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Non-positively curved complexes
of groups and boundaries

ALEXANDRE MARTIN

Given a complex of groups over a finite simplicial complex in the sense of Haefliger,
we give conditions under which it is possible to build an EZ –structure in the sense of
Farrell and Lafont for its fundamental group out of such structures for its local groups.
As an application, we prove a combination theorem that yields a procedure for getting
hyperbolic groups as fundamental groups of simple complexes of hyperbolic groups.
The construction provides a description of the Gromov boundary of such groups.

20F65, 20F67, 20F69

In [2], Bestvina defined a fundamental notion of boundary that is relevant to geometric
group theory. He showed how the topology of the boundary @G of a group G encodes
the cohomology with group ring coefficients of G . This notion of boundary was further
generalised to the notion of an equivariant compactification by the work of Farrell and
Lafont [19], who proved the Novikov conjecture for groups admitting what they call
an EZ –structure, that is to say a classifying space for proper actions together with an
equivariant Z –compactification.

The existence of EZ–structures, and their generalisation for groups with torsion, is
known for groups that admit a classifying space for proper actions with a sufficiently
nice geometry. For a group G acting properly and cocompactly on a CAT(0) space
X, the compactification of X obtained by adding the visual boundary @X yields an
EZ–structure for G . In the case of a torsion-free hyperbolic group G , a classifying
space is given by an appropriate Rips complex (see for instance Coornaert, Delzant and
Papadopoulos [12]). Bestvina and Mess [4] proved that such a space can be compactified
by adding the Gromov boundary of G to get an EZ –structure for G . This result was
further generalised in Meintrup and Schick [27] to the case of hyperbolic groups with
torsion, where they show that such a compactification yields an EZ –structure in the
sense of Carlsson and Pedersen [11]. The existence of such an EZ –structure is also
known for systolic groups by work of Osajda and Przytycki [29].

In this article, we address the following combination problem: Given a group G acting
cocompactly by simplicial isometries on a simplicial CAT(0) complex X, are there
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32 Alexandre Martin

natural conditions under which it is possible to build an EZ –structure for G , assuming
that the stabilisers of simplices all admit such a structure?

There are already some special cases for which such a combination theorem is known
to hold. For instance, Tirel [32] explained how to build a Z–boundary for free and
direct products of groups admitting Z –boundaries. Furthermore, Dahmani [14] built an
EZ –structure for a torsion-free group that is hyperbolic relative to a group admitting
an EZ –structure.

This article deals with acylindrical actions on CAT(0) spaces. Recall that an action is
called acylindrical if the diameter of sets with infinite pointwise stabiliser is uniformly
bounded above.1 This is a first step towards developing geometric tools to study groups
through their cocompact actions on non-positively curved complexes of arbitrary
dimension. This is particularly relevant for groups that do not split and lack the rich
geometry of groups that are non-positively curved in a broad sense (hyperbolic, CAT(0),
systolic). An example of such a phenomenon is the case of the mapping class group
of a non-exceptional surface, acting on its curve complex. The action is acylindrical
by a result of Bowditch [7] and the curve complex is hyperbolic by a celebrated result
of Masur and Minsky [26]. However, it is known that the mapping class group is not
relatively hyperbolic by work of Behrstock, Druţu and Mosher [1].

In this article, we consider a non-positively curved complex of groups G.Y/ D
.G� ;  a;ga;b/ over a finite simplicial complex Y endowed with a M� –structure,
� � 0, in the sense of Bridson [8], such that the stabiliser of every simplex � of Y

admits an EZ –structure .EG� ; @G� /. We further assume that these structures define
an EZ–complex of space compatible with G.Y/ (see Definition 2.2 for a precise
definition), that is, there are embeddings ��;� 0 W EG� 0 ,! EG� , for all � � � 0 , that are
equivariant with respect to the local maps of G.Y/, and such that the induced diagram
of embeddings is commutative up to multiplication by twisting elements of G.Y/.

Combination theorem for boundaries of groups Let G.Y/ be a non-positively
curved complex of groups over a finite simplicial complex Y endowed with a M� –
structure, � � 0. Let G be the fundamental group of G.Y/ and X be a universal
covering2 of G.Y/. Suppose that the following global condition holds:

(i) The action of G on X is acylindrical.

1The original definition of acylindricity by Sela [31] considers nontrivial stabilisers instead of infinite
ones. Here we use a more general notion of acylindricity introduced by Delzant [16] that is more suitable
for proper actions.

2The simplicial complex X naturally inherits a M� –structure from that of Y , which makes it a
complete geodesic metric space by work of Bridson [8]; the CAT(0) property follows from the Cartan–
Hadamard theorem.
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Non-positively curved complexes of groups and boundaries 33

Further assume that there is an EZ–complex of spaces compatible with G.Y/ that
satisfies each of the following local conditions:

(ii) The limit set property For every pair of simplices � �� 0 of Y , the embedding
EG� 0 ,! EG� realises an equivariant homeomorphism from @G� 0 to the limit
set ƒG� 0 � @G� . Furthermore, for every simplex � of Y , and every pair of
subgroups H1;H2 in the family

F� D
� n\

iD1

giG�i
g�1

i

ˇ̌̌̌
g1; : : : ;gn 2G� ; �1; : : : ; �n � st.�/; n 2N

�
;

we have ƒH1\ƒH2 Dƒ.H1\H2/� @G� .

(iii) The convergence property For every pair of simplices � � � 0 in Y and every
sequence .gn/ of G� whose projection is injective in G�=G� 0 , there exists a
subsequence such that .g'.n/EG� 0/ uniformly converges to a point in EG� .

(iv) The finite height property For every pair of simplices � � � 0 of Y , G� 0 has
finite height in G� , that is, there exist an upper bound on the number of distinct
cosets 
1G� 0 ; : : : ; 
nG� 0 2G�=G� 0 such that the intersection 
1G� 0


�1
1
\� � �\


nG� 0

�1
n is infinite.

Then G admits an EZ –structure .EG; @G/ in the sense of Farrell and Lafont.

Furthermore, the following properties hold:

(ii 0 ) For every simplex � of Y , the map EG� ! EG realises an equivariant embed-
ding from @G� to ƒG� � @G . Moreover, for every pair H1;H2 of subgroups
in the family

F D
� n\

iD1

giG�i
g�1

i

ˇ̌̌̌
g1; : : : ;gn 2G; �1; : : : ; �n 2 S.Y /; n 2N

�
;

we have ƒH1\ƒH2 Dƒ.H1\H2/� @G .

(iii 0 ) For every simplex � of Y , the embedding EG� ,! EG satisfies the convergence
property.

(iv 0 ) For every simplex � of Y , the local group G� has finite height in G .

As an application of the previous construction, we prove a higher dimensional combi-
nation theorem for hyperbolic groups, in the case of acylindrical complexes of groups
of arbitrary dimension.
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Combination theorem for hyperbolic groups Let G.Y/ be a strictly developable
non-positively curved simple complex of groups over a finite simplicial complex Y

endowed with a M� –structure, � � 0. Let G be the fundamental group of G.Y/ and
X be a universal covering of G.Y/. Assume that:

� The universal covering X is hyperbolic.3

� The local groups are hyperbolic and all the local maps are quasiconvex embed-
dings.

� The action of G on X is acylindrical.

Then G is hyperbolic. Furthermore, the local groups embed in G as quasiconvex
subgroups.

Note that a complex of groups over a simply connected simplicial complex is de-
velopable if and only if it is strictly developable. Hence one might try to create
new hyperbolic groups as fundamental groups of non-positively curved complexes of
hyperbolic groups over a simply connected finite complex (see Bridson and Haefliger
[9, Theorem II.12.28]).

Such a result is already known for acylindrical graphs of groups: the hyperbolicity
is a direct consequence of the much more general combination theorem of Bestvina
and Feighn [3], while the quasiconvexity of vertex stabilisers follows from a result of
Kapovich [25]. Mj and Sadar [28] have, using a different approach, a combination
theorem that deals with the case where all the local groups are the same.

Our construction follows the strategy of Dahmani [15], who applied this idea to amal-
gamate Bowditch boundaries of relatively hyperbolic groups in the case of acylindrical
graphs of groups. The proofs in our case are significantly more involved as the topology
of X can be much more complicated than that of a tree. Generalising an argument of
Dahmani, we prove that G is a uniform convergence group on @G (see Section 6 for
definitions), which implies the hyperbolicity of G by a celebrated result of Bowditch
[5] and Tukia [33].

The article is organised as follows. In Section 1, we study complexes of spaces over a
simplicial complex. These spaces are direct generalisations of graphs of spaces studied
by Scott and Wall in the context of Bass–Serre theory [30]. In Section 2, we give
conditions under which it is possible to build a classifying space for proper actions
of the fundamental group of a complex of groups as a complex of spaces over its
universal covering. We also define the boundary @G of G and the compactification

3For instance, when � < 0 .
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Non-positively curved complexes of groups and boundaries 35

EG of EG as sets. In Section 3, we investigate geometric properties of geodesic in
CAT(0) M� –complexes. In Section 4, we study the geometry of some subcomplexes
of X, called domains, which are used to define @G . Section 5 is devoted to the proof
of some geometric results that are used throughout the paper. We define a topology
on EG in Section 6 and we prove that it makes EG a compact metrisable space in
Section 7. The proof of the combination theorem for boundaries of groups is completed
in Section 8, where the properties of @G are investigated. Finally, Section 9 is devoted
to the dynamics of G on its boundary and to the proof of the combination theorem for
hyperbolic groups.

Notation Throughout this paper, X is a simplicial complex. For a point x of X, we
denote by �x the unique simplex containing x in its interior. For a simplex � of X,
we denote by st.�/ the open star of � , that is, the reunion of the open simplices whose
closure contain � . We also denote by st.�/ its closed star, that is, the reunion of the
closed simplices containing � . We denote by S.X / the set of simplices of X, and by
V .X / the set of its vertices. For a simplex � of X and a constant r > 0, we denote
by B.�; r/ (resp. B.�; r/) the open (resp. closed) metric r –ball around � .

All the types of classifying spaces we will consider in this paper are classifying spaces
for proper actions (see Section 2 for definitions). Consequently, we will simply speak of
classifying spaces rather than classifying spaces for proper actions. Moreover, although
the notation EG is well spread in the literature to mean a classifying space for proper
actions of a discrete group G , we will simply use the notation EG so as to avoid the
somehow unaesthetic notation EG when speaking of an EZ–compactification of a
classifying space for proper actions of G .
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1 Complexes of spaces and their topology

In this section, we study a class of spaces with a projection to a given simplicial
complex X, called complexes of spaces over X , which are high-dimensional analogues
of graphs of spaces studied in the context of actions on trees (see Scott and Wall [30]).
This notion of complexes of spaces is close to the one studied by Corson [13] and
Haefliger [24].
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36 Alexandre Martin

1.1 A few geometric facts about M�–simplicial complexes

Since the present article deals with nonproper actions of a group, the simplicial complex
on which it acts is generally non locally finite. In [8], Bridson defined a class of spaces
that is suitable for a geometric approach.

Definition 1.1 (M� –simplicial complexes with � � 0 [8]) Let � � 0. A simpli-
cial complex X is called a M� –simplicial complex if it satisfies the following two
conditions:

� Each simplex of X is modeled after a geodesic simplex in some M n
� , where

M n
� is the simply connected n–Riemannian manifold of constant curvature � .

� If � and � 0 are two simplices of X sharing a common face � , the identity map
from � � � to � � � 0 is an isometry.

To such a M� –complex X is associated a canonical simplicial metric.

Theorem 1.2 (Bridson [8]) If X is a M� –simplicial complex, � � 0, with finitely
many isometry types of simplices, the simplicial metric is complete and geodesic.

From now on, every simplicial complex will implicitly be given the structure
of a M� –complex, � � 0, with finitely many isometry types of simplices.

1.2 Complexes of spaces

Definition 1.3 A complex of spaces C.X / over X consists of the following data:

� For every simplex � of X, a pointed CW–complex C� , called a fibre.

� For every pair of simplices � � � 0 , an embedding �� 0;� W C� 0 ,! C� , called a
gluing map, such that for every � � � 0 � � 00 , we have ��;� 00 D ��;� 0 ı�� 0;� 00 .

Definition 1.4 (Realisation of a complex of spaces) Let C.X / be a complex of
spaces over X. The realisation of C.X / is the quotient space

jC.X /j D
� a
�2S.X /

� �C�

�.
' ;

where
.i�;� 0.x/; s/' .x; ��;� 0.s// for x 2 � � � 0 and s 2 C� 0 ;

where i�;� 0 W � ,! � 0 is the natural inclusion. The class in jC.X /j of a point .x; s/
will be denoted Œx; s�.
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Definition 1.5 A complex of spaces C.X / will be called locally finite if for every
simplex � of X and every point x 2C� , there exists an open set U of C� containing x

and such that there are only finitely many simplices � 0 in the open star of � satisfying
U \ Im.��;� 0/¤¿.

Proposition 1.6 Let C.X / be a locally finite complex of spaces. Then jC.X /j ad-
mits a natural locally finite CW–complex structure, for which the � �C� embed as
subcomplexes.

1.3 Topology of complexes of spaces with contractible fibres

Definition 1.7 (Quotient complex of spaces) Let C.X / be a complex of spaces over
X and Y � X a subcomplex. We denote CY .X / the complex of spaces over X

defined as follows:

� .CY /� D C� if � ª Y , .CY /� is the basepoint of C� otherwise.

� �Y
�;� 0 is the composition .CY /� 0 ,! C� 0

��;�0
���! C�� .CY /� .

We denote by pY W jC.X /j ! jCY .X /j the canonical projection, and simply p for
pX W jC.X /j !X. In the same way, if Y � Y 0 are subcomplexes of X, we denote by
pY;Y 0 W jCY .X /j ! jCY 0.X /j the canonical projection.

Lemma 1.8 Let C.X / be a locally finite complex of spaces over X with contractible
fibres, and let Y be a finite subcomplex of X. Then pY W jC.X /j ! jCY .X /j is a
homotopy equivalence.

Proof It suffices to prove the result for Y consisting of a single closed simplex � .
We have the following commutative diagram:

jC.X /j

'

��

pY // jCY .X /j

'

��
jC.X /j=.� �C� / D

// jCY .X /j=.� �?/

The vertical arrows are homotopy equivalences, since we are quotienting by contractible
subcomplexes, hence the result.

Theorem 1.9 (Dowker [17]) The (continuous) identity map X !X from X with
its CW topology to X with its simplicial metric is a homotopy equivalence.
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Proposition 1.10 Let C.X / be a locally finite complex of space over X with con-
tractible fibres. If X has finitely many types of simplices and is contractible, then
jC.X /j is contractible.

Proof By the previous theorem, it is enough to show that the projection pW jC.X /j!
X induces isomorphisms on homotopy groups, when X is endowed with its CW
topology. For that topology, a continuous map from a compact space to X has its
image contained in a finite subcomplex, to which Lemma 1.8 applies.

2 Construction of EG and @G for developable complexes of
groups

In this section, given a developable simple complex of groups G.Y/ over a finite
simplicial complex Y , we build a classifying space for its fundamental group.

Notation We choose once and for all a non-positively curved complex of groups
G.Y/ over a finite simplicial complex endowed with a M� –structure, � � 0 (where Y
is the small category without loops whose vertices correspond to simplices of Y and
whose oriented edges come from inclusion of simplices of Y ). Recall that a complex
of groups consists of the data .G� ;  a;ga;b/ of local groups .G� /, local maps . a/

and twisting elements .ga;b/. For the background on complexes of groups, we refer
the reader to Bridson and Haefliger [9]. We fix a maximal tree T in the 1–skeleton of
the first barycentric subdivision of Y , which allows us to define the fundamental group
GD�1.G.Y/;T / and the canonical morphism �T W G.Y/!G given by the collection
of injections G� !G [9, p. 553]. Finally, we define X as the universal covering of
G.Y/ associated to �T . The simplicial complex X naturally inherits a M� –structure
with finitely many isometry types of simplices from that of Y and the simplicial metric
d on X makes it a complete geodesic metric space by work of Bridson [8]. This space
is CAT(0) by the curvature assumption on G.Y/ [9, p. 562].

2.1 Construction of EG and @StabG

Definition 2.1 ((Cofinite and finite-dimensional) classifying space for proper actions)
Let � be a countable discrete group. A cofinite and finite-dimensional classifying
space for proper actions of � (or briefly a classifying space for � ) is a contractible
CW–complex E� with a proper cocompact and cellular action of � , and such that:
� For every finite subgroup H of � , the fixed point set E�H is nonempty and

contractible.
� Every infinite subgroup H of � has an empty fixed point set.
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Definition 2.2 A complex of spaces D.Y/ compatible with the complex of groups
G.Y/ consists of the following:

� For every vertex � of Y , a space D� that is a model of classifying space for
proper actions EG� of the local group G� .

� For every edge a of Y with initial vertex i.a/ and terminal vertex t.a/, an
embedding �aW EGi.a/ ,! EGt.a/ that is Gi.a/–equivariant, that is, for every
g 2Gi.a/ and every x 2 EGi.a/ , we have

�a.g:x/D  a.g/ : �a.x/;

and such that for every pair .a; b/ of composable edges of Y , we have:

ga;b ı�ab D �a�b:

Note that a complex of spaces compatible with the complex of groups G.Y/ is not a
complex of spaces over Y when the twisting elements ga;b are not trivial. Nonetheless,
this data is used to build a complex of spaces over X, as explained in the following
definition.

Definition 2.3 We define the space

ClD.Y/ D
�

G �
a

�2V .Y/

.� �EG� /
�.
';

where .g; i�;� 0.x/; s/ ' .g�T
�
Œ�� 0�

��1
;x; �.�� 0/.s// if Œ�� 0� 2 Edges.Y/, s 2 EG� ,

x 2 � 0 , g 2G , .gg0;x; s/' .g;x;g0s/ if x 2 � , s 2 EG� , g0 2G� , g 2G .

The canonical projection G �
`
�2V .Y/.� �EG� /!G �

`
�2V .Y/ � yields a map

pW ClD.Y/!X:

The action of G on G �
`
�2V .Y/.� � EG� / on the first factor by left multiplica-

tion yields an action of G on ClD.Y/ , making the projection pW ClD.Y/ ! X a
G –equivariant map.

Note that ClD.Y/ can be seen as a complex of spaces over X, the fibre of a simplex
Œg; � � being the classifying space EG� . Indeed, for en edge Œg; a� of the first barycentric
subdivision of X, the gluing map �Œg�T .a/�1;i.a/�;Œg;t.a/�W EGi.a/! EGt.a/ is defined
as �i.a/;t.a/ .

For every simplex � of X, we denote by EG� the fibre over � of that complex of
space. For simplices �; � 0 of X such that � 0 � � , we denote by �� 0;� W EG� ! EG� 0
the associated gluing map.
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Theorem 2.4 The space ClD.Y/ is a classifying space for proper actions of G .

From now on, we denote this classifying space by EG.

Proof Local finiteness Let � be a simplex of X and U be an open set of EG� that
is relatively compact. It is enough to prove that for any injective sequence .�n/ of
simplices of X containing � there are only finitely many n such that the image of
��;�n

meets U . By cocompactness of the action, we can assume that all the �n are
in the same G –orbit, and let � 0 be a simplex in that orbit. Since the action of G� on
EG� is proper, it follows that for every compact subset K of EG� , only finitely many
distinct cosets gEG� 0 in EG� can meet K , hence the result.

Contractibility Since the complex of spaces associated to ClD.Y/ is locally finite and
has contractible fibres, ClD.Y/ is contractible by Proposition 1.10.

Cocompact action For every simplex � of Y , we choose a compact fundamental
domain K� for the action of G� on D� D EG� . Now the image in ClD.Y/ ofS
�2S.Y / � �K� clearly defines a compact subset of ClD.Y/ meeting every G –orbit.

Proper action As ClD.Y/ is a locally finite CW–complex, hence a locally compact
space, it is enough to show that every finite subcomplex intersects only finitely many
of its G –translates.

Let us first show that for every cell � of ClD.Y/ , there are only finitely many g 2G

such that g� D � . Indeed, let g 2 G such that g� D � . The canonical projection
ClD.Y/ ! X is G–equivariant and sends a cell of ClD.Y/ on a simplex of X, thus
g also stabilises the simplex p.�/ � X. Since G acts without inversion on X, g

pointwise stabilises the vertices of p.�/. Let s be such a vertex. Then g 2 Gs and,
by construction of ClD.Y/ , the restriction to Gs of the action of G on ClD.Y/ is just
the action of Gs on EGs . Thus, by definition of a classifying space for proper actions,
this implies that there are only finitely many possibilities for g .

Now, let F be a finite subcomplex of ClD.Y/ and S.F / the (finite) set of pairs .�; � 0/
of cells of F that are in the same G –orbit. The set fg 2G j gF \F ¤¿g is contained
in
S
.�;� 0/2S.F /fg 2G j g� D � 0g, and fg 2G j g� D � 0g has the same cardinality as

the set fg 2G j g� D �g, which is finite by the previous argument.

Fixed sets Let H be a finite subgroup of G . As G acts without inversion on the CAT(0)
complex X, the subset X H is a nonempty convex subcomplex of X. Furthermore, for
every simplex � of X H , the subcomplex .EG� /H of EG� is nonempty and contractible.
Thus ClHD.Y/ is the realisation of a complex of spaces over the contractible complex X H

and with contractible fibres, hence it is nonempty and contractible by Proposition 1.10.
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If H is an infinite subgroup of G , we prove by contradiction that ClHD.Y/ is empty. If
this was not the case, there would exist a simplex � fixed pointwise under H and a
point x of EG� that is fixed under H � G� . But this is absurd as .EG� /H D¿ by
assumption.

We now turn to the construction of a boundary of G . As introduced by Farrell and
Lafont [19], the definition of an EZ –structure only applies to torsion-free groups. Here
we use a notion of Z –structure suitable for groups with torsion, which was introduced
by Dranishnikov [18].

Definition 2.5 (Z–structures, EZ–structures) Let � be a discrete group. A Z–
structure for � is a pair .Y;Z/ of spaces such that:

� Y is a Euclidean retract, that is, a compact, contractible and locally contractible
space with finite covering dimension.

� Y nZ is a classifying space for proper actions of � .

� Z is a Z–set in Y , that is, Z is a closed subspace of Y such that for every
open set U of Y , the inclusion U nZ ,! U is a homotopy equivalence.

� Compact sets fade at infinity, that is, for every compact set K of Y nZ , every
point z 2Z and every neighbourhood U of z in Z , there exists a subneighbour-
hood V � U with the property that if a � –translate of K intersects V , then it
is contained in U .

The pair .Y;Z/ is called an EZ –structure if in addition we have:

� The action of � on Y nZ continuously extends to Y .

Definition 2.6 We say that a complex of spaces D.Y/ compatible with a complex of
groups G.Y/ extends to an EZ–complex of spaces if it satisfies the following extra
conditions:

� Each fibre D� D EG� is endowed with an EZ –structure .EG� ; @G� /.

� The equivariant embeddings .�a/ extend to equivariant embeddings

�aW EGi.a/! EGt.a/;

such that for every pair .a; b/ of composable edges of Y , we have:

ga;b ı�ab D �a�b:
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Definition 2.7 We define the space

�.Y/D
�

G �
a

�2V .Y/

.f�g � @G� /

�.
';

where .gg0; .x; s// ' .g; .x;g0s// if x 2 �; s 2 EG� ;g
0 2 G� ;g 2 G . It should be

noted here that f�g denotes a point labeled by � and not the simplex itself. The set
�.Y/ comes with a natural projection to the set of simplices of X. If � is a simplex
of X, we denote by @G� the preimage of f�g under that projection. We now define

@StabG D�.Y/=�;

where � is the equivalence relation generated by the following identifications:�
g; f�g ; �

�
�
�
gF.Œ�� 0�/�1; f� 0g; �Œ�� 0�.�/

�
if g 2G; Œ�� 0� 2 Edges.Y/ and � 2 @G� .

The action of G on G �
`
�2V .Y/.f�g� @G� / by left multiplication on the first factor

yields an action of G on �.Y/ and on @StabG .

Definition 2.8 We define the spaces @G D @StabG [ @X and EGDEG [ @G .

Our aim is to endow EG with a topology that makes .EG; @G/ an EZ –structure for G .

Notation Since the ��;� 0 are embeddings, we will identify ��;� 0.EG� 0/ with EG� 0 .
For instance, if U is an open subset of EG� we will simply write “we have EG� 0 �U

in EG� ” instead of “we have ��;� 0.EG� 0/� U in EG� ”.

From now on, we assume that there is a complex of spaces D.Y/ that extends
to an EZ –complex of spaces compatible with the complex of groups G.Y/.

2.2 Further properties of EZ–complexes of spaces

In this paragraph, we define additional properties of EZ –complexes of spaces, which
will enable us to study the properties of the equivalence relation � previously defined.

2.2.1 The limit set property Recall that for a discrete group � together with an
EZ –structure .E�; @�/ and a subgroup H , the limit set ƒH of H in @� is the set
Hx\ @� , where x is an arbitrary point of E� .

Definition 2.9 (Limit set property for an EZ–complex of spaces) We say that the
EZ –complex of spaces D.Y/ compatible with the complex of groups G.Y/ satisfies
the limit set property if the following conditions are satisfied:
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� For every pair of simplices � � � 0 of Y , the map ��;� 0 is an equivariant
homeomorphism from @G� 0 to the limit set ƒG� 0 � @G� .

� For every simplex � of Y , and every pair of subgroups H1;H2 in the family
F� D

˚Tn
iD1 giG�i

g�1
i

ˇ̌
g1; : : : ;gn 2G� ; �1; : : : ; �n� st.�/; n2N

	
, we have

ƒH1\ƒH2 Dƒ.H1\H2/.

Remark (i) Let � be a hyperbolic group, and H a subgroup. Then H is quasiconvex
if and only if its limit set in @� is equivariantly homeomorphic to @H , by a result of
Bowditch [6].

(ii) Let � be a hyperbolic group and @� its Gromov boundary. Let H1 and H2 be
two quasiconvex subgroups of � . Then ƒH1 \ƒH2 D ƒ.H1 \H2/ by a result of
Gromov [23].

2.2.2 The finite height property Recall that, for � a discrete group and H a sub-
group, the height of H is the supremum of the set of integers n 2N such that there
exist distinct cosets 
1H; : : : ; 
nH 2G=H such that the intersection 
1H
�1

1
\ � � � \


nH
�1
n is infinite. If such a supremum is infinite, we say that H is of infinite height

in � . Otherwise, H is said to be of finite height in � . A quasiconvex subgroup of a
hyperbolic group is of finite height, by a result of Gitik, Mitra, Rips and Sageev [21].

Definition 2.10 (Finite height property) We say that the EZ–complex of spaces
D.Y/ compatible with the complex of groups G.Y/ satisfies the finite height property
if for every pair of simplices � � � 0 of Y , G� 0 is of finite height in G� .

3 Geodesics in M�–complexes

In this section, we study the geometry of the set of geodesics of an M� –complex.
Recall that X is assumed to be a M� –complex, � � 0, with finitely many isometry
types of simplices.

3.1 The finiteness lemma

Definition 3.1 For subsets K;L of X, we define Geod.K;L/ as the set of points
lying on a geodesic segment from a point of K to a point of L.

Definition 3.2 (Simplicial neighbourhood) Let K be a subcomplex of X. The
subcomplex spanned by the closed simplices that meet K is called the closed simplicial
neighbourhood of K , and denoted N.K/. The union of the open simplices whose
closure meets K is called the open simplicial neighbourhood of K , and denoted N.K/.

Geometry & Topology, Volume 18 (2014)



44 Alexandre Martin

We recall the following proposition of Bridson, which follows from the claim contained
in the proof of Theorem 1.11 of [8].

Proposition 3.3 (Containment lemma, Bridson [8]) For every n there exists a con-
stant k such that for every finite subcomplex K �X spanned by at most n simplices,
any geodesic path contained in the open simplicial neighbourhood of K meets at most
k simplices.

We also recall this useful related result, which follows from [8, Theorem 1.11].

Corollary 3.4 (Bridson [8]) For every n there exists a constant k such that every
geodesic segment of length at most n meets at most k simplices.

Lemma 3.5 (Finiteness lemma) Let X be as before. For subcomplexes K;K0 �X,
Geod.K;K0/ meets only finitely many open simplices.

Proof It is enough to prove the result when K and K0 consist of two closed simplices
� and � 0 . For every x2� and every x02� 0 , we consider the sequence of open simplices
�1; : : : ; �n met by the geodesic segment Œx;x0� and set Cx;x0 D � [�1[� � �[�n[�

0 .
Note that by Corollary 3.4 there is a uniform k bound on the number of simplices
contained in Cx;x0 . Since there are only finitely many isometry types of simplices
in X, there are, up to simplicial isometry fixing pointwise � and � 0 , finitely many
subcomplexes of the form Cx;x0 . Following Bridson, we call such an equivalence class
of subcomplexes a model (see Bridson and Haefliger [9, proof of I.7.57]).

We now claim that for every x;y 2 � and every x0;y0 2 � 0 such that Cx;x0 and
Cy;y0 are in the same model, we have Cx;x0 D Cy;y0 . Indeed, choose a simplicial
isometry �W Cx;x0 ! Cy;y0 that fixes pointwise � and � 0 . Then � sends the geodesic
segment Œx;x0� � Cx;x0 to a simplicial path of the same length between �.x/ D x

and �.x0/D x0 . As X is CAT(0), geodesic segments are unique, hence � pointwise
fixes Œx;x0�. We thus have Œx;x0� D �.Œx;x0�/ � Cy;y0 , hence Cx;x0 � Cy;y0 . The
same reasoning applied to the geodesic segment Œy;y0� yields Cy;y0 � Cx;x0 , hence
Cx;x0 D Cy;y0 .

We have
Geod.�; � 0/�

[
x2�;x02� 0

Cx;x0

and the previous discussion shows that this is a finite union, which concludes the proof.
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3.2 Paths of simplices of uniformly bounded length

Definition 3.6 A path of simplices is a sequence of open simplices �1; : : : ; �n such
that �i � �iC1 or �iC1 � �i for every i D 1; : : : ; n�1. Equivalently, it is a finite path
in the first barycentric subdivision of X. The integer n is called the length of the path
of simplices.

Up to rescaling the metric, we also make the following assumption:

From now on, we will assume that the distance from any simplex to the
boundary of its (closed) simplicial neighbourhood is at least 1.

Here we prove the following lemma:

Lemma 3.7 (Short paths of simplices) For every n � 1, there exists m � 1 such
that the following holds: Let K be a convex subcomplex of X and K0 a connected
subcomplex of X, both containing at most n simplices. Let x;y 2K and x0;y0 2K0

and assume that there exists a path in K0 between x0 and y0 that does not meet K . Let
�; � 0 be two simplices of N.K/nK such that the geodesic segment Œx;x0� (resp. Œy;y0�)
meets the interior of � (resp. � 0 ). Then there exists a path of simplices in N.K/ nK of
length at most m between � and � 0 .

K

K0

x

x0

�

� 0

y

y0

: : :

Figure 1

Definition 3.8 (Bridson and Haefliger [9, I.7.8]) For x 2X, let

�.x/D inffd.x; �/ j � � st.�x/;x … �g:

The constant is such that for every y 2 B.x; �.x//, we have �x � �y .
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The following lemma is a controlled version of [9, Lemma I.7.54].

Lemma 3.9 There exist constants �0 > "0 > 0 such that:

� For every simplex � of X, the 2�0 –neighbourhood of � is contained in the open
simplicial neighbourhood of � .

� For every point x2X, there exists y2B.x; �0/ such that B.x; "0/�B.y; �.y//.

Proof For a simplex � of X, let

�.�/D inffd.�; �/ j � � N.�/; � \ � D¿g:

The above set of distances is finite since X has only finitely many isometry types of
simplices, thus �.�/ > 0. For the same reason, we can define �0 D

1
2
�min �.�/ > 0,

where the minimum is taken over all the simplices of X.

Now that �0 is defined, we construct constants �1; : : : ; �D by induction, where D is
the maximal dimension of a simplex of X, as well as subsets T0; : : : ;TD of X, such
that each Tk is an open neighbourhood of the k –skeleton X .k/ of X.

Let
T0 D

[
v2V .X /

B.v; �0/;

where �0 is as above. Suppose that �0; : : : ; �k and T0; : : : ;Tk are defined. For each
simplex � � X of dimension kC 1, the function � (as defined in Definition 3.8) is
continuous on the compact set � nTk and does not vanish, hence is bounded below
by a constant �kC1.�/ > 0. As X has finitely many isometry types of simplices, we
define �kC1 D

1
2
�min �kC1.�/ > 0, where the minimum is taken over all simplices of

dimension kC 1. We can further assume that �kC1 � �k . Let

TkC1 D Tk [

� [
��X ;

dim�DkC1

[
x2�nTk

B.x; �kC1/

�
:

Finally, let "0D �D . We have T0� � � � �TD DX. Let x 2X. There exists a unique k

such that x 2Tk nTk�1 . For such a k , there exists y 2X .k/nTk�1 with d.x;y/� �k

(in particular d.x;y/� �0 ). As "0 � �k , we get

B.x; "0/� B.x; �k/� B.y; 2�k/� B.y; �k.�y//� B.y; �.y//;

which concludes the proof.
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Proof of Lemma 3.7 First notice that since X has only finitely many isometry
types of simplices, there exists a constant l , which depends only on n and X, points
x D x0; : : : ;xl D y in K and x0 D x0

0
; : : : ;x0

l
D y0 in K0 such that for every k ,

d.xk ;xkC1/ < "0 , d.x0
k
;x0

kC1
/ < "0 , xk ;xkC1 belong to the same simplex of K ,

and x0
k
;x0

kC1
belong to the same simplex of K0 . For every k D 1 : : : ; l � 1, let �k be

a simplex of N.K/nK whose interior meets Œxk ;x
0
k
�. In order to prove Lemma 3.7, it

is thus enough to consider the case where d.x;y/ < "0 , d.x0;y0/ < "0 , x;y belong
to the same simplex � of K , and x0;y0 belong to the same simplex � 0 of K0 . We
treat two cases separately.

Case 1 Suppose that the geodesic segments Œx;x0� and Œy;y0� are both contained in
the open �0 –neighbourhood of K . Recall that by definition of �0 , this implies that
they are contained in the open simplicial neighbourhood of K . The geodesic segment
Œx;x0� yields a geodesic segment, contained in N.K/nK by convexity of K , between a
point in the interior of � and x0 . By Proposition 3.3, there exists a constant m1 (which
depends only on X and n) such that there exists a path of simplices in N.K/ nK of
length at most m1 between � and � 0 . Reasoning similarly for Œy;y0�, we get a path of
simplices in N.K/ nK of length at most m1 between � 0 and � 0 . We thus get a path
of simplices in N.K/ nK of length at most 2m1 between � and � 0 .

Case 2 Suppose that the geodesic segment Œx;x0� is not contained in the �0 –neigh-
bourhood of K . We then choose a point u on that geodesic segment that belongs
to B.K; 2�0/ nB.K; �0/ (such a subset is contained in N.K/ by definition of �0 ).
By Lemma 3.9, we can choose z 2 X nK such that B.u; "0/ � B.z; �.z//. Since
d.x;y/ < "0 and d.x0;y0/ < "0 , the CAT(0) geometry of X implies that Œy;y0� meets
the ball B.u; "0/�B.z; �.z// at a point v . By definition of �.z/, we thus have �z��u

and �z � �v , which yields the path of simplices �u; �z; �v in N.K/ nK between �u

and �v . Now the geodesic segment Œx;x0� (resp. Œy;y0�) yields a path of simplices in
N.K/nK (by convexity of K ) of length at most m1 between � and �u (resp. between
� 0 and �v ). We thus get a path of simplices in N.K/ nK of length at most 2m1C 1

between � and � 0 .

4 The geometry of the action

In this section, we gather a few geometric tools that will be used to construct a topology
on EGD EG[ @G . From now on, we assume that the EZ –complex of spaces D.Y/
compatible with G.Y/ satisfies the limit set property Definition 2.9 and the finite
height property Definition 2.10. We further assume that the action of G on X is
acylindrical and we fix an acylindricity constant A > 0, that is, a constant such that
every subcomplex of X of diameter at least A has a finite pointwise stabiliser.
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4.1 Domains and their geometry

In this section, we study the topological properties of the identifications made to build
the boundary of G .

Definition 4.1 Let � 2 @StabG . We define D.�/, called the domain of � , as the
subcomplex of X spanned by simplices � such that � 2 @G� . We denote by V .�/ the
set of vertices of D.�/.

The aim of this paragraph is to prove the following:

Proposition 4.2 Domains are finite convex subcomplexes of X whose diameters are
uniformly bounded above.

The containment lemma Proposition 3.3 and Proposition 4.2 imply the following:

Corollary 4.3 For every � 2 @StabG , there exists an integer d� such that D.�/ has at
most d� simplices, and such that a geodesic segment in the open simplicial neighbour-
hood of D.�/ meets at most d� open simplices. Furthermore, there exists an upper
bound dmax on the set of integers d� ; � 2 @StabG .

Recall that �.Y/ is defined in Definition 2.7 as the disjoint union of the @Gv (v2V .X /)
and that @StabG is a quotient of �.Y/ defined by making identifications along edges
of X. We start by proving the following proposition:

Proposition 4.4 Let v be a vertex of X. Then the projection � W @Gv! @G is injective.

Definition 4.5 Let �2@StabG . A � –path is the data f.vi/0�i�n; .�i/0�i�n; .xi/1�i�ng

consisting of:

� a sequence v0; : : : ; vn of adjacent vertices of X,

� a sequence �0; : : : ; �n of elements of �.Y/, such that �i 2 @Gvi
for every i ,

and such that each �i is in the equivalence class � ,

� a sequence x1; : : : ;xn of elements of �.Y/, such that xi 2 @GŒvi�1;vi � for every
i , and such that �vi�1;Œvi�1;vi �.xi/D �i�1 (resp. �vi ;Œvi�1;vi �.xi/D �i ).

To lighten notation, a �–path will sometimes just be denoted Œv0; : : : ; vn�� . The path
in the 1–skeleton of X induced by a � –path is called the support of Œv0; : : : ; vn�� , and
denoted Œv0; : : : ; vn�. If v0 D vn , a �–path will rather be called a �–loop.
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Lemma 4.6 Let v0; : : : ; vn be vertices of X, HD
T

0�i�n Gvi
, and K be a connected

subcomplex of X pointwise fixed by H . Suppose that H is infinite, and let � 2 @StabG

such that, in Gv0
, we have

� 2ƒH � @Gv0
:

Then � 2ƒH � @G� for every simplex � of K , hence K �D.�/.

Proof As K is connected, it is enough to prove that for every path of simplices
�0 D v0; : : : ; �d contained in K , we have � 2 @H � @G�d

. Now this follows from an
easy induction on the number of simplices contained in such a path.

Lemma 4.7 Let � 2 @StabG , Œv0; : : : ; vn�� a �–path and H D
T

0�i�n

Gvi
. Then

� H is infinite,
� � 2ƒH � @Gvi

for every i D 0; : : : ; n.

Proof We show the result by induction on n� 1. The result is immediate for nD 1

by definition of �. Suppose the result true up to rank n and let � 2 @StabG together
with a � –path Œv0; : : : ; vnC1�� . By restriction, we get a � –path Œv0; : : : ; vn�� for which
the result is true by the induction hypothesis. Thus � 2ƒ.

T
0�i�n Gvi

/� @Gvn
. But

since � is also in @GŒvn;vnC1� DƒGŒvn;vnC1� by assumption, we get

� 2ƒ

� \
0�i�n

Gvi

�
\ƒGŒvn;vnC1� Dƒ

� \
0�i�nC1

Gvi

�
� @Gvn

;

the previous equality following from the limit set property Definition 2.9. Now, by
Lemma 4.6, we get � 2ƒ

�T
0�i�nC1 Gvi

�
� @Gvi

for every i D 0; : : : ; nC 1, which
concludes the induction.

Proof of Proposition 4.4 Let �; � 0 be two elements of �.Y/ in the image of @Gv
that are equivalent for the equivalence relation �. Then there exists a �–loop

f.vi/0�i�n; .�i/0�i�n; .xi/1�i�ng

with �0 D � , �n D � 0 . It is enough to prove the result when the support Œv0; : : : ; vn� of
that � –loop is injective. Let Y be the set of all points on a geodesic between two points
of Œv0; : : : ; vn�. By the previous lemma, there is an infinite subgroup H of G stabilising
pointwise v0; : : : ; vn . As X is CAT(0), H also stabilises pointwise every point of Y .
As Œv0; : : : ; vn� is contractible inside Y , the finiteness lemma, Lemma 3.5, implies that
we can choose a finite 2–complex F such that the loop Œv0; : : : ; vn� is contractible
inside F , and such that F is pointwise fixed by H . We call such a subcomplex a hull
of the loop Œv0; : : : ; vn�. Hence the result will follow from the following fact, which
we now prove by induction.
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.Hd / For every � 2 @StabG and every �–loop f.vi/0�i�n; .�i/0�i�n; .xi/1�i�ng

admitting a hull containing at most d triangles, we have �0 D �n .

If d D 1, then nD 2, and the hull considered is just a single triangle � . Since H �G�
because H stabilises � pointwise, we can choose x 2 @G� such that �v1;� .x/D �1 .
From the commutativity of the diagram of embeddings for a simplex, it follows that
�Œv0;v1�;� .x/D x1 and �Œv1;v2�;� .x/D x2 . Hence �0 D �v0;Œv0;v1�.x1/D �v0;� .x/D

�v0;Œv2;v0�.x2/D �2 .

Suppose the result true up to rank d , and let � 2 @StabG , together with a �–loop
f.vi/0�i�n; .�i/0�i�n; .xi/1�i�ng admitting a hull F containing at most d C 1 trian-
gles. Choose any triangle � of F containing the segment Œv1; v2�. As � is stabilised
by H , we can find x 2 @G� such that �v1;� .x/ D �1 . There are now two possible
cases, depending of the nature of � :

� If another side of � is contained in the support of the �–loop, for example
Œv2; v3�, we set x0 D �Œv1;v3�;� .x/.
Now the commutativity of the diagram of embeddings for � yields the following
new �–loop:

f.v0; v1; v3; v4; : : : ; vn/; .�0; �1; �3; : : : ; �n/; .x1;x
0;x4; : : : ;xn/g:

A hull for that new loop is given by the closure of F n� , thus containing at most
d triangles, and we are done by induction.

� If no other side of � is contained in the support of the � –loop, we set a to be the
remaining vertex of � , ˛ D �a;� .x/, x2 D �Œv1;a�;� .x/ and x0

2
D �Œa;v2�;� .x/.

The commutativity of the diagram of embeddings for � yields the following
new �–loop:

f.v0; v1; a; v2; : : : ; vn/; .�0; �1; ˛; �2; : : : ; �n/; .x1;x2;x
0
2;x3; : : : ;xn/g:

A hull for that new loop is given by the closure of F n� , thus containing at most
d triangles, and we are done by induction.

Proof of Proposition 4.2 Convexity Let x;x0 be two points of D.�/. Let v (resp.
v0 ) be a vertex of �x (resp. �x0 ). We can thus find a �–path

f.vi/0�i�n; .�i/0�i�n; .xi/1�i�ng

with v0 D v and vn D v0 . As � 2 @G�x
and � 2 @G�x0

, we can assume without
loss of generality that its support Œv0; : : : ; vn� contains all the vertices of �x and �x0 .
By Lemma 4.7, this implies that the subgroup H D

T
0�i�p Gvi

is infinite and that
� 2 ƒH � @Gv0

. Now since H fixes pointwise all the vertices of �x and �x0 , and
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since X is CAT(0), H also fixes pointwise the geodesic segment Œx;x0�. But by
Lemma 4.6, the fixed-point set of H is contained in D.�/, hence so is Œx;x0�. Thus
D.�/ is convex.

Finiteness Let � be a simplex of D.�/ and �1; �2; : : : be a (possibly empty) sequence
of simplices strictly containing � and contained in D.�/. It follows from the proof
of Proposition 4.4 that � 2 @G�i

� @G� for every i . Thus, the limit set property
Definition 2.9, the finite height property Definition 2.10, and the cocompactness of
the action imply that there can be only finitely many such simplices. Thus D.�/ is
locally finite. To prove that it is also bounded, consider x;x0 two points of D.�/. By
Lemma 4.7 the stabiliser of fx;x0g is infinite. Thus the domain of � has a diameter
bounded above by the acylindricity constant. The complex D.�/ is locally finite and
bounded, hence finite. Moreover, it is clear from the above argument that the bound
can be chosen uniform on � .

4.2 Nestings and families

Definition 4.8 (Convergence property) We say that an EZ –complex of spaces com-
patible with G.Y/ satisfies the convergence property if, for every pair of simplices
� � � 0 in Y and every injective sequence .gnG� 0/ of cosets of G�=G� 0 , there exists
a subsequence such that .g'.n/EG� 0/ uniformly converges to a point in EG� .

From now on, besides the limit set property Definition 2.9, the finite height prop-
erty Definition 2.10 and the acylindricity assumption, we assume that the EZ –
complex of spaces D.Y/ satisfies the convergence property Definition 4.8.

Definition 4.9 Let � 2 @StabG , v a vertex of D.�/, and U a neighbourhood of �
in EGv . We say that a subneighbourhood V � U containing � is nested in U if its
closure is contained in U and for every simplex � of st.v/ not contained in D.�/, we
have

EG� \V ¤¿) EG� � U:

Lemma 4.10 (Nesting lemma) Let � 2 @StabG , v a vertex of D.�/ and U a neigh-
bourhood of � in EGv . Then there exists a subneighbourhood of � in EGv , V � U ,
which is nested in U .

Proof We show this by contradiction. Consider a countable basis .Vn/n of neighbour-
hoods of � in EGv , and suppose that for every n, there exists a simplex �n2 st.v/nD.�/
such that EG�n

\Vn ¤¿ and EG�n
¨ U . Up to a subsequence, we can assume that

.�n/n is injective. By cocompactness of the action, we can also assume that all the �n
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cover a unique simplex � of Y . Now the convergence property Definition 4.8 implies
that there should exist a subsequence ��.n/ such that EG��.n/ uniformly converges to
a point in EGv , a contradiction.

Since, in @G , boundaries of stabilisers of vertices are glued together along boundaries
of stabilisers of edges, we will construct neighbourhoods in EG of a point � 2 @StabG

using neighbourhoods of the representatives of � in the various EGv , where v runs
over the vertices of the domain of � .

Definition 4.11 (�–family) Let � 2 @StabG . A collection U of open sets fUv; v 2
V .�/g is called a � –family if for every pair of vertices v; v0 of X that are joined by an
edge e and every x 2 EGe ,

�v;e.x/ 2 Uv ” �v0;e.x/ 2 Uv0 :

Proposition 4.12 Let � 2 @StabG . For every vertex v of D.�/, let Uv be a neighbour-
hood of � in EGv . Then there exists a � –family U 0 such that U 0v �Uv for every vertex
v of D.�/.

Proof For every simplex � of D.�/, we construct open sets U 0� by induction on
dim.�/, starting with simplices of maximal dimension, that we denote d .

If dim.�/D d , we set
U 0� D

\
v2�

��1
v;� .Uv/:

Assume the U 0� constructed for simplices of dimension at least k � d , and let �0 be
of dimension k � 1. If no simplex of dimension � k contains �0 , set

U 0�0
D

\
v2�

��1
v;�0

.Uv/:

Otherwise, since the ��;� 0 are embeddings,[
�0���D.�/

dim.�/Dk

��0;� .U
0
� /

is open in [
dim.�/Dk
�0���D.�/

��0;� .EG� /:

We can thus write it as the trace of an open set U 0�0
of EG�0

. This yields for every
vertex v of D.�/ a new open set U 0v . By intersecting it with Uv , we can further assume
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that U 0v � Uv . This new collection of neighbourhoods clearly satisfies the desired
property.

Definition 4.13 Let � 2 @StabG , together with two �–families U ;U 0 . We say that U 0
is nested in U if for every vertex v of D.�/, U 0v is nested in Uv . Furthermore we say
that U 0 is n–nested in U if there exist �–families

U 0 D U Œ0� � � � � � U Œn� D U

with U Œi� nested in U ŒiC1� for every i D 0; : : : ; n� 1.

5 A geometric toolbox

We now prove some results that will be our main tools in studying EG and @G . Since
the proofs in this section rely heavily on the geometry of X, we start with a few
definitions.

Definition 5.1 Let � 2 @StabG , x 2X, � 2 @X and " 2 .0; 1/.

Let d be the simplicial metric on X, and choose a basepoint v0 2 X. We denote by
Œv0;x� the unique geodesic segment from v0 to x , and by 
x W Œ0; d.v0;x/�! X its
parametrisation. We denote by Œv0; �/ the unique geodesic ray from v0 to �, and by

�W Œ0;1/!X its parametrisation.

We denote by D".�/ the open "–neighbourhood of D.�/.

We say that a geodesic in X parametrised by 
 goes through (resp. enters) D".�/ if
there exist t0 such that 
 .t0/ 2 D".�/ and t1 > t0 such that 
 .t1/ … D".�/ (resp. if
there exists t0 such that 
 .t0/ 2D".�/).

If the geodesic Œv0;x� goes through D".�/, we define an exit simplex ��;".x/ as the first
simplex touched by Œv0;x� after leaving D".�/. If x 2D".�/, we set ��;".x/D �x .

Note that, by the assumption on the distance from a simplex to the boundary of its
closed simplicial neighbourhood, we always have D".�/� N.D.�//.

Definition 5.2 Let � 2 @StabG , U a �–family and " 2 .0; 1/. We define ConeU ;".�/
(resp. AConeU ;".�/) as the set of points x of X nD.�/ such that the geodesic Œv0;x�

goes through (resp. enters) D".�/ and such that for some vertex v of D.�/ (hence for
every by Definition 4.11) contained in the exit simplex ��;".x/, we have, in EGv :

EG��;".x/ � Uv
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Definition 5.3 For � 2 @StabG and U a � –family (Definition 4.11), we call NU .D.�//

the subcomplex spanned by simplices � � N.D.�// such that for some (hence for
every) vertex v of D.�/\ � , we have, in EGv :

EG� \Uv ¤¿

5.1 The crossing lemma

Lemma 5.4 (Crossing lemma) Let � 2@StabG , U , U 0 two � –families, and �1; : : : ; �n

(n� 1) a path of open simplices contained in N.D.�// nD.�/. Suppose that U 0 is n–
nested in U (Definition 4.13), and that �1 �NU 0.D.�//. Then for every k 2 f1; : : : ; ng

and every vertex v of D.�/ contained in �k , we have EG�k
� Uv in EGv .

Proof We prove the result by induction on n, by using the definition of nested families.

The result for nD 1 follows from the definition of a nested family. Suppose the result
true for 1; : : : ; n, and let �1; : : : ; �nC1 be a path of simplices in N.D.�// nD.�/ and
U Œ0� � � � � � U ŒnC1� D U . By induction, the result is true for the path �1; : : : ; �n and
the filtration U Œ0�� � � � �U Œn� , so the only inclusion to be proved is the aforementioned
one for �nC1 .

If �n � �nC1 , every vertex v of �n is also a vertex of �nC1 , so the result is already
true for vertices of D.�/ contained in �n . Now by the definition of �–families (see
Definition 4.11), this implies the result for every vertex of D.�/\ �nC1 .

Suppose now that �n � �nC1 , and let v be a vertex of D.�/ contained in �nC1 . Since
v is also in �n , EG�n

� U
Œn�
vd

in EG�n
, so we have

EG�nC1
\U Œn�

vn
¤¿;

which in turn implies EG�nC1
� U

ŒnC1�
v since U Œn� is nested in U ŒnC1� . Now by the

definition of �–families Definition 4.11, the same result holds for every vertex v of
D.�/ contained in �nC1 .

5.2 The geodesic reattachment lemma

Recall that Corollary 4.3 yields for every � 2 @StabG a constant d� � dmax such that
D.�/ contains at most d� simplices and such that a geodesic contained in the open
simplicial neighbourhood of D.�/ meets at most dmax open simplices.

Definition 5.5 (Refined families) Let n � 1. By Lemma 3.7, we can choose a
constant m such that the following holds:
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Let K be a convex subcomplex of X and K0 a connected subcomplex of X, both
containing at most max.n; dmax/ simplices. Let x;y 2K and x0;y0 2K0 and assume
that there exists a path in K0 between x and y that does not meet K . Let �; � 0 be two
simplices of N.K/ nK such that the geodesic segment Œx;x0� (resp. Œy;y0�) meets the
interior of � (resp. � 0 ). Then there exists a path of simplices in N.K/ nK of length at
most m between � and � 0 .

Let � 2@StabG , U a � –family. A � –family that is m–nested in U is said to be n–refined
in U . For n the number of simplices of D.�/, we denote by m� such a choice of m.

Lemma 5.6 Let � 2 @StabG . There exists a �–family V� such that for every ver-
tex v of D.�/ and every simplex � of .st.v/ nD.�// \ Geod.v0;D.�//, we have
.V�/v \EG� D¿.

Proof Let � a simplex of N.D.�//nD.�/ whose interior meets Geod.v0;D.�//. Let
v be a vertex of D.�/\ � . Let Uv be a neighbourhood of � in EGv that is disjoint
from EG� . For every other vertex w of D.�/, set Uw D EGw . By Proposition 4.12,
we choose a �–family V� that is .d� C 1/–refined in the collection of open sets
fUw; w 2 V .�/g. The result now follows from Definition 5.5.

Lemma 5.7 Let � 2 @StabG . Let U be a �–family that is m� –nested in V� (recall
that V� is assumed to satisfy Lemma 5.6). Let x 2X nD.�/ be such that there exists
a simplex � � .N.D.�// nD.�// that meets Geod.x;D.�//, and such that for some
(hence any) vertex v of � \D.�/ we have EG� � Uv . Then x … Geod.v0;D.�//.

Proof We prove the lemma by contradiction. Let x and � be as in the statement
of the lemma. Let z 2D.�/ be such that x 2 Œv0; z� and z0 2D.�/ be such that the
geodesic segment Œx; z0� meets � . Let � 0 be the last simplex touched by Œv0; z� before
meeting D.�/, and v0 a vertex of � 0 .

Since U is m� –nested in V� , it follows from the inclusion EG� � Uv and Lemma 3.7
that EG� 0 � .V�/v0 , contradicting the definition of V� .

The next lemma gives a useful criterion that ensures that a given path is a global
geodesic.

Lemma 5.8 (Geodesic reattachment lemma) Let � 2 @StabG , V a � –family satisfying
Lemma 5.6, U a � –family which is .m�Cd�/–nested in V , and x 2X nD.�/. Suppose
that there exists a simplex � � N.D.�// nD.�/ that meets Geod.x;D.�// such that
for some (hence any) vertex v of � \D.�/ we have EG� � Uv . Then Œv0;x� meets
D.�/ and x 2AConeV;".�/ for every " 2 .0; 1/.
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In such a case, the geodesic from v0 to x meets D.�/, and is the concatenation of a
geodesic segment in Geod.v0;D.�// and a geodesic in Geod.D.�/;x/.

Proof Let K D Geod.v0;D.�//[Geod.D.�/;x/ and let Œv0;x�K be the geodesic
from v0 to x in K (which meets finitely many simplices by Lemma 3.5). Our aim is to
prove that Œv0;x�K D Œv0;x�. By Lemma 5.7, x …Geod.v0;D.�//. As D.�/ is convex
by Proposition 4.2, let v1; v2 2D.�/ be such that Œv0;x�K D Œv0; v1�[ Œv1; v2�[ Œv2;x�

and such that Œv0; v1/ and .v2;x� do not meet D.�/. Let " 2 .0; 1/. Let a 2 Œv0; v1�

be such that d.a; v1/ D ". If x … D".�/ let b 2 Œv2;x� be such that d.v2; b/ D ".
Otherwise, let b D x . Since X is CAT(0), it is enough to prove that Œv0;x�K is a local
geodesic at every point. We already have that Œv0; v1�[ Œv1; v2� and Œv1; v2�[ Œv2;x�

are geodesics, so it is sufficient to prove the result when v1 D v2 . We thus have

Œv0;x�K D Œv0; v1�[ Œv1;x�;

with Œv0; v1��Geod.v0;D.�// and Œv1;x��Geod.D.�/;x/. Assume by contradiction
that Œv0;x�K is not a local geodesic at v1 . Then the geodesic segment Œa; b� does not
meet D.�/. This geodesic segment yields a path of simplices between �a and �b of
length at most d� in N.D.�//nD.�/. Furthermore, there is a path of simplices between
� and �b of length at most m� in N.D.�// nD.�/ by Definition 5.5. Thus, there is a
path of simplices between � and �a of length at most m� C d� in N.D.�// nD.�/.
But since EGb �Uv and U is .m�Cd�/–nested in V , the crossing lemma, Lemma 5.4,
implies EGa � Vv , which contradicts the fact that V satisfies Lemma 5.6.

Thus Œv0;x�K D Œv0;x� and �b D ��;".x/. It follows from the above discussion
that for some (hence every) vertex v0 of ��;".x/ we have EG��;".x/ � Vv0 , hence
x 2AConeV;".�/.
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From now on, every �–family will be assumed to be contained in a �–family
U� satisfying Lemma 5.8.

As a consequence, we get the following:

Corollary 5.9 Let � 2 @StabG , U a �–family and " 2 .0; 1/. Then for every x 2
AConeU ;".�/, the geodesic segment Œv0;x� meets D.�/.

Proof By Lemma 5.7 applied to x and ��;".x/, we get x … Geod.v0;D.�//. Let
y be a point of ��;".x/\ Œv0;x�\D".�/. It follows from the geodesic reattachment
Lemma 5.8 applied to y and ��;".x/ that Œv0;y�, hence Œv0;x�, meets D.�/.

5.3 The refinement lemma

Lemma 5.10 (Refinement lemma) Let � 2 @StabG , U a � –family and n� 1. Let U 0
be a �–family which is n–refined in U . Then the following holds:

For every " 2 .0; 1/ and every path of simplices �1; : : : ; �n in X nD.�/ such that there
exists a point x1 2 �1 such that Œv0;x1� enters D".�/ and ��;".x1/� NU 0.D.�//, we
have

�1; : : : ; �n �
AConeU ;".�/:

Proof Let us prove that for every x 2
S

1�i�n �i , the geodesic segment Œv0;x� meets
D.�/. Let x1 2 �1 such that ��;".x1/� NU 0.D.�//. Note that Corollary 5.9 implies
that Œv0;x1� meets D.�/. Let v be a vertex of D.�/\ ��;".x1/.

Let x 2
S

1�i�n �i and � be a simplex of N.D.�// nD.�/ touched by Œv;x� after
leaving D.�/. Let also w be a vertex of � \D.�/. We can apply Lemma 3.7 to the
geodesic segments Œv;x� and (a portion of) Œv0;x1�, and to simplices � and ��;".x1/.
Since EG��;".x1/�U 0v and U 0 is n–refined in U , we get EG� �Uw . Thus the geodesic
reattachment Lemma 5.8 implies that Œv0;x� meets D.�/.

Let x 2
S

1�i�n �i and let w be a vertex of ��;".x/\D.�/. We apply once again
Lemma 3.7, this time to portions of the geodesic segments Œv0;x� and Œv0;x1�, and to
simplices ��;".x/ and ��;".x1/. Now since U 0 is n–refined in U and EG��;".x1/�U 0v ,
we get EG��;".x/ � Uw , hence x 2AConeU ;".�/.
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5.4 The star lemma

Lemma 5.11 (Star lemma) Let � 2 @StabG , " 2 .0; 1/ and x 2 X nD".�/ such
that the geodesic segment Œv0;x� goes through D".�/. Then there exists ı > 0 such
that for every y 2 B.x; ı/ nD".�/, the geodesic segment Œv0;y� goes through D".�/.
Furthermore, for every y 2 B.x; ı/ nD".�/, we have

��;".y/� st.��;".x//:

Proof Let T D dist.v0;x/, and let 
x W Œ0;T �! X be the parametrisation of the
geodesic segment Œv0;x�. Let t0 > 0 such that Œv0;x� leaves D".�/ at time t0 . Since
D.�/ is convex by Proposition 4.2, the map z 7! dist.z;D.�// is convex. Thus, there
exists r > 0 such that


x.Œt0� r; t0//�D".�/;


x.Œt0� r; t0�/� st.��;".x//:

We also choose � > 0 such that for every y�;yC in the � –neighbourhood of

x.Œt0� r; t0�/, the geodesic segment Œy�;yC� is contained in st.��;".x//.

Let
k D "� dist.
x.t0� r/;D.�// > 0:

We set ı1 D 1
10
�min.k; �; r/. If x 2D".�/, set ı D ı1 . If x …D".�/, we can assume

without loss of generality that ı1 < 1
10
� .T � t0/. By convexity of the distance, we have

d.
x.t0C ı1/;D.�// > ", and we set ı D 1
2
�min.ı1; d.
x.t0C ı1/;D

".�/// > 0.
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Let y 2 B.x; ı/ nD".�/, and let 
y be its parametrisation.

Since ı � r , we have d.v0;y/ � t0 � r . Now, 
x and 
y parametrise geodesics
starting at v0 and such that d.x;y/ < ı , so since X is a CAT(0)-space, we get
d.
x.t0� r/; 
y.t0� r//� 2ı � � . The inequality 10ı � k now implies

d.
y.t0� r/;D.�//� d.
x.t0� r/;D.�//C d.
x.t0� r/; 
y.t0� r//

� ."� 10ı/C 2ı < ";

so 
y.t0� r/ 2D".�/. Since y …D".�/, it follows that the geodesic segment Œv0;y�

goes through D".�/ and leaves it for some t1 > t0� r .

Moreover, after leaving D".�/ the geodesic Œv0;y� meets the � –ball centred at 
x.t0/

for some t2 � t1 . Indeed, this is clear if x 2 D".�/ since d.x;y/ < ı � � . If
x …D".�/, then Œv0;y� meets the 2ı–ball centred at 
x.t0Cı1/, which is contained in
.X nD".�//\B.
x.t0/; 2ı1/ by definition of ı . Hence, Œv0;y� meets B.
x.t0/; �/ n

D".�/ for some t2 � t1 .

We thus have d.
x.t0� r/; 
y.t0� r//� � and d.
x.t0/; 
y.t2//� � . By definition
of � , it follows that


y.Œt0� r; t2�/� st.��;".x//;

which implies ��;".y/� st.��;".x//.

The star Lemma 5.11 immediately implies the following:

Corollary 5.12 Let � 2@StabG , U a � –family and "2 .0; 1/. Then the sets ConeU ;".�/
and AConeU ;".�/ are open in X.

6 The topology of EG

In this section, we define a topology on EG and study its first properties.

6.1 Definition of the topology

In this paragraph, we define a topology on EG, by defining a basis of open neighbour-
hoods at every point. Since points of EG are of three different kinds (EG, @X and
@StabG ), we treat these cases separately.

Definition 6.1 Let zx 2EG. We define a basis of neighbourhoods of zx in EG, denoted
OEG.zx/, as the set of open sets of EG containing zx .
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We now turn to the case of points of the boundary of X. Recall that since X is a
simplicial CAT(0) space with countably many simplices, the bordification X DX [@X

has a natural metrisable topology, though not necessarily compact if X is not locally
finite. For every � 2 @X, a basis of neighbourhoods of � in that bordification is given
by the family of

Vr;ı.�/D fx 2X j d.v0;x/ > r and 
x.r/ 2 B.
�.r/; ı/g; r; ı > 0:

Remark For r; ı > 0, � 2 @X, and if 
 is the parametrisation of a geodesic such that
there exists T � 0 with 
 .T / 2 Vr;ı.�/, then 
 .t/ 2 Vr;ı.�/ for every t � T .

We denote this basis of neighbourhoods of � in X by OX .�/. Endowed with that
topology, X is a second countable metrisable space (see Bridson and Haefliger [9]).

Note that the topology of X satisfies the following properties:

Lemma 6.2 Let � 2 @X. Then there exists a basis of neighbourhoods .Un/ of � in X

such that Un and Un n @X are contractible for every n� 0.

Proof For r; ı > 0, let Ur;ı.�/ D Vr;ı.�/ [ B.
�.r/; ı/. This defines a basis of
neighbourhoods of � in X . As Ur;ı.�/ n @X can be retracted by strong deformation
along geodesics starting at v0 onto B.
�.r/; ı/, it is contractible. Furthermore, as
Ur;ı.�/ can be retracted by strong deformation onto Ur;ı.�/ n @X, the same holds for
Ur;ı.�/.

Lemma 6.3 Let �2 @X, U a neighbourhood of � in X and k � 0. Then there exists a
neighbourhood U 0 of � in X that is contained in U and such that d.U 0\X;X nU />k .

Proof The definition of the topology of X implies the following: if .xn/ and .yn/ are
two sequences of X such that d.xn;yn/ is bounded, then .xn/ converges to a point of
@X if and only if .yn/ converges to the same point. Reasoning by contradiction thus
implies the lemma.

Definition 6.4 Let � 2 @X, and let U be a neighbourhood of � in X . We set

VU .�/D p�1.U \X /[ .U \ @X /[f� 2 @StabG jD.�/� U g:

When U runs over the basis OX .�/ of neighbourhoods of � in X , the above formula
defines a collection of neighbourhoods for � in EG, denoted OEG.�/.

We finally define open neighbourhoods for points in @StabG .
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Definition 6.5 Let � 2@StabG , U�U� be a � –family, and "2 .0; 1/. A neighbourhood
VU ;".�/ is defined in four steps as follows:

� Let WU ;".�/ be the set of points zx 2 EG whose projection x 2 X belongs to
D".�/ and is such that for some (hence every) vertex v of D.�/\ �x , we have
�v;�x

.zx/ 2 Uv .

� Let W1 be the set of points of EG whose projection in X belongs to ConeU ;".�/.

� Let W2 be the set of points of @X that belong to ConeU ;".�/.

� Let W3 be the set of points � 0 2 @StabG such that D.� 0/ nD.�/�AConeU ;".�/
and for every vertex v of D.�/\D.� 0/ we have � 0 2 Uv .

Now set

VU ;".�/DWU ;".�/[W1[W2[W3:

This collection of neighbourhoods of � in EG is denoted OEG.�/. Note that these
neighbourhoods depend on the chosen basepoint v0 . If we need to specify the basepoint
used to define the various sets ConeU ;".�/, VU ;".�/, we will indicate it in superscript.
In that case, we will speak of the topology (of EG) centred at a given point.

Note that for �–families U 0 � U and "0 < ", we do not necessarily have the inclusion
VU 0;"0.�/� VU ;".�/ since these two neighbourhoods are defined by looking at the way
geodesics leave two (a priori non related) different neighbourhoods of the domain
D.�/. However, the crossing Lemma 5.4 immediately implies the following:

Lemma 6.6 Let � 2 @StabG , U ;U 0 two � –families, and 0< "0 < ". If U 0 is d� –nested
in U , then VU 0;"0.�/� VU ;".�/.

Definition 6.7 We define a topology on EG by taking the topology generated by the
elements of OEG.x/, for every x 2 EG. We denote by OEG the set of elements of
OEG.x/ when x runs over EG. Thus, any an open set in EG is a union of finite
intersections of elements of OEG .

We will show in the next subsection that OEG is actually a basis for the topology
of EG.
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6.2 A basis of neighbourhoods

Here we prove that the set of neighbourhoods we just defined is a basis for the topology
of EG. In order to do that, we need the following:

Filtration Lemma Let z; z0 2 EG and U 2 OEG.z/ an open neighbourhood of z .
If z0 2 U , then there exists an open neighbourhood of z0 , U 0 2 OEG.z

0/, such that
U 0 � U .

Since points of EG are of three different natures (EG, @X, and @StabG ), the proof
breaks into six distinct cases. We first introduce a notation that will be useful for
treating similar cases at once.

Definition 6.8 We extend the projection pW EG!X to a map xp from EG to the set
of subsets of X in the following way:

� For zx 2 EG, we define xp.z/ to be the singleton fp.zx/g.

� For � 2 @X, we define xp.�/ to be the singleton f�g.

� For � 2 @StabG , we set xp.�/DD.�/.

� Finally, for K � EG, we set xp.K/D
S

z2K

xp.z/.

Lemma 6.9 Let zx; zy 2 EG and U 2OEG.zx/ an open neighbourhood of zx in EG. If
zy 2 U , then there exists an open neighbourhood of zy in EG, U 0 2OEG.zy/ such that
U 0 � U .

Proof By definition of the topology, we can take U 0 D U .

Lemma 6.10 Let �; �0 2 @X and U 2 OX .�/ an open neighbourhood of � in X .
If �0 2 VU .�/, then there exists an open neighbourhood U 0 of �0 in X , such that
VU 0.�

0/� VU .�/.

Proof Since OX is a basis of neighbourhoods for X , there exists a neighbourhood
U 0 2OX .�

0/ such that U 0 � U . Now one clearly has � 2 VU 0.�
0/� VU .�/.

Lemma 6.11 Let zx 2 EG; � 2 @X and U an open neighbourhood of � in X . If
zx 2 VU .�/, then there exists an open neighbourhood U 0 of zx in EG, U 0 2 OEG.zx/,
such that U 0 � VU .�/.

Proof It is enough to choose an arbitrary open neighbourhood U 0 of zx contained in
p�1.U \X /.
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Lemma 6.12 Let � 2 @StabG; � 2 @X and U 2 OX .�/ an open neighbourhood of �
in X . If � 2 VU .�/, then there exist " 2 .0; 1/ and a �–family U such that VU ;".�/�

VU .�/.

Proof The subcomplex D.�/�U is finite, hence compact, so choose " 2 .0; 1/ such
that D".�/ � U . Let U be any �–family. For every x 2AConeU ;".�/, the geodesic
segment Œv0;x� meets D.�/ by Corollary 5.9. As D.�/ is contained in U , the same
holds for x . It then follows that VU� ;".�/� VU .�/.

Lemma 6.13 Let � 2 @X; � 2 @StabG , U a �–family and " 2 .0; 1/. If � 2 VU ;".�/,
then there exists an open neighbourhood U of � in X such that VU .�/� VU ;".�/.

Proof Let 
�W Œ0;1/! X be a parametrisation of the geodesic ray Œv0; �/. The
subcomplex D.�/ being finite by Proposition 4.2, choose R > 0 such that D.�/ �

B.v0;R/, and let xD 
�.RC1/. Since � 2 VU ;".�/, we have x 2ConeU ;".�/, which
is open in X by Corollary 5.12. Let ı > 0 such that B.x; ı/� ConeU ;".�/. Now if
we set U 0 D VRC1;ı.�/ 2OX .�/, it follows that VU 0.�/� VU ;".�/.

Lemma 6.14 Let zx 2 EG; � 2 @StabG , U a �–family and " 2 .0; 1/. If zx 2 VU ;".�/,
then there exists a U 2OEG.zx/ such that U � VU ;".�/.

Proof It is enough to prove that VU ;".�/\EG is open in EG. First, since the maps
��;� 0 are embeddings, it is clear that WU ;".�/ is open in EG. Let zy 2 VU ;".�/\EG
with y D p.zy/ … D".�/. The star Lemma 5.11 yields a ı > 0 such that for every
z 2 B.y; ı/ nD".�/, the geodesic segment Œv0; z� goes through D".�/ and ��;".z/�
st.��;".y//. We can further assume that B.y; ı/� st.�y/. It now follows immediately
from the construction of VU ;".�/ that p�1 .B.y; ı// is an open neighbourhood of zx
contained in VU ;".�/, which concludes the proof.

Lemma 6.15 Let �; � 0 2 @StabG , U a �–family and " 2 .0; 1/. If � 0 2 VU ;".�/, then
there exists a � 0–family U 0 and "0 2 .0; 1/ such that VU 0;"0.�

0/� VU ;".�/.

By Lemma 5.11, let ı 2 .0; "/ be such that for all y 2Dı.� 0/ nD".�/, the geodesic
segment Œv0;y� goes through D".�/ and is such that ��;".y/� st.��;".x//, for some
x 2D.� 0/. We now define a � 0–family using the following lemma.

Lemma 6.16 There exist nested � 0–families U Œd� � � � � � � U Œ0� D U 0 such that the
following holds: Let x be a point of ConeU 0;ı.� 0/ such that the geodesic from v0 to x

leaves Dı.� 0/ at a point that is still inside D".�/. Let �1 D ��0;ı.x/; : : : ; �n D ��;".x/

(n � d� ) be the path of simplices met by the geodesic segment Œv0;x� inside D".�/

after leaving Dı.� 0/ (cf Figure 4).
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D".�/

v0

Dı.� 0/

��0;ı.x/
��;".x/

Figure 4

We then have the following, for every 1� k � n:

(i) The simplex �k is contained in
S
v02V .�/\V .�0/ st.v0/, but not contained inS

v2V .�/nV .�0/ st.v/.

(ii) For every vertex v0 of �k contained in D.� 0/, the inclusion EG�k
� U

Œk�
v0 holds

in EGv0 .

Proof If v0 is a vertex of D.�/\D.� 0/, then for every vertex v of

st.v0/\ .D.�/ nD.� 0//;

choose a neighbourhood Wv;v0 of � 0 in EGv0 missing EGŒv;v0� , and set

Wv0 D

� \
v2st.v0/\.V .�/nV .�0//

Wv;v0

�
\Uv0 :

If v0 is a vertex not in D.�/, set Wv D EGv0 .

We now define U 0 to be a � 0–family that is d� –nested in the family of Wv0 ; v
0 2D.� 0/,

that is, U 0 is a � 0–family such that there exists a sequence of nested � 0–families
U Œd� � � � � � � U Œ0� D U 0 satisfying Wv0 � U Œd� �

v0 � � � � � U
Œ0�
v0 D U 0v0 for every vertex

v0 of D.� 0/.

We now prove (i) and (ii) by induction on k . Since the geodesic segment Œv0;x�

leaves Dı.� 0/ while inside D".�/, we have �1D ��0;ı.x/�
S
v02V .�/\V .�0/ st.v0/. To
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prove (i) for k D 1, we reason by contradiction. Suppose there exists a vertex v0 of
D.�/\D.� 0/ and a vertex v of D.�/nD.� 0/ such that �1 � st.Œv; v0�/. Then we have
EG�1

� EGŒv;v0� in EGv0 . But the former set is contained in Uv0 since zx 2 VU 0;ı.�
0/,

and the latter is disjoint from Uv0 by construction of U 0 , which is absurd.

Suppose the result has been proved up to rank k . If �kC1 � �k , the result is straight-
forward, so we suppose that �k � �kC1 . We prove (i) by contradiction. Suppose
there exists a vertex v0 of D.�/\D.� 0/ and a vertex v of D.�/ nD.� 0/ such that
�kC1 � st.Œv; v0�/. Then by the induction hypothesis, we have EGŒv;v0� \U Œk�

v0 ¤ ¿
in EGv0 , hence EGŒv;v0� � U ŒkC1�

v0 �Wv0 since U Œk� is nested in U ŒkC1� , and the last
inclusion contradicts the definition of U 0 .

We now prove (ii). Let vk a vertex of D.�/\D.� 0/ contained in �k (hence in �kC1 ).
Thus we have EG�kC1

� EG�k
� U

Œk�
vk
� U

ŒkC1�
vk

in EGvk
. Now let v0 be another

vertex of D.� 0/\D.�/ contained in �kC1 (if any). We thus have EGŒvk ;v0�\U Œk�
vk
¤¿

in EGvk
, so EGŒvk ;v

0� � U ŒkC1�
vk

in EGvk
. But by Proposition 4.12, this implies

EGŒvk ;v0� � U
ŒkC1�
v0 ;

which proves (ii).

Proof of Lemma 6.15 Let us show now that VU 0;ı.�
0/� VU ;".�/. Let z 2 VU 0;ı.�

0/

and x 2 xp.z/. The geodesic Œv0;x� meets Dı.� 0/, hence D".�/. To prove that
z 2 VU ;".�/, it is now enough to prove that x 2AConeU ;".�/.

If x 2WU 0;ı.�
0/\D".�/, it follows from the definition of U 0 (defined in Lemma 6.16)

that z 2WU ;".�/.

If the geodesic segment Œv0;x� meets Dı.� 0/ outside D".�/, it follows from the
definition of ı that there exists x0 2D.� 0/nD.�/ such that ��;".x/� st.��;".x0//. But
since x0 2AConeU ;".�/, the same holds for x .

Thus the only case left to consider is when the geodesic segment Œv0;x� leaves Dı.� 0/

while still being inside D".�/. Lemma 6.16 shows that for every vertex v0 of ��;".x/
contained in D.�/, EG��;".x/�U

Œn�
v �Uv in EGv , which now implies x 2AConeU ;".�/.

This concludes the proof.

Theorem 6.17 OEG is a basis for the topology of EG, which makes it a second
countable space. For this topology, EG embeds as a dense open subset.

Proof To prove that OEG is a basis for the topology of EG, it is enough to show that
for every pair of open sets U1;U2 of EG and every z 2 U1\U2 , there exists an open
neighbourhood W 2OEG such that z 2W � U1\U2 .
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If z 2 EG By the results from the previous paragraph, there exists V1;V2 2OEG.z/

such that V1�U1 and V2�U2 . Then take W to be any element of OEG.z/DOEG.z/

contained in V1\V2 .

If z D � 2 @X By the results from the previous paragraph, let O1;O2 2 OX .�/

such that VO1
.�/ � U1 and VO2

.�/ � U2 . Choosing a neighbourhood W 2 VX .�/

contained in O1\O2 , it follows that VW .�/� U1\U2 .

If zD � 2@StabG By the results from the previous paragraph, let VU1;"1
.�/;VU2;"2

.�/

such that VU1;"1
.�/� U1 and VU2;"2

.�/� U2 . Let U be a � –family that is d� –nested
in f.U1/v \ .U2/v; v 2 V .�/g, and let " D min."1; "2/. It follows from Lemma 6.6
that VU ;".�/� VU1;"1

.�/\VU2;"2
.�/� U1\U2 .

To prove that this topology is second countable, we define countably many open sets
.Un/n�0 such that for every open set U in OEG and every x in U , there exists an
integer m such that x 2 Um � U .

Since EG is the realisation of a complex of spaces over a simplicial complex with
countably many simplices, and with fibres that have a CW–structure with countably
many cells, it inherits a CW–complex structure with countably many cells. Thus its
topology is second countable, and we can choose a countable basis of neighbourhoods
.Un/; n� 0, of EG.

Since X is a simplicial complex with countably many cells, it is a separable space,
hence so is the set ƒ of points lying on a geodesic from v0 to a point of @X (note
that a given geodesic segment may not necessarily be extendable to a geodesic ray).
Let ƒ0 be a dense countable subset of ƒ. Now the family of open sets Vr;".�/ for
� 2 @X, 
�.r/ 2ƒ0 and " 2Q is a countable family, yielding a countable family of
open neighbourhoods of EG, denoted .Vn/n�0 . Note that .Vn/n�0 contains a basis of
neighbourhoods for every point of EG that belongs to @X.

A neighbourhood of a point � of @StabG is defined by choosing a constant " 2 .0; 1/, a
finite subcomplex of X (the domain of � ), and for every vertex v of that subcomplex
an open set of EGv . Since domains of points of @StabG are finite by Proposition 4.2,
there are only countably many such subcomplexes. Furthermore, for every vertex
v of X, EGv has a countable basis of neighbourhoods. It is now clear that we can
define a countable family .Wn/n�0 of open neighbourhoods, containing a basis of
neighbourhoods of every element of @StabG .

The family consisting of all the Un;Vn;Wn is now a countable basis of neighbourhoods
of EG.

Finally, the subset EG, which is open by construction of the topology, is dense in EG
since every open set in that basis of neighbourhoods meets EG by construction.
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Lemma 6.18 The topology of EG does not depend on the choice of a basepoint.
Moreover, the action of G on EG continuously extends to @G .

Proof Choose x0 and x1 two points of X (note that we do not assume these points to
be vertices). Throughout this proof, we will indicate the dependence on the basepoint
by indicating it in superscript, as explained in Definition 6.5. It is a well known fact
that the topology of X does not depend on the basepoint, so it is enough to consider
neighbourhoods of points in @StabG .

Recall that the number of simplices in a domain D.�/, � 2 @StabG is uniformly bounded
by the constant dmax defined in Corollary 4.3. Let � 2 @StabG , U0 a �–family for the
topology centred at x0 and " > 0. Now let U1 be a � –family for the topology centred
at x1 , which is 2dmax –refined in U0 . Let x be a point of ACone

x1

U1;"
.�/. Then the

geodesic reattachment Lemma 5.8 implies that Œx0;x� meets D.�/. We can thus apply
Lemma 3.7 to subsegments of Œx0;x� and Œx1;x�, and to simplices �x0

�;"
.x/ and �x1

�;"
.x/.

Since U1 is 2dmax –refined in U0 , it follows that

x 2ACone
x0

U0;"
.�/; hence ACone

x1

U1;"
.�/�ACone

x0

U0;"
.�/:

Moreover, since U1 is contained in U0 , we get V
x1

U1;"
.�/� V

x0

U0;"
.�/.

We extend the G –action on EG to @G as follows. First note that the action naturally
extends to @X. Indeed, G acts on the CAT(0) space X by isometries, and those isome-
tries naturally extend to homeomorphisms of the visual boundary @X. Furthermore,
we defined in Section 2 a G –action on @StabG . Thus we have an action of G on EG,
which we now prove to be continuous.

Let g 2 G . Since EG is open in EG and the action of G on EG is continuous, it
is enough to check the continuity at points of @G . For a point z 2 @G , the element
g sends a basis of neighbourhoods of z for the topology centred at v0 to a basis of
neighbourhoods of g:z for the topology centred at g:v0 . Since the topology does not
depend on the basepoint by the above discussion, the action of g is continuous at points
of @G .

6.3 Induced topologies

Proposition 6.19 The topology of EG induces the natural topologies on EG, @X and
EGv for every vertex v of X.

We first prove that for any open set U in the basis of neighbourhoods OEG previously
defined, U \EG is open in EG. For x 2EG, the result is obvious for points in OEG.x/

since open sets in OEG.x/ are open sets of EG by definition. For � 2 @X and U a
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neighbourhood of � in X , we have VU .�/\ EG D p�1.U \X /, which is open in
EG. For � 2 @StabG , " 2 .0; 1/ and U a �–family, it was proven in Lemma 6.14 that
VU ;".�/\EG is open in EG.

We now prove that for any open set U in the basis of neighbourhoods OEG , U \ @X

is open in @X. For a point � 2 @X and U a neighbourhood of � in X , we have
VU .�/\ @X D U \ @X, which is open in @X. Now consider � 2 @StabG , " 2 .0; 1/
and U a �–family. If VU ;".�/\ @X is empty there is nothing to prove. Otherwise,
let � 2 VU ;".�/\ @X. By Lemma 6.13, let U 0 be a neighbourhood of � in X such
that VU 0.�/� VU ;".�/. Thus, � 2U 0\@X � VU ;".�/\@X, and VU ;".�/\@X is open
in @X.

Before proving the analogous result for EGv , with v a vertex of X, we need the
following lemma.

Lemma 6.20 Let � 2 @StabG , U a �–family and " 2 .0; 1/. Recall that dmax was
defined in Corollary 4.3 as an integer such that domains of points of @StabG meet at
most dmax simplices. Let U 0 be a � –family which is dmax –refined in U . Then we haveS
v2D.�/ U 0v \ @Gv � VU ;".�/.

Proof Let � 0 2
S
v2D.�/ U 0v \ @Gv and x 2D.� 0/. If x is a vertex of D.�/\D.� 0/,

the definition of a � –family implies that � 0 2Ux . Otherwise, since D.� 0/ is convex by
Proposition 4.2, let 
 be a geodesic path in D.� 0/ from x to D.�/ and meeting D.�/ at
a single point. This yields a path of open simplices from a simplex � �N.D.�//nD.�/
to �x of length at most dmax in D.� 0/ nD.�/. Since � 0 2

S
v2D.�/U

0
v \ @Gv also

belongs to @G� , we have � �NU 0.D.�//. Now since U 0 is dmax –refined in U , we get
�x �

AConeU ;".�/ by Lemma 5.10.

Proof of Proposition 6.19 Let v be a vertex of X. We now prove that for every open
set U in the basis of neighbourhood OEG , U \EGv is open in EGv .

We proved already that the topology of EG induces the natural topology on EG. Now
using the filtration lemmas Lemma 6.12 and Lemma 6.15, it is enough to show, for
every � 2 @Gv , every " 2 .0; 1/ and every �–family U , that VU ;".�/\EGv contains
a neighbourhood of � in EGv . By Lemma 6.20, let U 0 be a �–family contained
in U and such that every point of U 0v \ @Gv belongs to VU ;".�/. Then we have
� 2U 0v � VU ;".�/\EGv , and so VU ;".�/\EGv is open in EGv . Thus the topology of
EG induces the natural topology on EGv .

Finally, note that the map EGv ! EG is injective by Proposition 4.4. As EGv is a
compact space, that map is an embedding.
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In the exact same way, we can prove the following:

Lemma 6.21 Let � be a closed cell of X. Then the quotient map � �EG� ! EG is
continuous.

7 Metrisability of EG

In this section, we prove that EG is a compact metrisable space. Recall that by the
classical metrisation theorem, it is enough to prove that EG is a second countable
Hausdorff regular space (see below for definitions) that is sequentially compact.

7.1 Weak separation

In this paragraph, we prove the following:

Proposition 7.1 The space EG satisfies the T0 condition, that is, for every pair of
distinct points, there is an open set of EG containing one but not the other.

Note that this property does not imply that the space is Hausdorff. However, we will
prove in the next subsection that EG is also regular, and it is a common result of
point-set topology that a space that is T0 and regular is also Hausdorff. As usual, the
proof of Proposition 7.1 splits in many cases.

Lemma 7.2 Let zx; zy be two distinct points of EG�EG. Then zx and zy admit disjoint
neighbourhoods.

Proof Open sets in EG are open in EG by definition. The result thus follows from
the fact that EG is a Hausdorff space.

Lemma 7.3 Let �; �0 be two distinct points of @X �EG. Then � and �0 admit disjoint
neighbourhoods.

Proof The space X is metrisable, hence Hausdorff. Choosing disjoint neighbourhoods
U of � in X (resp. U 0 of �0 in X ) yields disjoint neighbourhoods VU .�/;VU 0.�

0/.

Lemma 7.4 Let zx 2 EG and � 2 @X. Then zx and � admit disjoint neighbourhoods.

Proof Let x D p.zx/ 2 X. Since X is a Hausdorff space, we can choose a neigh-
bourhood U of x in X and a neighbourhood U 0 of �0 in X that are disjoint. Then
p�1.U / is a neighbourhood of zx in EG and VU 0.�/ is a neighbourhood of � in EG
that is disjoint from p�1.U /.
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Lemma 7.5 Let � 2 @StabG and � 2 @X. Then there exists a neighbourhood of � in
EG that does not contain � .

Proof Since D.�/ is bounded, let R > 0 such that the D.�/ is contained in the
R–ball centred at v0 . Now take a neighbourhood U of � in X that does not meet
that R–ball. The subset VU .�/ is a neighbourhood of � in EG to which � does not
belong.

Lemma 7.6 Let zx 2 EG and � 2 @StabG . Then there exists a neighbourhood of zx in
EG that does not contain � .

Proof Choose any neighbourhood of zx in EG. This is by definition a neighbourhood
of zx in EG, to which � does not belong.

Lemma 7.7 Let �; � 0 be two different points of @StabG . Then there exists a neighbour-
hood of � in EG that does not contain � 0 .

Proof If D.�/\D.� 0/ ¤ ¿, let v be a vertex in that intersection and let Uv be a
neighbourhood of � in EGv that does not contain � 0 . Now we can take a � –family U 0
small enough so that U 0v � Uv and thus � 0 … VU 0; 1

2
.�/ by Proposition 6.19.

If D.�/\D.� 0/D¿, let x 2D.� 0/. There are two cases to consider:

� If Œv0;x� does not meet D.�/, then VU� ; 1
2
.�/ does not contain � 0 by Corollary 5.9.

� Otherwise, Œv0;x� meets D.�/ and leaves it. Let � be the first simplex touched
by Œv0;x� after leaving D.�/, v a vertex of � \D.�/ and Uv a neighbourhood
of � in EGv that does not contain EG� . Now let U 0 be �–family such that
U 0v � Uv and U 00 a �–family that is d� –nested in U 0 . It then follows from the
crossing Lemma 5.4 that � 0 … VU 00; 1

2
.�/.

7.2 Regularity

In this paragraph, we prove the following:

Proposition 7.8 The space EG is regular, that is, for every open set U in EG and
every point x 2 U , there exists another open set U 0 containing x and contained in U ,
and such that every point of EG nU admits a neighbourhood that does not meet U 0 .

Since we previously defined a basis of neighbourhoods for EG, it is enough to prove
such a proposition for open sets U in that basis. As usual, the proof of Proposition 7.8
splits in many cases, depending on the nature of the open sets U and points of U

involved.
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Lemma 7.9 Let zx 2 EG and U an open neighbourhood of zx in EG. Then there
exists a subneighbourhood U 0 of EG containing zx and such that every point in EGnU

admits a neighbourhood that does not meet U 0 .

Proof The space EG being a CW–complex, its topology is regular, so we can choose
a neighbourhood U 0 of zx in EG whose closure (in EG) is contained in U . Let us call
V that closure, and let x D p.zx/. Since EG is locally finite, we can further assume
that p.V / meets only finitely many simplices and that it is contained in st.�x/. We
now show that V is closed in EG, which implies the proposition.

A point of EG nV clearly admits a neighbourhood in EG that does not meet V , since
open subsets of EG are open in EG. For a point � 2 @X, choosing any neighbourhood
of � in X that does not meet p.V / yields a neighbourhood of � in EG not meeting V .
Thus the only case left is that of a point � 2 @StabG . There are two cases to consider:

If x 2 D.�/, then since p.V / meets only finitely many simplices, it is easy to find
a �–family U such that WU ; 1

2
.�/ misses V , which implies that the whole VU ; 1

2
.�/

misses V .

If x … D.�/, then Lemma 3.5 ensures the existence of a finite subcomplex K � X

containing Geod.v0;p.V //. We define a � –family U and a constant " as follows. Let
v be a vertex of D.�/. For every � � .st.v/\K/nD.�/, let Uv;� be a neighbourhood
of � in EGv that is disjoint from EG� . We now set

Uv D
\

��.st.v/\K /nD.�/

Uv;� :

Let U be a �–family which is contained in fUv; v 2 V .�/g, and choose

"Dmin
�

1
3

dist.p.V /;D.�//; 1
�
;

which is positive since p.V /� st.�x/.

We now show by contradiction that VU ;".�/\V D¿. Suppose there exists a point zy
in that intersection and let y D p.zy/. By Corollary 5.9, Œv0;y� goes through D.�/.
But since zy 2 V , we have ��;".y/�K , which contradicts the construction of U .

Thus every point of EG n V admits a neighbourhood missing V , so V is closed in
EG.

Lemma 7.10 Let � 2 @X and U be an open neighbourhood of � in X . Then there
exists an open neighbourhood U 0 of � in X such that every point not in VU .�/ admits
a neighbourhood that does not meet VU 0.�/.
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Proof By Lemma 6.3, we first choose a neighbourhood W of � in X contained in U

and such that d.W \X;X nU / >AC1, where A is the acylindricity constant. Since
X is metrisable, hence regular, we can further assume that W � U . Finally, we can
choose R> 0 and ı > 0 such that U 0 D VR;ı.�/ is contained in W and B.
�.R/; ı/

is contained in the open star of the minimal simplex containing 
�.R/ (recall that 
�
is a parametrisation of the geodesic ray Œv0; �/). We now show that every point not in
VU .�/ admits a neighbourhood that does not meet VU 0.�/.

Let z 2 EG nVU .�/. Then p.z/ is not in U , hence not in U 0 . Since U 0 is closed in
X , there exists an open set U 00 of X containing p.z/ and such that U 00 � X nU 0 .
Then p�1.U 00/ is open in EG and p�1.U 00/ does not meet VU .�/.

Let �0 2 @X nVU .�/. Then �0 … U \ @X hence �0 … U 0 . Since U 0 is closed in X , we
choose an open set U 00 in OX .�/ disjoint from U 0 . It is now clear that VU 00.�

0/ does
not meet V 0U .�/.

Let � 2 .@StabG/ nVU .�/. To find a neighbourhood of � that does not meet VU 0.�/,
is enough to find a �–family U 0 such that U 0\AConeU 0; 1

2
.�/D¿. We define such a

�–family as follows:

Let x D 
�.R/. By Lemma 3.5, let K be the finite subcomplex of X spanned by
open simplices meeting Geod.D.�/;x/. Let v be a vertex of D.�/. For every simplex
� contained in .st.v/\K/ nD.�/, let Uv;� be an open neighbourhood of � in EGv
disjoint from EG� . We then set

Vv D
\

��.st.v/\K /nD.�/

Uv;� :

Now take U to be a �–family contained in fVv; v 2 V .�/g, and let U 0 be a �–family
that is 2–refined in U .

We now show by contradiction that U 0\ACone U 0; 1
2
.�/D¿. Let y be an point of this

intersection. Then Œv0;y� meets D.�/ (by Corollary 5.9) and B.x; ı/\S.v0;R/ (by
construction of U 0 ).

Since d.U 0;X nU /�AC1 and D.�/ meets X nU , it follows that N.D.�//\U 0D¿.
Hence the geodesic segment Œv0;y� enters D.�/ before meeting B.x; ı/\S.v0;R/.
Let y0 be the point of Œv0;y� inside B.x; ı/\S.v0;R/. By construction of R and ı , it
follows that �y0 is in the open star of �x . Now since x 2 ConeU 0; 1

2
.�/, the refinement

Lemma 5.10 implies that �y0 � ConeU ; 1
2
.�/, which contradicts the definition of U .

Lemma 7.11 Let � 2 @StabG , " 2 .0; 1/ and U a �–family. Then there exists a �–
family U 0 such that every point not in VU ;".�/ admits a neighbourhood that misses
VU 0;".�/.
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Proof Recall that domains of points of @StabG contain at most dmax simplices (see
Corollary 4.3). Choose a �–family U 0 that is dmax –refined and nested in U . We now
show that every point not in VU ;".�/ admits a neighbourhood that misses VU 0;".�/.

Let zx 2 EG nVU ;".�/, and x D p.zx/.

� If x 2D".�/, let v be a vertex of D.�/\ �x . We have �v;�x
.zx/ … Uv , hence

�v;�x
.zx/ … U 0v . Let Wx be a neighbourhood of �v;�x

.zx/ in EGv that does not
meet U 0v , and V be an open neighbourhood of x in X contained in st.�x/.
Let W be the neighbourhood of zx consisting of those elements zy 2 EG whose
projection p.zy/ is in V and such that �v;�x

.zy/ belongs to Wx . Since U 0 is
refined in U , it then follows that W is a neighbourhood of zx that does not meet
VU 0;".�/.

� If x …D".�/, let V be an open neighbourhood of x in X nD".�/ contained
in st.�x/. As U 0 is refined in U and x … VU ;".�/, Lemma 5.10 implies that
p�1.V / is a neighbourhood of zx that does not meet VU 0;".�/.

Let � 2 @X nVU ;".�/. We construct a neighbourhood V of � in X that does not meet
AConeU 0;".�/. First, since D.�/ is bounded, let R> 0 such that D.�/ is contained in
the R–ball centred at v0 , and let x D 
�.RC 1/.

� If Œv0; �/ does not meet D.�/, let ı D 1
2

dist.
�.Œ0;RC 1�/;D.�// > 0, and let
V be a neighbourhood of � in X that is contained in VRC1;ı.�/. For every y

in V , Œv0;y� does not meet D.�/, hence V \AConeU 0;".�/D¿.

� If Œv0; �/ goes through D.�/, then since x does not belong to AConeU ;".�/, let v
be a vertex of D.�/ in ��;".x/ such that EG��;".x/ªUv in EGv . Lemma 5.11
yields a constant ı > 0 such that for every y 2 B.x; ı/, Œv0;y� goes through
D".�/ and ��;".y/� st.��;".x//. Let V WDVRC1;ı.�/ and y 2V . Then Œv0;y�

goes through B.x; ı/, hence ��;".y/ � st.��;".x//. As U 0 is nested in U and
EG��;".x/ ª Uv in EGv , it follows that EG��;".y/ ª U 0v , hence

y …AConeU 0;"0.�/ and V \AConeU 0;"0.�/D¿:

Let � 0 2 .@StabG/ n VU ;".�/. To find a neighbourhood of � 0 that misses VU 0;".�/, it
is enough, since cones are open subsets of X by Corollary 5.12, to find a � 0–family
U 00 such that AConeU 00;".�

0/\AConeU 0;".�/ D ¿ and such that for every vertex v of
D.�/\D.� 0/, we have U 0v \U 00v D ¿. We define such a � 0–family as follows. By
Lemma 3.5, let K be a finite subcomplex containing Geod.v0;D.�//. Let v be a
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vertex of D.� 0/. For every � � .st.v/\K/ nD.� 0/, let U 00v;� be a neighbourhood of
� 0 in EGv that is disjoint from EG� , and set

U 00v D
\

��.st.v/\KnD.�0/

U 00v;� :

If v is also in D.�/, note that since the closure of U 0v is contained in Uv , we can
assume that U 0v \U 00v D¿. Furthermore, we can assume by the convergence property
Definition 4.8 that the only EG� inside EGv meeting both Uv and U 00v contains � and
� 0 . Now let U 00 be a � 0–family which is dmax –refined in fU 00v ; v 2D.� 0/g.

Let us prove by contradiction that AConeU 00;"0.�
0/\AConeU 0;".�/D¿. Let x be in such

an intersection. Then, by Corollary 5.9, the geodesic Œv0;x� goes through both D.�/

and D.� 0/. Note that, by construction of the various neighbourhoods U 00v , the geodesic
segment Œv0;x� cannot leave D.� 0/ before leaving D.�/, nor can it leave both D.�/

and D.� 0/ at the same time. If D.�/\D.� 0/ D ¿, it follows from the fact that U 0
is dmax –refined in U that D.� 0/ �AConeU ;".�/ by Lemma 5.10, hence � 0 2 VU ;".�/,
which is absurd. Otherwise, let x0 be the last point of D.� 0/ met by Œv0;x� and let

 be a geodesic path in D.� 0/ from x0 to a point of D.�/, such that 
 meets D.�/

in exactly one point. Let � be the last simplex touched by 
 before touching D.�/.
The fact that U 0 is dmax –refined in U implies that EG� � Uv for some (hence every)
vertex v of � \D.�/ by Lemma 5.10, hence � 0 2 Uv � VU ;".�/, a contradiction.

Finally, for every vertex v of D.�/\D.� 0/, we have U 0v \U 00v D¿ by construction
of U 00v , hence the result.

Theorem 7.12 The space EG is separable and metrisable.

Proof It is second countable by Theorem 6.17, regular by Proposition 7.8 and satisfies
the T0 condition by Proposition 7.1. Thus it is Hausdorff and the result follows from
Urysohn’s metrisation theorem.

7.3 Sequential compactness

In this subsection, we prove the following:

Theorem 7.13 The metrisable space EG is compact.

First of all, note that since EG is dense in EG by Theorem 6.17, it is enough to prove that
any sequence in EG admits a subsequence converging in EG. Let .�xn/n�0 2 .EG/N .
For every n � 0, let xn D p.�xn/. Furthermore, to every xn we associate the finite
sequence � .n/

0
D v0; �

.n/
1
; : : : of simplices met by Œv0;xn�. Finally, let ln � 1 be the

number of simplices of such a sequence.
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Lemma 7.14 Suppose that for all k � 0, f� .n/
k
; n� 0g is finite.

� If .ln/ admits a bounded subsequence, then .�xn/ admits a subsequence that
converges to a point of EG[ @StabG .

� Otherwise, .�xn/ admits a subsequence that converges to a point of @X.

Proof Up to a subsequence, we can assume that there exist open simplices �0; �1; : : :

such that for all k � 0; .� .n/
k
/n�0 is eventually constant at �k . There are two cases to

consider:

(i) Up to a subsequence, there exists a constant m � 0 such that each geodesic
Œv0;xn� meets at most m simplices. This implies that the xn live in a finite
subcomplex. Up to a subsequence, we can now assume that there exists a (closed)
simplex � of X such that xn is in the interior of � for all n� 0. This in turn
implies that �xn is in ��EG� (or more precisely in the image of ��EG� in EG)
for all n� 0. This space is compact since the canonical map � �EG� ,! EG is
continuous by Lemma 6.21, hence we can take a convergent subsequence.

(ii) Up to a subsequence, we can assume that ln!1. For r > 0, let �r W X !

B.v0; r/ be the retraction on B.v0; r/ along geodesics starting at v0 . By as-
sumption, we have that for every r > 0, the sequence of projections .�r .xn//n�0

lies in a finite subcomplex of X. A diagonal argument then shows that, up to a
subsequence, we can assume that all the sequences of projections .�m.xn//n�0

converge in X for every m � 0. As the topology of X is the topology of the
projective limit

B.v0; 1/
�1
 � B.v0; 2/

�2
 � � � � ;

it then follows that .xn/ converges in X . As ln!1, .xn/ converges to a point
� of @X. The definition of the topology of EG now implies that .�xn/ converges
to � in EG.

Lemma 7.15 Suppose that there exists k � 0 such that f� .n/
k
; n� 0g is infinite. Then

.xn/ admits a subsequence that converges to a point of @StabG .

Proof Without loss of generality, we can assume that such a k is minimal. Up to a
subsequence, we can assume that there exist open simplices �1; : : : ; �k�1 such that for
all n� 0, � .n/

0
D �0; : : : ; �

.n/
k�1
D �k�1 , and .� .n/

k
/n�0 is injective. By cocompactness

of the action, we can furthermore assume (up to a subsequence) that the � .n/
k

are
above a unique simplex of Y . This corresponds to embeddings EG�.n/

k
,!EG�k�1

. By
the convergence property Definition 4.8, we can assume, up to a subsequence, that in
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EG�k�1
the sequence of subspaces EG�.n/

k
uniformly converges to a point � 2 @G�k�1

.
Let us prove that .�xn/n�0 converges to � in EG.

Since EG has a countable basis of neighbourhoods, it is enough to prove that for every
" 2 .0; 1/ and every �–family U there exists a subsequence of .�xn/ lying in VU ;".�/.
By construction of � , we have �k�1 � D.�/, and there exists a vertex vk of D.�/

such that � .n/
k
� st.vk/ for all n� 0. Two cases may occur:

� Up to a subsequence, all the Œv0;xn� leave D".�/ inside � .n/
k

. Since EG�.n/
k

uniformly converges to � in EG�k�1
and thus in EGvk

, we can assume, up to a
subsequence, that EG�.n/

k
� Uvk

inside EG�k
. This implies that �xn 2 VU ;".�/,

which is what we wanted.

� Up to a subsequence, all the Œv0;xn� remain inside D".�/ when inside � .n/
k

. Up
to a subsequence, we can further assume that all the � .n/

kC1
; n � 0 are above a

unique simplex of Y . Thus there exists a vertex vkC1 of D.�/\ st.vk/ such
that � .n/

kC1
� st.vkC1/ for all n� 0.

In particular we have � .n/
k
� st.vk/\ st.vkC1/ and thus � 2 @GvkC1

. Since U
is a �–family, the fact that EG�.n/

k
uniformly converges to � in EGvk

implies
that EG�.n/

k
uniformly converges to � in EGvkC1

. Note that since the sequence
.� .n/

k
/n�0 takes infinitely many values, the finiteness lemma Lemma 3.5 implies

that .� .n/
kC1

/n�0 also takes infinitely many values. Up to a subsequence, we can
thus assume by the convergence property Definition 4.8 that EG�.n/

kC1
uniformly

converges in EGvkC1
. As EG�.n/

k
uniformly converges to � in EGvkC1

, the same
holds for EG�.n/

kC1
, and we are back to the previous situation.

By iterating this algorithm, two cases may occur:

� There is a value k 0 � k such that, up to a subsequence, all the Œv0;xn� leave
D".�/ while being inside � .n/

k0
and the same argument as before shows that we

can take a subsequence satisfying �xn 2 VU ;".�/.

� Up to a subsequence, at every stage k 0 � k all the Œv0;xn� remain within D�.�/.
In the latter case, the containment lemma Proposition 3.3 implies that there
exists an integer m� 0 such that each geodesic segment Œv0;xn� meets at most
m simplices. Up to a subsequence, we can further assume that all the Œv0;xn�

meet exactly m simplices. Thus we can iterate our algorithm up to rank m,
which yields the existence of a vertex vm of D".�/ such that � .n/m � st.vm/

for all n � 0 and such that EG�.n/m
uniformly converges to � in EGvm

. Up to
a subsequence, we can furthermore assume that EG�.n/m

� Um in EGvkC1
for

all n � 0. This in turn implies �xn 2WU ;".�/, hence �xn 2 VU ;".�/ and we are
done.
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Proof of Theorem 7.13 This follows immediately from Theorem 7.12, Lemma 7.14
and Lemma 7.15.

As a direct consequence, we get the following convergence criterion.

Corollary 7.16 Let .Kn/ be a sequence of subsets of EG.
� Kn uniformly converges to a point � 2 @X if and only if the sequence of coarse

projections xp.Kn/ uniformly converges to � in X .
� Suppose that there exists � 2 @StabG such that, for n large enough, every geodesic

from v0 to a point of xp.Kn/ goes through D.�/. For every such n and every
z 2 Kn , choose x 2 xp.z/ and let �n;x be the first simplex touched by the
geodesic Œv0;x� after leaving D.�/. If there exists a vertex v 2D.�/ contained
in each �n;x and such that for every neighbourhood U of � in EGv , there
exists an integer N � 0 such that for every .n;x/ 2

S
n�N fng �Kn , we have

EG�n;x
� U , then .Kn/ uniformly converges to � .

8 The properties of @G

In this section we prove the following:

Theorem 8.1 .EG; @G/ is an EZ –structure in the sense of Farrell and Lafont.

8.1 The Z–set property

Here we prove the following:

Proposition 8.2 @G is a Z –set in EG.

Proving this property is generally technical. However, Bestvina and Mess proved in
[4] a useful lemma ensuring that a given set is a Z –set in a bigger set, which we now
recall.

Lemma 8.3 (Bestvina and Mess [4]) Let .zx;Z/ be a pair of finite-dimensional
metrisable compact spaces with Z nowhere dense in zx , and such that X D zx nZ is
contractible and locally contractible, with the following condition holding:
.�/ For every z 2 Z and every neighbourhood zU of z in zx , there exists a neigh-

bourhood zV contained in zU and such that

zV nZ ,! zU nZ

is null-homotopic.

Then zx is an Euclidean retract and Z is a Z –set in zx .
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We now use this lemma to prove that the boundary @G is a Z –boundary in EG.

Lemma 8.4 EG and @G are finite-dimensional.

Proof We have

@G D

� [
v2V .X /

@Gv

�
[ @X:

Each vertex stabiliser boundary is a Z –boundary in the sense of Bestvina, hence finite-
dimensional, and they are closed subspaces of @G by Proposition 6.19. As the action of
G on X is cocompact, their dimension is uniformly bounded above, so the countable
union theorem implies that

S
v2V .X / @Gv is finite-dimensional. Furthermore, X is a

CAT(0) space of finite geometric dimension, so its boundary has finite dimension by
a result of Caprace [10]. Thus, the classical union theorem implies that @G is finite-
dimensional. Now EGD EG[ @G . EG is a CW–complex that can be decomposed as
the countable union of its closed cells, all of which have a dimension bounded above
by dim.X / � sup� .dim EG� /. It follows from the countable union theorem in covering
dimension theory that EG is finite-dimensional, and the same holds for EG by the
classical union theorem.

We now turn to the proof of the Z –set property, using the lemma of Bestvina and Mess
recalled above. As usual, the proof splits in two cases, depending on the nature of the
point of @G that we consider.

Lemma 8.5 Let � 2 @X and U be a neighbourhood of � in X . Then there exists a
subneighbourhood U 00 � U of � in X such that the inclusion

VU 00.�/ n @G ,! VU .�/ n @G

is null-homotopic.

Proof By Lemma 6.3, there exists a neighbourhood U 0 of � in X such that
d.U 0\X;X nU / > 1. In particular, Span.U 0 n @X /� U , and p�1.Span.U 0 n @X //
can be seen as the realisation of a complex of spaces over Span.U 0 n @X / the fi-
bres of which are contractible. Thus Proposition 1.10 implies that the projection
p�1.Span.U 0 n @X //! Span.U 0 n @X / is a homotopy equivalence. Now Lemma 6.2
yields another neighbourhood U 00 � U 0 of � in X such that U 00 n @X is contractible.
We thus have the following commutative diagram:

VU .�/ n @G p�1.Span.U 0 n @X //

'

��

? _oo VU 00.�/ n @G

��

? _oo

Span.U 0 n @X / U 00 n @X? _

0
oo
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Now since U 00 n @X is contractible, the inclusion VU 00.�/ n @G ,! VU .�/ n @G is
null-homotopic.

Lemma 8.6 Let � 2 @StabG , "2 .0; 1/ and U a � –family. Then there exists a � –family
U 0 such that VU 0;".�/ is a subneighbourhood of VU ;".�/ and such that the inclusion

VU 0;".�/ n @G ,! VU ;".�/ n @G

is null-homotopic.

Lemma 8.7 There exists a � –family U 00 , a subcomplex X 0 of X with AConeU 00;".�/�
X 0 �AConeU ;".�/, and a subset C 0 of EG with VU 00;".�/ n @G � C 0 � VU ;".�/ n @G ,
such that p.C 0/�X 0 and the projection map C 0!X 0 is a homotopy equivalence.

Proof Let U 0 be a �–family that is 2–refined in U and d� –nested in U . It follows
from the refinement Lemma 5.10 that

Span.ConeU 0;".�//�AConeU ;".�/:

By Lemma 6.6, we have VU 0;".�/� VU ;".�/. Let

X 0 D Span.ConeU 0;".�//[ .D".�/\AConeU ;".�//:

Note that it is possible to give D".�/\AConeU ;".�/ a simplicial structure from that
of X such that a vertex of D".�/\AConeU ;".�/ for that structure either is a vertex
of D.�/ or belongs to an edge in X between a vertex of D.�/ and a vertex of
X nD.�/. Furthermore, we can give Span.ConeU 0;".�// a simplicial structure that is
finer than that of X, whose vertices are the vertices of Span.ConeU 0;".�// and vertices
of D".�/\AConeU ;".�/ (for its given simplicial structure), that is compatible with that
of D".�/, and which turns X 0 into a simplicial complex such that an open simplex
is completely contained either in D".�/ or in X nD".�/ (see Figure 5). Thus X 0 is
endowed with a simplicial structure.

We now define a contractible open subset C 0� of EG� for every open simplex � of X 0 .
This will allow us to define the following subset of EG,

C 0 D
[

�2S.X 0/

� �C 0� :

Note that although C 0 is not naturally the realisation of a complex of spaces in the
sense of the first section, it is nonetheless possible to endow it with one, so as to use
Proposition 1.10.

We first define these spaces C 0� for vertices of X 0 . Let v be such a vertex.
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D"0.�/

Span.ConeU 0;".�// X 0

Figure 5

� If v is a vertex of D.�/, the compactification EGv is locally contractible so we
can choose a contractible open set U 0v of EGv contained in Uv and containing
� , and set C 0v DU 0v\EGv . As @Gv is a Z –boundary, C 0v is a contractible open
subset.

� If v does not belong to D".�/, set C 0v D EGv .
� If v is a vertex of D".�/nD.�/ (for the chosen simplicial structure of D".�/�

X 0 ), then either v belongs to Span.ConeU 0;".�//, in which case we set C 0v D

EGv , or it does not, in which case v belongs to a unique edge e (for the simplicial
structure of X ) between a vertex v0 of D.�/ and a vertex of X nD.�/. In that
case, EGe is contained in Uv0 since U 0 is nested in U and we set C 0v D EGe .

We now define the subsets C 0� for simplices � � X 0 . Let � be such a simplex, and
let � 0 be the unique open simplex of X such that � � � 0 as subsets of X. We set
C 0� D EG� 0 .

We define the space C 0 D
S
�2S.X 0/ � � C 0� . As explained above, the projection

C 0 ! X 0 is a homotopy equivalence. Furthermore, we can choose a �–family U 00
small enough so that the subset VU 00;".�/ n @G is contained in C 0 .

Proof of Lemma 8.6 We apply the previous lemma twice to get the following com-
mutative diagram:

VU ;".�/ n @G C 0

'
��

? _oo
VU 00;".�/ n @G

��

? _oo
C .3/

'
��

? _oo

X 0 AConeU 00;".�/
? _oo

X .3/? _

0
oo

Since X .3/ retracts by strong deformation (along geodesics starting at v0 ) inside
AConeU 0;".�/ on the contractible subcomplex D.�/ (relatively to D.�/), the inclusion
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X .3/ ,!AConeU 0;".�/ is null-homotopic, hence C .3/ ,!VU ;".�/n@G is null-homotopic.
As there exists a �–family U .4/ such that VU.4/;".�/ n @G ,! C .3/ , this concludes the
proof.

Proof of Proposition 8.2 Theorem 7.13 and Lemma 8.4 together with Lemma 8.5
and Lemma 8.6 yield the desired result.

8.2 Compact sets fade at infinity

Here we prove the following:

Proposition 8.8 Compacts subsets of EG fade at infinity in EG, that is, for every
x 2 @G , every neighbourhood U of x in EG and every compact K � EG, there
exists a subneighbourhood V � U of x such that any G –translate of K meeting V is
contained in U .

As usual, we split the proof in two parts, depending on the nature of the points
considered.

Proposition 8.9 Let � 2 @X. For every neighbourhood U of � in X and every
compact subset K � EG, there exists a neighbourhood U 0 of � contained in U and
such that any G –translate of K meeting VU 0.�/ is contained in VU .�/.

Proof By Lemma 6.3, let U 0 be a neighbourhood of � in X that is contained in U

and such that
d.U 0;X nU / > diam.p.K//:

Let g 2G such that gK meets VU 0.�/. Since G acts on X by isometries, we have

diam.p.g:K//D diam.g:p.K//D diam.p.K//;

which implies that gK � VU .�/.

The proof for points of @StabG is slightly more technical. We start by defining a class
of compact sets of EG that are easy to handle.

Definition 8.10 Let F be a finite subcomplex of X, together with a collection
.K� /�2S.F / of nonempty compact subsets of EG� for every simplex � of F . Suppose
that for every simplex � of F and every face � 0 of � , we have �� 0;� .K� / � K� 0 .
Then the set [

�2S.F /

� �K� :
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is called a standard compact subset of EG over F . Every compact subset of EG
obtained in such a way is called a standard compact of EG.

Note that the projection in X of any compact subset of EG meets finitely many
simplices of X, so every compact subset of EG may be seen as a subset of a standard
compact subset of EG.

Definition 8.11 Let � 2 @StabG and U a �–family. We define WU .�/ as the set of
points zx of EG whose projection x 2X belongs to the domain of � and is such that
for some (hence any) vertex v of �x \D.�/ we have

�v;�x
.zx/ 2 Uv:

Before proving that compact sets fade near points of @StabG , we prove the following
lemma.

Lemma 8.12 Let � 2 @StabG , " 2 .0; 1/ and U a �–family. Let K be a compact
subspace of EG. Then there exists a �–family U 0 contained in U such that for every
point g 2G , the following holds:

If gK meets WU 0.�/, then gK\p�1.D.�// is contained in WU .�/.

Proof Let L be a standard compact subset of EG over the (finite) full subcomplex
of X defined by Span p.K/. By choosing the L� big enough, we can assume that L

contains K . Let N � 0 be such that any two vertices of L can be joined by a sequence
of at most N adjacent vertices.

Since D.�/ and p.L/ meet finitely many vertices of X, there are only finitely many
elements of G such that g:p.L/ meets D.�/ up to left multiplication by an element of
Gv; v 2 V .�/. Let .g�:p.L//�2ƒ be such a finite family of cosets. For every vertex v
of V .�/, fg�L\EGv; �2ƒg is a finite (possibly empty) collection of compact subsets
of EGv . Since @Gv is a Bestvina boundary for Gv , compact subsets fade at infinity in
EGv , so there exists a subneighbourhood U 0v of Uv such that any Gv –translate of one
of these g�L meeting U 0v is contained in Uv . Repeating this procedure N C 1 times,
we get a sequence of �–families denoted

fUv; v 2 V .�/g � U ŒN � � U ŒN�1�
� � � � � U Œ0�:

Let g 2G such that gK meets WU 0.�/, and let w be a vertex of D.�/ such that gK ,
hence gL, meets U

Œ0�
w . In order to prove the lemma, it is enough to show by induction

on k D 0; : : : ;N the following:
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.Hk/ For every chain of adjacent vertices w0 D w;w1; : : : ; wk of D.�/ such that
gL meets EGw0

; : : : ;EGwk
, we have gL\EGwk

� U
ŒkC1�
w .

Since gL meets D.�/, let � 2ƒ such that gLD g�L pointwise. The result is true
for k D 0 by definition of U Œ0� and U Œ1� . Suppose we have proven it up to rank
k , and let w0 D w;w1; : : : ; wkC1 a chain of vertices of D.�/ such that gL meets
EGw0

; : : : ;EGwk
. By induction hypothesis, we already have gL\EGwk

� U
ŒkC1�
wk

.
Since p.L/ is a full subcomplex of X, it follows from the fact that gL meets EGwk

and EGwkC1
that gL also meets EGŒwk ;wkC1� . In particular, since

gL\EGwk
� U ŒkC1�

wk
;

it follows from the properties of � –families that gL\EGwkC1
meets U

ŒkC1�
wkC1

. This in
turn implies that gL\EGwkC1

� U
ŒkC2�
vkC1

, which concludes the induction.

Proposition 8.13 Let � 2 @StabG , " 2 .0; 1/ and U a � –family. Let K be a connected
compact subset of EG. Then there exists a �–family U 0 contained in U and such that
every G –translate of K meeting VU 0;".�/ is contained in VU ;".�/.

Proof Let k be the number of simplices met by p.K/, and let U 0 be a � –family that
is k –refined in U . Applying the previous proposition to VU 0;".�/ yields a �–family
U 00 . Finally, let U 000 be a �–family that is k –refined in U 00 .

Suppose that gK meets VU 000;".�/, and let �x0 2 gK\VU 000;".�/. Let zx 2 gK , and let
us prove that zx 2 VU ;".�/. Since p.K/ is connected, let 
 be a path from x0D p.�x0/

to x D p.zx/ in p.gK/. This yields a path of open simplices �1; : : : ; �n , with n� k .
If gK does not meet D.�/, the refinement Lemma 5.10 implies that �n �

AConeU ;".�/,
and zx 2 VU ;".�/.

Otherwise, let n0 (resp. n1 ) be such that �n0
(resp. �n1

) is the first (resp. the last) sim-
plex contained in D.�/. If x0 is not in D.�/, we can apply the refinement Lemma 5.10
to the path �1; : : : ; �n0�1 , which implies �n0�1 � NU 00.D.�//. In particular, we see
that gK meets WU 00.�/, which is also true if x0 is in D.�/. Now by definition of
U 00 , we have that gK\p�1.D.�//�WU 0.�/. If 
 goes out of D.�/ after �n1

, then
�n1C1 � NU 0.D.�//, and we can apply the refinement Lemma 5.10 to the path of
simplices �n1C1; : : : ; �n . In any case, we get in the end zx 2 VU ;".�/, which concludes
the proof.

Proof of Proposition 8.8 This follows from Proposition 8.9 and Proposition 8.13.

Proof of Theorem 8.1 This follows from Theorem 7.13, Lemma 6.18, Proposition 8.2,
and Proposition 8.8.
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8.3 Proof of the main theorem

We are now ready to conclude the proof of the combination theorem for boundaries of
groups.

Lemma 8.14 Let X;Y and G as in the statement of the main theorem. Then for every
simplex � of Y , the embedding EG� ,! EG realises an equivariant homeomorphism
from @G� to ƒG� � @G . Moreover, for every pair H1;H2 of subgroups in the
family F D f

Tn
iD1 giG�i

g�1
i j g1; : : : ;gn 2G; �1; : : : ; �n 2 S.Y /; n 2Ng, we have

ƒH1\ƒH2 Dƒ.H1\H2/� @G .

Proof The equivariant embedding EG� ,! EG induces an equivariant embedding
@G� ,!ƒG� � @G . But since EG� is a closed subspace of EG by Proposition 6.19,
and is stable under the action of G� , the reverse inclusion ƒG� � @G� follows.

Now let �1; : : : ; �n be simplices of X. The inclusion

ƒ
� \

1�i�n

G�i

�
�

\
1�i�n

ƒG�i

is clear, and the reverse inclusion follows directly from Lemma 4.7.

Lemma 8.15 Let X and G be as in the statement of the main theorem. Then for
every simplex � of X, the embedding EG� ,! EG satisfies the convergence property
Definition 4.8.

Proof Let .gnG� / be a sequence of distinct G–cosets. This yields an injective
sequence of simplices .gn�/ of X. Let zx be any point of EG� . By compactness of
EG, we can assume up to a subsequence that gnzx converges to a point l 2 EG. But it
follows immediately from Lemma 7.14 and Lemma 7.15 that l 2 @G and that gnEG�
uniformly converges to l .

Lemma 8.16 Let X and G be as in the statement of the main theorem. Then for every
simplex � of X, the group G� is of finite height in G .

Proof Let g1G� ; : : : ;gnG� be distinct G –cosets such that g1G�g�1
1
\� � �\gnG�g�1

n

is infinite. Thus the simplices g1�; : : : ;gn� of X are distinct and such that the boundary
of their stabilisers have a nonempty intersection in @StabG . But as there is a uniform
bound on the number of simplices contained in the domain of a point of @StabG by
Proposition 4.2, Lemma 4.6 implies that there is a uniform bound on the number of
simplices whose stabilisers have an infinite intersection, hence the result.

Proof of the combination theorem for boundaries of groups This follows from
Theorem 8.1, Lemma 8.14, Lemma 8.15 and Lemma 8.16.
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8.4 Boundaries in the sense of Carlsson and Pedersen

So far we have been concerned with the notion of an EZ–structure in the sense of
Farrell and Lafont. We now turn to a slightly stronger notion of boundary, which also
has stronger implications for the Novikov conjecture.

Definition 8.17 Let G be a group endowed with an EZ–structure in the sense of
Farrell and Lafont .EG; @G/. We say that .EG; @G/ is an EZ –structure in the sense
of Carlsson and Pedersen if in addition we have:

For every finite group H of G , the fixed point set EGH is nonempty and admits EGH

as a dense subset.

The importance of such finer structures comes from the following implication.

Theorem 8.18 (Carlsson and Pedersen [11]) If G admits an EZ–structure in the
sense of Carlsson and Pedersen, then G satisfies the integral Novikov conjecture.

In our context, we will need an additional assumption on these EZ–structures. As
explained below, this is by no means a restrictive assumption.

Definition 8.19 We say that an EZ –structure in the sense of Carlsson and Pedersen
.EG; @G/ is strong if in addition we have the following:

For every finite group H of G , .@G/H is either empty or a Z –set in EGH .

Without any assumption of a strong EZ–structure, it is still possible to prove the
following partial result.

Lemma 8.20 Let H � G be a finite subgroup. Then the closure of EGH in EG is
exactly EGH .

Proof As EG is a classifying space for proper actions of G , EGH is nonempty. We
now prove that it is dense in EGH .

Let � 2 @StabG \EGH . The domain D.�/ is thus stable under the action of H . As
D.�/ is a finite convex subcomplex of X, the fixed point theorem for CAT(0) spaces
implies that there is a point of D.�/ fixed by H . Since the action is without inversion,
we can further assume that H fixes a vertex v of D.�/. Moreover, EGH

v is dense in
EGH

v . Thus, by definition of a basis of neighbourhoods at � , any neighbourhood of �
in EG meets EGH .
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Now let � 2 @X \ EGH . Let 
 be a geodesic from a point of X H to �. Then 

is fixed pointwise by H . Let U be a neighbourhood of � in X . Since the path 

eventually meets U , let � be a simplex of X contained in U and met by 
 . Thus �
is fixed pointwise by H . Now since EGH

� is nonempty by assumption, it follows that
EGH meets VU .�/, and the result follows.

However, the previous reasoning does not show the contractibility of EGH . We now
reformulate our main theorem in the setting of EZ –structures in the sense of Carlsson
and Pedersen.

Definition 8.21 An EZ–complex of spaces in the sense of Carlsson and Pedersen
(compatible with the complex of groups G.Y/) is a complex of spaces over a funda-
mental domain for the action satisfying the axioms of a compatible EZ –complex of
spaces, with strong EZ–structures in the sense of Carlsson and Pedersen instead of
EZ –structures in the sense of Farrell and Lafont.

Theorem 8.22 The combination theorem for boundaries of groups remains true if one
replaces “EZ–complexes of spaces” with “EZ–complexes of spaces in the sense of
Carlsson and Pedersen”.

Proof The only thing to prove is that .EG; @G/ is an EZ–structure in the sense of
Carlsson and Pedersen. We already know that it is an EZ–structure in the sense of
Farrell and Lafont by Theorem 0.1 in the case of EZ –structures in the sense of Farrell
and Lafont. Let H be a finite subgroup of G . To prove that EGH is contractible, we
want to apply the Lemma 8.3 of Bestvina and Mess to the pair .EGH ;EGH nEGH /.

In order to do this, first notice that EGH is nothing but the complex of spaces over
X H with fibres the subcomplexes EGH

� of EG� . Thus, it is possible to apply the
exact same reasoning with X H in place of X and the EGH

� in place of the EG� . As
X H is a convex, hence contractible subcomplex of X, this is enough to recover the
fact that EGH is contractible.

Now, notice that, because of Lemma 8.20, EGH is obtained from EGH by the same
procedure as before, compactifying every EGH

� (for � a simplex fixed under H ) by
EGH

� and adding the visual boundary of the CAT(0) subcomplex X H , @.X H / D

.@X /H . We now briefly indicate why this is enough to prove the Z –set property for

.EGH ;EGH nEGH /. The only properties that were required are the fact that X is
a CAT(0) space, the convergence properties of the embeddings between the various
classifying spaces, and the fact that @G� is a Z –set in EG� . But since X H is convex
in a CAT(0) space, it is itself CAT(0). Moreover, the convergence properties of the
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embeddings are clearly still satisfied for simplices that are fixed under H . Finally, by
assumption, .@G� /H is a Z –set in EGH

� . Thus, the same reasoning as in Lemma 8.5
and Lemma 8.6 shows that the Lemma 8.3 of Bestvina and Mess applies, thus implying
that .EGH ;EGH nEGH / is a Z –compactification, and we are done.

9 A high-dimensional combination theorem for hyperbolic
groups

In this section, we apply our construction of boundaries to get a generalisation of
a combination theorem of Bestvina and Feighn to complexes of groups of arbitrary
dimension.

This will be done by constructing an EZ–structure for G and proving that G is a
uniform convergence group on its boundary. Note that this proof has the advantage of
yielding a construction of the Gromov boundary of G .

In the following, G.Y/ will be a complex of groups over a simplicial complex Y

satisfying the conditions of the combination theorem for hyperbolic groups. We will
denote by G the fundamental group of G.Y/ and by X a universal covering.

9.1 A few facts about hyperbolic groups and quasiconvex subgroups

We start by recalling here a few elementary facts about hyperbolic groups. There is an
extensive literature about such groups, and we refer the reader to Coornaert, Delzant
and Papadopoulos [12] and Gromov [22] for more details.

Lemma 9.1 � Let H1 �H2 �H be three hyperbolic groups. If H1 is quasicon-
vex in H2 , and H2 is quasiconvex in H , then H1 is quasiconvex in H . If both
H1 and H2 are quasiconvex in H , then H1 is quasiconvex in H2 .

� (Gromov [23, page 164]) Let H be a hyperbolic group, and H1;H2 two
quasiconvex subgroups. Then H1\H2 is quasiconvex in H , and ƒ.H1\H2/D

ƒH1\ƒH2 .

Corollary 9.2 Let � be a finite connected graph contained in the 1–skeleton of X,
and � 0 � � a connected subgraph. Then

T
v2� Gv is hyperbolic and quasiconvex inT

v2� 0 Gv .

Proof This follows from an easy induction on the number of vertices of � , together
with Lemma 9.1.
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Recall that in the case of a hyperbolic group H , there is a very explicit example of a
classifying space for proper actions, namely the Rips complex. Moreover, there is a
natural notion of boundary, namely the Gromov boundary of H (see [12]).

Theorem 9.3 [4; 27] Let H be a finitely generated hyperbolic group, H 0 a finitely
generated subgroup, and S a finite generating set of H that contains a finite generating
set of H 0 . For n� 0, the Rips complex Pn.H / is contractible and there is a topology
on Pn.H /[@H such that .Pn.H /[@H; @H / is an EZ –structure for H . Furthermore,
if H 0 is quasiconvex in H , the equivariant embedding Pn.H

0/ ,! Pn.H / naturally
extends to an equivariant embedding Pn.H

0/[ @H 0 ,! Pn.H /[ @H .

9.2 Construction of an EZ–complex of space compatible with G.Y/

We now define an EZ –complex of spaces over Y as follows:

� We define inductively sets of generators for the local groups of the complex of
groups G.Y/ induced over Y in the following way: Start with simplices � of
Y of maximal dimension, and choose for each of them a finite symmetric set of
generators for G� . Suppose we have defined a set of generators for local groups
over simplices of dimension at most k . If � is a simplex of dimension k � 1,
choose a finite set of generators that contains all the generators of local groups
of simplices strictly containing � . This allows us to define for every simplex �
of Y a set of generator such that  �;� 0.S� 0/� S� whenever � � � 0 .

� Let n � 1 be an integer. Define D� as the Rips complex Pn.G� / associated
to the set of generators S� . Moreover, if � � � 0 , let ��;� 0 be the equivariant
embedding Pn.G� 0/ ,! Pn.G� /.

� Since there are only finitely many hyperbolic groups involved, choose n � 0

such that all the previously defined Rips complexes are contractible.

It follows from the above discussion that:

Proposition 9.4 The complex of spaces D.Y/ is compatible with the complex of
groups G.Y/.

Lemma 9.5 The EZ –complex of spaces D.Y/ satisfies the limit set property Defini-
tion 2.9.

Proof For every pair of simplices � � � 0 of Y , G� 0 is a quasiconvex subgroup
of G� , so the map ��;� 0 W @G� 0 ! @G� realises a G� 0 –equivariant homeomorphism
@G� 0 !ƒG� 0 � @G� by a result of Bowditch [6].
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For every simplex � of Y , the family

F� D
� n\

iD1

giG�i
g�1

i

ˇ̌̌̌
g0; : : : ;gn 2G� ; �1; : : : ; �n 2 st.�/; n 2N

�
is contained in the family of quasiconvex subgroups of G� . Indeed, let g0; : : : ;gn

be elements of G . Then, as X is CAT(0),
T

0�i�n giG�g�1
i D

T
v2� giGvg

�1
i ,

where � is a graph containing all the vertices of the simplices g0�; : : : ;gn� and
contained in the convex hull of the g0�; : : : ;gn� . For such subgroups, the equality
ƒH1\ƒH2 Dƒ.H1\H2/ holds by Lemma 9.1.

Lemma 9.6 The EZ–complex of spaces D.Y/ satisfies the convergence property
Definition 4.8.

Proof This is Dahmani’s [15, Proposition 1.8].

Lemma 9.7 The EZ–complex of spaces D.Y/ satisfies the finite height property
Definition 2.10.

Proof A quasiconvex subgroup of a hyperbolic group has finite height by a result of
Gitik, Mitra, Rips and Sageev [21].

The combination theorem for boundaries of groups now implies the following:

Corollary 9.8 The fundamental group of G.Y/ admits a classifying space for proper
actions and a strong boundary in the sense of Carlsson and Pedersen.

Note that this corollary does not use the hyperbolicity of X.

9.3 Background on convergence groups and hyperbolicity

Definition 9.9 (Convergence group) A group � acting on a compact metrisable space
M with more than two points is called a convergence group if, for every sequence
.
n/ of elements of � , there exist two points �C and �� in M and a subsequence
.
'.n//, such that for any compact subspace K �M n f��g, the sequence .
'.n/K/
of translates uniformly converges to �C .

A hyperbolic group � is always a convergence group on � [ @� (see for instance
Freden [20]). A direct consequence is the following:
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Proposition 9.10 Let � be a hyperbolic group and E� an EZ –structure obtained as
in Theorem 9.3. Then � is a convergence group on E� .

Definition 9.11 (Conical limit point) Let � be a convergence group on a compact
metrisable space M . A point � in M is called a conical limit point if there exists a
sequence .
n/ of elements of � and two points �� ¤ �C in M , such that 
n�! ��
and 
n�

0! �C for every �0 ¤ � in M . The group � is called a uniform convergence
group on M if M consists only of conical limit points.

Theorem 9.12 (Bowditch [5]) Let � be a uniform convergence group on a compact
metrisable space M with more than two points. Then � is hyperbolic and M is
� –equivariantly homeomorphic to the Gromov boundary of � .

9.4 A combination theorem

We now prove that G is a hyperbolic group, by proving that it is a uniform convergence
group on its boundary @G .

So far, the topology on EG and @G was defined by choosing a specific, although
arbitrary, basepoint. In forthcoming proofs, we will choose neighbourhoods centred at
points that are relevant to the geometry of the problem.

Definition 9.13 Let ı � 0 be such that the space X is ı–hyperbolic. We denote by
h � ; � i the Gromov product on X and an extension to X . For z 2X , k � 0 and x0 2X

a basepoint, let
Wk.z/D

˚
x 2X such that hx; zix0

� k
	
:

For � 2 @X and k � 0, the family of subsets .Wk.�// forms a basis of (not necessarily
open) neighbourhoods of � in X .

Recall that dmax was defined in Corollary 4.3 as a constant such that domains of
points of @StabG have at most dmax simplices, and a geodesic segment contained in the
open simplicial neighbourhood of the domain of a point of @StabG meets at most dmax

simplices.

Lemma 9.14 Let .gn/ be an injective sequence of elements of G , and suppose there
exist vertices v0 and v1 of X such that gnv0 D v1 for infinitely many n. Then there
exist �C; �� 2 @G and a subsequence .g'.n// such that for every compact subset K of
@G n f��g, the sequence of translates g'.n/K uniformly converges to �C .
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Proof It is enough to prove the result when gnv0 D v0 for infinitely many n. Since
Gv0

is hyperbolic, we can assume that there exists a subsequence of .gn/, that we
still denote .gn/, and points �C; �� 2 @Gv0

such that for every compact subset K of
EGv0

n f��g, the sequence of translates gnK uniformly converges to �C . Throughout
this proof, we choose v0 as the basepoint.

Let � be a simplex of X containing v0 .

If � is not contained in D.��/, then the convergence property Definition 4.8 implies
that, up to a subsequence, we can assume that the sequence of gn@G� uniformly
converges to �C in @Gv0

.

If � is contained in D.��/, then the subset @G� � @Gv0
consists of at least two points,

among which there is �� . Since for any other point ˛ of @G� we have that gn˛

tends to �C , the convergence property Definition 4.8 implies that one of the following
situations happens:

� gnG� only takes finitely many values of cosets, in which case we can find a
subsequence .gn/ such that gn@G� is constant and contains �C . This means
that we can write gn D g0n:g where g is in the stabiliser of v0 and g0n in a
sequence in the stabiliser of � . Up to replacing gn by g0n , we can assume that
gn fixes � .

� gnG� takes infinitely many values of cosets, in which case we can find a
subsequence .gn/ such that gn@G� uniformly converges to �C .

As domains are finite subcomplexes of X by Proposition 4.2, we can iterate this
procedure a finite number of times so as to obtain a subsequence .gn/ and a subcomplex
F �D.��/\D.�C/ such that:

� F is fixed pointwise under all the gn .

� For every simplex � in .st.F / nF / and every vertex v of � \F , we have that
gn@G� uniformly converges to �C in @Gv .

For every vertex v of D.��/, choose Uv to be a neighbourhood of �� in @Gv0
. Choose

a ��–family U 0 that is nested in fUv; v 2 D.��/g, and choose " 2 .0; 1/. We can
further assume that for every simplex � of F and every vertex v of � , the subset
EG� nU 0v is infinite. Let K D @G nVU 0;".��/.

We now prove that, up to a subsequence, the sequence of translates gnK uniformly
converges to �C . Because of the definition of neighbourhoods of points of @StabG , we
need to treat different cases.
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Figure 6

Let � be a simplex of F containing v0 , so that G� � Gv0
, and v a vertex of �

distinct from v0 . Since Gv is hyperbolic, there exists a subsequence of .gn/, which we
still denote .gn/, and points � 0C; �

0
� 2 @Gv such that for every compact subset K0 of

EGv nf� 0�g, the sequence of translates gnK0 uniformly converges to � 0C . By definition
of �C and �� , we already have that the sequence gn.EGv0

nU 0v0
/ uniformly converges

to �C in @Gv0
. We thus have that gn.EG� nU 0v0

/ uniformly converges to �C in @Gv .
Since EG� n U 0v0

is infinite by construction, this implies that � 0C D �C . If we had
� 0� ¤ �� , then gnEG� would uniformly converge to �C , contradicting the fact that
gnEG� D EG� since gn fixes � . Therefore � 0� D �� . This implies that gn.@Gv nU 0v/

uniformly converges to �C in @Gv . Since F is finite, an easy induction shows that there
exists a subsequence, still denoted .gn/, such that gn.@Gv nU 0v/ uniformly converges
to �C in @Gv for every vertex v of F .

Let zx 2 K , and x 2 xp.zx/ n F . Let � be the first simplex touched by Œv0;x� after
leaving F . It follows from the definition of F that the sequence of simplices .gn�/ is
such that for some (hence any) vertex v of � \F , the sequence of .@Ggn� / uniformly
converges to �C in @Gv . It follows from the convergence criterion Corollary 7.16 that
the sequence .gnzx/ converges to �C . Since zx … VU ;".��/, we have @G� 6� Uv for
some (hence any) vertex v of F . Since U 0 is nested in fUw; w 2 V .��/g, it follows
that

@G� \U 0v D¿;

this being true for every zx 2 K and x 2 xp.zx/ nF . We already have that for every
vertex v of F , the sequence of gn:.@Gv nUv/ uniformly converges to �C by the above
discussion. As F is a finite subcomplex of X, the convergence criterion Corollary 7.16
now shows that the sequence .gn:K/ uniformly converges to �C .
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Lemma 9.15 Let .gn/ be an injective sequence of elements of G . Suppose that for
some (hence any) vertex v the sequence .gnv/ is bounded, but there do not exist
vertices v0 and v1 of X such that gnv0 D v1 for infinitely many n. Then there exist
�C; �� 2 @G and a subsequence .g'.n// such that for every compact subset K of
@G n f��g, the sequence of translates g'.n/K uniformly converges to �C .

Proof Choose an arbitrary vertex v and a point zx of EGv . As @G is compact by
Theorem 7.13 and .gnv/ is bounded, we can choose a subsequence, still denoted .gn/,
and points �C; �� 2 @StabG such that gnzx! �C and g�1

n zx! �� . We choose a vertex
v0 of D.�C/ to be the basepoint, and let �x0 2 EGv0

. By Theorem 8.1, we still have
gn�x0! �C and g�1

n �x0! �� .

Claim 1 � For every � 2 @X, the geodesic ray Œgnv0;gn�/ does not meet D.�C/

for n large enough.

� For every � 2 @StabG , the subset Geod.gnv0;gnD.�// does not meet D.�C/ for
n large enough.

Let z 2 @G . If z 2 @X, we denote by D.z/ the singleton fzg. By contradiction,
suppose that there exists an infinite number of n for which there exist yn 2D.�C/ and
xn 2Geod.v0;D.z// such that gnxnDyn . As .yn/ is bounded by Proposition 4.2, the
assumption on .gn/ implies that .xn/ is bounded too. Since xn lies on Geod.v0;D.z//

for every n, the containment Proposition 3.3 and the finiteness Lemma 3.5 imply that,
up to a subsequence, we can assume that xn always lies in the same simplex � of
X. Furthermore, since D.�C/ is finite by Proposition 4.2, we can assume, up to a
subsequence, that yn lies in a simplex � 0 of X for every n. As the action of G on X

is without inversion, this implies that gn� D �
0 for every n, which was excluded by

assumption.

Claim 2 For every � in @G , the sequence gn� converges to �C .

Let U be a �C–family, U 0 a �C–family that is 3dmax –nested in U and " > 0. Recall
that, by assumption on .gn/, the vertex gnv0 does not belong to D.�C/ for n big
enough. Furthermore, since gn�x0! �C , we have that EG��C;".gnv0/ �U 0v for n large
enough and for some (hence every) vertex v of D.�C/\ ��C;".gnv0/. We split the
proof of the claim in two cases.

Let � 2 @X. For n large enough, the path Œgnv0;gn�/ does not meet D.�C/, by
Claim 1. By Proposition 4.2 ,we can choose y 2D.�C/ that minimises the distance to
Geod.gnv0;gn�/. Let � (resp. � 0 ) be a simplex of N.D.�C// nD.�C/ whose interior
is crossed by Œy;gnv0� (resp. Œy;gn�/) at a point u (resp. u0 ). By convexity of the
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function z 7! d.z; Œgnv0;gn�//, it follows from the definition of y that the geodesic
segment Œu;u0� does not meet D.�C/, thus yielding a path of simplices of length at most
dmax between � and � 0 in N.D.�C// nD.�C/. Lemma 3.7 implies that there exists a
path of simplices of length at most dmax between � and the exit simplex ��C;".gnv0/

(resp. between � 0 and the exit simplex ��C;".gn�/) in N.D.�C//nD.�C/. Thus for n

large enough, there is a path of simplices of length at most 3dmax from ��C;".gnv0/ to
��C;".gn�/ in N.D.�C//nD.�C/. As EG��C;".gnv0/�U 0v for n large enough and for
some (hence every) vertex v of D.�C/\ ��C;".gnv0/, it follows from the fact that U 0
is 3dmax –nested in U that EG��C;".gn�/ �Uv for n large enough and for some (hence
every) vertex v of D.�C/\ ��C;".gn�/. It thus follows that .gn�/ converges to �C .

Let � 2 @StabG . For n large enough, Geod.gnv0;gnD.�// does not meet D.�C/ by
Claim 1. Let x 2 D.�/ and, by Proposition 4.2, let y be a point of D.�C/ which
minimises the distance to Geod.gnv0;gnx/. Using the same reasoning as above, we
get, for n large enough, a path of simplices of length at most 3dmax from ��C;".gnv0/

to ��C;".gnx/ in N.D.�C// nD.�C/. As EG��C;".gnv0/ � U 0v for n large enough
and for some (hence every) vertex v of D.�C/ \ ��C;".gnv0/, it follows from the
fact that U 0 is 3dmax –nested in U that, for n large enough and for every x 2 D.�/,
EG��C;".gnx/ � Uv for some (hence every) vertex v of D.�C/\ ��C;".gnx/. It thus
follows that .gn�/ converges to �C .

In the same way, we prove that for every � 2 @G , the sequence g�1
n � converges to �� .

To conclude the proof of the lemma, it remains to show that this convergence can be
made uniform away from �� :

Claim 3 For every � ¤ �� in @G , there is a subsequence .gn/ and a neighbourhood
U of � in @G such that the sequence of gnU uniformly converges to �C .

Once again, we split the proof in two cases.

Let � 2 @StabG . We already have that gn�! �C by Claim 2. In order to find a � –family
U and a constant " such gnVU ;".�/ uniformly converges to �C , it is enough, using
the same reasoning as in Claim 2, to find a �–family U and a constant " such that for
every x in D.�/[ConeU ;".�/, the geodesic from gnv0 to gnx does not meet D.�C/.

By Claim 1, we already have that for n large enough, no geodesic from gnv0 to a
point of gnD.�/ meets D.�C/. As � ¤ �� , we choose a �–family U , a ��–family
U 0 and constants "; "0 2 .0; 1/ such that the neighbourhoods VU ;".�/ and VU 0;"0.��/

are disjoint. Up to a subsequence, we have by the first claim that gnD.�/ does not
meet D.�C/. It now follows from the definition of U and the fact that g�1

n �C! ��
that ConeU ;".�/ does not meet the sets g�1

n D.�C/, hence the sets gn ConeU ;".�/ do
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not meet D.�C/. Now this implies that for every x in ConeU ;".�/, the geodesic from
gnv0 to gnx does not meet D.�C/: indeed, this geodesic must meet gnD.�/ since the
geodesic from v0 to a point of ConeU ;".�/ must meet D.�/, and we already proved
that a geodesic segment from gnv0 to a point of gnD.�/ does not meet D.�C/. Now
the same proof as in Claim 2 shows that gnVU ;".�/ uniformly converges to �C .

Let � 2 @X. We already know that gn�! �C by Claim 2. In order to find a neighbour-
hood U of � in X such that such gnVU .�/ uniformly converges to �C , it is enough,
using the same reasoning as in Claim 2, to find a neighbourhood U of � in X such
that for every x in U , the geodesic from gnv0 to gnx does not meet D.�C/.

First, notice that the distance from the geodesic rays Œgnv0;gn�/ to D.�C/ is uniformly
bounded below: indeed, if this was not the case, the same reasoning as in Claim 1
would imply the existence of simplices �; � 0 of X such that gn� \ �

0 ¤¿. This in
turn would imply that, up to a subsequence, there exist subsimplices � � � and � 0 � � 0

such that gn� D �
0 , which was excluded. Thus, let " > 0 be such a uniform bound.

Let also
M D sup

x2D.�C/;n�0

d.gnv0;x/:

Now consider the neighbourhood VM;".�/ of � in X . Let x 2 X be in that neigh-
bourhood, and let 
 be a parametrisation of the geodesic from v0 to x . Suppose
by contradiction that the geodesic from gnv0 to gnx does meet D.�C/. Then, by
definition of M , the geodesic segment gn
 .Œ0;M �/ meets D.�C/. But as this geodesic
segment is in the open "–neighbourhood of Œgnv0;gn�/, we get our contradiction from
the definition of ".

Thus for every x in VM;".�/, the geodesic from gnv0 to gnx does not meet D.�C/,
and we are done.

Lemma 9.16 Let .gn/ be an injective sequence of elements of G , and suppose that
for some (hence every) vertex v0 of X, d.v0;gnv0/ ! 1. Since .EG; @G/ is an
EZ–structure for G by Theorem 8.1, we can assume up to a subsequence that there
exist �C; �� 2 @G such that for every compact subset K � EG, we have gnK! �C
and g�1

n K! �� . Then there exists a subsequence .g'.n// such that for every compact
subset K of @G n f��g, the sequence of translates g'.n/K uniformly converges to �C .

Proof If �� 2 @X, let U be a neighbourhood of �� in @X and K D @G n VU .��/.
Since X has finitely many isometry types of simplices, it follows from Lemma 6.3 that
we can choose a subneighbourhood U 0 of U containing �� and such that any path
from U 0\X to X nU meets at least dmax simplices.
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If �� 2 @StabG , let U be a ��–family, and " 2 .0; 1/, and let K D @G nVU ;".��/. We
also choose another ��–family U 0 which is 2dmax –refined in U .

We want to prove that .gnK/ uniformly converges to �C . Recall that the sets Wk.gnv0/

were defined in Definition 9.13.

Claim 1 For every k , the following holds:

� If �� 2 @X, we have gn.X nU 0/�Wk.gnv0/ for n large enough.

� If �� 2 @StabG , we have gn.X nAConeU 0;".��//�Wk.gnv0/ for n large enough.

We split the proof in two cases.

Suppose that �� 2 @X. First notice that since g�1
n v0! �� , there exists a constant C

such that for every n � 0 and every x … U , we have hg�1
n v0;xiv0

� C . Since we
also have d.g�1

n v0; v0/!1, the claim follows.

Suppose now that �� 2 @StabG . We start by proving by contradiction that there
exists a constant C such that for every n � 0 and every x …AConeU 0;".��/, we have
hg�1

n v0;xiv0
� C .

The containment lemma Proposition 3.3 yields a constant m such that a geodesic path
of length at most ı meets at most m simplices, where ı is the hyperbolicity constant
of X. Let U 00 be a ��–family that is m–nested in U 0 . Since we are reasoning by
contradiction, then, up to a subsequence, there exist points yn …

AConeU 0;".��/ such that
hg�1

n v0;yniv0
!1. By hyperbolicity of X, the geodesic segments Œv0;g

�1
n v0� and

Œv0;yn� stay ı–close until time hg�1
n v0;yniv0

!1. Moreover, as g�1
n �x0! �� for

any point �x0 2 EGv0
, we have g�1

n v0 2 ConeU 00;".��/ for n large enough. Thus, for
n large enough, there exist points an 2 Œv0;yn� and bn 2 Œv0;g

�1
n v0�\ConeU 00;".��/

and a path of simplices of length at most m between an and bn that is contained in
X nD.��/ (see Figure 7).

The refinement lemma, Lemma 5.10, now implies that an and yn both are in
ConeU 0;".��/ for n large enough, a contradiction.

Now the same reasoning as before shows that for every k � 0, there exists N

such that for every n � N and every x …AConeU 0;".��/, hv0;xig�1
n v0

� k , hence
hgnv0;gnxiv0

� k .

Claim 2 For every k , we have gn xp.K/�Wk.gnv0/ for n large enough.
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� ı

an

bn

v0

g�1
n v0

yn

D.��/ eConeU 0;".��/

Figure 7

Suppose that ��2@X. By definition of U 0 , we have that for every z2K , xp.z/\U 0D¿.
Thus xp.K/�X nU 0 and the result follows from Claim 1.

Suppose now that �� 2 @StabG , and let z 2 K . Suppose by contradiction that
xp.z/\AConeU 0;".��/ ¤ ¿. If xp.z/ is contained in X nD.��/, then the refinement
Lemma 5.10 implies that xp.z/�AConeU ;".��/; hence z 2 VU ;".��/, which is absurd.
If xp.z/ meets D.��/, then since U 0 is 2dmax –refined in U it follows from the refine-
ment lemma Lemma 5.10 and Lemma 6.20 that z 2 VU ;".��/, a contradiction. Thus
xp.K/�X nAConeU 0;".��/ and the result follows from Claim 1.

Claim 3 gnK uniformly converges to �C .

Once again, we split the proof in two cases.

Suppose that �C 2 @X. Then, as gnv0! �C , it follows from Claim 2 that for every k ,
gn xp.K/�Wk.�C/ for n large enough. It then follows from the convergence criterion
Corollary 7.16 that gnK uniformly converges to �C .

Suppose now that �C 2 @StabG . Let UC be a �C–family and " 2 .0; 1/. Since X is
ı–hyperbolic, let m be a constant such that a geodesic path of length at most ı meets at
most m simplices, and let U 0C be a �C–family that is m–nested in UC . As gn�x0! �C
for any �x0 2 EGv0

, we have gnv0 2 ConeU 0
C
;".�C/ for n large enough. For every

T � 0, we can choose n large enough so that the geodesic segments Œv0;gnv0� and
Œv0;gnx�, x 2 xp.K/, remain ı–close up to time T (if we choose k large enough in
Claim 2). In particular, we can choose k and N large enough so that, for every n�N

and every x 2 xp.K/, there exists a path of simplices of length at most m in X nD.�C/

between a point of Œv0;gnv0�\ConeU 0
C
;".�C/ and a point of Œv0;gnx�. The refinement

Lemma 5.10 now implies that

gn xp.K/�AConeUC;".�C/
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for n � N , hence gnK � VUC;".�C/ for n � N . Thus, gnK uniformly converges
to �C .

Corollary 9.17 The group G is a convergence group on @G .

Proof This follows from Lemma 9.14, Lemma 9.15 and Lemma 9.16.

To prove that G is hyperbolic, it remains to show that every point of @G is conical.

Lemma 9.18 Every point of @G is a conical limit point for @G .

Proof Consider first a point in @Gv for some vertex v of X. It is a conical limit point
for Gv on @Gv , since Gv is hyperbolic. Therefore it is a conical point for Gv on @G ,
hence for G since G is a convergence group on @G by Corollary 9.17.

Now consider a point � 2 @X. Since the action of G on X is cocompact, we can find a
sequence .gn/ of elements of G and a simplex � such that (gn� ) uniformly converges
to � in X and such that for every n, the geodesic ray Œv0; �/ meets the interior of gn� .
Let v be a vertex of � and zx 2 EGv .

Claim Up to multiplying each gn on the right by an element of Gv and taking a
subsequence, we can further assume that g�1

n zx converges to a point �� 2 @G n @Gv .

Consider the first simplex touched by the geodesic Œv;g�1
n v� after leaving v . Since

the action of G on X is cocompact, we can assume up to a subsequence that this
sequence of simplices is in the same G–orbit. Now up to multiplying each gn by
an element of Gv , we can further assume that this sequence of simplices is constant
at a unique simplex �1 . Up to a subsequence, we can further assume that all the
geodesic segments Œv;g�1

n v� leave �1 along the same open simplex �1 . Now consider
the simplex � .n/

2
touched by Œv;g�1

n v� after leaving �1 and choose a G�1
–orbit in

EG�1
. Since G�1

is quasiconvex in G�1
, this orbit is a quasiconvex subset Q1 of

EG�1
; choose a basepoint y of Q1 . For every n, choose a point xn 2 EG�.n/

2
and

let yn be a projection of xn on the quasiconvex subset Q1 . By definition of Q1 ,
there exists an element hn 2 G�1

� Gv such that hnyn D y . This implies that for
every n, the subset hnEG�.n/

2
contains a point that projects to y . In particular, no

subsequence of hnEG�.n/
2

converges to a point of @G�1
. Suppose by contradiction

that there exists a subsequence of hnEG�.n/
2

that converges to a point z 2 @G�1
. Since

G�1
is a convergence group on EG�1

by Proposition 9.10, it follows that for every
x 2 EG�1

except maybe one point, hnx converges to z . But as Q1 is stable under all
the hn , such a z belongs to @G�1

� @G�1
, contradicting the fact that no subsequence of

hnEG�.n/
2

converges to a point of @G�1
. Thus, no subsequence of hnEG�.n/

2
converges
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to a point of @G�1
and the convergence property Definition 4.8 now implies that, up to

a subsequence, we can assume that hnEG�.n/
2

is constant. Up to a subsequence, we can
further assume that � .n/

2
is constant at �2 and every geodesic segment Œv;g�1

n v� leaves
�2 along the same open simplex �2 . In view of the above, we replace the sequence
.gn/ by .gnh�1

n /. Now one of the following happens:

(i) Suppose that G�1
\G�2

is finite. By applying the same reasoning as in the proof
of the compactness lemmas Lemma 7.14 and Lemma 7.15, either there exists
a subsequence of .gn/ such that g�1

n zx converges to a point of @X and we are
done, or the path of simplices �1; �2 extends to a path of simplices �1; : : : ; �m

that are crossed by every geodesic segment Œv;g�1
n v� and g�1

n zx converges to
a point �� 2 @G�m

. As D.��/ is convex by Proposition 4.2 and G�1
\G�2

is
finite, it follows from Lemma 4.7 that �� … @Gv and we are done.

(ii) Suppose that G�1
\G�2

is infinite. Let � .n/
3

be the simplex touched by Œv;g�1
n v�

after leaving �2 , and let Q2 be a G�1
\G�2

–orbit in EG�2
. Note that Q2 is

quasiconvex in EG�2
by Corollary 9.2. We are thus back to the previous situation

with EG�2
instead of EG�1

, EG�.n/
3

instead of EG�.n/
2

and Q2 instead of Q1 .

We claim that this procedure eventually stops. Indeed, the containment lemma Propo-
sition 3.3 yields a constant m such that every geodesic meeting at least m simplices
has length at least A, where A is the acylindricity constant. Thus, after at most m

applications of this algorithm, we get to situation (i), which concludes the proof of the
claim.

By the above discussion, we already have that g�1
n zx! �� for every zx 2 EGv . Thus,

by Lemma 9.16, it is enough, in order to prove Lemma 9.18, to show that g�1
n � does

not converge to �� , which we now prove by contradiction.

Suppose g�1
n � were converging to �� . For every n, let xn be a point of Œg�1

n v;g�1
n �/

that is contained in the interior of � . Since the geodesic ray Œg�1
n v;g�1

n �/ meets �
for every n, the Gromov product hg�1

n v;g�1
n �iv is bounded. Thus, �� cannot belong

to @X, and �� 2 @StabG .

Now since both g�1
n � and g�1

n zx converge to ��2@StabG , both geodesics Œv;g�1
n �/ and

Œv;g�1
n v� must go through D.��/ for n large enough. But Lemma 3.7 and Lemma 5.8

imply that for n large enough and any x 2 � , both geodesic rays Œx;g�1
n �/ and

Œx;g�1
n v� also meet D.��/. In particular, Œxn;g

�1
n �/ and Œxn;g

�1
n v� meet D.��/ for

n large enough. As D.��/ is convex by Proposition 4.2, this implies that xn belongs
to D.��/, hence so does v , which is absurd by construction of .gn/.

Corollary 9.19 G is a hyperbolic group and @G is G –equivariantly homeomorphic
to its Gromov boundary.
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Proof The group G is a convergence group on @G by Corollary 9.17, and every point
of @G is conical by Lemma 9.18, thus the result follows from Theorem 9.12.

To conclude the proof of the combination theorem for hyperbolic groups, it remains to
show that stabilisers embed as quasiconvex subsets.

Proposition 9.20 Stabilisers of simplices of X are quasiconvex subgroups of G .

Proof It is enough to prove the result for the stabiliser of a vertex v of X. Notice that,
by Proposition 6.19, the boundary of Gv embeds Gv–equivariantly in @G , the latter
being G –equivariantly homeomorphic to the Gromov boundary of G by Corollary 9.19.
Hence, the result follows from a result of Bowditch [6] recalled in the introduction.

Proof of the combination theorem for hyperbolic groups This follows from Corol-
lary 9.19 and Proposition 9.20.
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