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Burnside’s Problem, spanning trees and tilings

BRANDON SEWARD

In this paper we study geometric versions of Burnside’s Problem and the von Neu-
mann Conjecture. This is done by considering the notion of a translation-like action.
Translation-like actions were introduced by Kevin Whyte as a geometric analogue
of subgroup containment. Whyte proved a geometric version of the von Neumann
Conjecture by showing that a finitely generated group is nonamenable if and only if it
admits a translation-like action by any (equivalently every) nonabelian free group. We
strengthen Whyte’s result by proving that this translation-like action can be chosen
to be transitive when the acting free group is finitely generated. We furthermore
prove that the geometric version of Burnside’s Problem holds true. That is, every
finitely generated infinite group admits a translation-like action by Z . This answers
a question posed by Whyte. In pursuit of these results we discover an interesting
property of Cayley graphs: every finitely generated infinite group G has some locally
finite Cayley graph having a regular spanning tree. This regular spanning tree can be
chosen to have degree 2 (and hence be a bi-infinite Hamiltonian path) if and only if
G has finitely many ends, and it can be chosen to have any degree greater than 2 if
and only if G is nonamenable. We use this last result to then study tilings of groups.
We define a general notion of polytilings and extend the notion of MT groups and ccc
groups to the setting of polytilings. We prove that every countable group is poly-MT
and every finitely generated group is poly-ccc.

20F65; 05C25, 05C63

1 Introduction

This paper focuses on the notion of a translation-like action, introduced by Kevin Whyte
in [14], and its relevance to geometric versions of Burnside’s Problem and the von
Neumann Conjecture. The classical Burnside’s Problem asks if every finitely generated
infinite group contains Z as a subgroup, and the classical von Neumann Conjecture
states that a group is nonamenable if and only if it contains a nonabelian free group as
a subgroup. Although both of these problems are known to have negative answers (by
work of Golod and Shafarevich [7] and Olshanskii [9], respectively), translation-like
actions provide us with a new geometric perspective of these classical problems. Study
of this notion in turn leads us to findings about Hamiltonian paths, regular spanning
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trees of Cayley graphs and tilings of groups. While we are primarily interested in
translation-like actions on groups, we are naturally led to consider translation-like
actions on graphs as well. We therefore present a general definition of translation-like
actions.

Definition 1.1 (Whyte [14]) Let H be a group and let .X; d/ be a metric space. A
right action � of H on X is translation-like if it satisfies the following two conditions:

(i) The action is free (ie x � hD x implies hD 1H ).

(ii) For every h 2H the set fd.x;x � h/ j x 2X g is bounded.

We view every finitely generated group as a metric space by using a left-invariant word
length metric associated to some finite generating set, and we view every connected
graph as a metric space by using the path length metric (see the next section for details).

We point out that if H acts translation-like on a finitely generated group or a graph X,
then for all h 2H the map x 2X 7! x�h 2X is bilipschitz [14]. Thus, in the context
of finitely generated groups and graphs one could equivalently define translation-like
actions to be free actions by bilipschitz maps at bounded distance from the identity
map.

Whyte’s motivation in defining translation-like actions is that it serves as a geometric
analogue of subgroup containment. Specifically, we have the following proposition
whose proof is trivial.

Proposition 1.2 (Whyte [14]) Let G be a finitely generated group and let H � G.
Then the natural right action of H on G is a translation-like action.

In [14], Whyte suggested that conjectures relating geometric properties to subgroup
containment may hold true if one requires a translation-like action in place of a subgroup.
Specifically, Whyte mentioned the following three well known conjectures/problems.

(1) Burnside’s Problem: Does every finitely generated infinite group contain Z as a
subgroup?

(2) The von Neumann Conjecture: A group is nonamenable if and only if it contains
a nonabelian free subgroup.

(3) Gersten Conjecture: A finitely generated group is not word hyperbolic if and
only if it contains some Baumslag–Solitar group.

All three of the above conjectures/problems were answered negatively by Golod and
Shafarevich [7], Olshanskii [9] and Brady [3], respectively. Whyte suggested the
following “geometric reformulations” of these problems.
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(1 0 ) Geometric Burnside’s Problem: Does every finitely generated infinite group
admit a translation-like action by Z?

(2 0 ) Geometric von Neumann Conjecture: A finitely generated group is nonamenable
if and only if it admits a translation-like action by a nonabelian free group.

(3 0 ) Geometric Gersten Conjecture: A finitely generated group is not word hyperbolic
if and only if it admits a translation-like action by some Baumslag–Solitar group.

Whyte proved (2 0 ).

Theorem 1.3 (Geometric von Neumann Conjecture; Whyte [14]) A finitely gener-
ated group is nonamenable if and only if it admits a translation-like action by some
(equivalently every) nonabelian free group.

In this paper we answer (1 0 ) in the affirmative.

Theorem 1.4 (Geometric Burnside’s Problem) Every finitely generated infinite group
admits a translation-like action by Z.

We actually prove something stronger than both (1 0 ) and (2 0 ). The main distinction of
the following theorem, as opposed to Theorems 1.3 and 1.4, is the transitivity of the
action.

Theorem 1.5 Let G be a finitely generated infinite group. Then:

(i) G has finitely many ends if and only if it admits a transitive translation-like
action by Z.

(ii) G is nonamenable if and only if it admits a transitive translation-like action by
every finitely generated nonabelian free group.

In particular, every finitely generated infinite group admits a transitive translation-like
action by some (possibly cyclic) free group.

In pursuit of the above theorem we prove two graph-theoretic results.

Theorem 1.6 Let � be a connected graph whose vertices have uniformly bounded
degree. Then � is bilipschitz equivalent to a graph admitting a Hamiltonian path if and
only if � has at most two ends.

Theorem 1.7 Let ƒ1 and ƒ2 be two trees. If every vertex of ƒ1 and ƒ2 has degree
at least three and if the vertices of ƒ1 and ƒ2 have uniformly bounded degree, then ƒ1

and ƒ2 are bilipschitz equivalent.
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In [11], Papasoglu proved Theorem 1.7 under the additional assumption that ƒ1 and ƒ2

are regular trees of degree at least 4.

Theorem 1.5 above may be stated in an equivalent form without mention of translation-
like actions. This alternative form, below, illustrates a peculiar property of the set of
Cayley graphs associated to a group. The Cayley graphs mentioned in the following
theorem are understood to be Cayley graphs coming from finite generating sets.

Theorem 1.8 If G is a finitely generated infinite group then G has a Cayley graph
admitting a regular spanning tree. In fact, for every integer k > 2 the following hold:

(i) G has finitely many ends if and only if G has a Cayley graph admitting a
Hamiltonian path (ie a regular spanning tree of degree 2).

(ii) G is nonamenable if and only if G has a Cayley graph admitting a regular
spanning tree of degree k .

We give an example to show that “a Cayley graph” cannot be replaced by “every Cayley
graph.” Thus only certain Cayley graphs have regular spanning trees, but yet every
finitely generated infinite group has at least one Cayley graph with this property.

We give a nontrivial application of Theorem 1.8 to tilings of groups, the final topic
of this paper. Tilings of groups have been studied by Chou [5], Gao, Jackson and
Seward [6] and Weiss [13] due to their usefulness in studying group actions, dynamics,
equivalence relations and general marker structures. From the algebraic and geometric
viewpoints, tilings of groups are still rather mysterious as they have received little
investigation and much is still unknown. In this paper we study polytiles and polytilings.
These are more general notions than studied in [5; 6; 13].

Definition 1.9 For a countable group G, a tuple .T1;T2; : : : ;Tk/ of finite subsets
of G, all containing the identity element, is a polytile if there are nonempty sets
�1; �2; : : : ; �k �G so that G is the disjoint union

G D
a

1�i�k; ı2�i

ıTi :

We call the tuple P D .�1; : : : ; �k IT1; : : : ;Tk/ a polytiling of G. The partition of G

expressed above is called the partition of G induced by P. In the case k D 1, polytiles
are referred to as monotiles and polytilings are referred to as monotilings.

Chou [5] and Weiss [13] studied which groups G have the property that for every finite
F �G there is a monotile T with F � T . Weiss called groups with this property MT
groups (an acronym for “monotileable”). Chou [5] proved that residually finite groups,
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elementary amenable groups (in particular solvable groups) and groups which are free
products of nontrivial groups are MT. Beyond these results, no other groups are known
to be MT. Interestingly, there are also no known examples of groups which are not
MT. In this paper we define and consider a related weaker question: Which groups are
poly-MT? Of course, care needs to be taken in defining a notion of poly-MT as any
tuple .T1;T2; : : : ;Tk/ containing a singleton is a polytile. To rule out such trivialities,
one wants to consider tuples .T1;T2; : : : ;Tk/ where the cardinalities of the Ti do
not vary too much. The following definition seems to give the strongest restriction in
this sense.

Definition 1.10 A polytile .T1;T2; : : : ;Tk/ is fair if all of the Ti have the same
number of elements. Similarly, a polytiling .�1; : : : ; �k IT1; : : : ;Tk/ is fair if the
polytile .T1; : : : ;Tk/ is fair.

Definition 1.11 A countable group G is poly-MT if for every finite F �G there is a
fair polytile .T1; : : : ;Tk/ with F � T1 .

We prove the following. Recall that a group is locally finite if every finite subset
generates a finite subgroup.

Theorem 1.12 Every countable group is poly-MT. Furthermore, if G is a countably
infinite nonlocally finite group then for every finite F � G and all sufficiently large
n 2N there is a fair polytile .T1; : : : ;Tk/ with F � T1 and jT1j D n.

In addition to studying individual tilings, as Chou and Weiss did, we also study
sequences of tilings as was done by Gao, Jackson and Seward in [6]. The following
definition generalizes definitions appearing in [6] to the context of polytilings.

Definition 1.13 Let G be a countable group, and let

.Pn/n2N D .�
n
1; : : : ; �

n
k.n/IT

n
1 ; : : : ;T

n
k.n//n2N

be a sequence of polytilings. This sequence is fair if each of the Pn is fair. The
sequence is said to be coherent if for each n 2N the partition of G induced by Pn is
finer than the partition of G induced by PnC1 . The sequence is said to be centered if
1G 2�

n
1

for all n 2N . Finally, the sequence is cofinal if T n
1
� T nC1

1
for all n and

G D
S

n2NT n
1

. The three adjectives “centered, cofinal and coherent” are abbreviated
to ccc.
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We point out that if a sequence of polytilings .Pn/n2N is ccc then every two elements
g1;g2 2 G lie in the same class of the partition induced by Pn for all sufficiently
large n. Also notice that a group is MT (poly-MT) if and only if it admits a cofinal
sequence of monotilings (fair polytilings). Thus having a ccc sequence of monotilings
(fair polytilings) is stronger than being MT (poly-MT).

In [6], Gao, Jackson and Seward studied which groups admit a ccc sequence of
monotilings. They called such groups ccc groups. They proved that the following
groups are ccc groups: locally finite groups; residually finite groups; nilpotent groups;
solvable groups G in which ŒG;G� is polycyclic; and groups which are free products of
nontrivial groups. These are currently the only groups known to be ccc, and furthermore
there are no known examples of groups which are not ccc. We consider the weaker
condition of which groups are poly-ccc.

Definition 1.14 A countable group G is poly-ccc if it admits a ccc sequence of fair
polytilings.

Notice that just as ccc is a stronger condition than MT, poly-ccc is a stronger condition
than poly-MT. We prove the following.

Theorem 1.15 Every finitely generated group is poly-ccc. That is, every finitely
generated group admits a ccc sequence of fair polytilings.

Interestingly, we do not know if countable nonfinitely generated groups are poly-ccc.

We point out that the proofs of these results on tilings rely heavily on the fact that every
finitely generated infinite group has some Cayley graph having a regular spanning tree
(Theorem 1.8). These theorems on tilings therefore demonstrate an application of this
result.

The organization of the remainder of the paper is as follows. In Section 2, we present
formal definitions, notation and some simple observations. In Section 3, we study
translation-like actions of Z which are transitive and we also study bi-infinite Hamil-
tonian paths on graphs. In this section we prove Theorem 1.6. We then use these
findings in Section 4 to prove Theorem 1.4 (the Geometric Burnside’s Problem) as well
as the first clause of both Theorems 1.5 and 1.8. Section 5 is devoted to strengthening
the Geometric von Neumann Conjecture as well as constructing Cayley graphs having
regular spanning trees. In this section we prove Theorem 1.7 and prove the remaining
statements of Theorems 1.5 and 1.8. Finally, in Section 6 we study tilings of groups
and prove Theorems 1.12 and 1.15.
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2 Preliminaries

In this section we go over some basic definitions, observations and notation. A fun-
damental notion which will be used frequently is that of a bilipschitz map. If .X; d/
and .Y; �/ are two metric spaces and f W X ! Y is a function, then f is Lipschitz if
there is a constant c > 0 such that for all x1;x2 2X,

�.f .x1/; f .x2//� c � d.x1;x2/:

If we additionally have that

1
c
� d.x1;x2/� �.f .x1/; f .x2//

for all x1;x2 2X, then f is called bilipschitz. The metric spaces .X; d/ and .Y; �/
are bilipschitz equivalent if there is a bijective bilipschitz function f W X ! Y . Finally,
if d and � are two metrics on X, then they are called bilipschitz equivalent if the
identity map .X; d/! .X; �/ is bilipschitz.

Notice that if d and � are bilipschitz equivalent metrics on X then an action of H

on X is translation-like with respect to the metric d if and only if it is translation-like
with respect to the metric � . Thus to discuss translation-like actions on X, it suffices
to specify a family of bilipschitz equivalent metrics on X. This is particularly useful
when X DG is a finitely generated group. If G is a finitely generated group, then we
can specify a natural family of bilipschitz equivalent metrics on G. Let S be any finite
generating set for G, and let dS be the metric on G given by

dS .g; h/Dminfn 2N j g�1h 2 .S [S�1/ng

(where A0 D f1Gg and An D fa1 � a2 � � � an j ai 2 Ag for A � G ). Notice dS

is left-invariant, which means that dS .kg; kh/ D dS .g; h/ for all k;g; h 2 G. We
call dS the left-invariant word length metric corresponding to S . All of the metrics
fdS j S �G is a finite generating setg are bilipschitz equivalent. To see this, one only
needs to consider expressing the elements of one generating set as products of elements
of the other generating set. Whenever discussing translation-like actions on a finitely
generated group G, we will always use the family of bilipschitz equivalent metrics just
specified.

Most of our arguments in this paper rely on studying the structure of various graphs.
We therefore review some notation and terminology related to graphs. Let � be a
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graph. We denote the vertex set of � by V.�/ and the edge set of � by E.�/. The
graph � is regular if every vertex has the same degree, and it is even if the degree of
every vertex is finite and even. A subgraph of � is a graph ˆ where V.ˆ/ � V.�/
and E.ˆ/� E.�/. We will write ˆ� � to denote that ˆ is a subgraph of �. We say
a subgraph ˆ of � is spanning if V.ˆ/ D V.�/. A path P in � is a sequence of
vertices of � such that vertices which are consecutive in the sequence are joined by an
edge in �. Formally we represent P as a function from a (finite or infinite) subinterval
of Z into V.�/. If there is a smallest a 2 dom.P / then we call P .a/ the initial vertex
or starting vertex of P. If there is a largest b 2 dom.P / then we call P .b/ the final
vertex or ending vertex of P. If v 2 V.�/, then we say that P traverses v or visits v
if there is i 2 dom.P / with P .i/D v . If .v0; v1/ 2 E.�/, we say that P traverses the
edge .v0; v1/ if there is i 2Z with i; iC12 dom.P / and fP .i/;P .iC1/gD fv0; v1g.
A Hamiltonian path is a path which visits every vertex precisely one time. These paths
will be particularly important to us. A similar notion is that of an Eulerian path. An
Eulerian path is a path which traverses each edge precisely one time. We realize the
vertex set of every connected graph � as a metric space by using the path length metric.
Specifically, the distance between u; v 2 V.�/ is the infimum of the lengths of paths
joining u and v . If no metric is specified on a graph, then it is understood that we are
using the path length metric. We say that two graphs are bilipschitz equivalent if their
vertex sets equipped with their respective path length metrics are bilipschitz equivalent.
Finally, if A� V.�/ and k � 1, we write N�

k
.A/ to denote the union of A with the

set of all vertices v 2 V.�/ which are within distance k of some vertex of A.

In this paper we will discuss translation-like actions not only on groups but also on
connected graphs as well (using the path length metric described in the previous
paragraph). Many times these graphs will arise in the form of Cayley graphs. If G is a
finitely generated group and S is a finite generating set for G, then the right Cayley
graph of G with respect to S , denoted Cay.GIS/, is the graph with vertex set G

and edge relation f.g;gs/ j g 2 G; s 2 S [ S�1g. There is a symmetric notion of
a left Cayley graph where the edge set is f.g; sg/ j g 2 G; s 2 S [ S�1g. The left
and right Cayley graphs are graph isomorphic via the map g 7! g�1. In this paper
we will always use the term Cayley graph to mean a right Cayley graph Cay.GIS/
where S is a finite generating set for G (we never discuss or consider Cayley graphs
corresponding to infinite generating sets). If G is a finitely generated group and S �G

is a finite generating set, then there are two corresponding metrics on G : dS (described
earlier in this section) and the path length metric coming from Cay.GIS/. It is easy
to see that these two metrics are identical. Thus we can freely and without concern
switch between discussing translation-like actions on G and translation-like actions on
a Cayley graph of G.
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Finally, we review the notion of the number of ends of a graph and of a finitely
generated group. For a connected graph �, the number of ends of � is defined to be
the supremum of the number of infinite connected components of � �A as A ranges
over all finite subsets of E.�/. If G is a finitely generated group, then it is known that
all Cayley graphs of G have the same number of ends (see for example Bridson and
Haefliger [4, Section I.8, Proposition 8.29]). Thus the number of ends of G is defined
to be the number of ends of any Cayley graph of G. Finite groups have 0 ends, and
finitely generated infinite groups have either 1, 2 or infinitely many ends [4, Section I.8,
Theorem 8.32].

3 Hamiltonian paths

In this section we focus on actions of Z on graphs which are both translation-like and
transitive. The existence of such actions has a nice graph theoretic characterization, as
the following lemma shows.

Lemma 3.1 A graph � admits a transitive translation-like action by Z if and only
if � is bilipschitz equivalent to a graph admitting a bi-infinite Hamiltonian path.

Proof First suppose there is a translation-like action � of Z on � which is transitive.
Let d be the path length metric on � and let n� 1 be such that d.v; v �1/� n for all
v 2V.�/ (notice that v �1¤ v , but rather v �0D v ). Let � 0 be the graph with vertex
set V.�/ and let there be an edge between v0 and v1 if and only if there is a path in �
of length at most n joining v0 to v1 . Let d 0 be the path length metric on � 0 . Then for
v0; v1 2 V.�/,

1
n
d.v0; v1/� d 0.v0; v1/� d.v0; v1/:

Thus the identity map idW V.�/!V.� 0/ is a bilipschitz bijection between � and � 0 . If
we fix v 2V.� 0/ and define P W Z!V.� 0/ by P .k/D v�k , then P is a Hamiltonian
path on � 0 (since the action of Z is free and transitive).

Now suppose that there is a graph � 0 , a Hamiltonian path P W Z!� 0 , and a bilipschitz
bijection �W V.�/! V.� 0/. First define an action of Z on � 0 by setting

v � nD P .nCP�1.v//

for n 2 Z and v 2 V.� 0/. This action is free and transitive since P is a Hamiltonian
path. Also, it is clear that v � n is at most distance n from v . Therefore this is a
transitive translation-like action of Z on � 0 . Now we define a transitive translation-like
action of Z on � as follows. For n 2 Z and v 2 V.�/ set

v � nD ��1.�.v/� n/:
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Since � is bijective, this action is free and transitive. Also, since � is bilipschitz and
�.v/� n is distance at most n from �.v/, it follows that the distance between v � n

and v is bounded independently of v 2 V.�/. Thus this is a transitive translation-like
action.

In the case of Cayley graphs the previous lemma takes the following more appealing
form.

Corollary 3.2 A finitely generated group G admits a transitive translation-like action
by Z if and only if G has a Cayley graph admitting a bi-infinite Hamiltonian path.

Proof If G admits a transitive translation-like action by Z, then let SDS�1 be a finite
generating set for G and let Cay.GIS/ be the corresponding Cayley graph. Follow the
proof of Lemma 3.1 to get a graph � 0 having a Hamiltonian path. Now notice that � 0 is
graph isomorphic to a Cayley graph Cay.GIT /, where T DS[S2[� � �[Sn for some
n 2 N . Conversely, if Cay.GIT / is a Cayley graph of G which has a Hamiltonian
path, then Cay.GIT / is bilipschitz equivalent to itself and so by Lemma 3.1 admits a
transitive translation-like action by Z. This clearly is also a transitive translation-like
action of Z on G.

We now give a general sufficient condition for a graph to be bilipschitz equivalent to a
graph admitting a bi-infinite Hamiltonian path.

Theorem 3.3 Let � be a connected infinite graph whose vertices have uniformly
bounded degree. Then � is bilipschitz equivalent to a graph admitting a bi-infinite
Hamiltonian path if and only if � has at most two ends.

Proof First suppose that � is bilipschitz equivalent to � 0 and that � 0 has a bi-infinite
Hamiltonian path. Then � 0 contains the canonical Cayley graph of Z as a spanning
subgraph. Any spanning subgraph must have at least as many ends as the original
graph. So this implies that � 0 has at most two ends. Since the number of ends of a
graph is preserved by bilipschitz equivalence [4, Section I.8, Proposition 8.29], � has
at most two ends.

Now suppose that � has at most two ends. Notice that � cannot have 0 ends since �
is infinite, connected and locally finite. So � has either 1 end or 2 ends. We will
first construct a path on � which will be very similar to a bi-infinite Eulerian path.
The path we construct will visit every vertex at least once and traverse every edge
at most twice. In the construction we will use a theorem of Erdős, Grünwald and
Weiszfeld [2, Section I.3, Theorem 14] which says that if ƒ is a countably infinite
connected multigraph then ƒ admits a bi-infinite Eulerian path if and only if the
following conditions are satisfied:
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(i) If the degree of a vertex is finite then it is even.

(ii) ƒ has at most 2 ends.

(iii) If ˆ is a finite, even subgraph of ƒ then ƒ�E.ˆ/ has only one infinite connected
component.

Recall that a multigraph is a graph where loops are allowed and multiple edges between
vertices are allowed.

First suppose that � has 1 end. Let � 0 be the multigraph obtained from � by doubling
each of the edges. In other words, V.� 0/D V.�/ and for each u; v 2 V.� 0/ � 0 has
twice as many edges joining u and v as � does. Then � 0 is an infinite connected
one-ended multigraph and every vertex of � 0 has even degree. Thus there is an Eulerian
path P W Z! V.� 0/D V.�/. Clearly P is a path on � which traverses every edge
twice.

Now suppose that � has two ends. We claim that there is a finite set E � E.�/ such
that the graph � �E has precisely two connected components with both components
infinite. Since � has two ends, there is a finite set F � E.�/ such that � �F has
two infinite connected components. We wish to shrink F in order to connect the finite
components to the infinite components, without connecting the two infinite components
to one another. We do this in two steps. First, let C be one of the infinite connected
components of ��F, and let F 0 be the set of those edges in F which have an endpoint
in C. Now � �F 0 still has two infinite connected components, one of which is C.
The advantage we now have is that every edge in F 0 has an endpoint in C. We want
to connect the finite connected components of � �F 0 to C without connecting C to
the other infinite connected component of � �F 0. So for the second step let E be the
set of those edges in F 0 which have both endpoints contained in infinite connected
components of � �F 0. Then � �E has no finite connected components but it has two
infinite connected components. This proves the claim as E has the desired property.

Let E � E.�/ be as in the previous paragraph. Let C1 and C2 be the two connected
components of � �E . So C1 and C2 are infinite. Since � is connected, there is
p 2 C1 which is adjacent to C2 in �. Let ƒ1 and ƒ2 be the induced subgraphs
on C1 and C2 [ fpg, respectively. Specifically, V.ƒ1/ D C1 , V.ƒ2/ D C2 [ fpg

and u; v 2 V.ƒi/ are joined by an edge if and only if they are joined by an edge
in �. For i D 1; 2, let Wi W N ! V.ƒi/ be a path that begins at p and does not
self-intersect (ie Wi is a path beginning at p and going off to infinity in ƒi ). Such
paths exist since ƒ1 and ƒ2 are infinite, connected and locally finite. For i D 1; 2,
let ƒ0i be the multigraph obtained from ƒi by doubling all edges of ƒi which are
not traversed by Wi . Specifically, V.ƒ0i/D V.ƒi/ and for u; v 2 V.ƒ0i/: there is no

Geometry & Topology, Volume 18 (2014)



190 Brandon Seward

edge between u and v in ƒ0i if .u; v/ 62 E.ƒi/; there is a single edge between u and v
in ƒ0i if .u; v/ 2 E.ƒi/ and Wi traverses .u; v/; there are two edges between u and v
in ƒ0i if .u; v/ 2 E.ƒi/ and Wi does not traverse .u; v/.

We claim that p is the unique vertex of odd degree in ƒ0i . If u 2 V.ƒ0i/ is not visited
by the path Wi , then u is connected to each of its neighbors via 2 edges in ƒ0i and
thus u has even degree in ƒ0i . If u ¤ p and u is visited by the path Wi , then Wi

traverses precisely two distinct edges (in ƒi ) adjacent to u. All edges adjacent to u

and not traversed by Wi were doubled in passing to ƒ0i . Thus u has even degree
in ƒ0i . Now it only remains to show that p has odd degree in ƒ0i . Since only one edge
adjacent to p was traversed by Wi , all edges adjacent to p but one were doubled in
passing to ƒ0i . Thus p has odd degree in ƒ0i , completing the proof of the claim.

We claim that the multigraph ƒ0
1
[ƒ0

2
satisfies the conditions (i), (ii) and (iii) of the

Erdős–Grünwald–Weiszfeld Theorem. Notice that p is the only vertex contained in
both ƒ0

1
and ƒ0

2
. Since p has odd degree in each ƒ0i , it has even degree in ƒ0

1
[ƒ0

2
.

So clauses (i) and (ii) are clearly satisfied. We consider (iii). In our argument we will
make use of the fact that if a finite multigraph has at most one vertex of odd degree,
then it has no vertices of odd degree at all. This follows from the fact that the sums
of the degrees of the vertices is always twice the number of edges. Consider a finite
even subgraph ˆ of ƒ0

1
[ƒ0

2
. For i D 1; 2 set ˆi D ˆ\ƒ

0
i . Since ˆ is even, ˆi

has at most one vertex of odd degree, namely p . Since ˆi is finite, it has no vertices
of odd degree. Therefore ˆi is a finite even subgraph of ƒ0i . Thus every vertex of
ƒ0i�E.ˆi/ has the same degree modulo 2 as it has in ƒ0i . Thus p is the unique vertex
of odd degree in ƒ0i �E.ˆi/. So any finite connected component of ƒ0i �E.ˆi/ can
have at most one vertex of odd degree and therefore cannot have any vertices of odd
degree. So p must lie in an infinite connected component of ƒ0i �E.ˆi/. However, �
has two ends and from how we constructed ƒ0

1
and ƒ0

2
one can see that each ƒ0i

must be one ended. So p is contained in the unique infinite connected components
of ƒ0

1
� E.ˆ1/ and ƒ0

2
� E.ˆ2/. Thus ƒ0

1
[ƒ0

2
� E.ˆ/ has precisely one infinite

connected component. By the Erdős–Grünwald–Weiszfeld Theorem we get an Eulerian
path

P W Z! V.ƒ01/[V.ƒ02/D V.�/:

Clearly P is a path on � which visits every vertex at least once and traverses every
edge at most twice.

Regardless of whether � has one end or two, we have a path P W Z! V.�/ which
visits every vertex at least once and traverses every edge at most twice. Now we will use
this path P to show that � is bilipschitz equivalent to a graph admitting a bi-infinite
Hamiltonian path. In order to do this, we will need to apply Hall’s Marriage Theorem.
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Recall that a graph ƒ is bipartite if there is a partition fV1;V2g of V.ƒ/ such that
every edge of ƒ joins a vertex of V1 to a vertex of V2 . Hall’s Marriage Theorem states
that if ƒ is a locally finite bipartite graph with bipartition fV1;V2g of V.ƒ/ and if
jNƒ

1
.T /�T j � jT j for all T � V1 , then there is an injection �W V1! V2 with the

property that v and �.v/ are joined by an edge for every v 2 V1 (the statement for
finite graphs is [2, Section III.3, Theorem 7]; the theorem extends to infinite graphs by
a standard compactness argument).

Let D be a positive integer satisfying deg�.v/�D for all v 2V.�/. Set M DDC1.
Let ƒ be the bipartite graph with vertex set M Z[V.�/ and edge relation given by

.k �M; v/ 2 E.ƒ/ ” 9 0� i <M; P .k �M C i/D v:

Fix a finite T � M Z and set @T D Nƒ
1
.T / � T � V.�/. We wish to show that

j@T j � jT j. Notice that

@T D P .T /[P .T C 1/[ � � � [P .T CM � 1/:

Let ˆT � � be the graph with vertex set @T and edge relation

f.P .t C i/;P .t C i C 1// j t 2 T; 0� i �M � 2g:

Since P traverses each edge at most twice, ˆT has at least 1
2
jT j.M � 1/ edges.

Since P is a path in �, every vertex of ˆT has degree at most DDM �1. Therefore

.M � 1/jV.ˆT /j �
X

v2V .ˆT /

degˆT
.v/D 2 � jE.ˆT /j � jT j.M � 1/

and hence
j@T j D jV.ˆT /j � jT j:

Thus the condition for Hall’s Marriage Theorem is satisfied, and therefore there is a
function �W M Z! Œ0;M � 1� satisfying .k;P .kC�.k/// 2 E.ƒ/ for all k 2M Z
and P .k1C�.k1//¤ P .k2C�.k2// for all k1 ¤ k2 2M Z.

Set AD fP .kC�.k// j k 2M Zg �V.�/. For v 2V.�/�A, pick any nv 2Z with
P .nv/D v . Set

S D fkC�.k/ j k 2M Zg[ fnv j v 2 V.�/�Ag:

Clearly the restriction of P to S is a bijection between S and V.�/. Let  W Z!S be
an order preserving bijection, and define QW Z!V.�/ by Q.z/DP . .z//. Then Q

is a bijection. By the definition of S , it is clear that consecutive numbers in S are
separated by a distance of at most 2M � 1 and hence  .k C 1/� .k/ � 2M � 1

for all k 2 Z. Since P is a path in �, the distance between Q.k C 1/ and Q.k/ is
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at most 2M � 1. Now let � 0 be the graph with vertex set V.�/ and let there be an
edge between v0 and v1 if and only if there is a path in � of length at most 2M � 1

joining v0 to v1 . Then � and � 0 are bilipschitz equivalent and Q is a Hamiltonian
path on � 0 .

Corollary 3.4 Let � be a connected infinite graph whose vertices have uniformly
bounded degree. Then � admits a transitive translation-like action by Z if and only
if � has at most two ends.

Proof This follows immediately from the previous theorem and Lemma 3.1.

Among the graphs which are infinite, connected, locally finite and have uniformly
bounded degree, the above theorem completely classifies which of these graphs are
bilipschitz equivalent to a graph admitting a bi-infinite Hamiltonian path. It would
be interesting if nice characterizations of this property could be found among graphs
which are not locally finite, or which are locally finite but whose vertices do not have
uniformly bounded degree.

Problem 3.5 Find necessary and sufficient conditions for a graph to be bilipschitz
equivalent to a graph admitting a bi-infinite Hamiltonian path.

4 Geometric Burnside’s Problem

The theorem of the previous section allows us to easily resolve the Geometric Burnside’s
Problem.

Theorem 4.1 (Geometric Burnside’s Problem) Every finitely generated infinite group
admits a translation-like action by Z.

Proof Let G be a finitely generated infinite group. If G has finitely many ends,
then G has at most two ends [4, Section I.8, Theorem 8.32]. Now consider any Cayley
graph of G and apply Corollary 3.4 to get a translation-like action of Z on G (notice
that this action is in fact transitive). Now suppose that G has infinitely many ends.
Then by Stallings’ Theorem [4, Section I.8, Theorem 8.32, clause (5)], G can be
expressed as an amalgamated product A�C B or HNN extension A�C with C finite,
ŒA W C �� 3, and ŒB W C �� 2. If G DA�C B then ab 2G has infinite order whenever
a 2A�C and b 2 B �C. If G DA�C D hA[ftg j 8c 2 C; tct�1 D �.c/i, where
�W C ! A is an injective homomorphism, then t has infinite order. Thus in either
case, there is a subgroup H �G with H ŠZ. Then the natural right action of ZŠH

on G is a translation-like action (see Proposition 1.2).
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Between the theorem above and Whyte’s result in [14], we have that Burnside’s Problem
and the von Neumann Conjecture both hold true in the geometric setting where subgroup
containment is replaced by the existence of a translation-like action. It is interesting
to wonder how much further these types of results can be taken. Two very specific
questions in this direction are the following.

Problem 4.2 (Whyte [14]) Is the Geometric Gersten Conjecture true? (See clause
(3 0 ) in Section 1 above).

Problem 4.3 Does a finitely generated group have exponential growth if and only if
it admits a translation-like action by a free semigroup on two generators?

The algebraic version of the above problem would be: Does a finitely generated group
have exponential growth if and only if it contains a free subsemigroup on two generators?
Chou [5] proved that every elementary amenable group of exponential growth contains
a free subsemigroup on two generators. However, the algebraic version is false in
general. Grigorchuk has pointed out that the wreath product of the Grigorchuk group
with the cyclic group of order 2 is a torsion group of exponential growth. Since it is
torsion, it cannot contain a free subsemigroup. The geometric (translation-like action)
version may hold true. By Chou’s result, it holds for elementary amenable groups, and
by the Geometric von Neumann Conjecture it holds for nonamenble groups.

A more general, open-ended question is the following.

Problem 4.4 What other algebraic/geometric properties can be reformulated or char-
acterized in terms of translation-like actions?

Before ending this section we present two corollaries treating Hamiltonian paths on
Cayley graphs and translation-like actions of Z which are transitive.

Corollary 4.5 A finitely generated infinite group has finitely many ends if and only if
it admits a translation-like action by Z which is transitive.

Proof If G has finitely many ends then the proof of the previous theorem shows that
there is a translation-like action of Z on G which is transitive. Now suppose that there
is a translation-like action of Z on G which is transitive. If Cay.G/ is any Cayley
graph of G then the action of Z on G gives rise to a transitive translation-like action
of Z on Cay.G/. By Corollary 3.4, Cay.G/ has at most two ends and thus G has at
most two ends.

Notice that the following corollary no longer requires the group to be infinite.
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Corollary 4.6 A finitely generated group has finitely many ends if and only if it has a
Cayley graph admitting a Hamiltonian path.

Proof For infinite groups, this follows from the above corollary and Corollary 3.2.
Finally, every finite group has 0 ends (in particular, has finitely many ends), and
the complete graph on jGj vertices is a Cayley graph of G which clearly admits a
Hamiltonian path.

Relating to the above corollary, we point out that Igor Pak and Radoš Radoičić proved
in [10] that every finite group G has a generating set S with jS j � log2 jGj such
that the Cayley graph Cay.GIS/ admits a Hamiltonian path. This ties in with the
well-known Lovász Conjecture: Every finite, connected, vertex-transitive graph admits
a Hamiltonian path. Clearly this conjecture applies to finite Cayley graphs. Despite the
Pak–Radoičić result, the special case of the Lovász Conjecture for Cayley graphs is far
from settled.

Problem 4.7 (Special case of the Lovász Conjecture) Does every Cayley graph of
every finite group admit a Hamiltonian path?

Problem 4.8 Does every Cayley graph of every finitely generated group with finitely
many ends admit a Hamiltonian path?

5 Regular spanning trees of Cayley graphs

In this section we will prove that every finitely generated infinite group has a Cayley
graph containing a regular spanning tree. To do this we will strengthen Whyte’s result
on the Geometric von Neumann Conjecture.

We first present two simple properties of translation-like actions. These properties were
mentioned in [14] without proof. For convenience to the reader we include a proof
here.

Lemma 5.1 (Whyte [14]) Let H be a finitely generated group, let .X; d/ be a metric
space and suppose H acts on X and the action is translation-like. Then there is a
constant C such that for all x 2X the map

h 2H 7! x � h 2X

is a C–Lipschitz injection.
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Proof Let U be a finite generating set for H and let � be the corresponding left-
invariant word length metric. For each u2U [U�1 let cu� 1 satisfy d.x;x�u/� cu

for all x 2X. Set C Dmaxfcu j u 2U [U�1g and fix x 2X. For h; k 2H we have

d.x � k;x � h/D d..x � h/� h�1k;x � h/� C � �.h�1k; 1H /D C � �.k; h/:

So the map is C–Lipschitz as claimed. Also, the map is injective as translation-like
actions are free.

Corollary 5.2 (Whyte [14]) Let H and G be finitely generated groups, let Cay.H /

be a Cayley graph of H and suppose that H acts on G and the action is translation-like.
Then there is a Cayley graph Cay.G/ of G so that for all g 2G and h0; h1 2H with
.h0; h1/ 2 E.Cay.H //, .g�h0;g�h1/ 2 E.Cay.G//. In particular, there is a spanning
subgraph ˆ of Cay.G/ such that the connected components of ˆ are precisely the
orbits of the H action and every connected component of ˆ is graph isomorphic
to Cay.H /.

Proof Let V D V �1 be a finite generating set for G, and let d be the corresponding
left-invariant word length metric. Let Cay.H / be a Cayley graph of H , say Cay.H /D

Cay.H IU /, where U DU�1 is a finite generating set for H . Let � be the left-invariant
word length metric on H corresponding to U . Let C be as in the previous lemma. By
picking a larger C if necessary, we may assume C 2N . Set W D V [V 2[� � �[V C.
Then W is a generating set for G and for all g 2 G and u 2 U � H we have
g �u 2 gW . Consider the Cayley graph Cay.GIW /. Fix g 2G and h0; h1 2H with
.h0; h1/ 2 E.Cay.H IU //. Then there is u 2 U with h1 D h0u. Therefore

g � h1 D .g � h0/�u 2 .g � h0/W;

so .g � h1;g � h0/ 2 E.Cay.GIW //. Thus the first claim holds. Now let ˆ be the
graph with vertex set G and edge set f.g;g � u/ j g 2 G; u 2 U g. Then ˆ is a
spanning subgraph of Cay.GIW /, the connected components of ˆ are the orbits of
the H action, and every connected component of ˆ is graph isomorphic to Cay.H IU /
(since the action of H is free).

Let ƒ be a tree with a distinguished root vertex �. Define a partial ordering, denoted �,
on V.ƒ/ by declaring u � v if and only if the unique shortest path from � to v

traverses u.

Definition 5.3 We call a finite set P �V.ƒ/ a perimeter if P ¤f�g and the following
conditions are met:

(i) There is a constant R such that if d.u; �/�R then there is p 2 P with p � u.

(ii) If p;p0 2 P and p � p0 , then p D p0 .
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The smallest such R satisfying (i) is the radius of P .

Perimeters will soon be used to help us construct quasi-isometries between trees. The
idea is that if ƒ and T are trees with distinguished roots, F W V.T /! V.ƒ/ is a
partially defined function, and F.t/ is defined, then we want to extend F so that the
vertices of T adjacent to t are mapped, not necessarily injectively, to a perimeter
of F.t/. The following is a technical lemma needed for the proposition following it
where this construction is carried out. From the viewpoint of the construction just
discussed, in the lemma below r essentially represents the number of vertices of T

adjacent to t , and d.p/ tells us how many vertices of T adjacent to t should be
mapped to p .

Lemma 5.4 Let ƒ be a tree with distinguished root vertex �, let � be defined as
above, and let r � 3. If 2� deg.�/� r � 1 and all the other vertices of ƒ have degree
at least 3, then there is a perimeter P of radius at most r and a function d W P !NC

satisfying d.p/� deg.p/� 1 for all p 2 P andX
p2P

d.p/D r:

Proof The proof is by induction on r . If r D 3, then deg.�/D 2. Let P be the set of
vertices adjacent to �, say P D fa; bg. Define d.a/D 2 and d.b/D 1. Then P and d

have the desired properties. Now suppose that r � 4 and that the claim is true for all
r 0 < r . We have deg.�/� r �1, so by the Euclidean algorithm there are q; s 2N with
s < deg.�/ and

r D q � deg.�/C s D q.deg.�/� s/C .qC 1/s:

Clearly q � r
deg.�/ �

r
2

. Since r � 4, we have q; qC 1< r .

Divide the vertices adjacent to � into disjoint sets A and B with jAj D deg.�/� s > 0

and jBj D s (note that we can have sD 0 in which case BD¿). Fix a vertex a2A. If
q� deg.a/�1, then set PaDfag and da.a/D q . If q> deg.a/�1, then let ƒa be the
graph with vertex set fu2V.ƒ/ ja�ug and define there to be an edge between u and v
if and only if they are joined by an edge in ƒ. Then ƒa is a tree, and we declare a to
be its root vertex. Clearly degƒa

.a/D degƒ.a/� 1 and degƒa
.u/D degƒ.u/ for all

a¤ u 2 V.ƒa/. By the inductive hypothesis, there is a perimeter Pa of ƒa of radius
at most q and a function daW Pa!NC with da.p/� degƒa

.p/� 1D degƒ.p/� 1

for all p 2 Pa and X
p2Pa

da.p/D q:
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Carry out the same construction for every element of B , but with q replaced by qC 1.
Set

P D
[

c2A[B

Pc ; d D
[

c2A[B

dc :

Then P is a perimeter for ƒ, d.p/� degƒ.p/� 1 for all p 2 P, andX
p2P

d.p/D
X
a2A

X
p2Pa

da.p/C
X
b2B

X
p2Pb

db.p/D qjAjC .qC 1/jBj D r:

Also, the radius of P is at most

qC 2� r
2
C 2� r:

Theorem 5.5 Let ƒ1 and ƒ2 be two trees. If every vertex of ƒ1 and ƒ2 has degree
at least three and if the vertices of ƒ1 and ƒ2 have uniformly bounded degree, then ƒ1

and ƒ2 are bilipschitz equivalent.

Proof Let r > 2 be such that every vertex of ƒ1 and ƒ2 has degree at most r . Let T

be the regular tree of degree r C 1. It suffices to show that ƒ1 and ƒ2 are both
bilipschitz equivalent to T . So dropping subscripts, let ƒ be a tree such that every
vertex has degree at least 3 and at most r . We will show that ƒ and T are bilipschitz
equivalent.

We will first define a quasi-isometry F W V.T / ! V.ƒ/. Recall that a function
f W .X; d/! .Y; �/ between metric spaces .X; d/ and .Y; �/ is called a quasi-isometry
if there are constants K and C such that

1
K

d.x1;x2/�C � �.f .x1/; f .x2//�Kd.x1;x2/CC

and such that for every y 2 Y there is x 2X with �.y; f .x// <C. Also recall that X

and Y are quasi-isometric if there is a quasi-isometry f W X ! Y . We will view V.T /
and V.ƒ/ as metric spaces by using the path length metrics described in Section 2.
Let d and � denote the path length metrics on V.T / and V.ƒ/, respectively. Fix root
vertices t0 2 V.T / and �0 2 V.ƒ/. Define a partial ordering, denoted �, on V.T /
by declaring u � v if and only if the unique shortest path from t0 to v traverses u.
Similarly define a partial ordering, also denoted �, on V.ƒ/. Define

S.T I n/D fu 2 V.T / j d.t0;u/D ng; B.T I n/D fu 2 V.T / j d.t0;u/� ng:

Clearly V.T / is the union of the S.T I n/. We will inductively define a quasi-isometry
F W V.T /! V.ƒ/ so that the following properties hold:
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(i) F.t0/D �0 .

(ii) If F.u/D F.v/, then d.u; v/� 2 and d.t0;u/D d.t0; v/.

(iii) If d.u; v/D 1 then �.F.u/;F.v//� r C 1.

(iv) If u� v then F.u/� F.v/.

(v) If F.u/� F.v/ then there is w 2 F�1.u/ with w � v .

(vi) For y 2 V.ƒ/, jF�1.y/j � degƒ.y/� 1.

(vii) If u; v 2 S.T I n/ and F.u/� F.v/, then F.u/D F.v/.

(viii) For every n� 1 F.S.T I n// is a perimeter.

Set F.t0/ D �0 so that (i) is satisfied. By Lemma 5.4, there is a perimeter P of ƒ
of radius at most r C 1 and a function d W P ! NC with d.p/ � degƒ.p/� 1 for
all p 2 P and

P
p2P d.p/ D r C 1. Since jS.T I 1/j D r C 1, there is a surjection

F W S.T I 1/!P such that jF�1.p/jDd.p/. The definition of F on B.T I 1/ satisfies
clauses (i) through (viii).

Now suppose that F has been defined on B.T I n� 1/ and does not violate any of the
clauses (i) through (viii). We will define F on S.T I n/. Notice that (v) and (ii) tell
us that if F.u/ � F.v/ then d.t0;u/ � d.t0; v/. Therefore by (vii) we have that if
u 2 S.T I n� 1/ then there is nothing strictly �–larger than F.u/ in F.B.T I n� 1//.
This together with (viii) imply that the �–maximal elements of F.B.T I n� 1// are
precisely the F images of elements of S.T I n� 1/. Let y1;y2; : : : ;ym be the �–
maximal elements of F.B.T I n�1//, and set Ui DF�1.yi/\S.T I n�1/¤¿. Then
the Ui form a partition of S.T I n� 1/. To define F on S.T I n/, it suffices to fix an i

and define F on the elements of S.T I n/ which are adjacent to an element of Ui . This
definition is provided in the following paragraph. To simplify notation, in the paragraph
below we work with a single yi and Ui but omit the subscript i .

By (vi), we have jU j � degƒ.y/ � 1. Fix any function hW U ! NC satisfyingP
v2U h.v/D degƒ.y/� 1. Partition the set of vertices which are adjacent to y and

�–larger than y into disjoint sets fAv j v 2U g such that jAvj D h.v/. For each v 2U

we will define a graph ƒv . We first describe the vertex set. If jAvj � 2, then we
let ƒv be the graph with vertex set the union of y with Av and with all of the vertices
of ƒ which are �–larger than some element of Av . If jAvj D 1 then we let ƒv have
the same vertices as described in the previous sentence, except that we exclude y

from the vertex set. In either case, we let there be an edge between w1; w2 2 V.ƒv/
if and only if they are joined by an edge in ƒ. Notice that ƒv is a subgraph of ƒ,
degƒv

.y/DjAvj�degƒ.y/�1 (if y 2V.ƒv/), degƒv
.a/Ddegƒ.a/�1 (if AvDfag)

and degƒv
.w/D degƒ.w/ for all other vertices w 2V.ƒv/. We declare the root vertex
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of ƒv to be y if y 2 V.ƒv/ and otherwise to be a if Av D fag. By Lemma 5.4,
there is a perimeter Pv of ƒv of radius at most r and a function dvW Pv!NC with
dv.p/� degƒv

.p/� 1D degƒ.p/� 1 for all p 2 Pv andX
p2Pv

dv.p/D r:

Thus, if S.v/ denotes the set of vertices of T adjacent to v and �–larger than v , then
jS.v/j D r and there is a surjection F W S.v/! Pv with jF�1.p/j D dv.p/ for all
p 2 Pv . This defines F on S.v/ for each v 2 U . Thus we have defined F on all
elements of S.T I n/ which are adjacent to some element of U . By varying the set U ,
we get a definition of F on S.T I n/ and thus on B.T I n/. It is easy to check that F

still satisfies clauses (i) through (viii). By induction, this completes the definition of F.

We now verify, relying only on clauses (i) through (viii), that F is a quasi-isometry.
Clearly clause (iii) implies that �.F.u/;F.v//� .rC1/d.u; v/ for all u; v2V.T /. We
now check by cases that for all u; v 2V.T / we have d.u; v/� r �2� �.F.u/;F.v//.
Fix u; v 2V.T / and let w 2V.T / be the �–largest vertex with w � u; v . Notice that
clauses (ii) and (iv) imply that if p � q then d.p; q/� �.F.p/;F.q//.

Case 1: d.w;u/� 1 or d.w; v/� 1 Without loss of generality, suppose d.u; w/�1.
Then �.F.u/;F.w//� r C 1 by (iii) and d.w; v/� �.F.w/;F.v// since w � v . So

d.u; v/� r � 2D d.u; w/C d.w; v/� r � 2

� �.F.w/;F.v//� �.F.w/;F.u//

� �.F.u/;F.v//:

Case 2: d.w;u/;d.w; v/� 2 Let wu and wv be the unique vertices of T with
d.w;wu/D d.w;wv/D 2, w �wu � u and w �wv � v . Notice that d.wu; wv/D 4.
By (v) and (ii), F.wu/ and F.wv/ are not �–comparable. Thus �.F.wu/;F.wv//�2,
and since wu � u and wv � v , we have that d.wu;u/ � �.F.wu/;F.u// and
d.wv; v/� �.F.wv/;F.v//. Thus

d.u; v/� 2D d.u; wu/C d.v; wv/C d.wu; wv/� 2

� �.F.u/;F.wu//C �.F.v/;F.wv//C �.F.wu/;F.wv//

D �.F.u/;F.v//:

To show that F is a quasi-isometry, all that remains is to show that for all y 2 V.ƒ/
there is u2V.T / with �.y;F.u//� rC1. So fix y 2V.ƒ/ and towards a contradiction
suppose that every image point of F is at least a distance of rC2 from y . First suppose
that there is u 2 V.T / with y � F.u/. Let P be a path in T from t0 to u. Let n be
least such that y 6�F.P .n// and y �F.P .nC1//. Since F.P .n// and F.P .nC1//
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are distance at least r C 2 from y , we have �.F.P .n//;F.P .nC 1/// � 2r C 4,
contradicting (iii). So there are no u 2 V.T / with y � F.u/. Since each F.S.T I n//

is a perimeter, it follows that for each n 2N there is un 2 S.T I n/ with F.un/� y .
However, there are only finitely many w 2 V.ƒ/ with w � y , so this violates clause
(vi). We conclude that every vertex of ƒ is within a distance of r C 1 of some image
point of F. Thus F is a quasi-isometry, and so ƒ is quasi-isometric to T .

Recall that a graph � is nonamenable if there exist C > 1 and k 2 N such that
jN�

k
.S/j � C � jS j for all finite S � V.�/, where N�

k
.S/ is the union of S with all

vertices of � within distance k of S . When � is the Cayley graph of a group, this
notion coincides with the standard notion of amenability of groups. It is known that
if � is a tree and every vertex of � has degree at least 3, then � is nonamenable
(one can use C D 2 and k D 1). By [8, Section IV.B, Complement 46], any two
nonamenable quasi-isometric graphs are bilipschitz equivalent. Since ƒ and T are
nonamenable and quasi-isometric, they are bilipschitz equivalent.

In the following theorem we strengthen Whyte’s result on the Geometric von Neumann
Conjecture. In the remainder of this section, we let Fk denote the nonabelian free
group of rank k for k > 1.

Theorem 5.6 (Geometric von Neumann Conjecture) Let G be a finitely generated
group. The following are equivalent for every integer k � 2:

(i) G is nonamenable.

(ii) G admits a translation-like action by Fk .

(iii) G admits a transitive translation-like action by Fk .

Proof In [14], Whyte proved the equivalence of (i) and (ii). Clearly (iii) implies (ii),
so we only must show that (ii) implies (iii). Let Cay.Fk/ be the canonical Cayley
graph of Fk . So Cay.Fk/ is a regular tree of degree 2k . By assumption, there is a
translation-like action � of Fk on G. By Corollary 5.2, there is a Cayley graph Cay.G/
of G having a spanning subgraph ˆ in which the connected components of ˆ are the
orbits of the Fk action and every connected component of ˆ is graph isomorphic to
Cay.Fk/, the regular tree of degree 2k .

Let ‰ be the quotient graph of Cay.G/ obtained by identifying points which lie in a
common Fk orbit. Specifically, the vertex set of ‰ is fg �Fk j g 2Gg and there is an
edge between g �Fk and h �Fk if and only if there are t0; t1 2 Fk such that g � t0
and h� t1 are joined by an edge in Cay.G/. Since Cay.G/ is connected, so is ‰ . We
construct a spanning tree ‰0 of ‰ as follows. Set  0D 1G �Fk 2V.‰/, and let d be
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the path length metric on ‰ . For each  0¤ v 2V.‰/, pick any f .v/2V.‰/ with the
property that d.v; f .v//D 1 and d. 0; f .v//D d. 0; v/�1. We set V.‰0/DV.‰/
and

E.‰0/D f.v; f .v// j  0 ¤ v 2 V.‰/g[ f.f .v/; v/ j  0 ¤ v 2 V.‰/g:

A simple inductive argument on the magnitude of d. 0; v/ shows that ‰0 is con-
nected. Also, if u and v are joined by an edge in ‰0 then d. 0;u/¤ d. 0; v/ and
d. 0;u/ < d. 0; v/ implies uD f .v/. Thus ‰0 does not contain any cycles as cycles
cannot contain a vertex of maximal distance to  0 . So ‰0 is a spanning tree of ‰ .

Recall that ˆ is a subgraph of Cay.G/ in which the connected components are regular
trees of degree 2k . Also notice that the vertices of ‰ and ‰0 are precisely the connected
components of ˆ (since both are just the orbits of the Fk action). We will use ‰0

to enlarge ˆ to a spanning tree ˆ0 of Cay.G/. Let e 2 E.‰0/ be an edge in ‰0 , say
between g1 � Fk and g2 � Fk . Then by definition, there are t1; t2 2 Fk such that
g1 � t1 and g2 � t2 are joined by an edge in Cay.G/. Let h.e/ be any such edge
.g1 � t1;g2 � t2/ 2 E.Cay.G//. So hW E.‰0/! E.Cay.G//. Now let ˆ0 be the graph
with vertex set G and edge set h.E.‰0//[ E.ˆ/. Since the connected components
of ˆ are trees, the vertices of ‰0 are the connected components of ˆ, and ‰0 is a
tree, it is easy to see that ˆ0 is also a tree. So ˆ0 is a spanning tree of Cay.G/. Each
vertex of ˆ0 has degree at least 2k , and the degrees of the vertices of ˆ0 are uniformly
bounded since ˆ�ˆ0 � Cay.G/. By Theorem 5.5, ˆ0 (with its path length metric)
is bilipschitz equivalent to the 2k regular tree Cay.Fk/. Let P W Fk ! V.ˆ0/ be this
bilipschitz equivalence. Since ˆ0 is a subgraph of Cay.G/, it follows that the map
P W Fk !G is Lipschitz when G D V.ˆ0/ is equipped with the path length metric of
Cay.G/. Now we define a transitive translation-like action ı of Fk on G as follows.
For t 2 Fk and g 2G, we define

g ı t D P .P�1.g/ � t/;

where � denotes the group operation of Fk . This is clearly a transitive translation-like
action since P W Fk !G is a Lipschitz bijection (where G has the path length metric
coming from Cay.G/).

We point out that in the previous proof, instead of using Whyte’s result we could have
also used a similar result by Benjamini and Schramm [1, Remark 1.9].

Combining the previous theorem with Corollary 4.5 gives the following.

Corollary 5.7 Every finitely generated infinite group admits a transitive translation-
like action by some (possibly cyclic) free group.
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Proof By Corollary 4.5, G admits a transitive translation-like action by Z (which is
a cyclic free group) if G has finitely many ends. So now suppose that G has infinitely
many ends. We will show that G contains a nonabelian free group of rank 2 and is thus
nonamenable. By Stallings’ Theorem [4, Section I.8, Theorem 8.32, clause (5)], G

can be expressed as an amalgamated product A�C B or HNN extension A�C with C

finite, ŒA WC �� 3 and ŒB WC �� 2. We now show by cases that G contains a nonabelian
free group of rank 2.

Case 1: C is trivial and G is of the form A �C B DA �B By [12, Proposition 4],
the kernel of the homomorphism A � B ! A � B is a free group with free basis
fa�1b�1ab j 1A ¤ a 2A; 1B ¤ b 2 Bg. So we only need to show that this free basis
contains more than one element. Since jAj � 3, there are nonidentity a1¤ a2 2A. Fix
any nonidentity b 2B . Since G DA�B , it is clear that a�1

1
b�1a1b and a�1

2
b�1a2b

are distinct. Thus the free basis of the kernel contains at least two elements and
therefore G contains a nonabelian free group of rank 2.

Case 2: C is nontrivial and G is of the form A �C B We use [4, Section III.�.6,
Lemma 6.4]. This lemma states, in particular, that if a1 2A, a2; a3; : : : ; an 2A�C,
b1; : : : ; bn�1 2B�C and bn 2B , then a1b1a2b2 � � � anbn is not the identity element
in G DA�C B . Pick any b1; b2 2B�C, and pick any a1 2A�C. Since ŒA WC �� 3,
we can also pick a2 2 A� C with a2a1 62 C. If b2b1 2 C, then pick a3 2 A� C

with a3b2b1a1 62 C. If b2b1 62 C, then pick any a3 2 A� C. Set u D a1b1a2 and
v D b1a1b2a3b2 . Then u and v generate a nonabelian free group of rank 2.

Case 3: G is of the form A�C D hA; tjt
�1ct D �.c/g, where ŒAW C �� 3 and

�W C !A is an injective homomorphism Let C 0 D �.C /. We again use [4, Sec-
tion III.�.6, Lemma 6.4]. This lemma states, in particular, that if a1; a2; : : : ; an�1 2

A� .C [C 0/ and m1;m2; : : : ;mn 2 Z� f0g then tm1a1tm2a2 � � � t
mn�1an�1tmn is

not the identity element in G DA�C . Since C is finite, C 0 cannot properly contain C

and therefore C 0 cannot contain any coset aC with a 62 C. Therefore, we have that
there is a 2 A � C [ C 0 . Set u D tat and v D t2at2 . Then u and v generate a
nonabelian free group of rank 2.

Thus G contains a nonabelian free group of rank 2. The group G is therefore nona-
menable (this is a well known consequence of containing a nonabelian free group but
also follows directly from the previous theorem), and so by the previous theorem there
is a transitive translation-like action of the nonabelian free group of rank 2 on G.

The previous corollary has an interesting reinterpretation in terms of Cayley graphs.
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Corollary 5.8 If G is a finitely generated infinite group then G has a Cayley graph
admitting a regular spanning tree. In fact, for every integer k > 2 the following hold:

(i) G has finitely many ends if and only if G has a Cayley graph admitting a
Hamiltonian path (ie a regular spanning tree of degree 2).

(ii) G is nonamenable if and only if G has a Cayley graph admitting a regular
spanning tree of degree k .

Proof For the first statement, apply the previous corollary and Corollary 5.2 and
notice that the graph ˆ referred to in Corollary 5.2 has only one connected component
since the action is transitive. Clause (i) is Corollary 4.6.

Now fix k > 2. If G is nonamenable, then by clause (iii) of Theorem 5.6 and
Corollary 5.2 G has a Cayley graph Cay.G/ admitting a regular spanning tree ˆ
of degree 2k . Say Cay.G/ D Cay.GIV /, where V is a finite generating set for
G, and let d be the corresponding left-invariant word length metric. Let ƒ be the
regular tree of degree k . By Theorem 5.5, ˆ and ƒ are bilipschitz equivalent, say via
f W V.ƒ/!V.ˆ/. Since ˆ is a subgraph of Cay.G/, it follows that there is a constant
c 2 N so that d.f .t0/; f .t1// � c whenever t0; t1 2 V.ƒ/ are adjacent in ƒ. Set
W DV [V 2[� � �[V c . Then W is a finite generating set for G. Consider Cay.GIW /.
Clearly we have that .f .t0/; f .t1// 2 E.Cay.GIW // whenever .t0; t1/ 2 E.ƒ/. Thus,
if we define ˆ0 to be the graph with vertex set G and edge set ff .e/ j e 2 E.ƒ/g,
then ˆ0 is a subgraph of Cay.GIW /. Since f is bijective with V.ˆ/ D G, ˆ0 is
graph isomorphic to ƒ and is a regular spanning tree of Cay.GIW / of degree k .

Now suppose that G has a Cayley graph, Cay.G/, admitting a regular spanning tree ˆ
of degree k . Then ˆ is nonamenable in the sense that there are C > 1 and m 2N so
that jNˆ

m .S/j � C � jS j for all finite S � V.ˆ/. Since ˆ is a spanning subgraph of �,
it follows that jN�

m.S/j � C � jS j for all finite S � V.�/ (since N�
m.S/�Nˆ

m .S/).
Thus, by Følner’s characterization of amenability, G is not amenable.

The fact that every finitely generated infinite group has some Cayley graph admitting a
regular spanning tree is a rather peculiar fact, for as the following proposition shows,
not all Cayley graphs have this property.

Proposition 5.9 There is a finitely generated infinite group G and a Cayley graph
Cay.G/ of G which does not have any regular spanning tree.

Proof Let G D Z �Z3 . Say Z D hti and Z3 D hui. Let S D ft;ug. Then S is
a finite generating set for G. We claim that Cay.GIS/ does not contain any regular
spanning trees.
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Due to the structure of free products, it is not difficult to draw the Cayley graph
Cay.GIS/. This graph can be obtained by starting with a regular tree of degree 6,
replacing each of the vertices with a triangle, and evenly dividing the 6 edges adjacent
to the original vertex between the 3 vertices of the new triangle in its place. Thus every
vertex of Cay.GIS/ lies in a triangle (corresponding to repeated multiplication on the
right by u), and is adjacent to two other triangles (by multiplying on the right by t

and t�1 ). If the triangles in Cay.GIS/ are collapsed, then a 6–regular tree is obtained.
A finite portion of Cay.GIS/ is displayed in Figure 1.

Figure 1: A finite portion of the Cayley graph Cay.GIS/

Now let ƒ be a spanning tree of Cay.GIS/. It suffices to show that ƒ is not regular.
Define

Et D f.g;gt/ j g 2Gg[ f.g;gt�1/ j g 2Gg;

Eu D f.g;gu/ j g 2Gg[ f.g;gu�1/ j g 2Gg:

Notice that E.Cay.GIS// is the disjoint union Et [Eu . From the description in
the previous paragraph, it is clear that E.ƒ/ must contain Et as otherwise ƒ would
either not be spanning or not be connected. Notice that every vertex of Cay.GIS/
is adjacent to precisely two edges from Et . Now consider the three edges .1G ;u/,
.u;u2/D .u;u�1/ and .u�1; 1G/. In order for ƒ to be spanning, connected and a tree,
E.ƒ/ must contain precisely two of these three edges. Thus for some i D�1; 0; 1 we
have .ui ;uiC1/; .ui ;ui�1/ 2 E.ƒ/ and .uiC1;ui�1/ 62 E.ƒ/. So degƒ.u

i/D 4 and
degƒ.u

iC1/D degƒ.u
i�1/D 3. Thus ƒ is not regular. We conclude that Cay.GIS/

does not contain any regular spanning trees.

Looking back at the clauses of Corollary 5.8, we see that the above proposition only
shows that “a Cayley graph” cannot be replaced by “every Cayley graph” in clause
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(ii). However, it is unclear if clause (i) remains true if “a Cayley graph” is replaced by
“every Cayley graph.”

Problem 5.10 Does every infinite Cayley graph with finitely many ends admit a
regular spanning tree?

Problem 5.11 If G is a finitely generated nonamenable group with finitely many ends,
then does every Cayley graph of G admit a regular spanning tree of degree strictly
greater than two?

Corollary 5.8 says that if G is finitely generated and nonamenable, then for every
k � 3 there is a Lipschitz bijection from the k –regular tree onto G. In general these
maps cannot be improved to being bilipschitz since some nonamenable groups have
finitely many ends and the number of ends is invariant under bilipschitz equivalences.
However, it is unclear when we can get a bilipschitz map at the expense of losing
bijectivity. By a result of Benjamini and Schramm in [1], every nonamenable group
contains a bilipschitz image of a regular tree of degree 3. However, it is not clear if
any amenable group contains a bilipschitz image of a regular tree of degree 3.

Problem 5.12 Which finitely generated groups contain a bilipschitz image of the
3–regular tree?

Notice that by Theorem 5.5, we can equivalently consider bilipschitz images of k –
regular trees for any k � 3.

6 Tilings of groups

In this section we prove that every countable group is poly-MT and every finitely
generated group is poly-ccc. We refer the reader to the introduction for the relevant
definitions and background.

We first consider poly-ccc groups. As the reader may notice, Corollary 5.7 plays a
critical role in these proofs. It is unknown to the author how to prove these results
without applying Corollary 5.7.

Theorem 6.1 Every finitely generated group is poly-ccc.

Proof Let G be a finitely generated group. If G is finite then define T n D G and
�n D f1Gg for all n 2 N . Then .�nIT n/n2N is a ccc sequence of monotilings.
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Thus G is ccc and in particular poly-ccc. Now suppose that G is infinite. Let S be a
finite generating set for G, and let d be the corresponding left-invariant word length
metric. For m> 1 let Fm be the nonabelian free group of rank m, and let F1 D Z be
the group of integers. By Corollary 5.7 there is a transitive translation-like action �
of Fm on G for some m� 1.

In [6], Gao, Jackson and Seward prove that Fm is a ccc group. Thus there is a ccc
sequence of monotilings .�nIT n/n2N of Fm . Define a map �W Fm!G by setting
�.t/D 1G � t . Since Fm acts on G transitively and translation-like, � is a bijection.
Furthermore, if � is the standard left-invariant word length metric on Fm (associated to
the standard generating set of Fm ), then �W .Fm; �/! .G; d/ is Lipschitz (Lemma 5.1).
Say the Lipschitz constant is c so that

d.�.t1/; �.t2//� c � �.t1; t2/

for all t1; t2 2 Fm . Now fix n 2N , and consider the family of sets

f�.ı/�1�.ıT n/ j ı 2�n
g:

We have that for every t 2 T n ,

d.1G ; �.ı/
�1�.ıt//D d.�.ı/; �.ıt//� c � �.ı; ıt/D c � �.1Fm

; t/:

Therefore the family of sets f�.ı/�1�.ıT n/ j ı 2�ng all lie within a common ball of
finite radius about 1G 2G. Since balls of finite radius in .G; d/ are finite, the family
of sets is finite, say

f�.ı/�1�.ıT n/ j ı 2�n
g D fT n

1 ;T
n
2 ; : : : ;T

n
k.n/g:

Notice that since � is injective, all of the T n
i have the same number of elements.

Recall that 1Fm
2 �n . By reordering the indices if necessary, we may assume that

T n
1
D �.1Fm

/�1�.1Fm
T n/D �.T n/. Now define for each 1� i � k.n/,

�n
i D f�.ı/ j ı 2�

n and �.ı/�1�.ıT n/D T n
i g:

Notice that 1G 2�
n
1

. Also notice that if ı 2�n and �.ı/ 2�n
i , then

�.ı/T n
i D �.ıT

n/:

The monotiling .�nIT n/ induces a partition of Fm , and this partition is mapped
forward by � to a partition of G. The above expression shows us that the classes of
this partition of G are precisely the left �n

i translates of T n
i for 1� i � k.n/. Thus

Pn D .�
n
1
; : : : ; �n

k.n/
IT n

1
; : : : ;T n

k.n/
/ is a fair polytiling of G.
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For n 2N the partition of Fm induced by .�nIT n/ is finer than the partition induced
by .�nC1;T nC1/, and thus the image of the first partition is finer than the image of
the second. The images of these partitions are precisely the partitions of G induced
by Pn and PnC1 , respectively. So Pn induces a finer partition than PnC1 . Thus
the sequence .Pn/n2N is coherent. Also, as previously mentioned, 1G 2 �

n
1

and
T n

1
D �.T n/� �.T nC1/D T nC1

1
for all n2N . Since � is bijective and FmD

S
T n ,

we have that G D
S

T n
1

. Thus .Pn/n2N is a coherent, centered and cofinal sequence
of fair polytilings. We conclude that G is poly-ccc.

The above theorem shows that a very large class of groups are poly-ccc. However,
we don’t know if all countable groups are poly-ccc. We know even less about which
groups are ccc.

Problem 6.2 Is every countable group poly-ccc? Is every countable group ccc?

Corollary 6.3 Every countable group is poly-MT.

Proof Let G be a countable group, and let F � G be finite. Then H D hFi is a
finitely generated group and is thus poly-ccc by the previous theorem. Thus there is a
fair sequence of ccc polytilings

.Pn/n2N D .�
n
1; : : : ; �

n
k.n/IT

n
1 ; : : : ;T

n
k.n//n2N

of H . By definition, T n
1
� T nC1

1
and H D

S
T n

1
. Thus there is n 2N with F � T n

1
.

Fix this value of n. Let D be a complete set of representatives for the left cosets of H

in G. Specifically, DH D G and dH \ d 0H D ¿ for d ¤ d 0 2D . It is easy to see
that .D�n

1
; : : : ;D�n

k.n/
IT n

1
; : : : ;T n

k.n/
/ is a fair polytiling of G. Since F � T n

1
, we

conclude that G is poly-MT.

Problem 6.4 Is every countable group MT?

Below we address what values jT1j D jT2j D � � � D jTk j one can get from fair polytiles
.T1; : : : ;Tk/. Recall that a group is locally finite if every finite subset generates a
finite subgroup. If G is a locally finite group and .T1; : : : ;Tk/ is a fair polytile of G,
then jT1j must divide the order of H D h

Sk
iD1 Tii. This is because any set aTi � aH

must either be contained in H or be disjoint from H . So .T1; : : : ;Tk/ is a fair polytile
for the finite group H , and thus jT1j divides jH j. Thus we see that in the case of
locally finite groups there are restrictions on what the cardinality of the sets Ti can be.
The following theorem shows that this is the only obstruction.
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Theorem 6.5 Let G be a countable nonlocally finite group. Then for every n � 1

there is a fair polytile .T1; : : : ;Tk/ of G with jT1j D n. Furthermore, if F � G is
finite then for all sufficiently large n there is a fair polytile .T1; : : : ;Tk/ of G with
F � T1 and jT1j D n.

Proof Let F � G be finite. Since G is not locally finite, there must exist a finite
set S �G with hSi infinite. Set H D hF [Si. So H is a finitely generated infinite
group. By Corollary 5.7 there is a transitive translation-like action � of Fm on H

for some m � 1. Define �W Fm ! H by �.t/ D 1H � t , and let Cay.Fm/ be the
canonical Cayley graph of Fm . In [6], it is proven that if ˆ is a finite connected
subgraph of Cay.Fm/ then V.ˆ/ is a monotile of Fm . In particular, for every n� 1

there is a monotile T of Fm with jT j D n. It also follows that for every finite set
F 0 � Fm and for all sufficiently large n there is a monotile T of Fm with F 0 � T and
jT j D n. The statement of this theorem follows by using F 0 D ��1.F /, then applying
the construction appearing in the proof of Theorem 6.1, and finally using left coset
representatives for left cosets of H in G as in the proof of Corollary 6.3.

We have shown that all countable groups are poly-MT and all finitely generated groups
are poly-ccc, so it seems quite possible that all countable groups are poly-ccc. However,
there are other natural tiling properties one can consider which lie between ccc and
poly-ccc and lie between MT and poly-MT. We do not study these notions here, but
we define them below so that others may investigate them.

Definition 6.6 A countable group G is super poly-MT if for every finite F �G there
is a fair polytile .T1; : : : ;Tk/ satisfying F �

T
Ti .

Definition 6.7 A countable group G is super poly-ccc if G has a fair ccc sequence
of polytilings

.�n
1; : : : ; �

n
k.n/IT

n
1 ; : : : ;T

n
k.n//

such that for each n we have
T

T n
i �

T
T nC1

i and G D
S
n

T
i

T n
i .

The following diagram clarifies the relationship between the six tiling properties dis-
cussed in this paper:

ccc
��

H) MT
��

super poly-ccc
��

H) super poly-MT
��

poly-ccc H) poly-MT
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The ccc property is the strongest of all of the mentioned tiling properties, and there
are currently no groups which are known to not be ccc. However, showing that groups
are ccc can be quite difficult, and so studying some of the other related notions in the
diagram may be more fruitful.

Problem 6.8 Which groups are super poly-ccc?

Problem 6.9 Which groups are super poly-MT?
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