Automorphisms and permutations of XW Since it is canonically defined, � is
in the center of Aut.X / and any � 2 Aut.X / induces an automorphism �� of the
sphere X=� and restricts to a permutation �jX W of X W . The conjugacy classes in the
permutation group Sym.X W / are naturally labeled by partitions of six corresponding to
orbit sizes in X W , and we will write Œn1; : : : ; nk � for the conjugacy class corresponding
to the partition n1C� � �Cnk D 6. We will denote the conjugacy class of �jX W in the
permutation of group of X W by Œ�jX W �.

In Table 2, we list the possibilities for Œ�jX W � and, for each possibility, we determine
the possibilities for the order of � , the number of points in X fixed by � and give
the possible algebraic models for the pair .X; �/. The claims are elementary to prove
and well-known (cf [4, Section 11.7] or Bolza [5]). Most can be proved by choosing
an appropriately scaled coordinate xW X=�! yC so the action �� fixes x�1.0/ and
x�1.1/. From Table 2, we can show the following.

Proposition 2.2 Suppose X 2M2 has an order four automorphism � . The conjugacy
class of �jX W is Œ1; 1; 2; 2�, the eigenforms for � have double zeros, �2 D � and there
is an injective group homomorphism �W D8! Aut.X / with �.J /D � .

Proof From Table 2, we see that only � with Œ�jX W �D Œ1; 1; 2; 2� have order four
and that, for such automorphisms, there is a number t 2C so that C.X / is isomorphic
to C.x;y/ with

y2
D x.x4

� tx2
C 1/;

and �.x;y/D .�x; iy/. From this algebraic model we see that �2.x;y/D .x;�y/

(ie �2 D �), the eigenforms for � are the forms dx
y

C� and x dx
y

C� which have
double zeros, and that there is an injective group homomorphism �W D8! Aut.X /
satisfying �.J /D � and �.r/.x;y/D .1=x;y=x3/.

From Table 2, the following also follows easily.

Proposition 2.3 For any .X; �/ 2M2.D8/, the �.J /–eigenforms have double zeros.
For any .X; �/ 2M2.D12/, the �.Z/–eigenforms have simple zeros.

Proof For .X; �/ 2M2.D8/, the automorphism �.J / has order four, and so, by
Proposition 2.2, has eigenforms with double zeros. Also from Table 2 we see that, for
.X; �/ 2M2.D12/, Œ�.Z/jX W �D Œ3; 3� so �.Z/ fixes no Weierstrass point and has
eigenforms with simple zeros.
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Œ�jX W � Algebraic model for .X; �/ Order of � Fix.�/

Œ1; 1; 1; 1; 1; 1� y2 D x.x� 1/.x� t1/.x� t2/.x� t3/, 1 or 2 X or X W

�.x;y/D .x;y/ or .x;�y/

Œ2; 2; 2� y2 D .x2� 1/.x2� t1/.x
2� t2/, 2 x�1.0/

�.x;y/D .�x;y/

Œ1; 1; 2; 2� y2 D x.x4� t1x2C 1/, 4 x�1.f0;1g/

�.x;y/D .�x; iy/

Œ1; 1; 4� y2 D x.x4C 1/, 8 x�1.f0;1g/

�.x;y/D .ix; .1C i/y=
p

2/

Œ2; 4� y2 D x.x4C 1/, 8 x�1.f0;1g/

�.x;y/D .i=x; .1C i/y=
p

2x3/

Œ3; 3� y2 D .x3� t3
1 /.x

3� t�3
1 /, 3 or 6 x�1.f0;1g/

�.x;y/D .e2� i=3x;y/ or .e2�i=3x;�y/

Œ1; 5� y2 D .x5C 1/, 5 or 10 x�1.0/ or
�.x;y/D .e2� i=5x;y/ or .e2�i=5x;�y/ x�1.1/

Œ6� y2 D x6C 1, �.x;y/D .e2�i=6x;y/ 6 x�1.0/

Table 2: An automorphism � of a genus two surface X restricts to a
bijection �jX W 2 Sym.X W / . When �jX W is in one of the conjugacy
classes above, the pair .X; �/ has an algebraic model C.X / Š C.x;y/
with x , y and � satisfying the equations above for an appropriate choice of
parameters ti 2C . The omitted conjugacy classes do not occur as restrictions
of automorphisms since the � induces automorphism of the sphere X=� .

Algebraic models for D8 –surfaces In Section 1 we defined a field Ka for each
a 2 C n f˙2g with an explicit action of D8 on Ka by field automorphisms. Let Ya

denote the genus two surface satisfying C.Ya/ŠKa and let �aW D8!Aut.Ya/ be the
corresponding action of D8 . We will eventually show the map f W Cnf˙2g!M2.D8/

given by f .a/D .Ya; �a/ is an isomorphism. To start we will show f is onto.

Proposition 2.4 The map a 7! .Ya; �a/ defines a surjective holomorphic map

f W C n f˙2g !M2.D8/:

In particular, dimC.M2.D8//D 1 and M2.D8/ has one irreducible component.

Proof Fix .X; �/ 2 M2.D8/. From Table 2 and Proposition 2.2, we have that
Œ�.r/jX W � D Œ2; 2; 2�, Œ�.J /jX W � D Œ1; 1; 2; 2�, �.J /2 D � and Fix.r/ is a single �–
orbit consisting of two points. These observations allow us to choose an isomorphism
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xW X=�! yC so that (1) �.r/.x/D�x , (2) x.Fix.�.r///D 0 and (3) x.P /D 1 for
some P 2 Fix.�.J //. Since �.JrJ�1/D ��.r/, J permutes the points in X=� fixed
by �.r/� , ie x�1.f0;1g/, and must satisfy �.J /.x/D 1=x . If Q is any point in X W

not fixed by �.J / and t D x.Q/, then

x.X W /D f1;�1; t;�t; 1=t;�1=tg:

The field C.X / is isomorphic to C.x;y/, where

y2
D .x2

� 1/.x4
� ax2

C 1/; aD t2
C 1=t2:

Note that a 62C n f˙2g since the discriminant of .x2� 1/.x4� ax2C 1/ is nonzero.
By conditions (1) and (2) on the coordinate x , we have �.r/.x;y/D .�x;y/. Since
�.J /.x/D 1=x , we have �.J /.x;y/D .1=x; iy=x3/ or .1=x;�iy=x3/. In the first
case, the obvious isomorphism between X and Ya intertwines � and �a . In the second
case, the composition of �.r/ with the obvious isomorphism between X and Ya

intertwines � and �a . In either case, .X; �/ is in the image of f .

Genus one surfaces with distinguished points of order two We now show that the
quotient .X=�.r// for any D8 –surface .X; �/ has genus one, a distinguished base
point and point of order two.

Proposition 2.5 For .X; �/ 2M2.D8/ we define

(2-1) E� DX=�.r/; Z� D Fix.��.r//=�.r/; T� D Fix.�.J //=�.r/ 2E�:

The quotient E� has genus one and, under the group law on E� with identity ele-
ment Z� , the point T� is torsion of order two.

Proof By Proposition 2.4, it is enough to establish the claims when .X; �/ is equivalent
to .Ya; �a/. From the equations defining .Ya; �a/, .E�a

;Z�a
;T�a

/ satisfies

(2-2)
C.E�a

/DC.y; w D x2/ with y2
D .w� 1/.w2

� awC 1/;

Z�a
D w�1.1/ and T�a

D w�1.1/:

In particular, E�a
has genus one. The function .w� 1/ vanishes to order two at T�a

and has a pole of order two at Z�a
, giving that 2T�a

DZ�a
in the group law on E�a

with base point Z�a
.

Genus one Riemann surfaces with distinguished base point and point of order two are
parametrized by the modular curve

Y0.2/D f.E;Z;T / jE 2M1 and Z;P 2E satisfies 2 �P D 2 �Zg=� :
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Two pairs .E1;Z1;T1/ and .E2;Z2;T2/ are equivalent if there is an isomorphism
E1!E2 sending Z1 to Z2 and T1 to T2 . The modular curve can be presented as a
complex orbifold as follows. For � 2H , let

(2-3) E� DC=Z˚ �Z;Z� D 0CZ˚ �Z; T� D 1=2CZ˚ �Z:

The triples .E�1
;Z�1

;T�1
/ and .E�2

;Z�2
;T�2

/ are equivalent if and only if �1 and �2

are related by a Möbius transformation in the group

�0.2/D

� 
a b

c d

!
2 SL2.Z/

ˇ̌̌̌
c � 0 mod 2

�
:

The map H! Y0.2/ given by � 7! .E� ;Z� ;T� / descends to a bijection on H=�0.2/,
presenting Y0.2/ as a complex and hyperbolic orbifold.

A fundamental domain for �0.2/ is the convex hull of f0; .�1C i/=2; .1C i/=2;1g

and Y0.2/ is isomorphic to the .2;1;1/–orbifold. The point of orbifold order two
on H=�0.2/ is .1C i/=2 ��0.2/ and corresponds to the square torus with the points
fixed by an order four automorphism distinguished.

Proposition 2.6 Let gWM2.D8/! Y0.2/ be the map defined by

g.X; �/D .E�;Z�;T�/:

The composition map g ı f W C n f˙2g ! Y0.2/ extends to a biholomorphism on
hW C n f�2g ! Y0.2/ with h.2/D .1C i/=2 ��0.2/.

Proof In (2-2), we gave an explicit model for g.f .a//. By elementary algebraic
geometry, as a tends to 2, g.f .a// tends the square torus with the points fixed by an
order four automorphism distinguished allowing us to extend the composition g ıf to
a holomorphic map hW C n f�2g ! Y0.2/ with h.2/D .1C i/=2 ��0.2/.

The coarse spaces associated to Y0.2/ and C n f�2g are both biholomorphic to C� .
To show h is a biholomorphism, it suffices to show deg.h/D 1. To do so, consider the
function j W Y0.2/!C sending .E;Z;T / to the j –invariant of E . The function j

has degree ŒSL2.Z/ W �0.2/�D 3. From (2-2), it is straightforward to show that

j ı h.a/D 256.aC 1/3=.aC 2/:

Since deg.j ı h/D deg.j /, we have deg.h/D 1.

Corollary 2.7 The map f W C n f˙2g !M2.D8/ defined by f .a/ D .Ya; �a/ is a
biholomorphism. The map gWM2.D8/! Y0.2/ is a biholomorphism onto its image,
which is the complement of .1C i/=2 ��0.2/.
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Proof Since g ı f extends to a biholomorphism and f is onto, both g and f are
biholomorphisms onto their images. By Proposition 2.4, f is onto and, consequently,
a biholomorphism. This also implies that the image of g is equal to the image of g ıf ,
which we have shown is the complement of the point .1C i/=2 ��0.2/.

Outer automorphism We have already seen that the nontrivial outer automorphism �

of D8 acts on M2.D8/. We will now identify the corresponding automorphisms of
C n f˙2g and Y0.2/ intertwining � with f and g .

The modular curve Y0.2/ has an Atkin–Lehner involution which we will denote �X .
The involution �X is given by �X .E;ZE ;TE/D .F;ZF ;TF /, where F is isomorphic
to the quotient E=TZ and TF is the point of order two in the image of the two torsion
on E under the degree two isogeny E! F DE=TZ . In terms of our presentation
of Y0.2/ as a complex orbifold, �X is defined by �X .� ��0.2//D �X .�1=2� ��0.2//.

The Riemann surface C n f˙2g parametrizing algebraic models for D8 –surfaces also
has an involution

�A.a/D .�2aC 12/=.aC 2/:

It is straightforward to show that f and g intertwine � , �A and �X , ie

� ıf D f ı �A; �X ıg D g ı �:

Proposition 2.8 Suppose .X1; �1/ and .X2; �2/ are D8 –surfaces, and there is an
isomorphism sW X1! X2 intertwining �i.J /. Then .X1; �1/ is equivalent to either
.X2; �2/ or � � .X2; �2/.

Proof We will show that s intertwines �1.J
kr/ with �2.r/ for some k . If k D 0 or

k D 2, then either s or s ı�1.J / gives an equivalence between .X1; �1/ and .X2; �2/.
If k D 1 or k D 3, then either s or s ı �1.J / gives an equivalence between .X1; �1/

and � � .X2; �2/.

Setting � D s ı �2.r/ ı s�1 , our goal is to show that � D �1.J
kr/ for some k .

For the D8 –surface f .a/ D .Ya; �a/, the involution �a.r/ interchanges the two
points in Fix.�a.J //. Since .Xi ; �i/ are equivalent to .Yai

; �ai
/ for some ai by

Proposition 2.4, the same is true for .Xi ; �i/. From s ı �2.J / ı s�1 D �1.J / we see
that s�1.Fix.�2.J ///D Fix.�1.J // and the composition � ı �1.r/ fixes both points
in Fix.�1.J //. This in turn implies that � ı �1.r/D �1.J /

k for some k .
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Fixed point of � The following proposition about the unique fixed point of � will
be useful in our discussion of surfaces obtained from pinwheels.

Proposition 2.9 Fix .X; �/ 2M2.D8/. The following are equivalent:
(1) There is an automorphism � 2 Aut.X / satisfying �2 D �.J /.
(2) � � .X; �/� .X; �/.
(3) .X; �/D f .6/.
(4) g.X; �/D

p
�2=2 ��0.2/.

The proof is straightforward so we omit it.

Cusps of M2.D8/=� The coarse space associated to M2.D8/=� Š .Cnf˙2g/=�A

is isomorphic to C� and has two cusps. The following proposition gives a geometric
characterization of the difference between these two cusps and will be important in our
discussion of surfaces obtained from pinwheels.

Proposition 2.10 For a sequence of D8 –surface .Xi ; �i/, the following are equiva-
lent:

(1) Xi tend to a stable limit with geometric genus zero as i !1.
(2) C.Xi/ŠKai

with ai!1.
(3) The quotients Xi=�i.r/ diverge in M1 as i !1.

The proof of this proposition is also straightforward so we omit it.

A modular function In Section 1 we defined modular functions �.�/ and a.�/. We
now show the following.

Proposition 2.11 If .X; �/ 2M2.D8/ and � 2H satisfies g.X; �/D .E� ;Z� ;T� /,
then

C.X /ŠKa.�/; a.�/D�2C
1

�.�/�.� C 1/
:

Proof Up to precomposition by � 7! �1=2� , the function aW H ! C defined
above is the unique holomorphic function satisfying (1) a covers an isomorphism
xaW Y0.2/

�

�! C n f�2g and (2) a..1 C i/=2/ D 2. The biholomorphic extension
hW C n f�2g ! Y0.2/ of g ıf from Proposition 2.6 has h.2/D .1C i/=2 ��0.2/, so
h�1 also satisfies (1) and (2). As a consequence, f .xa.E� ;Z� ;T� // is equal to either
f .a.�// or f .a.�1=2�//D � �f .a.�//. In either case, C.X /ŠKa.�/ .

As we saw in the proof of Proposition 2.6, the function a.�/ satisfies

a.�/3C 3a.�/2C .3� j .�/=256/a.�/C 1� j .�/=128D 0;

where j .�/ is the function, modular for SL2.Z/ and equal to the j –invariant of E� .
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Jacobians of surfaces with involutions Our next goal is to compute the Jacobian
of a D8 –surface .X; �/ in terms of g.X; �/ 2 Y0.2/. We start, more generally, by
describing the Jacobian of a surface X 2M2 with an involution � 2 Aut.X /, � ¤ �
in terms of the quotients X=� and X=�� .

From Table 2 we see that there are distinct complex numbers t1 and t2 so that

C.X /ŠC.x;y/; y2
D .x2

� 1/.x2
� t1/.x

2
� t2/; �.x;y/D .�x;y/:

The quotients E DX=� and F DX=�� have algebraic models given by

C.E/ŠC.zE D y; wE D x2/; z2
E D .wE � 1/.wE � t1/.wE � t2/;

C.F /ŠC.zF D xy; wF D x2/; z2
F D wF .wF � 1/.wF � t1/.wF � t2/:

The genus one surfaces E and F have natural base points ZEDFix.��/=�Dw�1
E
.1/

and ZF D Fix.�/=�� D w�1
F
.0/ respectively. Also, the image of X W under the map

X !E �F is the set

�W
D f.w�1

E .t/; w�1
F .t// 2E �F j t D 1; t1 or t2g:

The set �W generates a subgroup of order four of the two torsion on E �F under the
group laws with identity element ZE �ZF .

Proposition 2.12 Suppose X, � , E , F and �W are as above. The Jacobian of X

satisfies
Jac.X /ŠE �F=�W

and the principal polarization on Jac.X / pulls back to twice the product polarization
on E �F under the quotient by �W map.

Proof Let  W X !E �F be the obvious map. By writing down explicit bases for
H1.X;Z/, H1.E;Z/ and H1.F;Z/ using the algebraic models defined above, it is
straightforward to check that the image of  �W H1.X;Z/!H1.E;Z/˚H1.F;Z/ has
index four and that the symplectic form on  �.H1.X;Z// induced by the intersection
pairing on X extends to twice the ordinary symplectic form on H1.E;Z/˚H1.F;Z/.

The holomorphic map  factors through a map on Jacobians:

 W Jac.X /! Jac.E/� Jac.F /;

whose degree is equal to ŒH1.E;Z/˚H1.F;Z/ W  �.H1.X;Z//� D 4. Under the
identification of Jac.X / with the Picard group Pic0.X /, the two torsion in Jac.X /
consists of degree zero divisors of the form ŒPi �Pj � with Pi ¤Pj and Pi ;Pj 2X W .
The image of the two torsion in Jac.X / under  has image �W generating a subgroup
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of order four in Jac.E/� Jac.F /. The composition of  with the quotient by �W

map has degree 16, vanishes on the two-torsion and factors through multiplication by
two on Jac.X / to give an isomorphism.

Jacobians of D8 –surfaces With Proposition 2.12, it is now easy to compute Jac.X /
for a D8 –surface .X; �/ in terms of g.X; �/. In Section 1, we defined a principally
polarized abelian variety A� for each � 2H .

Proposition 2.13 If .X; �/ 2M2.D8/ and � 2H satisfies g.X; �/D .E� ;Z� ;T� /,
then Jac.X /ŠA� .

Proof Set � D �.r/, E D X=� and F D X=�� . By our definition of g , E is
isomorphic to E� . Also, ��D �.J /ı� ı�.J�1/, so �.J / induces an isomorphism be-
tween F and E . In particular, F is also isomorphic to E� . The image of �W �E�F

under the isomorphism to E�F!E� �E� is the graph of the induced action of �.J /
on the two torsion of E� . Setting T� D 1=2CZ˚ �Z, Q� D �=2CZ˚ �Z and
R� D .� C 1/=2CZ˚ �Z, we have

�W
D f.T� ;T� /; .Q� ;R� /; .R� ;Q� /g:

The abelian variety E��E�=�
W , principally polarized by half the product polarization

on E� �E� , is easily checked to be equal to A� . Note that the lattice ƒ� used to
define A� contains the vectors 

2

0

!
;

 
2�

0

!
;

 
0

2

!
;

 
0

2�

!
:

Pinwheels In Section 1, we defined a domain U and associated to each � 2 U a
polygonal pinwheel P� and a surface X� with order four automorphism J� .

Proposition 2.14 Fix � 2U . There is an injective homomorphism �� W D8!Aut.X� /
with �� .J /D J� and g.X� ; �� /D .E� ;Z� ;P� /.

Proof By Proposition 2.2, we have that the surface X� admits a faithful D8 –action
�� W D8! Aut.D8/ with �.J /D J� . Since U is simply connected, we can choose
�� so � 7! .X� ; �� / gives a holomorphic map pW U !M2.D8/.

As depicted in Figure 3, the polygons P� and P�C1 differ by a Euclidean cut and paste
operation, giving an isomorphism between X� and X�C1 intertwining J� and J�C1 .
Also, the polygons P� and P�1=2� differ by a Euclidean similarity, giving an isomor-
phism between X� and X�1=2� intertwining J� and J�1=2� . By Proposition 2.2, p

covers a holomorphic map xpW U=�!M2.D8/=� , where � � �C1 and � ��1=2� .
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P�
P�C1

Figure 3: The surfaces X� and X�C1 are isomorphic since the polygons P�
and P�C1 differ by a cut and paste operation.

The coarse spaces associated to both U=� and M2.D8/=� Š .C n f˙2g/=�A are bi-
holomorphic to C� . Also, there is a unique point � D

p
�2=2 in U for which J� is the

square of an order eight automorphism, so p�1.Fix.�//D f
p
�2=2g. In particular xp

has degree one and is a biholomorphism. There are precisely two biholomorphisms
U= �!M2.D8/=� satisfying xp.

p
�2=2/D Fix.�/=� . They are distinguished by

the geometric genus of the stable limit of p.�/ as Im.�/ tends to 1. The geometric
genus of X� as Im.�/ tends to infinity is zero.

Another holomorphic map p1W U !M2.D8/ is given by p1.�/D g�1.E� ;Z� ;T� /.
Since p1 intertwines � 7! �1=2� and the outer automorphism � , and .E� ;Z� ;T� /D

.E�C1;Z�C1;T�C1/, p1 also covers an isomorphism xp1W U=�!M2.D8/=� . More-
over p1.

p
�2=2/ D Fix.�/=� and the limit of p1.�/ diverges tends to the cusp of

M2.D8/=� with stable limit of genus zero. So xp1D xp and the proposition follows.

Combining the results of this section we have the following.

Proof of Proposition 2.1 Fix � 2 U . By Proposition 2.14, the surface X� obtained
from P� admits a D8 –action �� with g.X� ; �� /D .E� ;Z� ;P� /. By Proposition 2.13,
Jac.X� /ŠA� and by Proposition 2.11, C.X� /ŠKa.�/ .

Now fix any .X; �/ 2M2.D8/. The domain U is a fundamental domain for the group
generated by �0.2/ and the Atkin–Lehner involution � 7! �1=2� . It follows that there
is a � 2U so g.X; �/D .E� ;Z� ;T� / or g.� � .X; �//D .E� ;Z� ;T� /. In either case,
by Proposition 2.14 and the fact that g is an isomorphism onto its image, there is an
isomorphism X !X� intertwining �.J / and J� .
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3 Orbifold points on Hilbert modular surfaces

In this section, we discuss two-dimensional abelian varieties with real multiplication,
Hilbert modular surfaces and their orbifold points. Our main goals are to show: (1) the
abelian variety A� Š Jac.X� / has complex multiplication if and only if � is imaginary
quadratic, completing the proof of Theorem 1.8 (Proposition 3.2); (2) the Jacobians
of D8 – and D12 –surfaces with complex multiplication are labeled by orbifold points
in
S

D XD (Proposition 3.4); (3) establish the characterization of orbifold points onS
D XD of Theorem 1.5 (Proposition 3.5).

Quadratic orders Each integer D � 0 or 1 mod 4 determines a quadratic ring, and

OD D
ZŒt �

.t2�Dt CD.D� 1/=4/
:

The integer D is called the discriminant of OD . We will write
p

D for the element
2t �D 2OD whose square is D and define KD DOD ˝Q.

We will typically reserve the letter D for positive discriminants and the letter C for
negative discriminants. For a positive discriminant D > 0, the ring OD is totally
real, ie every homomorphism of OD into C factors through R. For such D , we will
denote by �C and �� the two homomorphisms KD ! R which are characterized
by �C.

p
D/ > 0 > ��.

p
D/. We will also use �C and �� for the corresponding

homomorphisms SL2.KD/! SL2.R/. The inverse different is the fractional ideal
O_

D
D .1=

p
D/OD and is equal to the trace dual of OD .

Unimodular modules Now let ƒD DOD ˚O_
D
�K2

D
. The OD –module ƒD has

a unimodular symplectic form induced by trace,

h.x1;y1/; .x2;y2/i D TrKD

Q .x1y2�x2y1/:

Up to symplectic isomorphism of OD –modules, ƒD is the unique unimodular OD –
module isomorphic to Z4 as an abelian group with the property that the action of OD

is self-adjoint and proper (cf McMullen [21, Theorem 4.4]). Here, self-adjoint means
h�v;wi D hv; �wi for each � 2OD and proper means that the OD –module structure
on ƒD is faithful and does not extend to a larger ring in KD .

Symplectic OD –module automorphisms Let SL.ƒD/ denote the group of symplec-
tic OD –module automorphisms of ƒD . This group coincides with the OD –module
automorphisms of ƒD and equals��

a b

c d

� ˇ̌̌̌
ad � bc D 1; a; d 2OD ; b 2

p
DOD and c 2O_D

�
� SL2.KD/
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with

AD

 
a b

c d

!
acting on ƒD by sending .x;y/ to .ax C by; cx C dy/. The group SL.ƒD/ em-
beds in SL2.R/� SL2.R/ via A 7! .�C.A/; ��.A// and acts on H�H by Möbius
transformations:

.�C; ��/ �AD

�
�C.d� C b/

�C.c� C a/
;
��.d� C b/

��.c� C a/

�
;

where �C.y� Cx/D �C.y/�CC �C.x/ and ��.y� Cx/D ��.y/��C ��.x/.

The following proposition characterizes the elements of SL.ƒD/ fixing every point in
H�H and is elementary to verify.

Proposition 3.1 Let h be the homomorphism hW SL.ƒD/! PSL2.R/ � PSL2.R/
given by h.A/D .˙�C.A/;˙��.A//. For A 2 SL.ƒD/, the following are equivalent:

� A fixes every point in H�H .

� A2 D 1.

� AD
�

t 0
0 t

�
, where t 2OD satisfies t2 D 1.

� A is in ker.h/.

The group ker.h/ is isomorphic to the Klein-four group when D D 1 or 4 and is cyclic
of order two otherwise.

Hilbert modular surfaces The group PSL.ƒD/ D SL.ƒD/= ker.h/ acts faithfully
and properly discontinuously on H�H and we define XD to be the quotient

XD DH�H=PSL.ƒD/:

We will denote by Œ� � the point in XD represented by � 2H�H . The complex orbifold
is a typical example of a Hilbert modular surface.

Abelian varieties with real multiplication Now let BDC2=ƒ be a principally polar-
ized abelian surface. The endomorphism ring End.B/ of B is the ring of holomorphic
homomorphisms from B to itself. We will say that B admits real multiplication by
OD if there is a proper and self-adjoint homomorphism

�W OD ! End.B/:

Self-adjoint and proper here mean that � turns the unimodular lattice H1.B;Z/Dƒ
into self-adjoint and proper OD –module.
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Moduli of abelian varieties with real multiplication Now let A2 be the moduli
space of principally polarized abelian surfaces and set

A2.OD/D f.B; �/ j B 2A2 and �W OD ! End.B/ is proper and self-adjointg=� :

Here, two pairs .B1; �1/ and .B2; �2/ are equivalent, and we write .B1; �1/� .B2; �2/,
if there is a polarization preserving isomorphism B1! B2 intertwining �i .

As we now describe and following [21, Section 4] (see also [4, Chapter 9]), the
Hilbert modular surface XD parametrizes A2.OD/ and presents A2.OD/ as a complex
orbifold. For � D .�C; ��/ 2H�H , define �� W ƒD !C2 by

�� .x;y/D .�C.xCy�/; ��.xCy�//:

The image �� .ƒD/ is a lattice, and the complex torus B� DC2=�� .ƒD/ is principally
polarized by the symplectic form on ƒD . For each x 2OD , the matrix 

�C.x/ 0

0 ��.x/

!
preserves the lattice �� .ƒD/ giving real multiplication by OD on B� :

�� W OD ! End.B� /:

For A 2 SL.ƒD/, the embeddings ��A and �� are related by ��A D C.A/ ı�� ıA,
where

C.A/D

 
�C.aC c�/ 0

0 ��.aC c�/

!
:

From this we see that there is a polarization preserving isomorphism between B�
and B�A that intertwines �� and ��A and that the correspondence �! .B� ; �� / descends
to a map XD ! A2.OD/. This map is in fact a bijection and presents A2.OD/ as
complex orbifold.

Complex multiplication Now let O be a degree two, totally imaginary extension
of OD . We will say that B 2 A2 admits complex multiplication by O if there is a
proper and Hermitian-adjoint homomorphism

�W O! End.B/:

Here, Hermitian-adjoint means that the symplectic dual of �.x/ acting on H1.B;Z/
is �.xx/, where xx is the complex conjugate of x and proper, as usual, means that � does
not extend to a larger ring in O˝Q.

For a one-dimensional abelian variety E DC=ƒ in A1 , we will say E has complex
multiplication by OC if End.E/ is isomorphic to OC . The ideal class group H.C /
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is the set of invertible OC –ideals modulo principal ideals and is well known to be
in bijection with the set of E 2A1 with End.A/ŠOC . Since OC is quadratic, the
invertible OC –ideals coincide with the proper OC –submodules of OC . The class
number h.C / is the order of the ideal class group H.C /.

We are now ready to determine which Jacobians of D8 –surfaces have complex multi-
plication.

Proposition 3.2 Fix � 2H . The abelian variety A� has complex multiplication if and
only if � is imaginary quadratic.

Proof First suppose � is imaginary quadratic. The vector space ƒ� ˝Q is stabilized
by the matrices  

0 1

�1 0

!
;

 
� 0

0 �

!
;

which together generate a Hermitian adjoint embedding �W Q.�; i/! End.A� /˝Q.
The restriction of � to the order O D ��1.End.A� // is complex multiplication by O
on A� .

Now suppose � is not imaginary quadratic. We have seen that there is a degree four,
surjective holomorphic map f W A� !E� �E� . As is well known and is implied by
the stronger Proposition 4.4, such a map gives rise to an isomorphism between the
rational endomorphism ring End.A� /˝Q and End.E� �E� /˝QDM2.Q/. As a
consequence, any commutative ring in End.A� /˝Q has rank at most two over Q
and A� does not have complex multiplication by any order.

We have now proved all the claims in our Theorem from Section 1 about D8 –surfaces.

Proof of Theorem 1.8 The claims relating X� , Ka.�/ and A� for � 2 U are es-
tablished in Proposition 2.1. The characterization of when Jac.X� / has complex
multiplication is established in Proposition 3.2.

Jacobians of D12 –surfaces with complex multiplication In Appendix A we simi-
larly define for � 2H an abelian variety zA�DC2=zƒ� which, for most � , is the Jacobian
of D12 –surface. A nearly identical argument shows that, for .X; �/ 2M2.D12/,
the Jacobian Jac.X / has complex multiplication if and only if Jac.X / has complex
multiplication by an order extending �.Z/, which happens if and only if Jac.X /Š zA�
with � imaginary quadratic.
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Orbifold points on Hilbert modular surfaces We are now ready to study the orbifold
points on XD . For � 2H�H , we define the orbifold order of Œ� � in XD to be the
order of the group Stab.�/ � PSL.ƒD/. We will call Œ� � 2 XD an orbifold point if
the orbifold order of Œ� � is greater than one.

The following proposition gives an initial characterization of the abelian varieties
labeled by such points.

Proposition 3.3 Fix � 2H�H and an integer n> 2. The following are equivalent:
(1) The point � is fixed by an A 2 SL2.ƒD/ of order n.
(2) There is an automorphism � 2 Aut.B� / of order n that commutes with �� .OD/.
(3) The homomorphism �� W OD ! End.B� / extends to complex multiplication by

an order containing OD Œ�n�, where �n is a primitive nth root of unity.

Proof First suppose (1) holds with

AD

 
a b

c d

!
and � D �A. We have seen that �� ıA and ��A D �� differ by multiplication by the
matrix

C.A/D

 
�C.aC c�/ 0

0 ��.aC c�/

!
:

It follows that C.A/ restricts to a symplectic automorphism of �� .ƒD/, giving rise to
an automorphism � 2 B� of order n which commutes with �� since A is OD –linear.
Now suppose (2) holds. The homomorphism �� W OD ! End.B� / extends to OD Œ�n�

via �� .�n/D � and this extension is Hermitian-adjoint since � is symplectic. Finally,
if (3) holds, then the automorphism �� .�n/ restricts to an OD –module automorphism
of H1.B� ;Z/DƒD , giving a matrix A2 SL2.OD˚O_

D
/ of order n and fixing � .

We can now show that the D8 – and D12 –surfaces with complex multiplication give
orbifold points on Hilbert modular surfaces.

Proposition 3.4 The Jacobians of D8 – and D12 –surfaces with complex multiplication
are labeled by orbifold points in

S
D XD .

Proof We will show that D8 Jacobians with complex multiplication are labeled by
orbifold points in

S
D XD . A nearly identical argument shows the same is true of D12

Jacobians with complex multiplication. By Proposition 3.2, any such Jacobian is
isomorphic to A� for some imaginary quadratic � . The order O constructed in the
proof of Proposition 3.2 contains i since �.i/ is integral on A� , and .A� ; �jO\R/

clearly satisfies condition (3) of Proposition 3.3.
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We conclude this section by showing most of the orbifold points on
S

D XD label
Jacobians of D8 – and D12 –surfaces.

Proposition 3.5 Fix an orbifold point Œ� � 2XD . At least one of the following holds:

� B� is a product of elliptic curves.

� Œ� � is a point of orbifold order five on X5 .

� B� is the Jacobian of a D8 –surface with complex multiplication.

� B� is the Jacobian of a D12 –surface with complex multiplication.

Proof By Proposition 3.3, the abelian variety B� labeled by Œ� � has a symplectic
automorphism � of order greater than two and commuting with �� . It is well known
that every principally polarized two-dimensional abelian variety is either a polarized
product of elliptic curves of the Jacobian of a smooth genus two Riemann surface, and
that the automorphism group of a genus two Riemann surface is isomorphic to the
automorphism group of its Jacobian (cf [4, Chapter 11]). If B� is not a product of elliptic
curves, choose X 2M2 so Jac.X / is isomorphic to B� and choose �0 2 Aut.X / so
that an isomorphism Jac.X /! B� intertwines � and �0 .

From Table 2, we see that Œ�0jX W � is in one of Œ1; 5�, Œ1; 1; 2; 2�, Œ2; 4�, Œ1; 1; 4�,
Œ3; 3� or Œ6�. If Œ�0jX W �D Œ1; 5�, X is the unique genus two surface with an order five
automorphism, and Œ� � is one of the points of order five on X5 . If Œ�0jX W �D Œ1; 1; 2; 2�,
Œ2; 4�, or Œ1; 1; 4�, B� is the Jacobian of D8 –surface and has complex multiplication
by Proposition 3.3. In the remaining cases, B� is the Jacobian of D12 –surface and,
again, has complex multiplication by Proposition 3.3.

We have now completed the proof of the characterization of the orbifold points onS
D XD in Theorem 1.5.

Proof of Theorem 1.5 By Proposition 3.4, the Jacobians of D8 – and D12 –surfaces
with complex multiplication give orbifold points on Hilbert modular surfaces. By
Proposition 3.5, these points give all of the orbifold points on XD except those which
are products of elliptic curves and the points of order five on X5 .

4 Orbifold points on Weierstrass curves

In this section we study the orbifold points on the Weierstrass curve WD . We start by
recalling the definition of WD . An easy consequence of our classification of the orbifold
points on XD in Section 3 gives the characterization of orbifold points on

S
D WD of
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Corollary 1.6. We then establish the formula in Theorem 1.1 by sorting the D8 –surfaces
with complex multiplication by the order for real multiplication commuting with �.J /.
To do so, we relate the order for real multiplication on .X; �/ to the order for complex
multiplication on X=�.r/. Finally, we conclude this section by giving a simple method
for enumerating the � 2 U corresponding to orbifold points on WD .

Eigenforms for real multiplication For a principally polarized abelian variety B

with real multiplication �W OD ! End.B/, a place �0W OD ! R distinguishes a
line of �0 –eigenforms on B satisfying �.x/�! D �0.x/! for each x 2 OD . When
.B; �/ D .B� D C2=ƒ� ; �� /, the �C eigenforms are the multiples of dz1 and the
��–eigenforms are the multiples of dz2 where zi is the i th coordinate on C2 .

For a Riemann surface X 2M2 , the Abel–Jacobi map X ! Jac.X / induces an
isomorphism on the space of holomorphic one-forms. For Jacobians that admit real
multiplication, a choice of real multiplication � on Jac.X / distinguishes �C– and
��–eigenforms on X. Conversely, a one-form up to scale Œ!� on X that happens to
be stabilized by real multiplication by OD on Jac.X /, there is a unique embedding
�
Œ!�
C W OD ! End.Jac.X // characterized by the requirement that �Œ!�C .x/! D �C.x/!

(cf [21, Section 4]).

The Weierstrass curve The Weierstrass curve WD of discriminant D is the moduli
space

WD D f.X; Œ!�/ jX 2M2 and ! is an eigenform for real multiplication by OD

with double zerog=� :

Here, Œ!� is a one-form up to scale, and .X1; Œ!1�/ is equivalent to .X2; Œ!2�/ and we
write .X1; Œ!1�/�.X2; Œ!2�/ if there is an isomorphism �W X1!X2 with ��!1 2C�!2 .
The map .X; Œ!�/ 7! .Jac.X /; �Œ!�C / embeds WD in the Hilbert modular surface XD .
The natural immersion WD!M2 is shown to be a finite union of Teichmüller curves
in [18] (see also [9]).

Orbifold points on Weierstrass curves The Weierstrass curve can be presented as a
complex orbifold in several equivalent ways. One way is to use the SL2.R/–action on
the moduli space of holomorphic one-forms and Veech groups as in [18]. Another is to
study the immersion WD !XD and give WD the structure of a suborbifold as in [2].

The details of these presentations are not important for our discussion; instead, we
simply define the notion of orbifold order and orbifold point on WD . For a Riemann
surface X and nonzero holomorphic one-form ! 2�.X /, let Aut.X; f˙!g/ denote
the subgroup of Aut.X / consisting of � with ��!D˙! , let SO.X; !/DAut.X; Œ!�/
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be the subgroup of Aut.X / consisting of automorphisms � for which preserve ! up
to scale and set

PSO.X; !/D SO.X; !/=Aut.X; f˙!g/:

The groups Aut.X; f˙!g/, SO.X; !/ and PSO.X; !/ only depend on ! up to scale.

For a point .X; Œ!�/ 2WD , we define the orbifold order of .X; Œ!�/ to be the order of
the group PSO.X; !/ and we will call .X; Œ!�/ an orbifold point if its orbifold order is
greater than one. Using the characterization of orbifold points on XD in Proposition 3.3
it is straightforward to check that .X; Œ!�/ 2WD is an orbifold point if and only if the
pair .Jac.X /; �Œ!�C / is an orbifold point on XD .

Orbifold points on WD and D8 –surfaces with complex multiplication Recall
from Section 1 that we defined a domain U and associated to each � 2 U a polygonal
pinwheel P� so the surface X� D P�=� admits a faithful action of D8 . Let J� , as
usual, denote the obvious order four automorphism of X� obtained by counterclockwise
rotation of P� and let !� denote the eigenform for J� obtained from dz on P� .

Proposition 4.1 For � 2 U , the group PSO.X� ; !� / is cyclic of order two except
when � D

p
�2=2, in which case PSO.X� ; !� / is cyclic of order four.

Proof Recall from the proof of Proposition 2.14 that J� extends to a faithful action
�W D8 ! Aut.X / with �.J / D J� . From the fact that C.X� / Š Ka.�/ , it is easy
to verify that � is an isomorphism except when .X; �/ is the fixed point of the
outer automorphism � , ie � D

p
�2=2. For � ¤

p
�2=2, the group SO.X� ; !� /

is generated by J� , Aut.X� ; f˙!�g/ is generated by the hyperelliptic involution J 2
�

and PSO.X; !� / is cyclic of order two. When � D
p
�2=2, P� is the regular octagon

and it is easy to verify that PSO.X� ; !� / is cyclic of order four.

We now show that the D8 –surfaces with complex multiplication give orbifold points
on Weierstrass curves.

Proposition 4.2 If � 2 U is imaginary quadratic, then there is a discriminant D > 0

so the surface with one-form up to scale .X� ; Œ!� �/ is an orbifold point on WD .

Proof Fix an imaginary quadratic � 2 U. As we saw in the proof of Proposition 3.2,
the order four automorphism J� on X� , extends to complex multiplication by an
order O in Q.�; i/. If D is the discriminant of O\R, we see that !� is an eigenform
for real multiplication by OD . Also, !� has a double zero, as can be seen directly by
counting cone-angle around vertices of P� or can be deduced from the fact that !� is
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stabilized by the order four automorphism J� (cf Proposition 2.2). From this we see
that .X� ; Œ!� �/ 2WD and is an orbifold point on WD since PSO.X� ; !� / has order at
least two.

We can now show that almost all of the orbifold points on
S

D WD are D8 –surfaces
with complex multiplication.

Proposition 4.3 Suppose .X; Œ!�/ 2WD is an orbifold point. One of the following
holds:

� .X; Œ!�/ is the point of orbifold order five on W5 .
� .X; Œ!�/ is the point of orbifold order four on W8 .
� .X; Œ!�/D .X� ; Œ!� �/ for some imaginary quadratic � 2 U with � ¤

p
�2=2.

In particular, for D > 8, all of the orbifold points on WD have orbifold order two.

Proof By our definition of orbifold point, X has an automorphism � stabilizing !
up to scale and with ��! not equal to ˙! . Such a � must fix the zero of ! which is a
Weierstrass point and the conjugacy class Œ�jX W � is one of Œ1; 5�, Œ1; 1; 4� or Œ1; 1; 2; 2�.
In the first case, .X; Œ!�/ is the point of order five on W5 . In the remaining cases,
.X; Œ!�/D .X� ; Œ!� �/ for some imaginary quadratic � 2 U . When � D

p
�2=2 and

.X; Œ!�/ is the point of orbifold order four on W8 obtained from the regular octagon
and when � ¤

p
�2=2, .X; Œ!�/ is a point of orbifold order two for some larger

discriminant.

We have now proved the claims in Corollary 1.6.

Proof of Corollary 1.6 By Proposition 4.2, the D8 –surfaces with complex multipli-
cation give orbifold points on

S
D WD . By Proposition 4.3, they give all of the orbifold

points except for the point of order five on W5 .

Isogeny and endomorphism In light of Proposition 4.3, to give a formula for the
number e2.WD/ of points of orbifold order two on WD , we need to sort the D8 –
surfaces .X; �/ with complex multiplication by order for real multiplication commuting
with �.J /. To do so, we relate this order to the order for complex multiplication on
E� DX=�.r/.

We saw in Section 2 that there is an isogeny Jac.X /!E��E� such that the polarization
on Jac.X / is twice the pullback of the product polarization on E��E� . The following
proposition will allow us to embed the endomorphism ring of Jac.X / in the rational
endomorphism ring E� �E� .
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Proposition 4.4 Suppose f W A ! B is an isogeny between principally polarized
abelian varieties with the property the polarization on A is n–times the polarization
pulled back from B . The ring End.B/ is isomorphic as an involutive algebra to the
subring Rf � End.A/˝Q given by

Rf D
1

n
f� 2 End.A/ j �.ker.nf //� ker.f /g:

Proof Let f �W B!A denote the isogeny dual to f . The condition on the polarization
implies that f ı f � and f � ı f are the multiplication by n–maps on B and A

respectively. We will show that the map

 W End.B/! End.A/˝Q;

� 7! 1
n
f � ı� ıf;

is an injective homomorphism and has image  .End.B//DRf . The map  is easily
checked to be a homomorphism and is injective since rationally it is an isomorphism,
with inverse is given by  �1.�/D 1

n
f ı� ıf � .

For an integer k > 0, let BŒk� denote the k –torsion on B . The image of End.B/ is
contained in Rf since

ker.nf /
f
�! BŒn�

�
�! BŒn�

f �

�! ker.f /

for any � 2 End.B/. To see that the image of  is all of Rf , fix �0 2 End.A/˝Q

satisfying �0.ker.nf //� ker.f /. The endomorphism � D 1
n2f ı�0 ıf

� is integral
on B since

BŒn2�
f �

�! ker.nf /
�
�! ker.f /

f
�! 0:

Since  .�/D �0 , the image of  is all of Rf .

The isomorphism between End.B/ and Rf satisfies  .�/� D  .��/, since we have
.f ��f /� D f ���f .

Invertible modules over finite rings From Proposition 4.4 and the fact that Jac.X /
admits a degree four isogeny to E� �E� with E� DX=�.r/, we see that the discrim-
inant of the order for real multiplication on Jac.X / commuting with �.J / is, up to
factors of two, equal to �C , where C is the discriminant of End.E�/. To determine
the actual order for real multiplication, we first need to determine the possibilities
for E�Œ4� as an OC –module. The following proposition is well known.

Proposition 4.5 Let O be an imaginary quadratic order and I be an O–ideal which
is a proper O–module. The module I=nI is isomorphic to O=nO as O–modules.
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C mod 16 D1 D2 D3

0 �4C �C �4C

4 �4C �4C �C

8 �4C �C �4C

12 �4C �4C �C=4

1 or 9 �4C �4C �4C

5 or 13 �4C �4C �4C

Table 3: The elliptic curve E D C=OC is covered by three D8 –surfaces
.Xi ; �i/ . The discriminant Di of the order for real multiplication on Jac.Xi/

commuting with J is computed using Proposition 4.4.

For maximal orders, see Silverman [27, Proposition 1.4]. For nonmaximal orders,
Proposition 4.5 follows from the fact that O–ideals which are proper O–modules are
invertible (see Lang [14, Section 8.1]) and standard commutative algebra.

Formula for number and type of orbifold points on WD We are now ready to
prove our main theorem giving a formula for the number and type of orbifold points
on WD .

Proof of Theorem 1.1 We have already seen that, for discriminants D > 8, all of the
orbifold points on WD have orbifold order two. It remains to establish the formula for
the number of such points.

Recall from Section 2 that we constructed a holomorphic map gWM2.D8/! Y0.2/

given by g.X; �/ D .E�;Z�;T�/ which is an isomorphism onto the complement
of the point of orbifold order two .1 C i/=2 � �0.2/. For each E 2M1 without
automorphisms other than the elliptic involution, there are exactly three D8 –surfaces
.X; �/ with X=�.r/ isomorphic to E .

Now fix an imaginary quadratic discriminant C < 0. Setting EDC=OC , ZD 0COC ,
T1D 1=2COC , T2D .C C

p
C /=4COC and T3D T1CT2 , the three D8 –surfaces

covering E are the three surfaces .Xi ; �i/D g�1.E;Z;Ti/. Using Proposition 4.4, it
is straightforward to calculate the order for real multiplication on Jac.Xi/ commuting
with �i.J / and we do so in Table 3.

For an arbitrary E with End.E/ŠOC , we have that EŒ4�ŠOC =4OC as OC –modules
by Proposition 4.5 and the orders for real multiplication commuting with �.J / on the
D8 –surfaces covering E are the same as the orders when E DC=OC . The formula
for e2.WD/ follows easily from this and the fact that there are precisely h.OC / genus
one surfaces with End.E/ Š OC . The small discriminants where the D8 –surfaces
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labeled by orbifold points on WD cover genus one surfaces with automorphisms and
handled by the restriction D > 8 and by replacing h.OC / with the reduced class
number zh.OC /. Note that the factor of two in the formula for e2.WD/ comes from
the fact that the D8 –surfaces .X; �/ and � � .X; �/ have isomorphic J–eigenforms
and therefore label the same orbifold point on WD .

Enumerating orbifold points on WD We conclude this section by giving a simple
method for enumerating the � 2 U for which .X� ; Œ!� �/ 2WD .

Fix a discriminant D > 0 and a � 2Q.
p
�D/. We can choose integers e , k , b and c

so k2D D�e2C 2bc and � D .eC k
p
�D/=.2c/. The vectors

v1 D

 
1

1

!
; v2 D

 
1

�1

!
; v3 D

 
�

� C 1

!
; v4 D

 
�

�� � 1

!
;

generate the lattice ƒ� . The lattice ƒ� is preserved by multiplication by 
0 1

�1 0

!

giving an automorphism � 2 Aut.A� /, and the vector space ƒ� ˝Q is preserved by
the matrix  p

�D 0

0
p
�D

!

giving a rational endomorphism T 2 End.A� /˝Q. Together, � and T generate a
Hermitian-adjoint homomorphism �W Q.

p
�D; i/! End.A� /˝Q.

We want to give conditions on e , k , b and c so that the quadratic ring of discriminant D

in Q.
p
�D; i/ acts integrally on ƒ� . This ring is generated by S D .DC �T /=2

and it is straightforward to check that, in the basis v1; : : : ; v4 for ƒ� ˝Q, S acts by
multiplication by the matrix

S D
1

2k

0BB@
DkC c �e� c 0 2c

cC e Dk � c �2c 0

0 �e� b DkC c cC e

bC e 0 �e� c Dk � c

1CCA :
From this we see that S is integral, and Jac.X� /DC2=ƒ� has real multiplication by
an order containing OD and commuting with � , if and only if k divides c , b and e

and D � e=k � b=k � c=k mod 2.
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Pinwheel prototypes Motivated by this, define the set of pinwheel prototypes of dis-
criminant D , which we denote by E0.D/, to be the collection of triples .e; c; b/ 2Z3

satisfying

(4-1) D D�e2
C 2bc with D � e � c � b mod 2 and jej � c � b

and if jej D c or b D c then e � 0:

Note that if .e; c; b/ 2 E0.D/, then .fe; fc; f b/ 2 E0.f
2D/. We define E.D/ to

be the set of proper pinwheel prototypes in E0.D/, ie those which do not arise from
smaller discriminants in this way. Finally define �.e; c; b/D .eC

p
�D/=2c .

We can now prove the following proposition, which is a more precise version of
Theorem 1.9.

Proposition 4.6 Fix a discriminant D and .e; c; b/2E.D/. The one-form up to scale
.X� ; Œ!� �/, where � D .eC

p
�D/=.2c/, is an orbifold point on WD and, for D > 8,

the set E.D/ is in bijection with the orbifold points on WD :

e2.WD/D #E.D/:

Proof By our discussion above, the first two conditions on pinwheel prototypes
(D D�e2C 2bc and D � e � c � b mod 2) are equivalent to the requirement that
.X� ; Œ!� �/ where � D �.e; c; b/ is an eigenform for real multiplication by an order
containing OD . The condition that .e; c; b/ is proper ensures that the order for real
multiplication with eigenform !� is OD . The condition that jej � c � b is equivalent
to the condition that �.e; c; b/ is in the domain U . The condition that e � 0 when
jej D c or bD c ensures that Re.�.e; c; b//� 0 whenever �.e; c; b/ is in the boundary
of U .

Bounds on e2.WD/ It is easy to see that the conditions defining pinwheel prototypes
ensure c �

p
D , from which it is easy to enumerate the prototypes in E.D/ and prove

the following.

Proposition 4.7 For discriminants D > 8, the number of points of orbifold order two
satisfies

e2.WD/�D=2:

Proof The integers e and c determine b since bD .DCe2/=.2c/. From jej�c�
p

D

and the fact that e and c are congruent to D mod 2, e ranges over at most
p

D

possibilities and c ranges over at most
p

D=2 possibilities so e2.WD/ <D=2.
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Examples The sets E.D/ for some small discriminants D are

5E.5/D f.�1; 1; 3/g; E.8/D f.0; 2; 2/g; E.9/D f.�1; 1; 5/g;

E.12/D f.�2; 2; 4/g; E.13/D f.�1; 1; 7/g; E.16/D f.0; 2; 4/g;

E.17/D f.�1; 1; 9/; .�1; 3; 3/g:

5 Orbifold points by spin

By the results in [19], the Weierstrass curve WD is usually irreducible. For discriminants
D > 9 with D � 1 mod 8, WD has exactly two irreducible components, and they are
distinguished by a spin invariant. Throughout this section, we assume D is such a
discriminant. For such D , the number of points of orbifold order two is given by

e2.WD/D
1
2
zh.�4D/

and by our proof of Theorem 1.1 in Section 4, we have that an orbifold point of order
two .X; Œ!�/ 2WD is the �.J /–eigenform for a faithful D8 –action � on X and the
quotient E=�.r/ corresponds to an ideal class ŒI � 2 H.O�4D/. In this section, we
define a spin homomorphism �0W H.�4D/!Z=2Z and relate the spin of .X; Œ!�/ to
�0.ŒI �/ allowing us to establish the formula in Theorem 1.2.

One forms with double zero and spin structures We start by recalling spin struc-
tures on Riemann surfaces following [19] (cf also Atiyah [1]). A spin structure on a
symplectic vector space V of dimension 2g over Z=2Z is a quadratic form

qW V ! Z=2Z

satisfying q.xCy/D q.x/C q.y/Chx;yi, where h � ; � i is the symplectic form. The
parity of q is given by the Arf invariant

Arf.q/D
X

i

q.ai/q.bi/ 2 Z=2Z;

where a1; b1; : : : ; ag; bg is a symplectic basis for V .

A one-form with double zero ! on X 2M2 determines a spin structure on H1.X ;Z=2Z/
as follows. Any loop  W S1! X whose image avoids the zero of ! gives a Gauss
map

G W S
1
! S1; G .x/D !.

0.x//=j!. 0.x//j:

The degree of G is invariant under homotopy that avoids the zero of ! and changes by
a multiple of two under general homotopy. Denoting by Œ � the class in H1.X;Z=2Z/
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represented by  , the function

q.Œ �/D 1C deg.G / mod 2

defines a spin structure on X.

Pinwheel spin Now consider the surface X� obtained from the pinwheel P� and the
one-form !� 2�.X� / obtained from dz on P� as usual. Let b D � C .1� i/=2 and
let xt 2H1.X� ;Z=2Z/ be the class represented by the integral homology class with
period t 2 ZŒi �˚ bZŒi � when integrated against !� . The classes x1 , xi , xb and xbi

form a basis for H1.X� ;Z=2Z/, and we have the following.

Proposition 5.1 The spin structure q on X� associated to !� has

(5-1) q.k1x1C k2xi C k3xbC k4xbi/D k2
1 C k2

2 C k1k3C k2k4C k3k4 mod 2:

Proof Finding loops t W S
1!X� representing xt and avoiding the zero of !� , we

can compute the degree of the Gauss map directly and show that

q.x1/D q.xi/D 1; q.xb/D q.xbi/D 0:

From the relation q.xCy/D q.x/C q.y/Chx;yi, any basis xn of H1.X� ;Z=2Z/
has

q
�X

n

knxn

�
D

X
n

k2
nq.xn/C

X
l<n

klknhxl ;xni:

Computing the intersection pairing on the basis fx1;xi ;xb;xbig gives the stated for-
mula for q .

Spin components of WD For .X; Œ!�/2WD , the vector space H1.X;Z=2Z/ is also
an OD –module via �Œ!�C W OD ! End.Jac.X //. Let f be the conductor of OD , ie the
integer satisfying D D f 2D0 where D0 is the maximal order in KD . Since D � 1

mod 8, the image W of .f C
p

D/=2 acting on H1.X;Z=2Z/ is two-dimensional,
and we define the spin of .X; Œ!�/ to be the parity of q restricted to W :

�.X; Œ!�/D Arf.qjW /:

We also define

W i
D D f.X; Œ!�/ 2WD j �.X; Œ!�/D ig for i D 0 or 1:

As was shown in [19], for discriminants D>9 with D�1 mod 8, the components W 0
D

and W 1
D

are both nonempty and irreducible.
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Ideal classes Now let I �K�4D be a fractional and proper O�4D –ideal, ie satisfies
End.I/ D O�4D , and let EI D C=I . There are three D8 –surfaces .X; �/ with
X=�.r/ D EI . From Table 3, we see that exactly one of these, which we will call
.XI ; �I /, is labeled by an orbifold point on WD , with the others being labeled by
orbifold points on W16D . This D8 –surface satisfies g.XI ; �I /D .EI ;Z;T / where
Z D 0C I and T generates a subgroup of EŒ2� invariant under O�4D .

Spin homomorphism Now let n be the odd integer satisfying Nm.I/ D 2kn and
define

(5-2) �0.I/D
n� 1

2
mod 2:

We will give a formula for the spin invariant of the orbifold point on WD corresponding
to .XI ; �I / in terms of �0.I/. To start, we show the following.

Proposition 5.2 The number �0.I/ depends only on the ideal class of I and defines a
spin homomorphism

�0W H.�4D/! Z=2Z:

The spin homomorphism �0 is the zero map if and only if D is a square.

Proof Any x 2O�4D has norm Nm.x/D x2
1
Cx2

2
DD 2k l with l � 1 mod 4. If the

ideals I and J are in the same ideal class, they satisfy xI D yJ for some x and y in
O�4D and �0.I/D �0.J /. The map �0 is a homomorphism since the norm of ideals
is a homomorphism.

Now suppose D D f 2 is a square. Any O�4D –ideal class has a representative of the
form I D xZ˚.f i�y/Z with x and y in Z. Since I is an ideal, x divides f 2Cy2

and since I is proper gcd.x;y; .f 2Cy2/=x/D 1. If an odd prime p divides Nm.I/,
then p divides x2 , f 2Cy2 and y . Since f 2 ��y2 mod p and p does not divide
both f and y , �1 is a square modulo p , p � 1 mod 4 and �0.I/D 0.

If D is not a square, DD p
k1

1
p

k2

2
� � �p

kn
n with pl distinct odd primes and k1 odd. By

Dirichlet’s Theorem, there is a prime p with

� p � 3 mod 4,

� p � 1 mod pl for l > 1,

� . p
p1
/D�1.

Quadratic reciprocity gives .�D
p
/D 1 and guarantees a solution x to x2��D mod p .

The ideal I D pZ˚ .
p
�D�x/Z is an O�4D –ideal, has norm p and �0.I/D 1.
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Remark When D � 1 mod 8, the ideal .2/ ramifies in O�4D and there is a prime
ideal P with P2 D .2/. Since Nm.P / D 2, we have �0.P / D 0. The ideal classes
represented by I DZ˚ �Z and J DZ˚�1=2�Z satisfy ŒI �D ŒPJ �. This is related
to the fact the polygonal pinwheels P� and P�1=2� give the same point on WD and
so must have the same spin invariant.

Proposition 5.3 Fix a � 2 U with .X� ; Œ!� �/ 2WD and let I DZ˚ �Z. The spin of
.X� ; Œ!� �/ is given by the formula

�.X� ; Œ!� �/D
f C 1

2
C �0.ŒI �/ mod 2:

Proof We saw in Section 2 that X� has a faithful D8 –action �� with g.X� ; �� /D

.EI D C=I;Z D 0C I;T D 1=2C I/. By our proof of Theorem 1.1 in Section 4,
we have that End.EI /DO�4D and T generates a subgroup of EI Œ2� invariant under
O�4D , ie 1C

p
�D 2 2I .

Since I is an ideal, then
p
�D D x� Cy for some x and y 2 Z, x divides DCy2

and I has the same class as I0 D xZ˚ .
p
�D � y/Z. Since I is proper, we have

that gcd.x;y; .DC y2/=x/D 1 and the norm of I0 is x up to a factor of two. The
condition 1C

p
�D 2 2I implies that x � 2 mod 4 and �0.I/� .x� 2/=4 mod 2.

In order to compute the spin invariant �.X� ; Œ!� �/, we need to determine the subspace
W D Im..f C

p
D/=2/ of H1.X;Z=2Z/ and evaluate Arf.qjW /. The subspace W

is spanned by v and J�v , where

v D x
.f�i

p
�D/=2

�
2f Cx

4
x1C

x� 2y

4
xi Cxbi mod 2:

Here, as above, xt 2H1.X;Z=2Z/ is the homology class represented by an integral
homology class with !� –period t . By Proposition 5.1 and the fact that q is J� –
invariant, we have

�.X� ; Œ!� �/D q.v/2 D
f C 1

2
C �0.ŒI �/ mod 2:

Our formula for the number of orbifold points on the spin components of WD follows
readily from the previous two propositions.

Proof of Theorem 1.2 When D D f 2 , the spin homomorphism �0 is the zero map
and all of the orbifold points on WD lie on the spin .f C 1/=2 mod 2 component
of WD . When D is not a square, �0 is onto, and exactly half of the orbifold points
on WD lie on each spin component.
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Remark For square discriminants DDf 2 , there is an elementary argument that shows
e2.W

.f�1/=2
D

/D 0. For .X� ; Œ!� �/ 2WD , the number � is in Q.i/ and rescaling P� ,
we can exhibit X� as the quotient of a polygon �P� with vertices in ZŒi � and area f .
The surface X� is “square-tiled” and admits a degree f map �W X�!C=ZŒi � branched
over a single point. The spin of .X� ; Œ!� �/ can be determined from the number of
Weierstrass points X W

� mapping to the branch locus of � ; see [19, Theorem 6.1]. This
number is, in turn, determined by f , as can be seen by elementary Euclidean geometry.

Corollary 5.4 Fix D � 9 with D � 1 mod 8 and conductor f , a pinwheel prototype
.e; c; b/ 2E.WD/ and set � D .eC

p
�D/=2c . The surface .X� ; Œ!� �/ has spin given

by

�.X� ; Œ!� �/D
cCf

2
mod 2:

Proof The surface X� corresponds to the ideal class of I D 2cZ˚ .�eC
p
�D/Z

in H.�4D/ and the norm of I is 2c .

6 Genus of WD

Together with [2; 19], Theorems 1.1 and 1.2 complete the determination of the homeo-
morphism type of WD , giving a formula for the genus of the irreducible components
of WD . In this section, we will prove the following upper bound on the genus of the
components of WD .

Proposition 6.1 For any � > 0, there are positive constants C� and N� such that

C�D
3=2C� > g.V /

whenever V is a component of WD and D >N� .

We will also give effective lower bounds.

Proposition 6.2 Suppose D> 0 is a discriminant and V is a component of WD . If D

is not a square, the genus of V satisfies

g.V /�D3=2=600�D=16�D3=4=2� 75:

If D is a square, the genus of V satisfies

g.V /�D3=2=240� 7D=10�D3=4=2� 75:
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These two propositions immediately imply Corollary 1.3. Also, the following propo-
sition shows that the components of

S
D WD with genus g � 4 are all listed in

Appendix B, giving Corollary 1.4 as an immediate consequence.

Corollary 6.3 The components of
S

D WD with genus g � 4 all lie on
S

D�121 WD .

Proof The bounds in Proposition 6.2 show that g.V / > 4 whenever D > 7000 for
nonsquare D and D > 2002 for square D . The remaining discriminants were checked
by computer.

Orbifold Euler characteristic and genus Let � � PSL2.R/ be a lattice and let
X DH=� be the finite-volume quotient. The homeomorphism type of X is determined
by the number of cusps C.X / of X, the number en.X / of points of orbifold order n

for each n> 1, and the genus g.X / of X. The orbifold Euler characteristic of X is
the following linear combination of these numbers:

�.X /D 2� 2g.X /�C.X /�
X

n

.1� 1=n/en.X /:

Euler characteristic of XD and WD The Hilbert modular surface XD has a mero-
morphic modular form with a simple zero along WD and simple pole along PD . This
gives a simple relationship between the orbifold Euler characteristics of WD , PD

and XD and a modular curve SD in the boundary of XD . The curve SD is empty
unless D D f 2 is a square, in which case SD ŠX1.f /.

Theorem 6.4 [2, Corollary 10.4] The Euler characteristic of WD satisfies

�.WD/D �.PD/� 2�.XD/��.SD/:

For a discriminant D , define

F.D/D
Y
pjf

�
1�

�
D0

p

�
p�2

�
;

where f is the conductor of OD , D0DD=f 2 is the discriminant of the maximal order
in Q.

p
D/ and the product is over primes dividing f . The number F.D/ satisfies

1� F.D/ > �Q.2/
�1 > 6=10.

For square discriminants, �.SD/D�f
2F.D/=12 and the Euler characteristic of WD

and its components are given by [2, Theorem 1.4]

�.Wf 2/D�f 2.f � 1/F.D/=16; �.W 0
f 2/D�f

2.f � 1/F.D/=32;

�.W 1
f 2/D�f

2.f � 3/F.D/=32:
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For nonsquare discriminants, we have �.SD/D0 and �.PD/D�
5
2
�.XD/, which gives

�.WD/D�
9
2
�.XD/. The Euler characteristic �.XD/ can be computed from [2, The-

orem 2.12]:
�.XD/D 2f 3�D0

.�1/F.D/:

Here �D0
is the Dedekind zeta function and can be computed from Siegel’s formula

(see Bruinier [8, Corollary 1.39]),

�D0
.�1/D

1

60

X
e2<D0; e�D0 mod 2

�

�
D0� e2

4

�
;

where �.n/ is the sum of the divisors of n. For reducible WD , the spin components
satisfy �.W 0

D
/D �.W 1

D
/D 1

2
�.WD/ [2, Theorem 1.3].

The well-known bound �.n/D o.n1C�/ gives constants C� and N� so

C�D
3=2C� > �.XD/

whenever D >N� . Using �.n/ > nC 1 and F.D/ > 6=10 gives

�.XD/ >D3=2=300:

We can now prove the upper bounds for the genus of WD .

Proof of Proposition 6.1 For square discriminants DD f 2 , we have j�.WD/j � f
3 .

For nonsquare discriminants, the bounds for �.XD/ and �.WD/ D �9�.XD/=2

gives j�.WD/j D O.D3=2C�/. Since WD has one or two components, we have
that g.WD/DO.j�.WD/j/.

The modular curve PD The modular curve PD is isomorphic to� G
.e;l;m/

Y0.m/

�
=g;

where the union is over triples of integers .e; l;m/ with

D D e2
C 4l2m; l;m> 0; gcd.e; l/D 1;

and g is the automorphism sending the degree m isogeny i on the component labeled
by .e; l;m/ to the isogeny i� on the .�e; l;m/–component (cf [19, Theorem 2.1]).
The isogeny i W E! F on the .e; l;m/–component corresponds to the abelian variety
B DE �F with OD generated by �..eC

p
D/=2/D li C li�C Œe�E , where Œe�E is

the multiplication by e–map on E .
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In particular, the components of PD are labeled by triples .e; l;m/ as above subject to
the additional condition e � 0. We will need the following bound on the number of
such triples.

Proposition 6.5 The number of components of PD satisfies h0.PD/�D3=4C 150.

Proof Let l.n/ denote the largest integer whose square divides n and f .n/D d.l.n//

be the number of divisors of l.n/. The function f is multiplicative and the number of
triples .e; l;m/ with e fixed is bounded above by f ..D�e2/=4/. There is a finite set S

of natural numbers n for which f .n/ > n1=4 (they are all divisors of 212365472112 )
since d.n/ is o.n�/ for any � > 0 and it is easy to check that

P
n2S f .n/�n1=4< 150.

The asserted bound on h0.PD/ follows from

h0.PD/�
X

e�D mod 2
0�e<

p
D

f

�
D� e2

4

�
� 150C

X
e

�
D� e2

4

�1=4

:

Cusps on WD and PD Let C1.WD/ and C2.WD/ be the number of one- and two-
cylinder cusps on WD respectively and C.WD/ D C1.WD/CC2.WD/ be the total
number of cusps. The cusps on WD were first enumerated and sorted by component
in [19].

Proposition 6.6 For nonsquare discriminants, the number of cusps on WD is equal to
the number of cusps on PD :

C.WD/D C2.WD/D C.PD/;

and C.W 0
D
/D C.W 1

D
/ when WD is reducible. For square discriminants D D f 2 , the

number of one- and two-cylinder cusps satisfy

C2.Wf 2/ < C.Pf 2/; C1.Wf 2/ < f 2=3:

When f is odd, jC.W 1
f 2/�C.W 0

f 2/j< 7f 2=12.

Proof Except for the explicit bounds on C1.Wf 2/ and jC.W 1
f 2/�C.W 0

f 2/j, the
claims in the proposition follow from the enumeration of cusps on PD and WD

in [2, Section 3.1].

We now turn to the bounds on C1.Wf 2/ and jC.W 1
f 2/�C.W 0

f 2/j. When D is not a
square, there are no one-cylinder cusps and when DD f 2 is a square, the one-cylinder
cusps are parametrized by cyclically ordered triples .a; b; c/ with (cf [19, Theorem A.1])

f D aC bC c; a; b; c > 0; gcd.a; b; c/D 1:
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Cyclically reordering .a; b; c/ so a < b and a < c ensures that a < f=3 and b < f ,
giving C1.WD/ < f

2=3DD=3. The difference in the number of two cylinder cusps
is given by [19, Theorem A.4]

C2.W
0

D/�C2.W
1

D/D
X

bCcDf;0<c<b

�.gcd.b; c//;

which is smaller than D=4 using c<f=2 and �.gcd.b; c//<f=2. The bound asserted
for jC.W 0

D
/�C.W 1

D
/j follows.

We are now ready to prove the lower bounds in Proposition 6.2.

Proof of Proposition 6.2 We will handle the square and nonsquare discriminants
separately.

Lower bounds, nonsquare discriminants Suppose D is a nonsquare discriminant
and D > 8 so all of the orbifold points on WD have order two. Using the formula
�.WD/D�.PD/�2�.XD/, the equality C.PD/DC.WD/ and ignoring several terms
which contribute positively to the g.WD/ gives

g.WD/� �.XD/� h0.PD/� e2.WD/=4:

Combining the bound above with �.XD/ > D3=2=300, h0.PD/ < D3=4 C 150,
e2.WD/ <D=2 (Proposition 4.7) and g.V /� 1

2
g.WD/ whenever V is a component

of WD gives the bound stated in Proposition 6.2.

Lower bounds, square discriminants Now suppose DD f 2 . Using the formula for
�.WD/ in terms of �.XD/, �.PD/ and �.SD/, the bound C2.WD/ < C.PD/ and
ignoring some terms which contribute positively to g.WD/ gives

g.WD/� �.XD/� h0.PD/� e2.WD/=4C�.SD/=2�C1.WD/=2:

As before we have h0.PD/ < D3=4 C 150, e2.WD/ < D=2 and C1.WD/ < D=3.
By [2, Theorem 2.12, Proposition 10.5] and using �Q.2/ > 6=10, we have that
�.XD/C�.SD/=2>D3=2=120�D=40 so long as D > 36, giving

g.WD/�D3=2=120� 2D=5�D3=4
� 150:

Finally, to bound g.V / when V is a component of WD , we bound the differenceˇ̌
g.W 0

D/�g.W 1
D/
ˇ̌
�

ˇ̌̌̌
�.W 1

D
/��.W 0

D
/

2

ˇ̌̌̌
C

ˇ̌̌̌
C.W 1

D
/� c.W 0

D
/

2

ˇ̌̌̌
C e2.WD/=4:

We have seen that jC.W 1
D
/�C.W 0

D
/j< 7D=12 and e2.WD/=4<D=8. Theorem 1.4

of [2] gives j�.W 0
D
/��.W 1

D
/j <D=16 and jg.W 1

D
/� g.W 0

D
/j <D=2. The bound

asserted for g.V / in Proposition 6.2 follows.
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Appendix A: The D12–family

In this section we will describe the surfaces in M2.D12/. For a smooth surface
X 2M2 , the following are equivalent.

� Automorphisms The automorphism group Aut.X / admits an injective homo-
morphism �W D12! Aut.X /.

� Algebraic curves The field of functions C.X / is isomorphic to the field

zKa DC.z;x/; z2
D x6

� ax3
C 1;

for some a 2C n f˙2g.

� Jacobians The Jacobian Jac.X / is isomorphic to the principally polarized
abelian variety

zA� DC2=zƒ� ;

where

zƒ� D Z

� 
1

1=
p

3

!
;

 
�
p

3�

!
;

 
1

�1=
p

3

!
;

 
�

�
p

3�

!�
and is polarized by the symplectic form� 

a

b

!
;

 
c

d

!�
D
� Im.axcC b xd/

2 Im �
:

� Hexagonal pinwheels The surface X is isomorphic to the surface zX� obtained
by gluing the hexagonal pinwheel H� (Figure 4) to �H� for some � in the
domain

zU D
˚
� 2H

ˇ̌
� ¤ �12=

p
3 or �5

12=
p

3; jRe � j � 1
2

and j� j2 � 1
3

	
:

It is straightforward to identify the action of D12 on the surfaces described above. The
field zKa has automorphisms Z.z;x/ D .�z; �3x/ and r.z;x/ D .z=x3; 1=x/. The
polarized lattice zƒ� is preserved by the linear transformations

r D

 
1 0

0 �1

!
; Z D

1

2

 
1 �

p
3

p
3 1

!
:

The surface obtained from zX� has an order six automorphism Z� with ŒZ� j zX W
�
�D Œ3; 3�

which implies that zX� has a faithful D12 –action (cf Table 2 in Section 2).
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0

z0

�

Figure 4: For � in the shaded domain zU , the hexagonal pinwheel H� has ver-
tices fz0; �

˙1
3 z0; �; �

˙1
3 �g with z0 D �12=

p
3 . Gluing together sides on H�

and �H� by translation gives a genus two surface admitting an action of D12 .
The one-form induced by dz is a Z–eigenform.

The family M2.D12/ admits an analysis which is similar to that of M2.D8/. For
.X; �/ 2M2.D12/, the quotient E D X=�.r/ has genus one and a distinguished
subgroup of order three in EŒ3�. One can establish the precise relationship between
zX� , zA� and zKa by studying the corresponding map from M2.D12/ to the modular

curve Y0.3/.

Appendix B: Homeomorphism type of WD

The Weierstrass curve WD is a finite-volume hyperbolic orbifold and for D > 8 its
homeomorphism type is determined by the genus g.WD/, the number of orbifold
points of order two e2.WD/, the number of cusps C.WD/ and the Euler characteristic
�.WD/. In this section, we will present a table which describes the homeomorphism
type of WD ; see Table 3.
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D g.WD/ e2.WD/ C.WD/ �.WD/ D g.WD/ e2.WD/ C.WD/ �.WD/

5 0 1 1 �
3

10
72 4 1 16 �

45
2

8 0 0 2 �
3
4

73 f1; 1g f1; 1g f16; 16g f�33
2
;�33

2
g

9 0 1 2 �
1
2

76 4 3 21 �
57
2

12 0 1 3 �
3
2

77 5 4 8 �18

13 0 1 3 �
3
2

80 4 4 16 �24

16 0 1 3 �
3
2

81 f2; 0g f0; 3g f16; 14g f�18;�27
2
g

17 f0; 0g f1; 1g f3; 3g f�
3
2
;�3

2
g 84 7 0 18 �30

20 0 0 5 �3 85 6 2 16 �27

21 0 2 4 �3 88 7 1 22 �
69
2

24 0 1 6 �
9
2

89 f3; 3g f3; 3g f14; 14g f�39
2
;�39

2
g

25 f0; 0g f0; 1g f5; 3g f�3;�3
2
g 92 8 6 13 �30

28 0 2 7 �6 93 8 2 12 �27

29 0 3 5 �
9
2

96 8 4 20 �36

32 0 2 7 �6 97 {4,4} {1,1} {19,19} f�51
2
;�51

2
g

33 f0; 0g f1; 1g f6; 6g f�
9
2
;�9

2
g 100 4 0 30 -36

36 0 0 8 �6 101 6 7 15 �
57
2

37 0 1 9 �
15
2

104 9 3 20 �
75
2

40 0 1 12 �
21
2

105 {6,6} {2,2} {16,16} f�27;�27g

41 f0; 0g f2; 2g f7; 7g f�6;�6g 108 10 3 21 �
81
2

44 1 3 9 �
21
2

109 8 3 25 �
81
2

45 1 2 8 �9 112 10 2 29 �48

48 1 2 11 �12 113 {6,6} {2,2} {16,16} f�27;�27g

49 f0; 0g f2; 0g f10; 8g f�9;�6g 116 11 0 25 �45

52 1 0 15 �15 117 10 4 16 �36

53 2 3 7 �
21
2

120 16 2 20 �51

56 3 2 10 �15 121 {6,3} {3,0} {26,26} f�75
2
;�30g

57 {1,1} {1,1} {10,10} f�21
2
;�21

2
g 124 15 6 29 �60

60 3 4 12 �18 125 11 5 15 �
75
2

61 2 3 13 �
33
2

128 13 4 22 -48

64 1 2 17 �18 129 {8,8} {3,3} {22,22} f�75
2
;�75

2
g

65 f1; 1g f2; 2g f11; 11g f�12;�12g 132 15 0 26 -54
68 3 0 14 �18 133 15 2 22 -51
69 4 4 10 �18 136 17 2 36 -69
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D g.WD/ e2.WD/ C.WD/ �.WD/

137 {9,9} {2,2} {19,19} f�36;�36g

140 19 6 18 �57

141 18 4 18 �54

144 11 4 38 �60

145 {10,10} {2,2} {29,29} f�48;�48g

148 20 0 37 �75

149 16 7 19 �
105

2

152 22 3 18 �
123

2

153 {10,10} {2,2} {26,26} f�45;�45g

156 25 8 26 �78

157 20 3 25 �
129

2

160 22 4 40 �84

161 {14,14} {4,4} {20,20} f�48;�48g

164 20 0 34 �72

165 24 4 18 �66

168 29 2 24 �81

169 {14,7} {0,3} {37,39} f�63;�105
2
g

172 29 3 37 �
189

2

173 22 7 13 �
117

2

176 27 6 29 �84

177 {17,17} {1,1} {26,26} f�117
2
;�117

2
g

180 28 0 36 �90

181 26 5 33 �
171

2

184 37 2 38 �111

185 {17,17} {4,4} {23,23} f�57;�57g

188 31 10 19 �84

189 27 6 26 �81

192 31 4 34 �96

193 {19,19} {1,1} {37,37} f�147
2
;�147

2
g

196 25 0 60 �108

197 26 5 21 �
147

2

200 31 3 36 �
195

2

201 {20,20} {3,3} {34,34} f�147
2
;�147

2
g

204 38 6 40 �117

213 36 4 18 �90

216 38 3 46 �2432

217 {25,25} {2,2} {38,38} f�87;�87g
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D g.WD/ e2.WD/ C.WD/ �.WD/

220 46 8 44 �138

221 32 8 30 �96

224 42 8 34 �120

225 {21,16} {4,0} {42,42} f�84;�72g

41376 164821 112 1552 �331248

41377 {113276, 113276 } {28, 28} {1442, 1442} f�228006;�228006g

41380 178100 0 3154 �359352

41381 119380 89 665 �
478935

2

41384 145957 68 884 �292830

41385 {107869, 107869} {24, 24} {1284, 1284} f�217032;�217032g

41388 155386 54 1188 �311985

Table 3: The Weierstrass curve WD is a finite-volume hyperbolic orbifold and
for D > 8 its homeomorphism type is determined by the genus g.WD/ , the
number of orbifold points of order two e2.WD/ , the number of cusps C.WD/

and the Euler characteristic �.WD/ . The values of these topological invari-
ants are listed for each curve WD with D � 225 as well as several larger
discriminants. When D > 9 with D � 1 mod 8 , the curve WD is reducible
and the invariants are listed for both spin components with the invariants
for W 0

D appearing first.

Appendix C: Algebraic curves labeled by
orbifold points on WD

In this section, we present Table 4, a table of algebraic curves labeled by orbifold points
on WD .

D fD.t/

5 t2� 68t C 124

8 t C 6

9 t2� 772t � 1532

12 .t � 14/.t C 1/

13 t2� 5188t � 10364

16 .2t2C 73t C 170/

17 t4� 26376t3� 209384t2� 943136t � 1259504

21 t4� 111752t3C 555288t2C 1774048t C 433168

24 t2C 140t C 292

25 t2� 414724t � 829436
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D fD.t/

28 .t � 254/.16t C 31/.16t2C 17t C 226/

29 t6� 1390796t5� 35420996t4� 640534176t3

�3448572688t2� 7486135488t � 5780019136

32 .t2C 452t � 124/.4t2� 12t � 41/

33 t4� 4301576t3C 93537816t2C 356944864t C 305326096

37 t2� 12446788t � 24893564

40 t2C 1292t C 2596

41 t8� 34052624t7� 1944255376t6� 98991188416t5� 478185515936t4

�1414176696064t3� 4859849685248t2� 10349440893952t � 7969572716288

44 .t3� 2090t2� 7604t � 10936/.t3C 3t2C 131t C 257/

45 t4� 88796296t3C 237562136t2C 595063264t � 470492144

48 .t2C 3332t C 10756/.16t2C 272t C 481/

49 t4� 222082568t3� 2565706728t2� 11151157280t � 13816147952

53 t6� 535413964t5� 72289563460t4� 9219442091680t3

�54695502924560t2� 110556205489344t � 74946436241344

56 t4C 7960t3� 3368t2C 18272t C 113936

Table 4: When a is a root of fD.t/ , the algebraic curve X satisfying
C.X /Š C.x; z/ where z2 D .x2 � 1/.x4 � ax2C 1/ is labeled by a point
on WD .
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