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The free splitting complex of a free group, I
Hyperbolicity

MICHAEL HANDEL

LEE MOSHER

We prove that the free splitting complex of a finite rank free group, also known as
Hatcher’s sphere complex, is hyperbolic.

20F65; 57M07

Given a free group Fn of finite rank n � 2, a free splitting over Fn is a minimal,
simplicial action of the group Fn on a simplicial tree T such that the stabilizer of each
edge of T is the trivial subgroup of Fn . A free splitting is denoted Fn Õ T , or just
T , when the group and its action are understood. Although the tree T is allowed to
have vertices of valence 2, there is a unique natural cell structure on T the vertices of
which are the points of valence at least 3. We say that T is a k –edge free splitting if k

is the number of natural edge orbits, a number which can take on any value from 1

to 3n� 3. The equivalence relation amongst free splittings is conjugacy, where two
free splittings of Fn are conjugate if there exists an Fn –equivariant homeomorphism
between them. See the beginning of Section 1 for the details of these definitions.

The free splitting complex of Fn , denoted FS.Fn/, is a simplicial complex of di-
mension 3n� 4 having a simplex hT i of dimension k for each conjugacy class of
kC 1–edge free splittings Fn Õ T . Given another free splitting Fn Õ S , the simplex
hSi is a face of hT i if and only if there is a collapse map T 7!S , which collapses to a
point each edge in some F –invariant set of edges of T . We write T �S for the relation
“T collapses to S ”, and S � T for the inverse relation “S expands to T ”. There is
a natural left action of the outer automorphism group Out.Fn/ on FS.Fn/, where
� 2 Out.Fn/ acts on the conjugacy class of a free splitting Fn Õ T by precomposing
the action by an automorphism of Fn representing � . The free splitting complex was
introduced by Hatcher in [9] in its role as the sphere complex of a connected sum of n

copies of the 3–manifold S2 �S1 . A careful construction of an isomorphism between
the 1–skeletons of FS.Fn/ and Hatcher’s sphere complex can be found in Aramayona
and Souto [1], and that proof extends with little trouble to the entire complexes. In
Section 1.3 we shall give a rigorous construction of the free splitting complex given
purely in tree language.
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The complex FS.Fn/ is regarded as one of several Out.Fn/ analogues of the curve
complex of a surface; another competing analogue is the free factor complex of Fn

introduced by Hatcher and Vogtmann in [10]. The analogies are imperfect in each case:
Hatcher and Vogtmann showed that the free factor complex, like the curve complex,
has the homotopy type of a wedge of spheres of constant dimension [10]; by contrast,
Hatcher showed that FS.Fn/ is contractible [9]. On the other hand we showed in [8]
that simplex stabilizers of FS.Fn/ are all undistorted subgroups of Out.Fn/, just as
simplex stabilizers of the curve complex of a surface are undistorted subgroups of its
mapping class group; by contrast, we also showed that the simplex stabilizers of the
free factor complex of F are, most of them, distorted in Out.Fn/.

Here is our main result, an analogue to the theorem of Masur and Minsky [15] on the
hyperbolicity of the curve complex:

Main Theorem The free splitting complex FS.Fn/, with its geodesic simplicial
metric, is Gromov hyperbolic.

By comparison Bestvina and Feighn have proved that the free factor complex is Gromov
hyperbolic [2].

In rank n D 2, the Main Theorem is well known, because the simplicial complex
FS.F2/ contains the Farey graph as a coarsely dense subcomplex, and the Farey graph
is quasi-isometric to an R–tree and is therefore Gromov hyperbolic (see eg Manning
[14, Example 5.2]).

One should contrast the Main Theorem with the result of Sabalka and Savchuk [17],
which says that the “edge splitting graph” of Fn is not hyperbolic; this is the 1–
dimensional subcomplex of FS.Fn/ spanned by the 0–simplices corresponding to
those 1–edge free splittings F Õ T that have 2 vertex orbits. Their result has an
analogue in a theorem of Schleimer [18] that on a closed, oriented surface of genus
at least 3, the subcomplex of the curve complex spanned by separating curves is not
hyperbolic.

The Main Theorem has spurred some recent developments. It has been applied in work
of Kapovich and Rafi [12] who have used it, together with a novel projection technique,
to obtain a new proof of the theorem of [2] that the free factor complex is hyperbolic.
Still more recent work of Mann [13] has used the Main Theorem coupled with the
projection technique of [12] to prove hyperbolicity of the cyclic splitting complex. Also
recently, Hilion and Horbez [11] have given another proof of the Main Theorem from
the point of view of the sphere complex, in which concepts of Stallings fold paths as
used in this paper are re-interpreted in terms of sphere surgery paths.
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In Part II of this work we shall determine the dynamics of the action of elements of
Out.Fn/ on FS.Fn/, showing in particular that � 2 Out.Fn/ acts loxodromically on
FS.Fn/ if and only if, in the terminology and notation of Bestvina, Feighn and Handel
[5], there exists an element ƒ of the set L.�/ of attracting laminations such that the
free factor support of ƒ is the whole group Fn .

Outline of the proof

Outside of applying the hyperbolicity axioms of Masur and Minsky, our methods of
proof, although intricate, are mostly self-contained, depending on basic tools from
the theory of group actions on trees including Bass–Serre theory and Stallings folds.
Beyond the methods, there are important motivations coming from the proof of Masur
and Minsky, in particular the definition of the projection maps that play a role in
verifying the Masur–Minsky axioms.

Section 1 We give the basic concepts underlying the construction of the free splitting
complex FS.Fn/, including definitions of collapse maps. We give Gilbert Levitt’s
short proof of Lemma 1.3, which contains the technical results about free splittings
that are needed to verify that FS.Fn/ is, indeed, a simplicial complex. Collapse maps
are also needed to understand the first barycentric subdivision FS 0.Fn/, which is what
we actually use in our proof of hyperbolicity. In brief, FS 0.Fn/ has a vertex for each
conjugacy class of free splitting F Õ T , and an oriented edge for each collapse relation
T � S . Since the composition of two collapse maps is a collapse map, the collapse
relation is transitive, from which it follows that each geodesic in the 1–skeleton of
FS 0.Fn/ is a “zig-zag path” that alternates between collapses and expansions.

Sections 2 and 3 Following Stallings’ method [20] as extended by Bestvina and
Feighn [3], we define a system of paths in FS 0.F / called fold paths. We also review
the criterion for hyperbolicity due to Masur and Minsky [15], which is concerned with
families of paths and projection maps to those paths that satisfy certain axioms, which
we refer to as the coarse retraction, coarse Lipschitz, and Strong Projection axioms.

The first step of progress on the Main Theorem is the statement of Proposition 3.3,
which asserts the existence of a system of projection maps, one such map from the
ambient space FS 0.Fn/ to each fold path, that satisfy the Masur–Minsky axioms.

Section 4 We introduce the concept of combing of fold paths. The combing process
has as input a fold path S0 7! � � � 7! SK plus a single edge in FS 0.Fn/ with one
endpoint SK and opposite endpoint denoted S 0

K
, which can be either a collapse

SK � S 0
K

or an expand SK � S 0
K

. The output is a fold path (roughly speaking) from
some S 0

0
to S 0

K
that stays a uniformly bounded distance from the input path, and
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which has the following rather strong asynchronous fellow traveller property: every
free splitting along the input fold path from S0 to SK is connected by a single edge to
some free splitting along the output path from S 0

0
to S 0

K
. The result of the combing

process is a combing rectangle, the general form of which is depicted in Figure 1.
These rectangles are certain commutative diagrams of fold maps and collapse maps that
can be viewed as living in the 1–skeleton of FS 0.Fn/. We use many such diagrams
throughout the paper, both as formal tools and as visualization aids.

Section 4.1 contains basic definitions and properties regarding combing rectangles. In
this section we also take the next step of progress in the proof of the Main Theorem,
by using combing to define the system of projections maps to fold paths, and we
state Proposition 4.2, which asserts that these particular projection maps satisfy the
Masur–Minsky axioms. Section 4.2 contains the statements and proofs of various
useful constructions of combing rectangles.

Section 5 We introduce free splitting units as a way of subdividing a fold path into sub-
paths each of which has uniformly bounded diameter in FS 0.Fn/ (see Lemma 5.11) but
which nevertheless measure progress through FS 0.Fn/ (as stated later in Proposition
6.2). Section 5.1 contains important diameter bounds for subsegments of fold paths.
Section 5.2 uses these diameter bounds to formulate the definition of free splitting units.
Once they are defined, we are able to use the diameter bounds to quickly verify the
Coarse Retraction axiom; see Proposition 5.9.

Section 6 We verify the Coarse Lipschitz and Strong Projection axioms, completing
the proof of the Main Theorem. In this section we also verify that when a fold path
is parametrized by free splitting units it becomes a quasigeodesic in FS 0.Fn/; see
Proposition 6.2. See the beginning of Section 6 for a sketch of the proof of the
Main Theorem.

1 The free splitting complex

We begin with some basic notations used throughout the paper.

For the rest of the paper we shall fix a free group F of finite rank at least 2.

A graph is a 1–dimensional simplicial complex equipped with the CW topology. A tree
T is a contractible graph. Simplicial maps between graphs and trees are maps taking
each vertex to a vertex, and taking each edge to a vertex or to another edge-preserving
barycentric coordinates. We use G Õ T to denote an action of a group G on T , which
by definition is a homomorphism G 7! Aut.T / from G to the group of simplicial
automorphisms of T . The action associates to each 
 2G a simplicial automorphism
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of T denoted x 7!
 �x , a notation that extends to subsets of T by 
 �ADf
 �x jx 2Ag.
The stabilizer of a subset A � T is the subgroup StabT .A/D f
 2 G j 
 �AD Ag.
Given two actions G Õ S;T , a function f W S ! T is said to be equivariant if
f .
 �x/D 
 �f .x/ for all x 2 S , 
 2G .

Given a set A and a subset B �A, we denote the set theoretic complement as A�B .
Given a graph X and a subgraph Y �X , we denote the graph theoretic complement
as X nY , whose topological description is the closure of X �Y .

1.1 Free splittings, maps, natural vertices and edges, edgelets

Recall from the introduction that a free splitting of F is an action F Õ T , where
T is a tree that is not a point, the action is minimal meaning that there is no proper
F –invariant subtree, and for every edge e � T the subgroup StabT .e/ is trivial. We
use without comment the basic fact that every homeomorphism of a tree T either fixes
a point or translates along a properly embedded copy of R called its axis, and that
minimality of an action F Õ T is equivalent to the statement that T is the union of
the axes of the elements of F that have no fixed point in T . We also use without
comment the fact that every free splitting is cocompact, that is, there is a finite number
of orbits of vertices and of edges; this follows from Bass–Serre theory (Scott and Wall
[19]) combined with the fact that the rank of F is finite.

Given a free splitting F Õ T , from Bass–Serre theory [19] it follows that the set
of conjugacy classes in F of nontrivial vertex stabilizers of T forms a free factor
system in the sense of [5], which means that by appropriate choice of representatives
H1 D StabT .v1/; : : : ;Hk D StabT .vk/ of each conjugacy class — where v1; : : : ; vk

are the corresponding vertex orbit representatives — there exists a free factorization of
the form F DH1 � � � � �Hk �B , with B possibly trivial. We refer to this free factor
system as the vertex group system of F Õ T , and denote it F.T /.

Given a free splitting F Õ T , proper discontinuity of the action is equivalent to the
property that all vertex stabilizers are trivial, that is, F.T /D∅, and it is also equivalent
to every vertex of T having finite valence. We will use these equivalences without
comment.

Definition 1.1 (Maps between free splittings) Given free splittings F Õ S;T , a
map from S to T is defined to be an F –equivariant simplicial map f W S ! T .

We will encounter several different kinds of maps, most commonly “collapse maps”
defined in Section 1.2, “foldable maps” defined in Section 2.1, and “folds” defined
in Section 2.3. The category of maps will usually suffice for much of this paper, but
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we will occasionally have to consider more general equivariant continuous functions
between free splittings, for example conjugacies.

We will sometimes emphasize the role of the action of F by referring to a “free splitting
over F ” or a “map over F ”, and we shall use similar terminology for more complicated
objects introduced later on that are built out of free splittings and maps over F .

Recall from the introduction that a conjugacy between free splittings F Õ S;T is an
equivariant homeomorphism between S and T . A conjugacy need not be a map as just
defined, i.e., it need not take vertices to vertices or edges to edges, and even if it does it
need not preserve barycentric coordinates. Notice that if one is given a map f W S! T

as just defined — an equivariant simplicial map — then f is a conjugacy if and only if
it is locally injective: for if f is locally injective then it is evidently injective, and it is
surjective by minimality of the action F Õ T , and so f is a simplicial isomorphism
and hence a homeomorphism.

Given a free splitting F Õ T , recall also from the introduction the natural cell structure
on T , a CW structure whose 0–skeleton is the set of natural vertices that are the vertices
of valence at least 3. Implicit in the definition of the natural cell structure is the fact
that each point of T that is not a natural vertex is contained in the interior of a unique
natural edge, which is an arc of T each of whose endpoints is a natural vertex and none
of whose interior points is a natural vertex. If this fact were not true then T would
contain a valence 1 vertex, violating minimality, or T would contain arbitrarily long
simplicial arcs with no natural vertices. In the latter case, by cocompactness it would
follow that T is homeomorphic to a line: but then either the action would be properly
discontinuous implying that F has rank 1 which is a contradiction; or the kernel of
the action would be a free factor of corank 1, contradicting that edge stabilizers are
trivial. We have also defined the notion of a k –edge free splitting F Õ T meaning
that T has k orbits of natural edges; this notion is invariant under conjugacy. In terms
of Bass–Serre theory [19], the number of orbits of natural vertices of a free splitting
F Õ T equals the number of points in the quotient graph of groups T=F which either
have a nontrivial group or have valence at least 3.

The word “natural” in this context refers to naturality in the category of free splittings
and conjugacies: every conjugacy is an automorphism of the natural cell structure, and
in particular preserves the numbers of orbits of natural vertices and edges. On this basis
one might have wished to refer to a valence 1 vertex as “natural”, were it not for the
fact that T has no vertices of valence 1, by virtue of minimality of the action F Õ T .

Remark on terminology Outside of discussions involving natural cell structures and
nonsimplicial conjugacies, we work primarily in the simplicial category: a free splitting
F Õ T comes equipped with a simplicial structure on the tree T , which is invariant
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under the action of F ; maps between free splittings are F –equivariant simplicial maps.
This will be particularly convenient when we encounter subcomplexes of the simplicial
structure which are not subcomplexes of the natural cell structure, for example in the
results of Sections 6.2 and 6.3 where the heart of the proof of the Main Theorem
resides.

For any free splitting F Õ T , in order to distinguish between the natural edges of T

and the edges of the given simplicial structure on T we shall refer to the latter as the
edgelets of T . This word is meant to evoke the phenomenon that, fairly often, there
are many, many, many edgelets in a single natural edge, and we often visualize the
edgelets as being very, very, very tiny.

1.2 Collapse maps

In order to define the free splitting complex of F rigorously we need some preliminaries
regarding collapse maps.

Given two free splittings F Õ S;T , a map f W S ! T is called a collapse map if f
is injective over the interior of each edgelet of T . The collapsed subgraph � � S is
the F –equivariant subgraph that is the union of those edgelets of F that are collapsed
to a vertex by the map f . We put � into the notation by writing

f W S
Œ��
��! T;

the square brackets highlighting that � is the name of the collapsed graph, whereas the
notation

S
f
�! T

tells us the name of the collapse map f itself. Note that � � S is a proper subgraph,
meaning that � ¤ S .

Here are some basic facts about collapse maps. Items (1) and (2) will be used without
mention throughout the paper. Item (3) will be needed for the proof of Proposition 4.4.

Lemma 1.2 For any free splittings F Õ S;T , any collapse map

f W S
Œ��
��! T;

and any vertex v 2 T , the following hold:

(1) The subgraph f �1.v/ is connected.

(2) f �1.v/ does not degenerate to a point if and only if it is a component of � .

(3) f �1.v/ is the convex hull of its frontier in S .
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Proof Denote �v D f �1.v/. Given vertices w1 ¤ w2 2 �v , if the segment Œw1; w2�

does not map to v then f Œw1; w2� is a nondegenerate finite tree and there must exist
two edgelets in Œw1; w2� with the same image in that tree, contradicting the definition
of a collapse map; this proves that �v is connected. If �v is nondegenerate, i.e., if it
contains an edgelet, then, each of its edgelets being in � , it follows by connectivity that
�v is a subset of � . It is moreover a maximal connected subset of � — a component
of � — because any edgelet of S incident to a vertex of �v but not in �v does not
have constant image under f and so is not contained in � . This proves (1) and (2).

To prove (3), let Fr be the frontier of �v in S and let H � S be the convex hull of
Fr. By connectivity we have H � �v . If the opposite conclusion did not hold then
there would be an edgelet e� �v nH . Only one of its two complementary components
S n e D S0 tS1 can contain a point of Fr, and so up to interchanging indices we have
H � S0 . Since S1 is disjoint from Fr but contains the point x D e \S1 � e � �v ,
it follows that S1 � �v � � . The point x is the unique frontier point of S1 . Choose

 2 F having an axis L contained in S1 . Let z be the point of L closest to x . For
each y 2 S n S1 , z is also the point of L closest to y , and so 
 .z/ is the point of
L closest to 
 .y/. But 
 .z/ ¤ z and so 
 .y/ 2 S1 � � , implying that y 2 � and
contradicting properness of � .

From Lemma 1.2(1), given a collapse map

f W S
Œ��
��! T

it follows that � determines T up to simplicial conjugacy, in that the map S 7! T

induces a simplicial isomorphism between T and the quotient tree obtained from S by
collapsing each component of � to a point, and furthermore this simplicial isomorphism
is F –equivariant. In this situation we often say that T is obtained by collapsing � .

Furthermore, any choice of collapsed subgraph may be used, in the sense that for any
free splitting F Õ S and any F –equivariant, proper subgraph � � S there exists a
free splitting T and a collapse map

S
Œ��
��! T:

The tree T is defined as the quotient of S obtained by collapsing to a point each
component of � . Since � is proper, T is not a point. Since � is equivariant, the action
F Õ S descends to an action F Õ T . This action is minimal because T is a union
of axes of elements of F : for each edge e � T there exists a unique pre-image edge
e0 � S such that e0 maps to e , and there exists 
 2 F whose axis in S contains e0 , so
the axis of 
 in T contains e . The stabilizer of an edge e � T equals the stabilizer of
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the pre-image edge and so is trivial. This shows that F Õ T is a free splitting, and by
construction the quotient map

S
Œ��
��! T

is a collapse map.

The (nonsimplicial) conjugacy type of the collapsed tree actually depends only on
the “natural core” of the collapsed subgraph. To be precise, given a free splitting
F Õ S and a proper, F –equivariant subgraph � � S , define the natural core of �
to be the largest natural subcomplex of S contained in � whose components are all
nondegenerate. For any collapse maps

S
Œ��
��! T; S

Œ� 0�
��! T 0;

if �; � 0 have the same natural core then there exists a conjugacy T ! T 0 , although this
conjugacy need not be a simplicial map with respect to the given simplicial structures
of T;T 0 .

Given free splittings F Õ S;T , we say that S collapses to T or that T expands to S ,
denoted S � T or T � S , if there exists a function S 7! T that is a collapse map
with respect to some simplicial subdivisions of the natural cell structures on S and T .
These relations are well-defined on the conjugacy classes of S;T , indeed S � T if
and only if there exists a function S 7! T that is a collapse map with respect to the
natural cell structures themselves. Even when it is known that S � T , notice that there
might not exist a collapse map S 7! T without first changing the simplicial structures
on S and/or T , for example if T is subdivided so finely that it has more edgelet orbits
than S . The collapse and expand relations are transitive, eg if S � S 0 � S 00 then
S � S 00 , for if S 7! S 0 7! S 00 are collapse maps of natural cell structures then the
composition S 7! S 00 is a collapse map of natural cell structures.

In several places throughout the paper we use without comment the fact that every
free splitting F Õ T has a properly discontinuous expansion T � S , meaning that
the free splitting F Õ S is properly discontinuous; see [8, Section 3.2] for a proof,
under the heading “How to construct trees in KT

n ”, Steps 1 and 2. When a properly
discontinuous expansion T � S is chosen, with collapse map

S
Œ��
��! T;

the free factor system F.T / is represented in S as the conjugacy classes of the
stabilizers of the infinite components of � .
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1.3 The free splitting complex in terms of collapse maps

The following result contains the technical facts needed to justify the construction of the
simplicial complex FS.F /. For any free splitting F Õ T and any proper F –invariant
natural subgraph � � T let

T
Œ��
��! T�

be the corresponding collapse map, the quotient map obtained by collapsing to a point
each component of � . If T is a .KC1/–edge free splitting then for each kD 0; : : : ;K

let Fk.T / be the set of conjugacy classes of .kC 1/–edge free splittings of the form
T� , indexed by those natural subgraphs � � T that contain exactly K�k natural edge
orbits of T . For fixed k there are exactly�

KC 1

kC 1

�
D

.KC 1/!

.kC 1/!.K� k/!

choices of such � , and as k D 0; : : : ;K varies there are 2KC1� 1 choices of � .

Lemma 1.3 For any free splittings F Õ T;T 0 the following hold:

(1) For any two F –equivariant natural subgraphs �1; �2 � T we have �1 D �2 if
and only if T�1

, T�2
are conjugate.

(2) F0.T /D F0.T
0/ if and only if T;T 0 are conjugate.

We thank Gilbert Levitt for describing the following proof to us based on his paper
with Guirardel [7]. This proof replaces a much longer argument in the previous version
of this paper.

Proof Let C.F / be the set of conjugacy classes of nontrivial elements of F . In this
proof every free splitting F Õ T is equipped with its natural cell structure and with
a geodesic metric assigning length 1 to each natural edge. Let `T 2 RC.F / be the
translation length function of T : for nontrivial 
 2 F with conjugacy class Œ
 �, the
quantity `T Œ
 � equals the translation length of the action of 
 2 F on T . By Culler
and Morgan [6], the function `T determines and is determined by the conjugacy class
of T .

Fix a free splitting T , let E0; : : : ;EK be an enumeration of representatives of the
natural edge orbits of T , and for k D 0; : : : ;K let Tk be the one-edge free splitting
obtained from T by collapsing T n .F �Ek/. By construction the conjugacy class of
T determines the conjugacy classes of T0; : : : ;TK . By [7, Lemma 3.18], the trees
T0; : : : ;TK are pairwise nonconjugate; incidentally this proves (1) in the special case
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that �; � 0 each contain all but one of E0; : : : ;EK . By [6] the functions `T0
; : : : ; `TK

2

RC.F / are pairwise distinct, and as pointed out in [7, Definition 3.17], the equation holds
`T D

PK
iD0 `Tk

in the vector space RC.F / . It follows that the subset f`T0
; : : : ; `TK

g�

RC.F / determines `T . Putting it all together, the conjugacy classes of T0; : : : ;TK

determine the conjugacy class of T , proving (2).

Now we prove (1) in general. Consider a proper F –equivariant natural subgraph
� � T . By construction the subgraph � determines and is determined by the subset
E.�/�fE0; : : : ;EK g consisting of those edges not contained in � . Under the collapse
map

T
Œ��
��! T� ;

the set E.�/ corresponds bijectively with representatives of the natural edge orbits of T� .
Clearly the conjugacy classes of one-edge collapses of T� — which by (2) determine
and are determined by the conjugacy class of T� — are precisely the conjugacy classes
of the free splittings Tk for Ek 2 E.�/. It follows that the conjugacy class of T�
determines and is determined by � , proving (1).

By applying item (1) of this lemma we may define a collapse T � U to be proper if it
satisfies either of the following equivalent conditions: U;T are not conjugate, or for
any map

T
Œ��
��! U

that is a collapse map with respect to some subdivision of the natural cell structures,
the natural core of � is nonempty. We also refer to the collapse maps of the latter type
as proper collapse maps. Notice that properness of a collapse relation T � U is also
equivalent to the statement that there exists a map

T
Œ��
��! U

that is a collapse map with respect to some subdivision of the natural structures, such
that the natural core of � is nonempty. A collapse relation T � U that is not proper is
improper.

We now apply Lemma 1.3 to the construction of FS.F /. From item (1) it follows
that we can associate an abstract K–simplex denoted hT i to the conjugacy class of
each .KC 1/–edge free splitting F Õ T , where the k –dimensional faces of hT i are
labelled by the conjugacy classes of those free splittings of the form T� such that �
contains exactly K�k natural edge orbits of T , and where T� is a face of T� 0 if and
only if � 0 � � . We can then glue these simplices together, where for each collapse
relation T � U the simplex hU i is glued to the unique face of the simplex hT i that
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is labelled by the conjugacy class of U and where the gluing preserves the labelling
of subfaces. From item (1) it follows that the result of these gluings is a simplicial
complex. We have proved:

Corollary 1.4 There exists a simplicial complex FS.F / whose K–simplices hT i are
in one-to-one correspondence with the conjugacy classes of KC 1–edge free splittings
F Õ T , such that for any pair of simplices hT i, hU i we have hU i � hT i if and only
if U � T .

The alternate and more well-known approach to this corollary is to appeal to Hatcher’s
construction of the sphere complex [9]; see for example Aramayona and Souto [1],
which constructs the 1–skeleton of FS.F / in this manner.

The dimension of FS.F / equals 3 � rank.F /� 4, the number 3 � rank.F /� 3 being
the maximum number of natural edge orbits of a free splitting F Õ T , the maximum
occurring if and only if every natural vertex of T has valence 3 (which implies that
the free splitting F Õ T is properly discontinuous).

We usually work with the first barycentric subdivision of FS.F /, denoted FS 0.F /.
Gromov hyperbolicity of FS.F / and FS 0.F / are equivalent because, as with any
connected simplicial complex, the identity map is a quasi-isometry between their
geodesic simplicial metrics (connectivity follows from Hatcher’s proof of contractibility
[9], or from the construction of Stallings fold paths reviewed in Section 2). The
simplicial complex FS 0.F / has one 0–simplex associated to each conjugacy class of
free splittings, and it has a k –simplex associated to each sequence of conjugacy classes
of free splittings obtained from any chain of k proper expansions T0 � T1 � � � � � Tk .
In particular, an edge in FS 0.F / oriented from S to T can be written uniquely as
either an expand S � T or a collapse S � T ; uniqueness follows from asymmetry of
the collapse relation, which is a consequence of Lemma 1.3(1).

As mentioned earlier, the relations of collapse and expand are transitive. It follows that
every geodesic in the 1–skeleton of FS 0.F / can be written as an alternating sequence
of expands and collapses, for example starting with an expand T0 � T1 � T2 � T3 �

T4 � T5 � � � � or starting with a collapse T0 � T1 � T2 � T3 � T4 � T5 � � � � . Any
edge path in FS 0.F / that alternates between expands and collapses is called a zig-zag
path in FS 0.F /.

Throughout the paper, given free splittings F Õ S;T , we use the notation d.S;T / to
denote the length of the shortest edge path in the simplicial complex FS 0.F / between
the vertices represented by S and T . We must prove that this metric is Gromov
hyperbolic.
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2 Fold paths

We define the class of fold paths between vertices of FS 0.F /, using a method pioneered
by Stallings [20] for factoring maps of graphs into products of folds. This method was
extended to the category of group actions on trees by Bestvina and Feighn [3]. We refer
to the latter paper for some details, although these details are considerably simplified
in the category of free splittings.

2.1 Directions, gates and foldable maps

First we set up some of the basic definitions which are used throughout the paper. We
will also prove a tree-theoretic version of the first derivative test, Lemma 2.3.

Given any graph X and a vertex v 2X , the set of directions of X at v , denoted DvX ,
is defined to be the set of germs of oriented arcs in X with initial vertex v . Each
direction at v is uniquely represented by an oriented edgelet with initial vertex v . The
union of the sets DvX over all vertices v 2 X is denoted DX . Given a subgraph
Y �X , the subset of DX represented by oriented edgelets e �X nY having initial
vertex in Y is denoted DY X .

Given two free splittings F Õ S;T and a map f W S ! T , the derivative of f is a
partially defined map df W DS!DT whose domain is the set of directions of oriented
edgelets e on which f is nonconstant, and whose value on the direction of e is the
direction of the oriented edgelet f .e/. Given a subgraph W � S , if f is nonconstant
on each edgelet representing a direction in the set DW S then we obtain by restriction
a map dW f W DW S !DT ; as a special case, when W D fvg is a vertex we obtain a
map dvf W DvS !Df .v/T .

Suppose now that the map f W S!T is nonconstant on all edgelets of S , so df W DS!

DT has full domain of definition. For each vertex v 2 S the set DvS partitions into
gates, which are the nonempty subsets of the form .dvf /

�1.ı/ for ı 2Df .v/T . Every
gate is a finite set; indeed, we have:

Lemma 2.1 For any free splittings F Õ S;T , for any map f W S ! T that is
nonconstant on each edgelet of S , and for any vertex v 2 S , the cardinality of each
gate of DvS is at most 2 rank.F /.

Proof Let e1; : : : ; eM � S be oriented edgelets with initial vertex v representing a
gate of DvS . These oriented edgelets are all in distinct orbits under the action of F ,
for otherwise their common image in T would have a nontrivial stabilizer. It follows
that in the quotient graph of groups S=F , the quotients of e1; : : : ; eM represent M
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distinct directions at the quotient of v . It therefore suffices to bound the valence of
each vertex in the quotient graph of groups of a free splitting. Without decreasing the
valence at the quotient of v , one can blow up all other vertex orbits so that the only
vertex orbit with nontrivial stabilizers is the orbit of v . Then, still without decreasing
quotient valence, one can inductively collapse natural edges whose endpoints are in
different vertex orbits. When this process stops, the quotient graph of groups is a rose
with one natural vertex (possibly having nontrivial vertex group) and with � rank.F /
edges, whose natural vertex has valence � 2 rank.F /.

Definition 2.2 (Foldable maps and edgelets) A map f W S ! T is foldable if it
satisfies either of the following two equivalent statements:

Natural edge definition of foldable f is injective on each natural edge of S and f
has at least 3 gates at each natural vertex of S .

Edgelet definition of foldable f is injective on every edgelet, f has at least 2 gates
at every vertex, and f has at least 3 gates at every natural vertex.

We will without warning switch between these two definitions whenever it is convenient.
Notice that the restrictions on the number of gates are significant only at vertices of
finite valence, because every gate is a finite set; for example, if every natural vertex
of S has nontrivial stabilizer then every map defined on S that is injective on natural
edges is foldable. Notice also that foldability of f depends only on the natural cell
structures on S and T , not on the given simplicial structures; to put it more formally,
foldability is an invariant of f in the category of equivariant continuous functions
between free splittings of F .

Given free splittings F Õ S;T , a foldable map f W S ! T and an edgelet e � T , an
e–edgelet of f is an edgelet of S that is mapped to e by f .

In Lemma 2.4 below we shall prove the existence of foldable maps in the appropriate
context.

Remark In other treatments of Stallings folds we have not seen any analogue of our
gate at least 3 condition on natural vertices. This condition is crucial to the diameter
bound obtained in Lemma 5.5, as well as in the heart of the proof of the Main Theorem,
particularly in the proof of Proposition 6.5, Step 3.

The first derivative test The first derivative test of calculus implies that if the deriva-
tive of a function has no zeroes then local extreme values occur only at endpoints of
the domain.
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Lemma 2.3 (The first derivative test) Suppose that f W S ! T is a foldable map of
free splittings. Given a connected subgraph W � S and a vertex v 2W , if f .v/ has
valence 1 in the subgraph f .W /� T then v is a frontier point of W.

Proof If v is an interior point of W then DvW DDvS , and since f has at least 2

gates at v it follows that dvf .DvW / has cardinality at least 2, implying that f .v/
has valence at least 2 in f .W /.

2.2 Construction of foldable maps

Given free splittings F Õ S;T , a fold path from S to T will be defined by factoring
a foldable map S 7! T . Although a foldable map does not always exist, one will exist
after moving S a distance at most 2 in FS 0.F /.

Lemma 2.4 For any free splittings F Õ S;T there exist free splittings S 0;S 00 and a
foldable map S 00 7! T such that S � S 0 � S 00 .

Proof Fix the free splitting F Õ T . Given a free splitting F Õ R, let M.R;T /

denote the set of all equivariant continuous functions f W R! T that take each natural
vertex of R to a vertex of T and whose restriction to each natural edge of R is either
injective or constant. It follows that f is a map with respect to the pullback simplicial
structure on R whose vertex set consists of all points that map to vertices of T and
that are not in the interior of a natural edge of R that is collapsed by f . The edges of
this simplicial structure on R will be referred to as pullback edgelets of f .

Choose any properly discontinuous expansion S � S 0 , which implies that the set
M.S 0;T / is nonempty. Amongst all elements of M.S 0;T / choose f W S 0! T to
maximize the number of orbits of natural edges of S 0 on which f is constant. By
collapsing each such natural edge we define a collapse map S 0 7! S 00 and an induced
function, which is an element of the set M.S 00;T /. By maximality of f it follows
that any element of M.S 00;T / is injective on each natural edge of S 00 , for otherwise
by composing the collapse map S 0 7!S 00 with an element of M.S 00;T / that collapses
some natural edge of S 00 we obtain an element of M.S 0;T / that collapses a larger
number of natural edge orbits than f does, a contradiction.

We find a foldable element of M.S 00;T / by solving optimization problems. First
we prove that if g 2M.S 00;T / minimizes the number of orbits of pullback edgelets
then g has at least 2 gates at each vertex of S 00 . Suppose there is a vertex v 2 S 00

at which g has only 1 gate. Let K be the valence of v ; note that K � 3 because
g is injective on natural edges. Let �1; : : : ; �K be the oriented natural edges of S 00
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with initial vertex v . Let e1; : : : ; eK be the initial pullback edgelets of �1; : : : ; �K ,
and let w1; : : : ; wK be the terminal endpoints of e1; : : : ; eK , respectively. We have
g.e1/D � � � D g.eK /D e for some oriented edge e � T with initial vertex g.v/ and
opposite vertex w D g.w1/D � � � D g.wK /. Consider first the case that ei ¤ �i for
each i , and so we can isotope each restricted map g j �i by pushing g.v/ across e to w
by an isotopy supported in a neighborhood of ei , and we can extend these isotopies to
an equivariant homotopy of g , to produce an element of M.S 00;T / that has K fewer
orbits of pullback edgelets than g has, a contradiction. Consider next the case that
ei D �i for certain values of i D 1; : : : ;K . If v;wi are in distinct F –orbits for each
such i then we can equivariantly homotope g , pushing g.v/ across e to w , so as to
collapse each ei for which ei D �i , to produce an element of M.S 00;T / that collapses
each of the natural edges �i such that ei D �i , a contradiction. In the remaining case
there exists some i D 1; : : : ;K such that ei D �i and wi D 
 � v for some 
 2 F , and
it follows that w D 
 �g.v/. The edges ei � S 00 and e � T are therefore fundamental
domains for the actions of 
 on its axes in S 00;T , respectively. It follows that the
direction of 
�1 � ei at v maps to the direction of 
�1 � e at g.v/, which is not equal
to the direction of e at g.v/, contradicting that g has a single gate at v .

Next we prove that among all g 2M.S 00;T / that minimize the number of orbits of
pullback edges, there is at least one which is foldable, having at least 3 gates at each
natural vertex. This is achieved, mostly, by solving another optimization problem.
Define the edgelet vector of g to be the vector of positive integers Lg indexed by the
natural edge orbits of S 00 , whose entry Lg.e/ corresponding to the orbit of a natural
edge e � S 00 is the number of pullback edgelets in e . Define Length.Lg/ to be the
sum of its entries, which equals the number of pullback edgelet orbits of g , a number
which has already been minimized so as to guarantee at least 2 gates at each vertex.
Define Energy.Lg/ to be the sum of the squares of its entries. We have the inequality
Energy.Lg/ � .Length.Lg//

2 . Amongst all g 2M.S 00;T / with minimal value of
Length.Lg/, choose g so as to maximize Energy.Lg/.

We claim that with energy maximized as above, one of the following holds:

(1) g has at least 3 gates at each natural vertex, and so g is foldable.

(2) S 00 has exactly one natural vertex orbit, g has two gates at every natural vertex
and each natural edge of S 00 has its two directions lying in distinct gate orbits.

To prove this dichotomy, suppose that g has exactly two gates at some natural vertex v .
The gates must have the same cardinality: otherwise, by doing a valence 2 homotopy,
pushing g.v/ across one edge of T in the image direction of the larger of the two
gates at v , one reduces the total number of pullback edgelets. Now consider g1;g2 2

M.S 00;T / defined by the two possible valence 2 homotopies at v , pushing g.v/ across
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the two edges of T in the two image directions of the two gates at v . Note that the
average of the two vectors Lg1

, Lg2
is the vector Lg . It follows that LgDLg1

DLg2
,

for otherwise, by convexity of energy, one of Energy.Lg1
/ or Energy.Lg2

/ would be
larger than Energy.g/. It also follows that S 00 has exactly one natural vertex orbit, for
otherwise v would be connected across a natural edge e to some natural vertex in a
different orbit, implying that one of Lg1

.e/;Lg2
.e/ equals Lg.e/C 1 and the other

equals Lg.e/� 1. It also follows that each natural edge e has one end in the orbit of
one gate at v and opposite end in the orbit of the other gate at v , for otherwise one of
Lg1

.e/;Lg2
.e/ would equal Lg.e/C 2 and the other equals Lg.e/� 2. This shows

that g satisfies item (2).

To finish up we show that if g satisfies (2) then there exists g0 2M.S 00;T / that
satisfies (1). Item (2) implies that there is an orientation of the natural edges of S 00

such that at each natural vertex v 2 S 00 , the directions with initial vertex v form one
gate of g0 at v denoted DCv , and the directions with terminal vertex v form the other
gate denoted D�v .

Pick a natural vertex v 2 S 00 . Let � be the subtree of S 00 consisting of the union of
all oriented rays in S 00 with initial vertex v . The restriction of g to each such ray is
injective and proper, and their initial directions all map to the same direction in T ,
so it follows that the subtree g.�/ � T has a valence 1 vertex at g.v/ and no other
valence 1 vertex. Also, if we orient each edge of g.�/ to point away from the vertex
g.v/ then the map gW � ! g.�/ preserves orientation. Furthermore g.�/ is not itself
just a ray, for if it were then T would be just a line, an impossibility for a free splitting
of a free group of rank at least 2. Let w 2 g.�/ be the vertex of g.�/ of valence at
least 3 that is closest to g.v/. Define g0W S 00 ! T by mapping v to w , extending
equivariantly to the orbit of v , and extending equivariantly to an embedding on each
edge of S 00 .

We claim that g0 has one gate at v corresponding to each direction of g.�/ at w , which
implies that g0 is foldable. To see why, first note that the set D�v is mapped by dvg

0

to the unique direction of the segment Œw;g.v/� at w . Next note that each direction
in the set DCv is mapped by dvg

0 to one of the directions of T at w distinct from
the direction of Œw;g.v/�; furthermore, each such direction is in the image of dvg

0

because g0 maps � onto g.�/ n Œw;g.v/� by an orientation-preserving map.

This completes the proof of Lemma 2.4.

2.3 Folds

Given free splittings F Õ S;T and a foldable map f W S ! T , we say that f is a
fold if there exist oriented natural edges �; �0 � S with the same initial vertex v , and
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there exist nondegenerate initial segments e � �, e0 � �0 that are subcomplexes of S

with the same positive number of edgelets, such that if we let �W e! e0 denote the
unique orientation-preserving simplicial isomorphism, then for all x¤ x0 2 S we have
f .x/D f .x0/ if and only if there exists 
 2 F such that (up to interchanging x;x0 )

 �x 2 e and �.
 �x/D 
 �x0 2 e0 . We also say that the map f folds the segments e

and e0 .

The pair of segments e; e0 determines the free splitting F Õ T up to simplicial
conjugacy, namely F Õ T is conjugate to the equivariant quotient complex of S

obtained by equivariantly identifying e and e0 via �W e ! e0 . In this context we
shall say that the free splitting T is determined by folding the segments e; e0 . Letting
d; d 0 2 DvS denote the initial directions of e; e0 respectively, we also say that f
folds the directions d; d 0 , although d; d 0 do not determine the segments e; e0 and they
need not determine T up to conjugacy. Notice that d; d 0 are in different orbits under
the action StabS .v/Õ DvS (equivalently under the action F Õ DS ), for otherwise
the segment f .e/D f .e0/� T would have nontrivial stabilizer. Folds are classified
according to the properness of the inclusions e � �, e0 � �0 , as follows. If e; e0 are
both proper initial segments of �; �0 then we say that f is a partial fold; otherwise f
is a full fold. If f is a full fold and exactly one of e; e0 is proper then we say that f is
a proper full fold; otherwise, when e D � and e0 D �0 , we say that f is an improper
full fold. For later purposes we note that if f is a full fold then every natural vertex
of T is the image of a natural vertex of S ; and even when f is a partial fold, every
natural vertex of T that is not in the orbit of the image of the terminal endpoints of the
folded edges e; e0 is the image of a natural vertex of S .

In the terminology of [3], folds between free splittings can also be classified into two
types as follows. If the opposite vertices w;w0 of e; e0 are in different F –orbits one
gets a type IA fold; in this case the stabilizer of the vertex W D f .w/D f .w0/ is the
subgroup generated by the stabilizers of w;w0 , which (if nontrivial) is a free factor
whose rank is the sum of the ranks of the stabilizers of w and w0 . If w;w0 are in the
same F –orbit then one gets a type IIIA fold, and the stabilizer of the vertex W is the
subgroup generated by the stabilizer of w and an element 
 2F such that 
 .w/Dw0 ,
which is a free factor whose rank is 1 plus the rank of the stabilizer of w . Notice that
a type IIIA fold is only possible if f is a partial fold or an improper full fold, because
a natural and an unnatural vertex can never be in the same orbit. We refer to [3] for an
understanding of the map on quotient graphs of groups S=F ! T=F that is induced
by a fold f W S ! T .

The following lemma and its proof are well known in the narrower context of the first
barycentric subdivision of the spine of outer space.
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Lemma 2.5 For any fold f W S ! T , the distance in FS 0.F / from S to T equals 1

or 2.

Proof Let f fold oriented segments e; e0 with common initial endpoint v and opposite
endpoints w;w0 . After possibly subdividing S and T so that e; e0 each contain at
least 2 edgelets, the map f can be factored into two maps as

S
g
�! U

h
�! T;

where g folds the initial edgelets e0 � e , e0
0
� e0 , and h folds the g–images of the

terminal segments e1 D e n e0 , e0
1
D e0 n e0

0
. Letting ye D g.e0/ D g.e0

0
/ � U and

�0 D F � ye � U , resubdividing S there is an expansion S � U defined by a collapse
map

U
Œ�0�
��! S:

Also, letting �1 D F � .g.e1/[g.e0
1
//� U , after resubdividing T there is a collapse

U � T defined by a collapse map

U
Œ�1�
��! T:

It follows that d.S;T /� 2 in FS 0.F /.

It remains to show that d.S;T / ¤ 0, that is, S;T are not conjugate free splittings.
Since each fold map is foldable, the natural vertex v has at least 3 gates with respect
to f . It therefore has at least 3 gates with respect to g , and so g.v/ 2 U is natural.
It follows that ye is a natural edge of U , having one endpoint at g.v/ and opposite
endpoint of valence 3 in U . The subgraph �0 � U is therefore natural, and it follows
from Lemma 1.3 that S is not conjugate to U . The free splittings U;T may or may
not be conjugate, depending on whether at least one of g.e1/;g.e2/� U is a natural
edge. If neither of g.e1/;g.e2/ is natural then T is conjugate to U , and so T is not
conjugate to S . If one or both of g.e1/;g.e2/ is natural then (after resubdividing T )
the collapse U � T may also defined by collapsing the natural subgraph y�1 � U that
is the union of the F orbits of whichever of g.e1/;g.e2/ is natural, but �0 ¤ y�1 and
so by Lemma 1.3 we conclude that S;T are not conjugate.

2.4 Fold sequences and fold paths

Consider free splittings F Õ S;T;U and a sequence of maps of the form

S
h
�! U

g
�! T:
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Letting f D gıhW S!T , we say that h is a maximal fold factor of f if the following
hold: h is a fold map that folds oriented initial segments e; e0 � S of oriented natural
edges �; �0 � S , respectively, and e; e0 are the maximal initial subsegments of �; �0

such that in T we have f .e/D f .e0/. Recall from the definition of a fold that e; e0

are edgelet paths with the same number of edgelets.

Fold sequences Consider a sequence of free splittings and maps of the form

S0

f1
�! S1

f2
�! � � �

fK
��! SK ;

K � 0. In this context we will always denote

f i
j D fj ı � � � ıfiC1W Si! Sj ; for 0� i < j �K;

so that expressions such as f i
j W Si ! Sj obey the Einstein indexing convention.

Note also that the convention f i�1
i D fi W Si�1! Si amounts to suppression of the

superscript.

We say that this is a fold sequence if the following holds:

(1) f 0
K
W S0! SK is a foldable map.

(2) Each map fiC1W Si! SiC1 is a maximal fold factor of the map f i
K
W Si! SK ,

for 0� i <K .

It follows from (1) and (2) that

(3) f i
j W Si! Sj is a foldable map for each 0� i < j �K .

To prove (3), starting from the base assumption (1), and assuming by induction that
f i�1

K
D f i

K
ı fi is foldable, we prove that f i

K
is foldable. By (2) the map fi is a

maximal fold factor of f i�1
K

. The map f i�1
K

is injective on each edgelet of Si�1 , and
each edgelet of Si is the fi image of some edgelet of Si�1 , so f i

K
is injective on each

edgelet. Consider a vertex v 2 Si and a vertex u 2 Si�1 for which fi.u/D v . The
number of f i

K
–gates at v is greater than or equal to the number of f i�1

K
–gates at u,

which is at least 2, and furthermore if u is natural then this number is at least 3. This
covers all cases except for when v is natural and each such u has valence 2. Since fi

is a maximal fold factor of f i�1
K

, this is only possible if f is a partial fold that folds
segments e; e0 � Si�1 such that if w;w0 denote the terminal endpoints of e; e0 then
vD fi.w/D fi.w

0/. If fi is a type IA fold, that is, if w;w0 are in different orbits, then
v has valence 3, and by maximality of the fold fi it follows that the three directions at
v are all in different gates with respect to f i

K
. If fi is a type IIIA fold, that is, if w;w0

are in the same orbit, say 
 �w D w0 for a nontrivial 
 2 F , then StabSi
.v/ contains


 and so is nontrivial, and hence v has infinitely many gates with respect to f i
K

. This
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proves by induction that each f i
K

is foldable. Next, to prove that f i
j is foldable, given

a vertex v 2 Si we simply note that the decomposition of DvSi into f i
j –gates is a

refinement of the decomposition into f i
K

–gates, of which there are at least 2, and at
least 3 if v is natural. This completes the proof that (1) and (2) imply (3).

In this proof we have shown the following fact, which will be useful in Lemma 2.7
below when we construct fold sequences:

Lemma 2.6 For any foldable map f W S ! T and any factorization of f into two
maps of the form

S
k
�! U

g
�! T;

if k is a maximal fold factor off then the map gW U ! T is also foldable.

The implication of this lemma is false if one allows k to be a partial fold that is not a
maximal fold factor of f , for in that case the map gW U ! T will have only 2 gates at
the valence 3 vertex that is the k –image of the terminal endpoints of oriented segments
e; e0 that are folded by k .

Fold paths A fold path in FS 0.F / is any sequence of vertices represented by free
splittings F Õ S0;S1; : : : ;SK for which there exists a fold sequence

S0 7! S1 7! � � � 7! SK I

we also say that this fold path has K–steps.

Strictly speaking a fold path need not be the sequence of vertices along an actual edge
path in the simplicial complex FS 0.F /, because the size of the step from Si�1 to Si

is either 1 or 2; see Lemma 2.5. If one so desires, one can easily interpolate the gap
between Si�1 and Si by an edge path of length 1 or 2, to get an actual edge path
from S0 to SK .

We define two fold sequences to be equivalent if they have the same length and there
is a commutative diagram of the form

S0
//

��

S1
//

��

� � � // SK�1
//

��

SK

��
S 0

0
// S 0

1
// � � � // SK 0�1

// S 0
K

where the top and bottom rows are the two given fold sequences and each vertical
arrow is a conjugacy. Note that the vertical arrows are not required to be “maps” as we
have defined them, in that they need not be simplicial. For example, if the bottom row
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is obtained by taking the 400th barycentric subdivision of each 1–simplex in the top
row then the two fold sequences are equivalent.

Equivalent fold sequences determine the same fold path, but the converse is false. A
counterexample consisting of a 1–step fold path is given at the end of this section.

Construction of fold factorizations Having constructed many foldable maps in
Lemma 2.4, to construct many fold paths it suffices to factor each foldable map
as a fold sequence.

Given free splittings F Õ S;T and a foldable map f W S ! T , a fold factorization
of f is any fold sequence S0 7! S1 7! � � � 7! SK , which factors f as shown in the
following commutative diagram:

S

f

((
S0

f1 // S1

f2 // : : :
fK // SK T

A fold factorization of any foldable map can be constructed by an inductive process
described in [3], with considerable simplification arising from the fact that all edgelet
stabilizers are trivial in T . We give this simplified argument here.

Lemma 2.7 For any free splittings F Õ S;T , every foldable map f W S 7! T has a
fold factorization.

Proof If f is a simplicial isomorphism then we are done, with a fold factorization of
length K D 0. Otherwise, we use the following obvious but key fact:

Local to global principle Any simplicial map between trees which is locally injective
is globally injective. If furthermore it is surjective then it is a simplicial isomorphism.

For the inductive step we show that every foldable map f W S ! T that is not a
homeomorphism factors into maps as

S
k
�! U

g
�! T;

where k is a maximal fold factor of f . By the local to global principle, plus the
fact that F Õ T is minimal, it follows that f is surjective and so f is not locally
injective. We may therefore find a vertex v 2 S and two directions d; d 0 2DvS such
that dvf .d/D dvf .d

0/. Let �; �0 be the oriented natural edges with initial vertex v
and initial directions d; d 0 . Let e� �, e0� �0 be the maximal initial segments such that
f .e/D f .e0/. Noting that e; e0 are subcomplexes with the same number of edgelets,
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let hW e! e0 be the unique orientation-preserving simplicial homeomorphism. Define
kW S ! U to be the quotient map obtained by equivariantly identifying e and e0 , and
let gW U ! T be the induced map. As indicated in [3], U is a tree and the induced
action F Õ U is minimal. The map k is simplicial by construction, from which
it follows that g is simplicial as well. The stabilizer of each edgelet of U is trivial
because it is contained in the stabilizer of its image in T under g , which is trivial, and
so F Õ U is a free splitting. By construction the map kW S ! U is a maximal fold
factor of the foldable map f .

To support the inductive step we must prove that U has fewer edgelet orbits than S ,
which follows from the fact that the initial edgelets of e and e0 are in different orbits
of the action F Õ S , because they have the same image edgelet in T and its stabilizer
is trivial.

The fold factorization of f D f 0
T
W S D S0! T may now be constructed as follows.

Assuming f 0
T

is not locally injective, factor f 0
T

into maps as

S0

f1
�! S1

f 1
T
��! T

where f1 is a maximal fold factor of f 0
T

. The induced map f 1
T

is foldable by
Lemma 2.6, and the number of edgelet orbits of S1 is smaller than the number of
edgelet orbits of S0 . The process therefore continues by induction on the number of
edgelet orbits, stopping at

S D S0

f1
�! S1

f2
�! � � �

fK
��! SK

fK
T
��! T

when f K
T

is locally injective and therefore a simplicial conjugacy, and we identify
SK D T .

Remark The local to global principle may be used to construct fold factorizations
with various special properties. In particular, if ˇ � S is a subtree on which f is not
locally injective then we may choose the folded edges �; �0 to lie in ˇ . This is used in
the proof of Lemma 5.2.

Counterexample: inequivalent folds We describe two inequivalent folds

zf ; zf 0W S0! S1

that determine the same 1 step fold path S0;S1 in FS 0.F /. Both of the free splittings
F Õ S0;S1 are properly discontinuous. We first describe the quotient marked graphs
G0 D S0=F , G1 D S1=F and the induced homotopy equivalences f; f 0W G0!G1 .
The marked graph G0 has a valence 4 vertex v with the following incident directions:
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directed natural edges a; b with initial vertex v , and a directed natural edge c with
initial and terminal vertex v ; subject to this description, G0 is then filled out to be a
marked graph in an arbitrary manner. The marked graph G1 is defined to have the same
underlying unmarked graph as G0 . The homotopy equivalences f; f 0W G0!G1 are
defined so that f .a/D ca, f 0.b/D c�1b and f; f 0 are the identity elsewhere. Clearly
f; f 0 are homotopic, by a homotopy that spins the c loop once around itself and is
stationary on G0 n .a[ b[ c/. The marking on G1 is defined by pushing forward the
marking on G0 via either of f; f 0 , and so each of f; f 0 preserves marking. Consider
the universal covering maps Si 7!Gi , i D 0; 1. We may choose F –equivariant lifts
zf ; zf 0W S0! S1 , which are the two fold maps at issue. If they were equivalent then,

since any self-conjugacy of S0 or of S1 fixes each vertex and each oriented natural edge
(see the Remark at the end of Section 1), each direction in DS0 would have the same
image in DS1 under d zf and d zf 0 . However, fixing a lift zv and lifts za; zb; zc of a; b; c

with initial vertex zv and a lift zc0 of c with terminal vertex zv , we have d zf .za/D d zf .zc/

but d zf 0.za/¤ d zf 0.zc/.

3 The Masur–Minsky axioms

Our proof that FS.F / is hyperbolic uses the axioms introduced by Masur and Minsky
[15] for their proof that the curve complex of a finite type surface is hyperbolic. The
axioms require existence of a family of paths that satisfy a strong projection property.
For this purpose we shall use fold paths: Proposition 3.3 stated at the end of this section
says, roughly speaking, that fold paths in FS 0.F / satisfy the Masur–Minsky axioms.

First we give an intuitive explanation of the content of Proposition 3.3 by giving an
outline of the Masur–Minsky axioms as they would apply to fold paths. The axioms
require that a map be defined that is a kind of projection from FS 0.F / to each fold
path S0;S1; : : : ;SK . To make things work the range of the projection is taken to
be the parameter interval Œ0;K� of the fold path, giving the projection map the form
� W FS 0.F /! Œ0;K�. When one projects two vertices of FS 0.F / to two parameters
l � k 2 Œ0;K�, one is interested in the “diameter (of the subpath) between these two
parameters”, which means the diameter of the set fSl ;SlC1; : : : ;Skg in FS 0.F /.
There are three axioms. The coarse retraction axiom bounds the diameter between
each k 2 Œ0;K� and its projection �.Sk/ 2 Œ0;K�. The coarse Lipschitz axiom bounds
the diameter between the projections �.T /; �.T 0/ 2 Œ0;K� of two nearby vertices
T;T 0 2 FS 0.F /. The strong contraction axiom says roughly that, for each metric
ball in FS 0.F / that stays a bounded distance away from the fold path, if one takes
the sub-ball having a certain proportion of the total radius, the diameter between the
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projections of any two vertices in the sub-ball is bounded. All the bounds occurring in
this discussion must be uniform, depending only on the rank of F .

In fact rather than using fold paths themselves, we use fold sequences. As we have seen
in the counterexample at the end of Section 2, the same fold path S0; : : : ;SK can be
represented by inequivalent fold sequences, and the projection maps FS 0.F /! Œ0;K�

of these two fold sequences may be different. This kind of situation is handled formally
by expressing the Masur–Minsky axioms in terms of “families” of paths that allow a
path to occur repeatedly in the family.

Given integers i; j we adopt interval notation Œi; j � for the set of all integers between
i and j inclusive, regardless of the order of i; j .

Consider a connected simplicial complex X with the simplicial metric. A path in
X is just a finite sequence of 0–simplices 
 .0/; 
 .1/; : : : ; 
 .K/, which we write in
function notation as 
 W Œ0;K�! X . A family of paths in X is an indexed collec-
tion f
igi2I of paths in X ; we allow repetition in the family. A family of paths in
X is said to be almost transitive if there exists a constant A such that for any 0–
simplices v;w there is a path 
 W Œ0;K�!X in the family such that all of the distances
d.v; 
 .0//; d.
 .0/; 
 .1//; : : : ; d.
 .K� 1/; 
 .K//; d.
 .K/; w/ are at most A.

Given a path 
 W Œ0;K�!X and a function � W X! Œ0;K�, called the “projection map”
to the path 
 , and given constants a; b; c > 0, consider the following three axioms:

Coarse retraction For all k 2 Œ0;K� the set 
 Œk; �.
 .k//� has diameter at most c .

Coarse Lipschitz For all vertices v;w 2X , if d.v; w/� 1 then the set 
 Œ�.v/; �.w/�
has diameter at most c .

Strong contraction For all vertices v;w 2X , if d.v; 
 Œ0;K�/� a, and if d.w; v/�

b � d.v; 
 Œ0;K�/, then the set 
 Œ�.v/; �.w/� has diameter at most c .

Theorem 3.1 [15, Theorem 2.3] Given a connected simplicial complex X , if there
exists an almost transitive family of paths f
igi2I in X and for each i 2 I a projection
map �i W X ! Œ0;K� to the path 
i W Œ0;K�! X such that the coarse retraction, the
coarse Lipschitz and the strong contraction axioms all hold with uniform constants
a; b; c > 0 for all i 2 I , then X is hyperbolic.

Remarks Our notion of “almost transitivity” is not quite the same as “coarse transi-
tivity” used in [15], which requires that the paths in the set be continuous and that there
is a constant D such that any two points at distance at least D are connected by a path
in the set. However, the proof of equivalence of the two forms of the axioms, one with
“almost transitive” and the other with “coarse transitive”, is very simple, and is left to
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the reader. The set of fold paths in FS 0.F / is almost transitive with constant AD 2:
for any free splittings S;T , by moving S a distance at most 2 one obtains a naturally
foldable morphism to T (Lemma 2.4), which has a fold factorization (Section 2.3), and
consecutive free splittings in such a factorization have distance at most 2 (Lemma 2.5).

The concept of a “family of paths” is left undefined in [15] but the proof of the above
theorem and the application to curve complexes given in [15] clearly indicate that an
indexed family with repetition is allowed. On top of that, given any indexed family
satisfying the hypothesis of the theorem, if we removed repetition by kicking out all
but one copy of each path then the resulting family would still satisfy the hypotheses
of the theorem. In our situation, although we use fold paths in our application of the
above theorem, we shall index them by (equivalence classes of) fold sequences; thus,
we allow for the possibility that two inequivalent fold sequences representing the same
fold path might have somewhat different projection maps.

Notice that the strong contraction axiom, unlike the coarse Lipschitz axiom, is not
symmetric in the variables v;w . For our proof we shall need to extend the applicability
of the strong contraction axiom by further desymmetrizing it:

Desymmetrized strong contraction For all vertices v;w 2 X , if �.w/ � �.v/ in
the interval Œ0;K�, if d.v; 
 Œ0;K�/� a, and if d.w; v/� b �d.v; 
 Œ0;K�/, then the set

 Œ�.v/; �.w/� has diameter at most c .

Lemma 3.2 For all constants a; b; c > 0 there exist constants A;B > 0 such that the
desymmetrized strong contraction axiom with constants a, b and c implies the strong
contraction axiom with constants A, B and C D c .

Proof Set AD 4a and BDminf1=4; 3b=4g. We need only show that if �.w/>�.v/
in Œ0;K�, if d.v; 
 Œ0;K�/�A and if d.w; v/�B �d.v; 
 Œ0;K�/, then d.w; 
 Œ0;K�/�

a and d.v; w/� b � d.w; 
 Œ0;K�/. We have

d.w; 
 Œ0;K�/� d.v; 
 Œ0;K�/� d.w; v/

� d.v; 
 Œ0;K�/� 1
4
� d.v; 
 Œ0;K�/

�
3
4
� d.v; 
 Œ0;K�/� 3a� a

and
d.v; w/� 3

4
� b � d.v; 
 Œ0;K�/

�
3
4
� b � 4

3
d.w; 
 Œ0;K�/D b � d.w; 
 Œ0;K�/:

We now define the path family f
igi2I in FS 0.F / that we use to prove the Main The-
orem. Having associated to each fold sequence a fold path, which clearly depends only
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on the equivalence class of that fold sequence, the index set is defined to be the set of
equivalence classes of fold sequences.

To prove the Main Theorem, by combining the Masur–Minsky Theorem, almost
transitivity of fold paths, and Lemma 3.2, it therefore suffices to prove:

Proposition 3.3 Associated to each fold sequence S0 7! � � � 7! SK in FS 0.F / there
is a projection map � W FS 0.F /! Œ0;K�, depending only on the equivalence class
of the fold sequence, such that the coarse retraction, the coarse Lipschitz and the
desymmetrized strong contraction axioms all hold, with constants a; b; c depending
only on rank.F /.

The next step in the proof of the Main Theorem will be taken with the formulation of
Proposition 4.2, where the projection maps are defined.

Remark [15, Theorem 2.3] contains an additional conclusion, which in our context
says that fold paths may be reparametrized to become uniform quasigeodesics in
FS 0.Fn/, although the reparametrization does not fall out explicitly from their proof.
Our method of proof will actually yield an explicit quasigeodesic reparametrization
of fold paths, in terms of the “free splitting units” introduced in Section 5. See
Proposition 6.2 for the statement and proof regarding this reparametrization.

4 Combing

In this section we define a combing method for fold sequences. Roughly speaking,
given a fold sequence S0 7! � � � 7! SK and a free splitting T 0 that differs from SK by
a single edge in FS 0.F /, we want a construction that combs backwards to produce a
fold sequence T0 7! � � � 7! TK D T 0 in which each Tk differs from the corresponding
Sk by at most a single edge in FS 0.K/. We would like to give this construction
in two cases, depending on whether the oriented edge from SK to T 0 is a collapse
SK � T 0 or an expansion SK � T 0 . In the case of a collapse SK � T 0 there is indeed
a process of “combing by collapse”, which produces a fold sequence as stated; see
Proposition 4.3. In the case of an expansion SK � T 0 , although there is a process of
“combing by expansion”, the sequence T0 7! � � � 7! TK D T 0 produced need not be a
fold sequence; instead, it belongs to a broader class of map sequences that we refer to
as “foldable sequences”; see Proposition 4.4. It is an important part of our theory that
both combing processes are closed on the collection of foldable sequences; combing
by collapse is closed as well on the smaller collection of fold sequences.

In Section 4.1 we define the collection of foldable sequences on which combing will
be defined, and we define combing rectangles, which are the commutative diagrams of
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foldable sequences and collapse maps that are used to describe combing; see Figure 1.
We also prove Lemma 4.1, which says that combing by collapse is closed on foldable
sequences.

The two main combing processes — combing by collapse, and combing by expansion —
are described in Section 4.2. In Section 4.3 we will also give some methods for
constructing new combing rectangles by composing or decomposing old ones.

Also in Section 4.1, combing rectangles will be used to define the projection map from
FS 0.F / to each fold path S0 7! � � � 7! SK , and we will state Proposition 4.2, which
says that these projection maps satisfy the requirements of the Masur–Minsky axioms.

Combing rectangles will be important structures for the rest of the paper. Much of
the geometric intuition behind our methods involves visualizing combing rectangles
and other, more complicated diagrams of free splittings and maps as objects sitting in
the complex FS 0.F /, and visualizing various methods for geometrically manipulating
these objects. The technical details of the proof of the Main Theorem will involve
a calculus of combing rectangles, which is based on the constructions of combing
rectangles given in Sections 4.2 and 4.3.

4.1 Combing rectangles and the projection onto fold paths

Foldable sequences Consider a sequence of free splittings and maps over F of the
form

S0

f1
�! S1

f2
�! � � �

fK
��! SK ;

and recall the notation f i
j D fj ı � � � ı fiC1W Si ! Sj for each 0 � i < j �K . This

sequence is said to be a foldable sequence over F if for each i D 0; : : : ;K the map
f i

K
W Si ! SK is a foldable map. It follows that each of the maps f i

j W Si ! Sj

is a foldable map, 0 � i < j � K , because for each vertex v 2 Si , the f i
j –gate

decomposition of DvSi is a refinement of the f i
K

–gate decomposition.

Combing rectangles A combing rectangle over F is a commutative diagram of maps
over F having the form depicted in Figure 1, such that:

(1) The top horizontal row is a foldable sequence.

(2) Each vertical arrow �i W Si ! Ti is a collapse map with collapsed subgraph
�i � Si indicated in the notation.

(3) For all i D 1; : : : ;K we have �i�1 D f
�1

i .�i/. Equivalently, for all 0 � i <

j �K , we have �i D .f
i

j /
�1.�j /.
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S0

f1 //

Œ�0� �0

��

� � �
fi�1 // Si�1

Œ�i�1� �i�1

��

fi // Si

Œ�i � �i

��

fiC1 // � � �
fK // SK

Œ�K � �K

��
T0

g1 // � � �
gi�1 // Ti�1

gi // Ti

giC1 // � � �
gK // TK

Figure 1: A combing rectangle. Horizontal sequences are foldable: the top
by definition and the bottom by Lemma 4.1. Vertical arrows are collapses and
�i�1 D f

�1
i .�i/ .

As mentioned earlier, combing is not closed on the set of fold sequences. We will
eventually prove that combing is closed on the set of all foldable sequences; the
following proves this in part, by showing closure under “combing by collapse”.

Lemma 4.1 For any combing rectangle notated as in Figure 1, the bottom row is a
foldable sequence.

We put off the proof of Lemma 4.1 until after the definition of the projection map.

Projecting onto fold paths Given a free splitting F Õ T , a fold sequence S0 7!

� � � 7! SK , and an integer k 2 Œ0;K�, a projection diagram from T to S0 7! � � � 7! SK

of depth k is a commutative diagram of free splittings and maps over F of the form
depicted in Figure 2, such that each horizontal row is a foldable sequence, and the two
rectangles shown are combing rectangles.

T0
//

��

� � � // Tk
//

��

T

S 0
0

// � � � // S 0
k

S0
//

OO

� � � // Sk
//

OO

� � � // SK

Figure 2: A projection diagram of depth k from T to S0 7! � � � 7! SK

The projection �.T / 2 Œ0; : : : ;K� of T to S0 7! � � � 7! SK is defined to be the
maximum depth of any projection diagram from a free splitting conjugate to T to a
fold sequence equivalent to S0 7! � � � 7! SK , if such a diagram exists, and �.T /D 0
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otherwise. It is clear that this gives a well-defined function � W FS 0.F /! Œ0; : : : ;K�

that depends only on the equivalence class of the fold sequence S0 7! � � � 7! SK .

One way to understand this definition is to think of FS 0.F / as being Gromov hyperbolic
and to think of fold paths as being quasigeodesic, all of which are true a posteriori
assuming that Proposition 3.2 is true. That being so, given a fold path S0 7! � � � 7! SK

and T projecting to �.T / 2 Œ0; : : : ;K�, by moving to some point S 0
0

nearby S0 we
should obtain a fold path from S 0

0
to T having an initial segment that fellow travels

the given fold path from S0 to S�.T / and no farther. In defining the projection map
as above, the intuition is that combing rectangles provide an adequate definition of
fellow traveling. The technical details of the definition were crafted to what would
work in our proofs, but also received some original motivation from results of [15],
which amount to a proof that for any finite type oriented surface S , splitting sequences
of train tracks on S define quasigeodesics in the curve complex of S . In particular, [15,
Lemma 4.4] — which can be regarded as a verification of the coarse Lipschitz axiom —
contains the statement “ˇ 2 PE.�/”, and if one works out the train track diagram for
that statement one obtains a rather strong analogue of our projection diagram above.

The rest of the paper is devoted to the proof of the following, which immediately
implies Proposition 3.3 and therefore implies the Main Theorem:

Proposition 4.2 There exist a; b; c > 0 depending only on rank.F / such that for any
fold sequence S0 7! � � � 7!SK in FS 0.F /, the projection map � W FS 0.F /! Œ0; : : : ;K�

defined above satisfies the coarse retraction, coarse Lipschitz and desymmetrized strong
contraction axioms with constants a; b; c .

The coarse retraction axiom is proved in Proposition 5.9 and the other two axioms are
proved in Section 6.

We now turn to:

Proof of Lemma 4.1 Following the notation of Figure 1, we must show that each
map gi

K
W Ti! TK is foldable. First note that gi

K
is injective on each edgelet e � Ti ,

because eD�i.ze/ for some edgelet ze�Sin�i , so f i
K
.ze/�SK n�K , so �K .f

i
K
.ze//D

gi
K
.�i.ze//D gi

K
.e/ is an edgelet of TK .

Given a vertex w 2 Ti , we must show that gi
K

has at least 2 gates at w , and that if w
is natural then gi

K
has at least 3 gates. Let w0 D gi

K
.w/ 2 TK . We have a subgraph

W 0 D ��1
K
.w0/ � SK , and a subgraph W D ��1

i .w/ � Si such that f i
K
.W / �W 0 .

Note that each direction in DW Si is based at a frontier vertex of W and is represented
by an edgelet of Si n �i , and similarly for DW 0SK , and so these direction sets are in
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the domain of definition of the derivative maps d�i , d�K , respectively. We have a
commutative diagram of derivatives

DW Si

df i
K //

d�i

��

DW 0SK

d�K

��
DwTi

dwgi
K

// Dw0TK

in which the vertical maps are bijections and so d�i induces a bijection between gates
of dwgi

K
and point pre-images of the map in the top row. The valence of w therefore

equals the cardinality of the set DW Si , and the number of gates of gi
K

at w equals
the cardinality of the image of the map in the top row. If w has valence at least 2 (resp.
at least 3) then we must prove that the image of the map in the top row has cardinality
at least 2 (resp. at least 3).

Suppose that w is a valence 2 vertex contained in the interior of a natural edge �� Ti .
The subgraph W is either a point or a segment contained in the interior of a natural
edge z�� Si such that �i.z�/D �. Let e1; e2 � � be the two oriented edgelets incident
to w , representing the two directions of the set DwTi . Let ze1; ze2 � z� nW be the two
oriented edgelets incident to the endpoints of W representing the two elements of
the set DW Si , indexed so that �i.zej /D ej , j D 1; 2. Since f i

K
is injective on z� it

follows that f i
K
.ze1/; f

i
K
.ze2/ are distinct edgelets of SK . Noting that

gi
K .ej /D gi

K .�i.zej //D �K .f
i

K .zei//

for j D 1; 2, it follows that these are two distinct edgelets of TK , and so gi
K

has 2
gates at w .

Suppose now that w is a vertex of valence at least 3, so the set DW Si has cardinality
at least 3. If W is a point then it has valence at least 3 and, since f i

K
is foldable,

there are at least 3 gates of f i
K

in DW Si ; it follows that there are at least 3 gates of
gi

K
in DwSi . If W has infinite diameter then DW Si is infinite and so w has infinite

valence, implying that gi
K

has infinitely many gates at w . If W does not contain a
natural vertex of Si then it is a segment in the interior of a natural edge of Si implying
that w has valence 2, a contradiction.

We have reduced to the case that the graph W has finite diameter, is not a point, and
contains a natural vertex of Si . The graph f i

K
.W / also has finite diameter and is not

a point, and so has P � 2 vertices of valence 1 (the cardinality P may be countably
infinite). Let X �W be a set consisting of one vertex of W in the preimage of each
valence 1 vertex of f i

K
.W /. By the first derivative test, each x 2X is a frontier vertex
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of W . Choosing a direction ıx 2 DW Si based at each x 2 X , it follows that the
directions df i

K
.ıx/ are based at P distinct points of SK and are therefore P distinct

directions in the set DW 0SK . If P � 3 then we are done.

We have reduced further to the subcase that P D 2, and so f i
K
.W / is a segment with

endpoints u1;u2 . We have X Dfx1;x2g with f i
K
.xj /Duj . Consider a natural vertex

v 2 Si such that v 2W , and its image v0 D f i
K
.v/ 2 f i

K
.W /. Since f i

K
is foldable,

there are at least 3 gates at v with respect to f i
K

. If v0 D uj then at least one of the
gates at v maps to a direction at uj that is distinct from the direction df i

K
.ıxj

/ and
from the unique direction of the segment f i

K
.W / at uj , and so we have found a third

direction in the set DW 0SK . If v0 is an interior point of the segment f i
K
.W / then at

least one of the gates at v maps to a direction at v0 distinct from the two directions of
the segment f i

K
.W / at v0 and again we have found a third direction in DW 0SK .

4.2 Combing by collapse and combing by expansion

In approaching the proof of Proposition 4.2, one immediately confronts the need for
constructions of combing rectangles, in order to construct the projection diagrams
needed to compute projection maps. This section and the next contain the constructions
of combing rectangles that we use for this purpose.

Our first construction of combing rectangles shows how to comb a foldable sequence
followed by a collapse map.

Proposition 4.3 (Combing by collapse) For each foldable sequence

S0

f1
�! S1

f2
�! � � �

fK
��! SK ;

and for each collapse

SK

Œ�K �
���! T 0

there exists a combing rectangle of the form shown in Figure 1 such that TK D T .

Proof Define an equivariant subgraph �i � Si using the definition of a combing
rectangle: starting with �K � SK , by induction define �i D f �1

iC1
.�iC1/. Since

�K � SK is a proper equivariant subgraph it follows by induction that each �i � Si is
a proper equivariant subgraph, and so free splittings F Õ Ti with collapse maps

Si

Œ�i �
��! Ti

and induced maps gi W Ti�1 ! Ti are all defined, and the squares are all evidently
commutative.
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We remark that the cheapness of the above proof is slightly offset by the modest expense
of proving that the Ti sequence is foldable, which was done back in Lemma 4.1.

Next we explain how to comb a foldable sequence followed by an expansion. In sharp
contrast to the case of combing by collapse, both the construction of the combing
rectangle and the proof that the resulting map sequence is foldable are very intricate in
the case of combing by expansion.

Proposition 4.4 (Combing by expansion) For each foldable sequence

S0

f1
�! S1

f2
�! � � �

fK
��! SK ;

each expansion SK � T 0 , and each collapse map � 0W T 0! SK , there exists a combing
rectangle of the form:

S0

f1 // � � �
fi�1 // Si�1

fi // Si

fiC1 // � � �
fK // SK

T0

g1 //

Œ�0� �0

OO

� � �
gi�1 // Ti�1

Œ�i�1� �i�1

OO

gi // Ti

Œ�i � �i

OO

giC1 // � � �
gK // TK

Œ�K � �KD�
0

OO

T 0

Remark Implicit in the conclusion via the definition of combing rectangle is that the
sequence

T0

g1
�! � � �

gK
��! TK

is foldable.

Proof We will construct this combing rectangle in two steps. In Step 1 we produce a
commutative diagram of free splittings and maps of the form

S0

f1 // � � �
fi�1 // Si�1

fi // Si

fiC1 // � � �
fK // SK

U0

h1 //

Œ� 0
0
�� 0

0

OO

� � �
hi�1 // Ui�1

Œ� 0
i�1

�� 0
i�1

OO

hi // Ui

Œ� 0
i
�� 0

i

OO

hiC1 // � � �
hK // UK

Œ� 0
K
D� 0�� 0

K

OO

T 0

in which each � 0i is a collapse and h�1
i .� 0i/D �

0
i�1

, but the U row slightly fails to be
foldable in that certain explicitly described natural vertices of Ui are “bad” by fault of
having only 2 gates with respect to hi

K
W Ui! UK . One of these gates will always be

a singleton, and so each “bad natural vertex” will be incident to a “bad natural edge”.
In Step 2 we will repair this problem by splitting each bad natural edge, to produce a
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commutative diagram of the form:

U0

h1 // � � �
hi�1 // Ui�1

hi // Ui

hiC1 // � � �
hK // UK T 0

T0

g1 //

�0

OO

� � �
gi�1 // Ti�1

�i�1

OO

gi // Ti

�i

OO

giC1 // � � �
gK // TK

�K

T 0

The T row will be a foldable sequence. The �i maps are not collapses but instead are
“multifolds” that invert the splitting process. The desired combing rectangle will be
obtained by concatenating these two rectangles: the composition

�i W Ti

�i
�! Ui

� 0
i
�! Si

will indeed be a collapse map, which collapses the subgraph �i D �
�1
i .� 0i/� Ti .

Step 1 The free splitting F Õ Ui is defined to be the minimal subtree of the pushout
of Si and T 0 . Here are more details. As a set, the pushout of Si and T 0 is

^.Si ;T
0/D f.x;y/ 2 Si �T 0 j f i

K .x/D �
0.y/g:

The action F Õ ^.Si ;T
0/ is obtained by restricting the diagonal action F Õ Si �T 0 .

The restrictions of the two projection maps are denoted

� 0i W ^.Si ;T
0/! Si and hi

T 0 W ^.Si ;T
0/! T 0:

Both are clearly F –equivariant and we have f i
K
ı � 0i D �

0 ı hi
T 0
W ^.Si ;T

0/! SK .
As a graph, the vertices and edgelets of the pushout are as follows. A vertex is a pair
.v; w/ 2 ^.Si ;T

0/ such that v is a vertex of Si and w is a vertex of T 0 . Edgelets are
of two types. First, a collapsed edgelet is one of the form v�e0 where v 2Si is a vertex
and e0 � � 0 � T 0 is an edgelet such that � 0.e0/D f i

K
.v/; the barycentric coordinates

on e0 induce those on v � e0 via the projection hi
T 0

. Second, to each edgelet e � Si

there corresponds a unique edgelet e0 � T 0 with the property that f i
K
.e/ D � 0.e0/

(uniqueness follows since � 0 is a collapse map), and there corresponds in turn an
uncollapsed edgelet ze D^.e; e0/D f.x;y/ 2 ^.Si ;T

0/ j x 2 e;y 2 e0g of ^.Si ;T
0/

with barycentric coordinates induced via the map f i
K
ı� 0i D �

0 ı hi
T 0

, which takes ze
bijectively to the edgelet f i

K
.e/D � 0.e0/ of SK . The action of F on ^.Si ;T

0/ and
the projection maps � 0i , hi

T 0
are each simplicial. The simplicial complex ^.Si ;T

0/ is
1–dimensional by construction. It is furthermore a tree, in that removal of the interior of
each edgelet separates, because the simplicial map � 0i W ^.Si ;T

0/!Si is injective over
the interior of each edgelet of Si , and for each vertex x 2Si the subcomplex .� 0i/

�1.x/

is a tree (mapped by a simplicial isomorphism to the tree .� 0/�1.f i
K
.x//� T 0 ). The

action F Õ Si has no point fixed by each element of F , and so neither does the
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action F Õ^.Si ;T
0/; it follows that the F –tree ^.Si ;T

0/ contains a unique minimal
F –invariant subtree, which, by definition, is Ui . For each edgelet e �^.Si ;T

0/, its
stabilizer is contained in StabSi

.� 0i.e// if e is uncollapsed and in StabT 0.h
i
T 0
.e// if e

is collapsed, and in either case is trivial. This proves that F Õ Ui is a free splitting.

Here are some structural facts about the tree Ui . For each edgelet e � Si , the edgelet
ze �^.Si ;T

0/ is the unique one mapped to e via � 0i , and since F Õ Si is minimal the
map � 0i W Ui! Si is surjective, which forces ze to be contained in Ui . This also shows
that � 0i is a collapse map. The union of the collapsed edgelets of the pushout ^.Si ;T

0/

forms a subgraph †i � ^.Si ;T
0/ with one component †i;v D .�

0
i/
�1.v/ for each

vertex v 2 Si such that .� 0/�1.f i
K
.v// is a component of � 0 ; the map hi

T 0
restricts to

a simplicial isomorphism between these components. The subgraph of � 0i � Ui that is
collapsed by � 0i W Ui! Si is the union of those components of †i \Ui that contain
at least one edge. Each of these components has the form � 0i;v D†i;v \Ui when this
intersection contains at least one edge; by convention we set � 0i;v D∅ otherwise. See
below for a more detailed description of various features of � 0i;v .

There is an induced map hi W ^.Si�1;T
0/!^.Si ;T

0/ that is defined by the formula
hi.x;y/D .fi.x/;y/, which makes sense because for each .x;y/ 2 ^.Si�1;T

0/ we
have f i

K
.fi.x//Df

i�1
K

.x/D� 0.y/. The commutativity equation � 0iıhiDfiı�
0
i�1

is
immediate. Since Ui is the minimal subtree of ^.Si ;T

0/ it follows that hi.Ui�1/�Ui ,
but we are not yet in a position to prove the opposite inclusion, not until we have
established that the map hi

T 0
W Ui! T 0 has at least 2 gates at each vertex.

Preparation for Step 2 Here are some structural facts about the components of � 0i .
Consider a vertex v 2 Si for which � 0i;v ¤∅ and so is a component of � 0i . Given an
oriented edgelet e � Si we abuse notation by writing e 2DvSi to mean that v is the
initial vertex of e . There is a function �i;vW DvSi ! Ui where for each e 2DvSi we
define �i;v.e/2� 0i;v to be the initial vertex of the corresponding oriented edgelet ze�Ui .
Note that the set image.�i;v/ is the topological frontier of the subtree � 0i;v in the tree
Ui . By Lemma 1.2(3) it follows that � 0i;v is the convex hull of the set image.�i;v/ in
Ui . Notice also that the function �i;v is constant on each gate of DvSi with respect
to the map f i

K
, for if e1; e2 2DvSi are in the same gate then f i

K
.e1/D f

i
K
.e2/ is a

single edgelet in SK , which lifts to a unique edgelet e0 � T 0 and we have

hi
K .ze1/D^.f

i
K .e1/; e

0/D^.f i
K .e2/; e

0/D hi
K .ze2/

and so the initial endpoints of ze1 and ze2 have the same image under hi
K

. But these
initial endpoints are in the graph � 0i;v on which hi

K
is injective, so these initial endpoints

are equal. Letting �vSi denote the set of gates of f i
K

in DvSi , the map �i;v induces a
map, which we also denote �i;vW �vSi! � 0i;v , whose image is also the frontier of � 0i;v .
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We now study the extent to which the maps hi
K
W Ui!UK are foldable. Note first that

we may identify T 0 with the pushout ^.SK ;T
0/ and so we may identify UK D T 0

and � 0
K
D � 0 up to simplicial conjugacy and we may identify hi

K
D hi

T 0
; in particular,

the gates of hi
K

and of hi
T 0

are therefore identical. We will show that hi
T 0

has at least
2 gates at each vertex of Ui , so a vertex is either good, meaning it has valence at least
3 and at least 3 gates or valence 2 and 2 gates, or bad, meaning it has valence at least
3 but only 2 gates. We shall do this through a case analysis, going through various
cases of good vertices and narrowing down to one remaining case, which is bad. This
will yield an explicit description of the bad vertices, which will be used in describing
the free splitting F Õ Ti .

Fix a vertex uD .v; w/2Ui , so if � 0i;v¤∅ then u2 � 0i;v . Denote xDf i
K
.v/D� 0.w/.

Consider first the case that � 0i;v D ∅; we shall show that u is good. We have a
commutative diagram of derivative maps

DvSi

dvf
i

K // DxSK

DuUi

du�
0
k

OO

duhi
T 0 // DwT 0

dw�
0

OO

where the left arrow is a bijection, i.e., the valences of u and v are equal. Also, the
set image.duhi

T 0
/ is in the domain of definition of the right arrow and the right arrow

is an injection on its domain of definition. The number of gates at u; v are therefore
equal. Since f i

K
is foldable it follows that u is good.

Consider now the case that � 0i;v ¤ ∅. To simplify notation we denote W D � 0i and
Wv D �

0
i;v . Each gate of hi

T 0
in DUi is contained either in DW or its complement

D.Ui nW /DDUi �DW , because W D � 0i D .h
i
T 0
/�1.� 0/ implying that hi

T 0
never

maps a direction of W and a direction of Ui nW to the same direction of T 0 . Since
hi

T 0
is injective on Wv , each direction in the set DuWv constitutes an entire gate of

DuUi . Gates at u in the complement DuUi�DuWv exist if and only if u is a frontier
vertex of Wv , if and only if u is in the image of �i;vW DvSi!Wv .

Consider the subcase that v has valence 2 in Si . The graph Wv is then a segment
contained in the interior of a natural edge of Ui . The vertex u therefore has valence 2

in Ui , with either 2 directions in Wv or one each in Wv and in Ui nWv , and in either
case these 2 directions are mapped by hi

T 0
to two different directions in T 0 and so u

is good.

Consider the subcase that v has valence at least 3 in Si . If the valence of u in Wv

plus the number of gates at u in the complement of Wv is at least 3 then hi
T 0

has at
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least 3 gates at u, so u is good. If u is an interior vertex of Wv then u has valence
at least 2 in Wv by minimality of F Õ Ui ; furthermore, the valences of u in Wv

and in Ui are equal and the number of gates of hi
T 0

at u equals the valence, so u is
good. If u is a frontier vertex of valence at least 2 in Wv then u has at least 1 gate
in the complement of Wv and we considered this case already and showed that u is
good. If u is a frontier vertex of valence 1 in Wv and if u has at least 2 gates in the
complement of Wv then we have also considered this case already and showed that u

is good. If u is a frontier vertex of valence 1 in Wv and u has exactly 1 direction in
the complement of Wv then u has valence 2 in Ui and 2 gates, so u is good.

The only case that remains, and the case that characterizes when u is bad, is when v
has valence at least 3 in Si , u is a frontier vertex of Wv , u has valence 1 in Wv , u

has exactly one gate in the complement of Wv and that gate has cardinality �u � 2

called the external valence of u. When in this case, let �u be the unique natural edge
of Ui with endpoint u and with direction at u equal to the unique direction of Wv at
u. We call �u the bad natural edge incident to u. Let zu be the natural endpoint of �u
opposite u.

We claim that for each bad natural vertex u 2 Ui we have �u �Wv ; the only way this
could fail is if Wv is an edgelet path whose vertices apart from u all have valence 2

in Ui , implying that f i
K

has 2 gates at the natural vertex v , contradicting that f i
K

is
foldable. We claim also that zu is good; otherwise it would follow that Wv D �uD �zu

,
which again would imply the contradiction that f i

K
has 2 gates at v .

The union of the bad natural edges of Ui forms an equivariant natural subgraph denoted
Zi D

S
�u � Ui . The natural edges of its complement Ui nZi are the good natural

edges of Ui , some of which may be contained in W , some in Ui nW , and some in
neither. The endpoints of a good natural edge need not be good. From the description
of bad natural edges it follows that each component of Zi contains a unique good
vertex z and is the union of some number m� 1 of bad natural edges with endpoint z ,
forming a star graph with m valence 1 vertices apart from z .

Step 2 Ignoring the simplicial structure for the moment, define the free splitting
F Õ Ti to be the one obtained from F Õ Ui by collapsing the bad subgraph Zi �Ui .
Let

�i W Ui

ŒZi �
��! Ti

be the collapse map. Note that �i restricts to an equivariant bijection from the good
natural vertices of Ui to the natural vertices of Ti , because Zi is a natural subgraph,
each of whose components contains exactly one good natural vertex. Also, �i induces
a bijection from the good natural edges of Ui — those in Ui nZi — to the natural edges
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of Ti : denote this correspondence by z�$ � for each good natural edge �� Ti , and
note that �i maps z� homeomorphically to �.

Define the map �i W Ti ! Ui as follows. The restriction of �i to the natural vertices
of Ti is the equivariant bijection onto the good natural vertices of Ui that is obtained
by inverting �i . The endpoints of each natural edge of Ti map to distinct points of Ui ,
and so �i may be extended equivariantly and continuously to be an injection on each
natural edge of Ti .

Define the simplicial structure on Ti to be the unique one with respect to which �i

is a simplicial map: its vertices are the inverse image under �i of the vertices of Ui ;
each of its edgelets maps via �i by simplicial isomorphism to an edgelet of Ui .

Define the subgraph �i � Ti to be ��1
i .� 0i/; we will see below that � 0i ı�i W Ti! Si

is a collapse map that collapses the subgraph �i .

Knowing that �i is injective on each natural edge of Ti , we describe the image of
each natural edge as follows. The notation u 7! zu , which so far defines an equivariant
function from the bad natural vertices of Ui to the good natural vertices of Ui , extends
to all natural vertices of Ui by defining zu D u when u is good. For each natural
vertex u 2 Ui we have �i.�i.u// D zu : if u D zu is good this is because �i and
�i are inverse bijections between good natural vertices of Ui and all natural vertices
of Ti ; if u is bad then u and zu are contained in the same component of Zi so
�i.u/D �i.zu/ and hence �i.�i.u//D �i.�i.zu//D zu . Given a natural edge �� Ti

with corresponding good natural edge z��Ui , letting u1;u2 2Ui be the endpoints of z�
and letting zi D zui

2Ui , it follows that �i.�/D�i.�i.z�// is the arc in Ui connecting
z1 to z2 , which is just the union of z� together with the bad natural edges incident to
whichever of u1;u2 are bad.

From this description of �i we derive a few more properties of �i , giving details about
its behavior over good and bad natural edges of Ui , and its behavior on natural edges
and natural vertices of Ti .

(a) �i over good natural edges of Ui The map �i is injective over the interior
of each good natural edge z� � Ui , the closure of ��1

i .int.�// is an edgelet
path contained in �, and the restriction of �i to this edgelet path is a simplicial
isomorphism onto z�.

(b) �i over bad natural edges of Ui For each bad natural edge �u�Ui oriented
to have terminal point u and initial point zu , letting �u be the external valence
of u, letting z�` � Ui (`D 1; : : : ; �u ) be the oriented good natural edges with
common initial point u, and letting �` D �i.z�`/ � Ti be the corresponding
oriented natural edges with common initial point w D �i.u/, there exist initial
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segments Œw;w`� � �` , ` D 1; : : : ; �u , such that �i maps each Œw;w`� to
�u by a simplicial isomorphism and such that ��1

i .�u/ D
S�u

`D1
Œw;w`� � �i .

Furthermore each w` is a valence 1 vertex of �i .

Intuitively (a) and (b) together say that �i is a “partial multifold”, which for each of its
gates identifies proper initial segments of the oriented natural edges representing that
gate. Perhaps the only nonobvious part of (a) and (b) is the last sentence of (b). For
each bad natural vertex u2Ui , from (a) and the previous sentences of (b) it follows that
��1

i .u/D fw1; : : : ; w�u
g, and that for each `D 1; : : : ; �u the vertex w` is contained

in the interior of the natural edge �` , one direction being in the segment Œwu; w`�� �i

and the other direction being in the closure of ��1
i .int.�`//, which is in Ti n �i , and

so w` has valence 1 in �i .

(c) �i on natural edges of Ti The restriction of �i to each good natural edge of
Ti is injective. Furthermore, an embedded edgelet path ˛ �Ui is the �i –image
of some good natural edge of Ti if and only if the endpoints of ˛ are good
natural vertices of Ui , no interior point of ˛ is a good natural vertex, and hi

K
j ˛

is injective.

Only the “if” part of (c) is not obvious. Let ˛�Ui be an embedded edgelet path whose
only good natural vertices are its endpoints, and suppose that hi

K
j ˛ is injective. If ˛

contains no bad natural vertex then ˛D z� is a good natural edge with associated natural
edge �� Ti and ˛D�i.�/. If u 2 ˛ is a bad natural vertex then u 2 int.˛/, and since
hi

K
j ˛ is injective it follows that one direction of ˛ at u is the direction of the bad

natural arc �u , whose opposite good natural endpoint zu must be an endpoint of ˛ ; the
edgelet path ˛ is therefore the concatenation of some natural edge z�� Ui nZi with
any bad natural edges incident to the endpoints of z�, and it follows that ˛ D �i.�/.

(d) d�i at natural vertices of Ti For each natural vertex v 2 Ti , the map
dv�i W DvTi!D�i .v/Ui is surjective.

To justify (d), the vertex �i.v/ is a good natural vertex of Ui . Consider a direction
d 2D�i .v/Ui . If d is the initial direction of some oriented good natural edge z�� Ui

corresponding to an oriented natural edge �� Ti , it follows that the initial vertex of �
equals v and the initial direction of � maps to d . If d is the initial direction of some
bad oriented natural edge �u 2 Ui with opposite bad natural vertex u, let z� be any of
the good natural edges incident to u oriented with initial vertex u, and let �� Ti be
the corresponding oriented natural edge, and it follows that the initial vertex of � again
equals v and that the initial direction of � maps to d .
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We now prove that we have a collapse map

�i D �
0
i ı�i W Ti

�iD.�i /
�1.� 0

i
/

����������! Si :

Clearly an edgelet of Ti is in �i if and only its image under �i is in � 0i if and only if
its image under �i D �

0
i ı�i is a point. Given an edgelet e � Si , the collapse map

� 0i is injective over the interior of e , so there is a unique edgelet e0 � Ui mapped to e

by � 0i , and e0 6� � 0i ; it follows that e0 6� Zi and so by item (a) above the map �i is
injective over the interior of e0 ; therefore �i is injective over the interior of e .

Putting off for the moment the issue of defining the maps gi W Ti�1! Ti , we define the
maps gi

K
W Ti! TK as follows. First note that the map �K W TK ! UK is evidently a

simplicial isomorphism, and so we may identify TK with UK and with T 0 . We now
define gi

K
to be the composition

Ti

�i
�! Ui

hi
K
��! UK

.�K /
�1

�����! TK :

The map gi
K

is foldable, equivalently hi
K
ı�i W Ti!UK is foldable, for the following

reasons: by (c) the map gi
K

is injective on natural edges of Ti ; for each natural vertex
v 2 Ti , its image �i.v/ 2 Ui is a good natural vertex and so has at least 3 gates with
respect to hi

K
, and by (d) the derivative map dv�i W DvTi !D�i .v/Ui is surjective,

which implies that hi
K
ı�i has at least 3 gates at v .

All that remains is to define a map gi W Ti�1! Ti so that the commutativity equation
hi ı�i�1D�i ıgi holds, for by combining this with the equation hi�1

K
D hK ı � � � ıhi

it immediately follows that gi�1
K
D gK ı � � � ıgi and so the map sequence

T0

g1
�! � � �

gK
��! TK

is defined and is foldable.

Consider a natural vertex v 2 Ti�1 . Its image �i�1.v/ 2Ui�1 is a good natural vertex
and so has at least 3 gates with respect to hi�1

K
, implying that hi.�i�1.v// 2 Ui has

at least 3 gates with respect to hi
K

and so is a good natural vertex, and hence there is
a unique natural vertex in Ti that maps to hi.�i�1.v//, which we take to be gi.v/.
We have thus defined gi so as to satisfy the commutativity equation on each natural
vertex v 2 Ti�1 .

Consider a natural edge ��Ti�1 with natural endpoints v0¤ v1 . Its image �i�1.�/�

Ui�1 is the arc with good natural endpoints �i�1.v0/¤�i�1.v1/. By (c) above the map
hi�1

K
Dhi

K
ıhi is injective on the arc �i�1.�/, implying that hi is injective on �i�1.�/

and that hi
K

is injective on the arc hi.�i�1.�// � Ui , the latter of which has good
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natural endpoints hi.�i�1.v0//¤ hi.�i�1.v1//. Subdividing the arc hi.�i�1.�// at
all interior good natural vertices of Ui , we write it as a concatenation:

hi.�i�1.�//D ˛1 � � � � �˛M :

Each of the arcs ˛m , mD1; : : : ;M has good natural endpoints, no good natural interior
points, and the map hi

K
is injective on ˛m , and so by (c) there is a unique natural edge

y̨m � Ti mapped by �i to ˛m by a simplicial isomorphism. Since every good natural
vertex in Ui has a unique natural pre-image in Ti , it follows that we may concatenate
to obtain an arc y̨1 � � � � � y̨m � Ti , and furthermore the restriction �i j y̨1 � � � � � y̨m

is a simplicial isomorphism onto hi.�i�1.�//. Inverting this restriction, we may then
define

gi j �D .�i j y̨1 � � � � � y̨m/
�1
ı .hi ı�i�1/ j �;

which is a simplicial isomorphism with image y̨1 � � � � � y̨m . We have thus defined gi

so as to satisfy the commutativity equation on each natural edge �� Ti�1 .

This completes the proof of Proposition 4.4.

4.3 Composition and decomposition of combing rectangles

Lemma 4.5 (Composition of combing rectangles) Given two combing rectangles of
the form

S0

f1 //

�0

��

� � �
fi // Si

fiC1 //

�i

��

� � �
fK // SK

�K

��
T0

g1 //

�0

��

� � �
gi // Ti

giC1 //

�i

��

� � �
gK // TK

�K

��
U0

h1 // � � �
hi // Ui

hiC1 // � � �
hK // UK

their composition, which is the commutative diagram

S0

f1 //

�0ı�0

��

� � �
fi // Si

fiC1 //

�iı�i

��

� � �
fK // SK

�Kı�K

��
U0

h1 // � � �
hi // Ui

hiC1 // � � �
hK // UK

is a combing rectangle. The collapsed subgraph of �i ı�i is the union of the collapsed
subgraph of �i with the inverse image under �i of the collapsed subgraph of �i .
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Proof For each edgelet e � Ui , the map �i is injective over the interior of e , and so
there is a unique edgelet e0 � Ti such that �i.e

0/D e . The map �i is injective over the
interior of e0 , and it follows that �i ı�i is injective over the interior of e . This proves
that �i ı�i is a collapse map and that the second diagram in the statement above is a
combing rectangle.

Given an edgelet of Si , clearly its image under �i ı�i is a vertex of Ui if and only if
its image under �i is a vertex of Ti or an edgelet of Ti whose image under �i is a
vertex of Ui .

Lemma 4.6 (Decomposition of combing rectangles) Given a combing rectangle of
the form

S0

f1 //

�0Œ�0�

��

� � �
fi // Si

fiC1 //

�iŒ�i �

��

� � �
fK // SK

�KŒ�K �

��
U0

h1 // � � �
hi // Ui

hiC1 // � � �
hK // UK

and given equivariant subgraphs � 0i � �i (i D 0; : : : ;K ) having the property that
f �1

i .� 0i/D �
0
i�1

for each i D 1; : : : ;K , there exist two combing rectangles of the form

S0

f1 //

�0Œ� 0
0
�

��

� � �
fi // Si

fiC1 //

�iŒ� 0
i
�

��

� � �
fK // SK

�KŒ� 0
K
�

��
T0

g1 //

�0

��

� � �
gi // Ti

giC1 //

�i

��

� � �
gK // TK

�K

��
U0

h1 // � � �
hi // Ui

hiC1 // � � �
hK // UK

whose composition (as in Lemma 4.5) is the given combing rectangle.

Proof Define the collapse map

�i W Si

Œ� 0
i
�

��! Ti

to be the quotient map obtained by collapsing each component of � 0i to a point. Since
f �1

i .� 0i/ D � 0
i�1

, there exists a map gi W Ti�1 ! Ti induced from fi W Si�1 ! Si

under the quotient, which makes the top rectangle with the S row and the T row
commutative, and this rectangle is therefore a combing rectangle. By Lemma 4.1, the
T sequence is foldable. Define a subgraph �i D �i.�i/ � Ti . We have g�1

i .�i/ D

g�1
i .�i.�i// D �i�1.f

�1
i .�i// D �i�1.�i�1/ D �i�1 , where the second equation is
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verified by a diagram chase using that the map �i�1 is surjective, and that �i is
injective over the interior of each edgelet of Ti . Clearly the collapse map

�i W Si

Œ�i �
��! Ui

factors as the composition of

�i W Si

Œ� 0
i
�

��! Ti and a collapse map �i W Ti

Œ�i �
��! Ui ;

making the bottom diagram with the T row and the U row commutative, and this row
is therefore a combing rectangle.

5 Free splitting units

In this section we study how to break a fold sequence into natural units called free
splitting units. Our story of free splitting units grew in the telling. The original concept
was motivated by units along train track splitting paths that are implicit in the “nested
train track argument” of [15] and refinements of that argument in Masur, Mosher and
Schleimer [16]. The details of the definition were tailored to fit the proofs of our two
major results: our Main Theorem on hyperbolicity of the free splitting complex, via
the arguments of Sections 6.2, and Proposition 6.2, which says that free splitting units
give a uniformly quasigeodesic parametrization of fold paths in FS 0.F /.

The main results of this section are Proposition 5.9, which verifies the coarse retraction
axiom of Masur and Minsky, and Lemma 5.11, which says that free splitting units give
a uniformly coarse Lipschitz parametrization of fold paths in FS 0.F /. Underlying
Lemma 5.11 are Lemmas 5.2 and 5.5, which give two methods of finding diameter
bounds along foldable sequences.

The diameter bounds, which are stated and proved in Section 5.1, arise from finding
“invariant natural structures” along the foldable sequence. The first diameter bound,
Lemma 5.2, occurs when each free splitting along the fold path decomposes equivari-
antly into a pair of natural subgraphs in a manner that is “invariant” with respect to the
foldable maps (see Definition 5.1). The second diameter bound, Lemma 5.5, occurs
when each free splitting has a particular orbit of natural edges that is “almost invariant”
with respect to the foldable maps (see Definition 5.4).

The combinatorial structures underlying the two diameter bounds are used to formulate
the definition of free splitting units along a fold sequence (see Definitions 5.6 and 5.10).
The diameter bounds are not applied directly to the fold sequence itself, but instead to
foldable sequences obtained by transforming the given fold sequence via an application
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of “combing by collapse” followed by an application of “combing by expansion”. One
can already see this kind of transformation in the “nested train track argument” of [15].

5.1 Diameter bounds along foldable sequences

In this section we describe a pair of techniques for finding upper bounds on the diameter
of foldable sequences.

Diameter bounds from natural red-blue decompositions Consider a free splitting
F Õ T and a nonempty, proper, F –invariant subgraph ˇ � T having no degenerate
components. The conjugacy classes of nontrivial stabilizers of connected components
of ˇ form a free factor system F.ˇ/, as one can see by forming the collapse map

T
Œˇ�
��! U

and noting that F.ˇ/ is a subset of F.U /. Passing further to the quotient graph of
groups X D U=Fn , the image of ˇ under the composition T 7! U 7!X is a subset
Vˇ of the vertex set of X . Let C1.ˇ/ be the number of F –orbits of components
of ˇ , equivalently, the cardinality of Vˇ . Let C2.ˇ/ be the sum of the ranks of the
components of F.ˇ/, equivalently, the sum of the ranks of the subgroups labelling the
vertices Vˇ in the graph of groups X , and so we have 0�C2.ˇ/� rank.F /. Defining
the complexity of ˇ to be C.ˇ/� C1.ˇ/C .rank.F /�C2.ˇ//, we have C.ˇ/� 1. If
furthermore ˇ is a natural subgraph of S then C1.ˇ/ � 3 rank.F /� 3, because the
number of component orbits of ˇ is at most the number of natural edge orbits in ˇ ,
and 3 rank.F /� 3 is an upper bound for the number of natural edge orbits of any free
splitting of F . Altogether this shows that the complexity of any nonempty, proper,
natural, F –invariant subgraph ˇ � T satisfies

1� C.ˇ/� 4 rank.F /� 3:

Definition 5.1 (Invariant blue–red decompositions) An invariant blue–red decompo-
sition for a foldable sequence

T0

g1
�! T1

g2
�! � � �

gk
��! TK ;

also called an invariant decomposition for short, is a decomposition ˇk [ �k D Tk

for each k D 0; : : : ;K such that for 0 � i � j � K we have .gi
j /
�1. ǰ / D ˇi and

.gi
j /
�1.�j /D �i (where in expressions like .gi

j /
�1. ǰ / we abuse notation by deleting

degenerate components). Notice that any choice of final decomposition ˇK [�K DTK

determines a unique invariant decomposition by the equations ˇi D .g
i
K
/�1.ˇK / and

�i D .g
i
K
/�1.�K /.
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An invariant decomposition is natural if either of the following two equivalent properties
holds: ˇ0; �0 are natural subgraphs of T0 , which holds if and only if ˇk ; �k are natural
subgraphs of Tk for all k D 0; : : : ;K . The “only if” direction follows by observing
that the image of each natural vertex under a foldable map is a natural vertex, and so
the image of a natural subgraph is a natural subgraph.

Because an invariant decomposition is determined by the final decomposition, a general
invariant decomposition carries little information about the foldable sequence. The
typical behavior is that the edgelets within a natural edge e � Ti will alternate many
times between red and blue, that is, the number of components of e\ˇi and e\ �i

will be very large. Exploiting the difference between this typical behavior and the
contrasting special behavior of a natural invariant decomposition is at the heart of the
proof of the Main Theorem, specifically in the proof of Proposition 6.5 Step 2.

Here is our first diameter bound:

Lemma 5.2 Given a foldable sequence

T0

g1
�! T1

g2
�! � � �

gk
��! TK

with an invariant natural decomposition ˇk [ �k D Tk , the following hold:

(1) The complexity C.ˇk/ is nonincreasing as a function of k D 0; : : : ;K .

(2) The interval 0� k �K subdivides into at most 4 rank.F /� 3 subintervals on
each of which C.ˇk/ is constant.

(3) If C.ˇk/ is constant on the subinterval a� k � b , where 0� a� b �K , then

diamfTa; : : : ;Tbg � 4:

Remark When
T0

g1
�! T1

g2
�! � � �

gk
��! TK

is a fold sequence, one obtains a diameter bound for the entire sequence as follows.
Subdivide the interval 0; : : : ;K into at most 4 rank.F / � 3 subintervals on which
C.ˇk/ is constant. On each subinterval one has a diameter bound of 4. At each of the
at most 4 rank.F /� 4 fold maps where one subinterval transitions to another, one has
an additional distance bound of 2 coming from Lemma 2.5. Putting these together,

diamfT0; : : : ;TK g � 4.4 rank.F /� 3/C 2.4 rank.F /� 4/D 24 rank.F /� 20:

However, the manner in which we actually apply Lemma 5.2 to fold sequences is via
concepts of free splitting units in the next section; see Lemma 5.11.
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Before turning to the proof proper of Lemma 5.2, we first state a sublemma about the
behavior of complexity of invariant subforests under fold maps.

Sublemma 5.3 If f W S!T is a fold map of free splittings, if ˇT �T is a nonempty,
proper, F –invariant subgraph, and if ˇS D f

�1.ˇT / (as usual ignoring degenerate
components), then C1.ˇS /�C1.ˇT /, and C2.ˇS /�C2.ˇT /, and so C.ˇS /�C.ˇT /.
Furthermore, equality holds if and only if f restricts to a bijection of component sets
of ˇS and ˇT .

We delay the proof of this sublemma and meanwhile turn to:

Proof of Lemma 5.2 Item (1) follows from Sublemma 5.3 by factoring each foldable
map gk W Tk�1 ! Tk into folds. Item (2) follows from (1) and the fact that 1 �

C.ˇK /� C.ˇ0/� 4 rank.F /� 3.

To prove (3), fixing i; j with a � i < j � b , it suffices to prove that d.Ti ;Tj / � 4.
By the hypothesis of (3), C.ˇk/ is constant for i � k � j . For each i < k � j ,
factoring gk W Tk�1! Tk into folds, applying (1) to get constant complexity on the
fold factorization, and applying Sublemma 5.3 to each of those folds, it follows that
gk induces a bijection between the component sets of ˇk�1 and ˇk . By composing, it
follows that gi

j D gj ı � � � ıgiC1 induces a bijection between the component sets of ˇi

and ǰ .

Now we may factor gi
j into a fold sequence of the form

Ti D U0

h1
�! � � �

hP
��! UP

hPC1

����! � � �
hQ

��! UQ D Tj

by prioritizing folds of blue edge pairs over folds of red edge pairs up until UP when
there are no more blue edge pairs to fold, with the result that if 0 < p � P then an
edge pair of Up�1 folded by fp is blue, whereas if P < q �Q then an edge pair of
Sq�1 folded by hq is red. To see that prioritizing in this manner is possible, if gi

j

does not already restrict to a simplicial isomorphism from ˇi to ǰ then, using that
gi

j induces a bijection of components of ˇi and ǰ , together with the local to global
principle (see the proof of Lemma 2.7 and the following remark), it follows that some
pair of oriented natural edges �1; �2 � ˇi with the same initial vertex have images in

ǰ with the same initial direction. We may therefore define the first fold h1 to be a
maximal fold factor of gi

j obtained by folding �1; �2 , producing a factorization

Ti D U0

h1
�! U1 7! Tj :

Pushing the natural blue–red decomposition of U0 forward (or equivalently pulling that
of Tj back), we obtain a natural blue–red decomposition of U1 , and the map U1 7! Tj
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still induces a bijection of component sets of blue graphs. We may then continue by
induction, stopping when the map UP 7! Tj restricts to a simplicial isomorphism of
blue graphs. If the map UP 7! Tj is not already a simplicial isomorphism then one
continues the fold factorization arbitrarily, with the result that all folds from UP to Tj

are red.

For 0� p � P , by collapsing all blue edges of Up , we obtain a free splitting Xp with
a collapse map Up 7! Xp . Also, for P � q �Q, by collapsing red edges of Uq we
obtain a free splitting Yq with a collapse map Uq! Yq .

We claim that, up to equivalence, Xp is independent of p D 0; : : : ;P and Yq is
independent of q D P; : : : ;Q. From this claim it follows that Ti ;Tj are connected in
FS 0.Fn/ by a path of length at most 4 as follows:

ŒTi �D ŒU0�� ŒX0�D ŒXP �� ŒUP �� ŒYP �D ŒYQ�� ŒUQ�D ŒTj �

This completes the proof.

We prove for each pD1; : : : ;P that Xp�1;Xp are equivalent, and for qDPC1; : : : ;Q

that Yq�1;Yq are equivalent; the two cases are similar and we do just the first. Let
e1; e2 be maximal oriented segments with the same initial vertex that are identified by
the fold Up�1 7! Up . Recall that the fold map Up�1 7! Up can be factored as

Up�1

q0

�! U 0
q00

�! Up

where q0 identifies proper initial segments of e1; e2 and q00 folds the remaining uniden-
tified segments. Since e1; e2 are blue, by pushing forward the blue–red decomposition
of Up�1 , or pulling back that of Up , we obtain a blue–red decomposition of U 0 .
Furthermore, there is a collapse map U 0 7! Up�1 that collapses the blue segment
resulting from partially identifying e1; e2 , and a collapse map U 0 7! Up that collapses
the remaining unidentified segments, also blue. By composition we obtain collapse
maps U 0 7! Up�1!Xp�1 and U 0 7! Up 7!Xp , each of which collapses the entire
blue subgraph of U 0 . It follows that Xp�1 and Xp are equivalent.

Proof of Sublemma 5.3 Let e1; e2 � S be oriented natural edges with the same
initial vertex that are folded by the map f . Let �1 � e1 , �2 � e2 be maximal initial
subsegments that are identified by f . Let v1 2 �1 , v2 2 �2 be the terminal endpoints.
Note that either �1[�2�ˇS or �1[�2�S nˇS . If �1; �2�ˇS , or if �1; �2�S nˇS

and either v1 62 ˇS or v2 62 ˇS , then all inequalities are equations and f is a bijection
of component sets.

We are reduced to the case that �1[ �2 � S nˇS and v1; v2 2 ˇS , and so f is not a
bijection of component sets because the two components ˇS;1; ˇS;2 of ˇS containing
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v1; v2 are mapped to the one component ˇT;0 of ˇT that contains f .v1/ D f .v2/.
We must prove that the inequalities C1.ˇS / � C1.ˇT / and C2.ˇS / � C2.ˇT / both
hold and that at least one of them is strict.

Let the fold map f W S ! T be factored as S 7! U 7! T , where S 7! U folds short
initial segments of �1; �2 , and U 7! T folds the remaining segments, as in the proof
of Lemma 2.5. Let u1;u2 2 U be the images of v1; v2 . In order to compare the
complexities of ˇS � S and ˇT � T we shall move them both into U where we can
make the comparison directly.

Letting ˇU � U be the image of ˇS , equivalently the preimage of ˇT , the fold map
S 7! U clearly induces an equivariant bijection from the component set of ˇS to
that of ˇU , and so the values of C1 , C2 and C on ˇS ; ˇU are all equal. Letting
ˇC

U
D ˇU [F � Œu1;u2�, the fold map U 7! T induces an equivariant bijection from

the component set of ˇC
U

to that of ˇT , and so the values of C1 , C2 and C on
ˇC

U
; ˇT are equal. So now we must prove the inequalities C1.ˇU / � C1.ˇ

C

U
/ and

C2.ˇU /� C2.ˇ
C

U
/ and that at least one of them is strict.

Let ˇU;1 , ˇU;2 be the images of ˇS;1 , ˇS;2 , respectively, under the fold map S 7!U .
In the quotient graph of groups U=F , notice that ˇC

U
=F is the union of ˇU =F with the

segment obtained by projecting Œu1;u2�, that segment is disjoint from ˇU =F except
at its endpoints, it has one endpoint on ˇU;1=F and the other endpoint at ˇU;2=F , and
the stabilizer of the interior vertex of that segment is trivial. It follows that if C1.ˇU / >

C1.ˇ
C.U //, that is, if ˇU;1 , ˇU;2 are in different component orbits, then C1.ˇU /D

C1.ˇ
C

U
/C 1 and C2.ˇU /D C2.ˇ

C

U
/. On the other hand if C1.ˇU /D C1.ˇ

C

U
/, that

is if ˇU;1 and ˇU;2 are in the same component orbit, then C1.ˇU / D C1.ˇ
C

U
/ and

C2.ˇU /C 1D C2.ˇ
C

U
/.

Diameter bounds from almost invariant edges Consider a foldable map f W S!T

and a natural edge eT � T . By ignoring unnatural vertices in eT and their pre-images
in S we may speak about eT –edgelets in S ; these are the closures of the components
of f �1.int.eT //, each of which is a subsegment of a natural edge of S . If S contains
a unique eT –edgelet and if eS � S is the natural edge containing that edgelet then we
say that the pair eS ; eT is an almost invariant edge of the foldable map f .

Definition 5.4 (Almost invariant edge) An almost invariant edge for a foldable
sequence

T0

f1
�! T1

f2
�! � � �

fk
�! TK

is a sequence of natural edges ek � Tk , k D 0; : : : ;K , such that for 0 � i < j �K

the edges ei � Ti and ej � Tj are an almost invariant edge for the foldable map
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f i
j W Ti!Tj . Note that an almost invariant edge exists for the whole foldable sequence

if and only if one exists for the map f 0
K
W T0! TK . To see why, observe that for any

natural edge eK � TK , letting mk be the number of eK edgelets in Tk , the sequence
mk is nonincreasing as a function of k 2 0; : : : ;K . If there is a natural edge e0 � T0

so that e0; eK is an almost invariant edge for the map f 0
K

, then m0 D 1, and so mk

has constant value equal to 1. Letting ek � Tk be the unique natural edge containing
an eK edgelet in Tk , it follows that .ek/0�k�K is an almost invariant edge for the
whole foldable sequence. This argument also shows that each almost invariant edge for
a foldable sequence T0 7! � � � 7! TK is determined by its last term eK � TK .

Here is our second diameter bound:

Lemma 5.5 Given a foldable sequence T0 7! � � � 7! TK , the following are equivalent:

(1) The foldable map T0 7! TK has an almost invariant edge.

(2) The foldable sequence T0 7! � � � 7! TK has an almost invariant edge.

(3) There exists a one-edge free splitting R such that d.Tk ;R/�1 for all k between
0 and K .

(4) There is a one-edge free splitting R such that d.T0;R/� 1, and d.TK ;R/� 1.

Furthermore if these hold then diamfT0; : : : ;TK g � 2.

Proof The bound in the last sentence clearly follows from (3). We have seen that
.1/D) .2/, and clearly .3/D) .4/.

We next prove .2/D) .3/. Let .ek/kD0;:::;K be an almost invariant edge. Let �k � Tk

be the complement of the orbit of the natural edge ek . Define a collapse map

Tk

Œ�k �
��!Rk ;

so Rk is a one-edge free splitting. It suffices to prove for each k D 1; : : : ;K that
ŒRk�1� D ŒRk �. Letting e0

k�1
� ek�1 be the unique ek –edgelet in Tk�1 , letting

� 0
k�1
� Tk�1 be the complement of the orbit of e0

k�1
, and defining a collapse map

Tk�1

Œ� 0
k�1

�
����!R0k�1;

clearly the map Tk�1 7! Tk induces an equivariant homeomorphism R0
k�1
! Rk ,

and so ŒR0
k�1

�D ŒRk �. Also, since �k�1 is the maximal natural subgraph of � 0
k�1

, the
identity map on Tk�1 induces a collapse map Rk�1!R0

k�1
, which is a bijection on

natural vertices and which, on each natural edge of Rk�1 , collapses an initial and/or
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terminal segment and is otherwise injective. It follows that the collapse map Rk�1 7!

R0
k�1

is equivariantly homotopic to a conjugacy, and so ŒRk�1�D ŒR
0
k�1

�D ŒRk �.

It remains to prove .4/ D) .1/. After rewording, this says that if f W S ! T is a
foldable map of free splittings, and if there exists a one-edge free splitting R such that
d.R;S/; d.R;T /� 1, then f W S ! T has an almost invariant edge. Fix an oriented
natural edge eR �R with initial and terminal vertices r˙ , and oriented natural edges
eS � S , eT � T with initial and terminal vertices s˙; t˙ respectively, so that there
are collapse maps S;T 7!R that collapse the complement of the orbits of eS ; eT and
which take eS ; eT homeomorphically to eR . We shall prove that eS ; eT is an almost
invariant edge for f W S ! T .

There is a component decomposition R n eR D R� tRC , where R˙ contains the
vertex r˙ and there are corresponding component decompositions S n eS D S� tSC ,
T neT DT�tTC so that S˙;T˙ are the inverse images of R˙ , respectively, under the
collapse maps S;T 7!R (in general the “˙” notation means “C or �, respectively”;
for instance “S˙ is the inverse image of R˙” means “SC;S� is the inverse image
of RC;R� , respectively”). Note that R˙;S˙;T˙ are natural subgraphs of R;S;T ,
respectively. Also, r˙ is the unique point on the topological frontier of R˙ in R, and
similarly for S˙;T˙ . Also, each vertex in each of these subgraphs has valence at least
2 within the subgraph: in, say, R� , this is obvious for all interior vertices, and the
frontier vertex r� is a natural vertex in R having only one R–direction not in R� ,
namely the direction of eR .

It suffices to prove that f .S˙/ � T˙ , which immediately implies that eS ; eT is
an almost invariant edge for f W S ! T . Assuming that either f .S�/ 6� T� or
f .SC/ 6� TC , we shall produce a contradiction. The arguments are similar in either
case, so we shall assume that f .S�/ 6� T� .

Given a free splitting F Õ U and a nontrivial 
 2 F let ˛U .
 / denote either the axis
of 
 in U or the unique vertex of 
 fixed by U . Let F˙ denote the set of nontrivial

 2 F such that ˛R.
 /�R˙ . Note that for each natural edge e �R˙ there exists

 2 F˙ whose axis under the action F Õ R contains e . It follows that

R˙ D
[

2F˙

˛R.
 /:

Note also that

(1) S˙ D
[

2F˙

˛S .
 / and T˙ D
[

2F˙

˛T .
 /.

To prove this for S� , say, note first that the collapse map S 7! R takes S˙ to R˙
and its restriction to ˛S .
 / has image ˛R.
 / for each 
 2 F . If ˛S .
 / � S� then
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˛R.
 /�R� and hence 
 2 F� , and since the axes contained in S� cover S� we get
one inclusion S� �[
2F�˛S .
 /. For the other inclusion, if ˛S .
 / 6� S� then either
˛S .
 / crosses eS and so ˛R.
 / crosses er , or ˛S .
 / � SC and so ˛R.
 / � RC ,
and in either case 
 62 F� .

Next we show:

(2) There exists a finite number A� 0 such that T� � f .S�/�NA.T�/.

Applying the inclusion f .˛S .
 // � ˛T .
 / to all 
 2 F� and using (1) we obtain
one inclusion T� � f .S�/. The opposite inclusion follows by applying the bounded
cancellation lemma to the map f W S ! T . The version of the lemma that we need
comes from Bestvina, Feighn and Handel [4, Lemma 3.1], and although the hypothesis
there requires that the free splitting F Õ S be properly discontinuous (called there a
“free simplicial tree”), the first paragraph of that proof works exactly as stated for a
map like f that factors as a fold sequence. The conclusion of that first paragraph is
that there exists A, a bounded cancellation constant for f , such that for any vertices
x;y 2 S , in the tree T the set f Œx;y� is contained in the A neighborhood of the
segment Œf .x/; f .y/�. Applying this to our situation, we conclude that for any 
 2 F

we have f .˛S .
 //�NA.˛T .
 //. Applying this to all 
 2F� and using (1), it follows
that f .S�/�NA.T�/, completing the proof of (2).

We show that the only way for f .S�/ to cross eT is to do so rather sharply:

(3) If f .S�/ 6� T� then f .S�/D T�[ Œt�; f .s�/�. Recalling that t� is the unique
frontier point of T� , it follows that T�\ Œt�; f .s�/�D ft�g.

To see why, by (2) the tree f .S�/ n T� has finite diameter, by assumption of (3) it
is nondegenerate, and so it has at least two vertices of valence 1, at least one being
distinct from t� . The graph f .S�/ therefore has at least one vertex of valence 1. But
s� is the unique frontier vertex of S� so by the First Derivative Test the point f .s�/ is
the unique valence 1 vertex of f .S�/. Combining this with T� � f .S�/, (3) follows
immediately.

But from (3) we deduce that f W S ! T has at most 2 gates at the natural vertex s� ,
because all of the directions at s� distinct from the direction of eS are mapped by f
to a single direction at f .s�/, namely, the direction of the segment Œf .s�/; t��. This
contradicts that a foldable map has at least 3 gates at every natural vertex.
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5.2 Definitions and properties of free splitting units

Given a fold sequence

S0

f1
�! S1

f2
�! � � �

fK
��! SK ;

we shall first define what it means for Si ;Sj to “differ by less than 1 free splitting unit”
for i; j 2 0; : : : ;K , and we prove an appropriate stability result for this definition. With
this in hand, for any i; j 2 0; : : : ;K we then define the number of free splitting units
between Si and Sj . Lemma 5.8 proves that the free splitting parametrization along
the fold sequence is a Lipschitz parametrization with respect to distance in FS 0.F /.

Definition 5.6 (Less than 1 free splitting unit) Given a fold sequence

S0

f1
�! � � �

fK
��! SK

and 0� i < j �K , we say that Si ;Sj differ by less than 1 free splitting unit if there
exists a commutative diagram of the form

Ti
//

Œ�i �

��

TiC1
//

Œ�iC1�

��

� � � // Tj�1
//

Œ�j�1�
��

Tj

Œ�j �
��

S 0i
// S 0

iC1
// � � � // S 0

j�1
// S 0j

Si
fiC1

//

Œ�i �

OO

SiC1
fiC2

//

Œ�iC1�

OO

� � �
fj�1

// Sj�1
fj

//

Œ�j�1�

OO

Sj

Œ�j �

OO

whose top and bottom rectangles are combing rectangles, so that foldable sequence
Ti 7! � � � 7! Tj on the top row has either an invariant natural blue–red decomposition
of constant complexity or an almost invariant edge (by combining Lemmas 5.2 and 5.5,
this holds if and only if the foldable map Ti 7! Tj has either an invariant natural blue–
red decomposition of constant complexity or an almost invariant edge). To complete
the definition, we symmetrize the concept by requiring that Sj ;Si differ by less than 1

free splitting unit if and only if Si ;Sj differ by less than 1 free splitting unit.

The following is an immediate consequence of the definition, by restricting to the
appropriate subdiagram of the above commutative diagram:

Lemma 5.7 (Stability of free splitting units) Given a fold sequence S0 7! � � � 7! SK

and 0 � i � i 0 � j 0 � j � K , if Si ;Sj differ by less than 1 free splitting unit then
Si0 ;Sj 0 differ by less than 1 free splitting unit.
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Using these concepts we get a diameter bound as follows:

Lemma 5.8 Given a fold sequence S0 7! � � � 7! SK and 0 � i � j � K , if Si ;Sj

differ by less than 1 free splitting unit then diamfSi ; : : : ;Sj g � 8.

Proof Consider the commutative diagram in the definition of less than 1 free splitting
unit. Combining Lemmas 5.2 and 5.5, it follows that diamfTi ; : : : ;Tj g � 4. Since
d.Sk ;Tk/� 2 for each k , we have diamfSi ; : : : ;Sj g � 8.

The coarse retract axiom As an application of the concepts of free splitting units,
particularly Lemma 5.5, we now prove that our definition for projecting FS 0.S/ onto
fold paths satisfies the first of the three Masur–Minsky axioms:

Proposition 5.9 For any fold sequence S0 7! � � � 7!SK , the associated projection map
� W FS 0.F /! Œ0; : : : ;K� satisfies the coarse retraction axiom with the constant c D 6:
for any i D 0; : : : ;K we have i � �.Si/ and the diameter of the set fSi ; : : : ;S�.Si /g

is at most 6. Furthermore, there is less than 1 free splitting unit between Si and S�.Si / .

Proof We start by noticing that a projection diagram from Si to S0 7! � � � 7! SK

of depth i certainly exists, where all vertical arrows are conjugacies and all collapse
graphs are empty; see Figure 3.

S0
// : : : // Si

S0
// : : : // Si

S0
// : : : // Si

// : : : // SK

Figure 3: A projection diagram from Si to S0 7! � � � 7! SK of depth i

By definition, �.Si/ is the largest integer in the set Œ0; : : : ;K� such that (after re-
choosing the free splitting F Õ Si in its conjugacy class, and after rechoosing the
fold sequence S0 7! � � � 7! SK in its conjugacy class) a projection diagram from
Si to S0 7! � � � 7! SK of depth �.Si/ exists. This largest integer therefore satisfies
i � �.Si/ and yields a projection diagram as in Figure 4. Let e0 � S 0i be any natural
edge, and let R be the one-edge free splitting obtained from S 0i by collapsing the
complement of the orbit of e0 . Then we have collapse maps Ti 7! S 0i 7! R and
Si 7! S 0i 7! R, proving that d.Ti ;R/ � 1 and d.Si ;R/ � 1. Applying Lemma 5.5,
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the foldable sequence on the top row from Ti to Si has an almost invariant edge, and
by restriction there is an almost invariant edge from Ti to T�.Si / . Also by Lemma 5.5,
the set fTi ; : : : ;T�.Si /g has diameter at most 2, and since d.Sk ;Tk/� 2 for each k

it follows that diamfSi ; : : : ;S�.Si /g � 6. And by Definition 5.6, it follows that there
is less than 1 free splitting unit between Si and S�.Si / .

T0
//

��

: : : // Ti
//

��

: : : // T�.Si /
//

��

Si

S 0
0

// : : : // S 0i
// : : : // S 0

�.Si /

S0
//

OO

: : : // Si
//

OO

: : : // S�.Si /
//

OO

: : : // SK

Figure 4: A maximal depth projection diagram from Si to S0 7! � � � 7! SK

Definition 5.10 (General count of free splitting units) Given a fold sequence S0 7!

� � � 7! SK , for 0 � i; j �K we say that Si ;Sj differ by at least 1 free splitting unit
if they do not differ by less than 1 free splitting unit. Then, for 0 � I � J � K ,
the number of free splitting units between SI and SJ is defined to be the maximum
integer ‡ � 0 for which there exists a sequence of integers I � i.0/ < � � �< i.‡/� J

of length ‡ C 1, parametrized by integers 0 � u � ‡ , such that if 1 � u � ‡ then
Si.u�1/;Si.u/ differ by at least 1 free splitting unit. Notice that our definitions are
consistent in that ‡ D 0 if and only if, following the earlier definition, there is less
than 1 free splitting unit between SI and SJ . Also, we symmetrize the definition by
saying that the number of free splitting units between SJ and SI equals the number
between SI and SJ .

Remark In counting the number of free splitting units between Si and Sj , although
this number depends on the fold sequence Si 7! � � � 7! Sj that connects Si to Sj ,
that fold sequence will always be clear by context and we suppress this dependence in
our terminology. Notice that this number does not depend on any other details of an
ambient fold sequence of which Si 7! � � � 7! Sj might be a subinterval. In particular,
the number of free splitting units between Si and Sj is unaffected if the ambient
fold sequence is truncated by deleting an initial segment before Si and/or a terminal
segment after Sj .

Notice that with the notation as above, if 0 � u � v � ‡ then the number of free
splitting units between Si.u/ and Si.v/ equals v�u. To see why, first note that this
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number is at least v�u by construction. If it were at least v�uC1 then one could alter
the sequence i.0/ < � � �< i.‡/ by removing the entries i.u/; : : : ; i.v/ and inserting
an increasing sequence of at least v�uC 2 entries in the interval Œi.u/; i.v/�, which
amongst themselves have at least 1 free splitting unit between any consecutive two.
By stability of free splitting units the new entries would have at least 1 free splitting
units with the remaining entries outside of the interval Œi.u/; i.v/�. The new sequence
would therefore still have at least 1 free splitting units between consecutive terms, but
would have length at least ‡ C 2, contradicting the maximality of ‡ .

One can count free splitting units between SI and SJ in several ways. For example,
define the front greedy subsequence from I to J to be the sequence I D j .0/ < j .1/ <

� � � < j .‡ 0/ � J obtained by induction as follows: assuming j .u/ is defined, and
assuming Sj.u/ and SJ differ by at least 1 free splitting unit, let j .uC1/ be the least
integer greater than j .u/ such that Sj.u/ and Sj.uC1/ differ by at least 1 free splitting
unit; the sequence stops when Sj.‡ 0/;SJ differ by less than 1 free splitting unit. We
claim that ‡ 0 , the length of the front greedy subsequence, is equal to the number of free
splitting units between SI and SJ . When SI ;SJ differ by less than 1 free splitting
unit the claim is immediate. In the case where SI ;SJ differ by at least 1 free splitting
unit, clearly ‡ 0 � 1; then, noting by stability that Sj.u/;Sj.v/ differ by at least 1 free
splitting unit for 1� u< v � ‡ 0 , and using maximality of ‡ , it follows that ‡ � ‡ 0 .
For the opposite inequality we argue by contradiction assuming that ‡ � ‡ 0 C 1.
Consider any subsequence I � i.0/ < i.1/ < � � �< i.‡/� J such that Si.u�1/;Si.u/

differ by at least 1 free splitting unit for each u D 1; : : : ; ‡ . By maximality of ‡
it follows that between each of the pairs SI ;Si.0/ and Si.‡/;SJ there is less than 1
free splitting unit. By stability it follows that between SI and Si.1/ there is at least 1

free splitting unit. By definition of j .1/ we have j .1/� i.1/. By stability it follows
that Sj.1/ and Si.2/ differ by at least 1 free splitting unit from which it follows that
j .2/� i.2/. Continuing by induction we see that j .u/� i.u/ for uD 1; : : : ; ‡ 0 . But
since j .‡ 0/� i.‡ 0/ < i.‡ 0C 1/� i.‡/� J and since Si.‡ 0/;Si.‡ 0C1/ differ by at
least 1 free splitting unit, it follows by stability that Sj.‡ 0/;SJ differ by at least 1 free
splitting unit, which contradicts the definition of ‡ 0 .

In a similar fashion one proves that the number of free splitting units is equal to the
length of the back greedy subsequence I � `.‡ 00/< `.‡ 00�1/< � � �<`.1/< `.0/DJ ,
defined as follows: assuming by induction that `.u/ is defined and that SI and S`.u/
differ by at least 1 free splitting unit, `.uC 1/ is the greatest integer less than `.u/
such that S`.uC1/ and S`.u/ differ by at least 1 free splitting unit; the sequence stops
when SI , S`.‡ 00/ differ by less than 1 free splitting unit.

The following result says that a fold path which is parametrized by free splitting units
is a coarse Lipschitz path in FS.F /:
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Lemma 5.11 For any fold path S0 7! � � � 7!SK and any 0� I �J �K , if the number
of free splitting units between SI and SJ equals ‡ then the diameter in FS 0.F / of
the set fSI ; : : : ;SJ g is at most 10‡ C 8.

Proof If ‡ D 0, that is, if SI ;SJ differ by less than 1 free splitting unit, then by
Lemma 5.8 we have diamfSI ; : : : ;SJ g � 8.

If ‡ � 1, from SI to SJ let I D i.0/ < � � � < i.‡/ � J be the front greedy se-
quence. For u D 1; : : : ; ‡ , the free splittings Si.u�1/ and Si.u/�1 differ by less
than 1 free splitting unit, and so diamfSi.u�1/; : : : ;Si.u/�1g � 8. By Lemma 2.5
we have d.Si.u/�1;Si.u// � 2 and so diamfSi.u�1/; : : : ;Si.u/g � 10. It follows in
turn that diamfSI D Si.0/; : : : ;Si.‡/g � 10‡ . Since Si.‡/;SJ differ by less than
1 free splitting unit we have diamfSi.‡/; : : : ;SJ g � 8, and putting it all together,
diamfSI ; : : : ;SJ g � 10‡ C 8.

We also need the following lemma, which gives a coarse triangle inequality for free
splitting units within a fold path:

Lemma 5.12 Given a fold path S0 7! � � � 7! SK and i; j ; k 2 f0; : : : ;Kg, if ‡1 is
the number of free splitting units between Si and Sj and ‡2 is the number between
Sj and Sk then the number ‡ between Si and Sk satisfies ‡ � ‡1C‡2C 1.

Proof In the case where j is between i and k , using symmetry of free splitting units
we may assume that i � j � k . Let i D i.0/ < � � � < i.‡/ � k be the front greedy
sequence from Si to Sk . Clearly the front greedy sequence from Si to Sj is an initial
segment, implying that i.‡1/� j and i.‡1C 1/ > j , and so we have a subsequence
Si.‡1C1/; : : : ;Si.‡/ of Sj ; : : : ;Sk with the property that between any two adjacent
elements of this subsequence there is at least 1 free splitting unit. By Definition 5.10
and the hypothesis on ‡2 , the length of this subsequence is therefore at most ‡2C 1,
giving us ‡ �‡1 � ‡2C 1.

In the case where j >maxfi; kg, again using symmetry we may assume i � k < j .
Let i D i.0/ < � � �< i.‡1/� j be the front greedy subsequence between Si and Sj .
Again the front greedy subsequence between Si and Sk is an initial subsegment and
so ‡ � ‡1 � ‡1C‡2C 1.

In the case where j < minfi; kg, using symmetry we assume j < k � i , and we
proceed similarly using the back greedy subsequence between Sj and Si .
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6 Proof of the Main Theorem

We begin with a quick sketch of the proof.

Consider a free splitting T , a fold sequence S0 7! � � � 7! SK , and a maximal depth
projection diagram that defines the projection kT 2 f0; : : : ;Kg from T to this fold
sequence. The form of this projection diagram can be viewed in Section 4.1, Figure 2,
the top row of which is a foldable sequence T0 7! � � � 7! TkT

7! T . We then apply
Lemma 2.7 to factor the final foldable map TkT

7! T as a fold sequence of the form
TkT
7! � � � 7! TL D T , which we then paste into the foldable sequence on the top row

of the projection diagram to get an “augmented” projection diagram. Figure 5 shows
the original, unaugmented projection diagram and the augmented version in the same
picture. Note that the top row of the augmented projection diagram is the foldable
sequence T0 7! � � � 7! TkT

7! � � � 7! TL D T . See Section 6.1 for more details on
augmented projection diagrams.

Consider also a geodesic in the 1–skeleton of FS 0.F / starting with T and ending with
some free splitting R. This geodesic is a zig-zag path; suppose for concreteness that it
starts with a collapse and ends with an expand, T D T 0

L
� T 1

L
� T 2

L
� T 3

L
� T 4

L
�

� � � � T D
L
DR, and so D D d.T;R/D d.T 0

L
;T D

L
/ is even. By combing the foldable

sequence T0 7! � � � 7! TkT
7! � � � 7! TL D T across each collapse and expansion

in this zig-zag path one at a time, we obtain “the Big diagram, Step 0” depicted in
Section 6.3, Figure 15, which is built out of the projection diagram and an L �D

rectangle composed of D combing rectangles. Note that the interior even terms along
the zig-zag path, the free splittings T 2

L
;T 4

L
; : : : ;T D�2

L
, are “peaks” of the zig-zag.

The big L�D rectangle has the form of a corrugated aluminum roof in which the
interior even horizontal rows are peaks of the corrugations.

Our technique can be described as “pushing down the peaks”. In brief, we prove that if
one backs up from TL to some earlier term in the fold path TkT

7! � � � 7! TL , moving
back a certain fixed number of free splitting units, then the Big diagram can be simplified
by pushing the first corrugation peak down, reducing the number of corrugation peaks
by 1, as shown in “the Big diagram, Step 1”. These “back up–pushdown” arguments
are found in Section 6.2. Therefore, if the number of free splitting units between
TkT

and TL is greater than a certain multiple of the number of peaks in the zig-zag
path from TL to T D

L
then the number of corrugation peaks in the Big diagram can

be reduced to zero. With one final “back up–push down” step that uses up some of
the original projection diagram for TL , one obtains a projection diagram from R to
S0 7! � � � 7!SK , from which one concludes that the projection of R to S0 7! � � � 7!SK

is not much further back (measured in free splitting units) than SkT
, which is the

projection of T .
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The exact statement proved by these arguments is contained in Proposition 6.1, which
can be regarded as a reformulation of the coarse Lipschitz and desymmetrized strong
contraction axioms in terms of free splitting units, and which quickly implies those
axioms and the Main Theorem as shown in Section 6.1. The proof of Proposition 6.1
itself is carried out in Sections 6.2 and 6.3.

6.1 Desymmetrized strong contraction reformulated and applied

In Proposition 6.1 we reformulate the coarse Lipschitz and desymmetrized strong
contraction axioms as a joint statement expressed in terms of free splitting units. The
proposition will be proved in later subsections of Section 6.

After stating the proposition, we use it to finish off the proof of the main theorem. We
also use it to prove Proposition 6.2, which describes precisely how to reparametrize fold
paths in terms of free splitting units so as to obtain uniform quasigeodesics in FS 0.F /.

To set up Proposition 6.1, consider any fold path S0 7! � � � 7! SK , any free splitting
F Õ T and any projection diagram of maximal depth �.T / D kT 2 Œ0; : : : ;K�

as depicted in Figure 5. Applying Lemma 2.7, we may factor the foldable map
f W TkT

! T as a fold sequence, and then replace f with this factorization in the top
line of the projection diagram, to obtain a sequence of maps:

T0

f1
�! � � �

fkT
���! TkT

fkTC1

����! � � �
fL
��! TL D T:

This sequence of maps is still foldable: if 0� k � kT then f k
L

is foldable by virtue
of being a map in the original foldable sequence on the top line of the unaugmented
projection diagram; and if kT < k �L then f k

L
is foldable by virtue of being a map

in the newly inserted fold sequence (note that if one replaces any but the last map in
a foldable sequence with a fold factorization, this trick does not work: the resulting
sequence need not be foldable). We therefore obtain an augmented projection diagram
from T to S0 7! � � � 7! SK of maximal depth, as depicted also in the Figure 5.

Proposition 6.1 (Strong contraction in terms of free splitting units) Letting b1 D

4 rank.F / � 3, the following holds. Consider a fold path S0 7! � � � 7! SK , a free
splitting F Õ T with projection �.T /DkT 2 Œ0; : : : ;K�, and an augmented projection
diagram of maximal depth kT as notated in Figure 5. Let ‡ be the number of free
splitting units between TkT

and TL D T . If F Õ R is a free splitting such that
d.T;R/�max f2b‡=b1c; 1g, and if the number of free splitting units between S0 and
SkT

is at least b1 , then there exists l 2 Œ0; �.R/� such that the number of free splitting
units between Sl and SkT

is at most b1 .
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T0
//

��

� � � // TkT
//

��

f
++

� � � // TL D T

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 5: An augmented projection diagram from T to S0 7! � � � 7! SK of
maximal depth kT (with the straight arrows from TkT

to T ) is obtained
from a maximal depth projection diagram (with the curved arrow from TkT

to T labelled f ) by inserting a fold sequence factorization of the foldable
map f W TkT

! T . After this insertion the whole sequence T0 7! � � � 7!

TkT
7! � � � 7! TL D T in the top row is still a foldable sequence.

Remark To put it more plainly, Proposition 6.1 says that the projection of R to
the fold path S0 7! � � � 7! SK is no farther to the left of the projection of T than a
bounded number of free splitting units, as long as d.T;R/ is at most some bounded
proportion of the number ‡ . One can think of the number ‡ as being a stand-in
for the distance from T to the fold path S0 7! � � � 7! SK (a posterior one sees that
‡ is indeed quasicomparable to that distance). Notice that the proposition does not
apply if no projection diagram exists for T , nor if the number of free splitting units
between S0 and SkT

is too small; in either of these cases the projection of T is close
to S0 in FS 0.F /. These special situations are handled in Case 1 of the proof of the
Main Theorem.

Note that Proposition 6.1 is trivially true when �.R/ � kT , by taking l D kT . The
real meat of the proposition is when �.R/ < kT .

Proposition 6.1 is proved in Sections 6.2 and 6.3. For the rest of Section 6.1 we
shall apply Proposition 6.1 to prove first the Main Theorem and then Proposition 6.2
regarding quasigeodesics in FS 0.F /.

Proof of the Main Theorem As we showed earlier, Proposition 4.2 implies Proposi-
tion 3.3, which implies the Main Theorem. To prove Proposition 4.2 we must prove that
the projections to fold paths in FS 0.F / satisfy the coarse retraction, coarse Lipschitz,
and desymmetrized strong contraction axioms given in Section 3, with uniform constants
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depending only on rank.F /. In Proposition 5.9 we already did this for the coarse
retraction axiom. We turn to the other two axioms.

Fix the fold path S0 7! � � � 7! SK and free splittings F Õ T;R with projections
�.T /; �.R/ 2 Œ0; : : : ;K�. For verifying both the coarse Lipschitz and desymmetrized
strong contraction axioms we may assume that �.R/� �.T /. We seek to bound the
diameter in FS 0.F / of the set fS�.R/; : : : ;S�.T /g. If �.T /D 0 then �.R/D 0 and
we are done. Otherwise, after rechoosing T in its conjugacy class and rechoosing
S0 7! � � � 7! SK in its equivalence class, we may choose an augmented maximal depth
projection diagram for T and S0 7! � � � 7! SK as notated in Figure 5. Let ‡ be the
number of free splitting units between TkL

and TL D T .

Throughout the proof we denote the constants from Lemma 5.11 as

LD 10; C D 8:

It follows that along any fold path, for any two terms of that path between which the
number of free splitting units is at most

b1 D 4 rank.F /� 3;

the diameter in FS 0.F / of the segment between those two terms is at most

c DLb1CC D 40 rank.F /� 22:

This is the value of c that will be used in verifying the two axioms.

Case 1 Suppose that the number of free splittings between S0 and S�.T / is less
than b1 . Applying the inequality 0 � �.R/ � �.T / together with Stability of Free
Splitting Units, it follows that the number of free splitting units between S�.R/ and
S�.T / is < b1 . By Lemma 5.11 the diameter of the set fS�.R/; : : : ;S�.T /g is at most
c , which is the common conclusion of the coarse Lipschitz and desymmetrized strong
contraction axioms. In this case, those axioms are verified using any values of a; b .

Case 2 Suppose that the number of free splitting units between S0 and S�.T / is at
least b1 > 0.

We claim that the following statement holds:

.�/ If d.T;R/�max f2b‡=b1c; 1g then the number of free splitting units between
S�.R/ and S�.T / is at most b1 , and so the diameter in FS 0.F / of the set
fS�.R/; : : : ;S�.T /g is at most c .

To prove .�/, assume that d.T;R/ � max f2b‡=b1c; 1g. Using the hypothesis of
Case 2 we may apply Proposition 6.1, concluding that for some l 2 Œ0; �.R/� the
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number of free splitting units between Sl and SkT
is at most b1 . Using stability of

free splitting units it follows that the number of free splitting units between S�.R/ and
SkT

is � b1 . Applying Lemma 5.11 we have diamfS�.R/; : : : ;S�.T /g � c .

Since .�/ applies whenever d.T;R/� 1, the coarse Lipschitz axiom follows immedi-
ately.

To prove desymmetrized strong contraction we shall produce constants a; b > 0 so that
if a � d.T; fS0; : : : ;SK g/ and d.T;R/ � b � d.T; fS0; : : : ;SK g/ then d.T;R/ �

2b‡=b1c, for then .�/ applies and so diamfS�.R/; : : : ;S�.T /g � c .

Consider first the case that ‡ < 2b1 . By Lemma 5.11 we have d.TkT
;T / < 2b1LCC

and so d.T;S0 7! � � � 7! SK / < 2b1LC C C 2. By taking a D 2b1LC C C 2 D

80 rank.F /� 52 we may dispense with this case.

Consider next the case that ‡ � 2b1 . It follows that ‡ � 1. We have ‡=b1 �

2.‡=b1� 1/ from which it follows that

‡=b1 � 2b‡=b1c:

The number of free splitting units between TkT
and TL D T equals ‡ and so by

Lemma 5.11 we have d.T;TkT
/�L‡CC . It follows that d.T;SkT

/�L‡CCC2,
which implies that d.T;S0 7! � � � 7! SK /�L‡ CC C 2. Let

b D
1

80 rank.F /� 60
D

1

b1.LCC C 2/
�

1

b1.LC
CC2
‡
/
D

‡

b1.L‡ CC C 2/
;

where the inequality follows from ‡ � 1. We then have

b.L‡ CC C 2/� ‡=b1:

It follows that if d.T;R/� b �d.T;S0 7! � � � 7!SK / then d.T;R/�‡=b1� 2b‡=b1c

and we are done, subject to proving Proposition 6.1.

Quasigeodesic reparametrization of fold paths We can also use these arguments to
show how fold paths can be reparametrized, using free splitting units, to give a system
of uniform quasigeodesics in FS 0.F /. Recall that each fold sequence S0 7! � � � 7!SM

can be interpolated by a continuous edge path in FS 0.F /: for each fold Sm�1 7! Sm ,
the vertices Sm�1;Sm are connected in FS 0.F / by an edge path of length 2, 1 or 0,
by Lemma 2.5. Let ‡ be the number of free splitting units from S0 to SM . Choose
any sequence 0 �m0 <m1 < � � � <m‡ �M such that for uD 1; : : : ; ‡ there is at
least 1 free splitting unit between Smu�1

and Smu
. Notice that by stability of free

splitting units, the number of free splitting units between S0 and Sm1
, and between

Sm‡�1
and SM is at least 1, and so we may rechoose the first and last terms of the
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sequence so that 0Dm0<m1< � � �<m‡ DM . Choose a continuous parametrization
of the interpolating edge path of the form 
 W Œ0; ‡�!FS 0.F / such that Smu

D 
 .u/.
We call this a free splitting parametrization of the fold sequence S0 7! � � � 7! SM .

We use Proposition 6.1, in particular some details of the preceding proof, in order to
prove the following result:

Proposition 6.2 There exist constants k; c depending only on rank.F / such that any
free splitting parametrization 
 W Œ0; ‡�! FS 0.F / of any fold path S0 7! � � � 7! SM

is a k; c quasigeodesic in FS 0.F /, that is,

1

k
js� t j � c � d.
 .s/; 
 .t//� kjs� t jC c for all s; t 2 Œ0; ‡�:

Proof We continue with the constants LD 10, C D 8, b1 D 4 rank.F /� 3 from the
previous proof.

As shown back in the definition of free splitting units, for each integer uD 1; : : : ; ‡

there is exactly 1 free splitting unit between Smu�1
and Smu

. Applying Lemma 5.11,
it follows that for each uD 1; : : : ; ‡ the set fSmu�1

; : : : ;Smu
g has diameter at most

LCC . Combining this with the fact that the edge path interpolating each fold has
length at most 2 it follows that:

.��/ diam.
 Œu� 1;u�/�LCC C 1 for each uD 1; : : : ; ‡ .

Given s; t 2 Œ0; ‡�, if there is no integer in the interval Œs; t � then d.
 .s/; 
 .t// �

LCC C 1. Otherwise we take u; v 2 Œs; t � to be the smallest integer at least s and the
largest integer at most t , respectively, and we have

d.
 .s/; 
 .t//� d.
 .u/; 
 .v//C d.
 .s/; 
 .u//C d.
 .t/; 
 .v//

� .LCC C 1/jv�ujC 2.LCC C 1/

� kjs� t jC c

using any k � LCC C 1D 19 and any c � 2.LCC C 1/D 38 (and we note that
this inequality also holds in the previous case where there is no integer in Œs; t �). This
proves the second inequality of the proposition.

To prove the first inequality, we first prove it for integer values u � v 2 Œ0; : : : ; ‡�.
Fix a geodesic edge path � of length D D d.
 .u/; 
 .v// connecting 
 .u/ to 
 .v/
in FS 0.F /. Project � to the fold path S0 7! � � � 7! SM . By the statement .�/
above, within this fold path there are at most b1 free splitting units between the
projections of any two consecutive vertices of � . By applying Lemma 5.12, the
coarse triangle inequality for free splitting units, it follows that there are at most
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D.b1C 1/ free splitting units between S�.
.u// and S�.
.v// , the projections of 
 .u/
and 
 .v/, respectively. By Proposition 5.9, where the coarse retract axiom was proved,
the number of free splitting units between Smu

D 
 .u/ and S
.u/ , and between
Smv
D 
 .v/ and S
.v/ , are both less than 1. By applying Lemma 5.12 again, the

number of free splitting units between Smu
and Smv

is at most D.b1C1/C2, that is,
ju� vj �D.b1C 1/C 2D .b1C 1/ d.
 .u/; 
 .v//C 2.

For arbitrary s < t 2 Œ0; : : : ; ‡�, letting u 2 Œ0; ‡� be the largest integer at most s and
v 2 Œ0; ‡� be the smallest integer at least t , we have 
 .s/ 2 
 Œu;uC 1� and 
 .t/ 2

 Œv�1; v�. By .��/ we therefore have d.
 .s/; 
 .u//, d.
 .t/; 
 .v//�LCCC1D19.
It follows that:

js� t j � ju� vj

� .b1C 1/ d.
 .u/; 
 .v//C 2;

1

b1C 1
js� t j �

2

b1C 1
� d.
 .u/; 
 .v//

� d.
 .u/; 
 .v//C .19� d.
 .u/; 
 .s///

C .19� d.
 .v/; 
 .t///;

1

b1C 1
js� t j �

�
2

b1C1
C 38

�
� d.
 .s/; 
 .t//:

This proves that the first inequality is true for any k � b1C1D 4 rank.F /�2 and any

c �
2

b1C1
C 38D

1

2 rank.F /�1
C 38:

Proposition 6.2 is therefore proved for k Dmaxf19; 4 rank.F /� 2g and c D 39.

6.2 Pushing down peaks

Recall that every geodesic in FS 0.F / is a zig-zag edge path. On a zig-zag subpath
of the form T i�1 � T i � T iC1 , where T i is the domain of two incident collapse
maps T i 7! T i�1 and T i 7! T iC1 , we say that T i is a peak. If on the other hand
T i�1 � T i � T iC1 then T i is a valley.

We start with a simplistic technique that can be used to shortcut a zig-zag path, and we
work up to a technique, described in Proposition 6.5, that will be central to the proof
of the Main Theorem. In each case the intuition is to “push down the peak”, thereby
reducing length.

The peak of a W diagram A W diagram or a W zig-zag is a length 4 zig-zag path
with a peak in the middle, sometimes depicted as in Figure 6.
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T 4

  

T 2

Œˇ�

~~

Œ��

  

T 0

~~
T 3 T 1

Figure 6: A W diagram

We think of ˇ; � as the “blue” and “red” subgraphs of T 2 . In this generality, an edgelet
of T 2 may be in either, or both, or neither of ˇ; � . The subgraphs ˇ; � therefore do not
necessarily form a blue–red decomposition of T 2 as in Definition 5.1, which requires
that ˇ; � have no edgelets in common and their union is all of T 2 ; furthermore, even if
ˇ; � did form a blue–red decomposition, they need not be a natural one, which requires
in addition that they both be natural subgraphs of T 2 . Soon, though, we shall narrow
down to a key special case where ˇ; � is indeed a natural blue–red decomposition.

Pushing down the peak is easy when ˇ[� is a proper subgraph of T 2 , for in that case
the given W diagram extends to a commutative diagram of collapse maps as shown in
the diagram in Figure 7. In that diagram, collapse of ˇ[ � � T 2 produces T h . The
collapse map

T 2 Œ��
�! T 1

takes the edgelets of the subgraph ˇ n .ˇ \ �/ � T 2 bijectively to the edgelets of a
subgraph of T 1 , which by convention is also denoted ˇ n .ˇ \ �/; collapse of this
subgraph also produces T h . Similarly, collapse of � n .ˇ \ �/ � T 3 produces T h .
Compositions of collapse maps being collapse maps, we obtain a length 2 zig-zag path
T 0!T h T 4 that cuts short the original length 4 zig-zag path; we have successfully
“pushed down the peak”.

T 4

  

T 2

Œˇ�

~~

Œ��

  
Œˇ[��

��

T 0

~~
T 3

Œ�n.ˇ\�/�   

T 1

Œˇn.ˇ\�/�~~

T h

Figure 7: A simplistic pushdown works if ˇ[ � � T 2 is a proper subgraph.
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The same argument works on a length 3 zig-zag path — which can be visualized by
cutting off one of the terminal edges of a W zig-zag — with the result that if the union
of the two collapse graphs at the peak of the zig-zag forms a proper subgraph then
there is a length 2 path with the same endpoints. We summarize as follows:

Lemma 6.3 Given a W zig-zag as notated in Figure 6 or a length 3 zig-zag obtained
from Figure 6 by cutting off one of the terminal edges, if the path is geodesic then
T 2 D ˇ[ � .

Normalizing a W diagram We shall also need to push down the peak of certain W
diagrams in the situation where T 2 D ˇ[ � . In this situation it is convenient to first
alter the W diagram to ensure that ˇ\ � contains no edgelet of T 2 , equivalently, ˇ; �
is a blue–red decomposition of T 2 as in Definition 5.1. If ˇ \ � does contain an
edgelet of T 2 then, since ˇ; � are proper subgraphs, the given W diagram is contained
in a commutative diagram of collapse maps as shown in the diagram in Figure 8, called
a normalization diagram. In this diagram, subgraphs of T 02 are labelled by the same
convention as described above. Since T 2 D ˇ[ � it follows that the two subgraphs
ˇ n .ˇ\ �/ and � n .ˇ\ �/ of T 02 partition the edgelets of T 02 .

T 4

��

T 2

Œˇ�

��

Œˇ\��

��
Œ��

��

T 0

��

T 02

Œˇn.ˇ\�/�

ww
Œ�n.ˇ\��

''
T 3 T 1

Figure 8: A normalization diagram. The W zig-zag on the top of the diagram
has the property that T 2 D ˇ [ � . The W zig-zag on the bottom of the
diagram is normalized.

Motivated by this observation, we say that a zig-zag path in FS 0.F / is normalized
if at every free splitting F Õ T along the path that forms a peak, the two subgraphs
of T whose collapses define the vertices of the path incident to T form a blue–red
decomposition of T . The argument we have just given shows that every geodesic
zig-zag path in FS 0.F / may be replaced by a normalized zig-zag path of the same
length and with the same set of valleys.
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Pushdown subgraphs and baseball diagrams We now turn to a more sophisticated
technique for pushing down the peak of a W diagram. Consider a W diagram as notated
in Figure 6 and suppose that ˇ[�D T 2 is a blue–red decomposition. Consider also a
subgraph � � T 2 that satisfies the following:

� is a pushdown subgraph � is a proper, equivariant subgraph, and each natural
edge of T 2 not contained in � contains at least one red and one blue edgelet of T 2

that are not contained in � .

No requirement is imposed that a pushdown subgraph be a natural subgraph; the
proof of Proposition 6.5 produces pushdown subgraphs that are not natural. Note
that a pushdown subgraph can only exist if ˇ [ � D T 2 is not a natural blue–red
decomposition.

T 4

  

T 2

Œˇ�

{{

Œ��

��

Œ��

##

T 0

~~
T 3

Œ�n.�\ˇ/� !!

T p

Œˇn.�\ˇ/�


}}

Œ�n.�\�/�

� !!

T 1

Œ�n.�\�/�}}

T h3 T h1

Figure 9: A baseball diagram

Given a normalized W diagram and a pushdown subgraph � � T 2 , we may extend
the W diagram to a larger commutative diagram of collapse maps called a baseball
diagram, as shown in Figure 9. Certain superscripts in this diagram represent various
positions on a baseball diamond: T 1 , T 2 , T 3 represent 1st , 2nd and 3rd bases, T p the
pitcher’s mound, T h1 and T h3 the points halfway from home plate to 1st and 3rd bases.
Collapsed subgraphs of the trees T 1;T p;T 3 in this diagram are named following a
convention similar to that used earlier. Because � is a pushdown subgraph, neither of
the two subgraphs � n .� \ �/, ˇ n .� \ ˇ/ � T p contains a natural edge of T p . It
follows that neither of the two collapse maps � W T p! T h1 , 
 W T p! T h3 collapses
an entire natural edge of T p . Each of the maps �; 
 therefore induces by restriction a
bijection of natural vertex sets, takes each natural edge onto a natural edge inducing a
bijection of natural edge sets, and is homotopic to a conjugacy relative to natural vertex
sets. By restricting to natural vertex sets we therefore obtain a well-defined bijection
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 ı ��1 from the natural vertex set of T h1 to the natural vertex set of T h3 which
extends to a conjugacy �W T h1 7! T h3 . Since collapses are transitive, we have again
successfully “pushed down the peak”, without even bothering to involve home plate as
in the earlier scenario:

T 4

!!

T 0

}}

T h3 T h1
�

�oo

We record this as:

Lemma 6.4 (Pushing down peaks) Given a normalized W diagram notated as in
Figure 6, and given a pushdown subgraph � � T 2 , there exists a baseball diagram
notated as in Figure 9, in which each map 
 W T p! T h3 and � W T p! T h1 induces
by restriction a bijection of natural vertex sets and a bijection of natural edge sets, and
is homotopic rel natural vertices to a conjugacy. By composition we therefore obtain a
bijection 
��1 from the natural vertex set of T h1 to the natural vertex set of T h3 that
extends to a conjugacy �W T h1! T h3 .

We emphasize that the conjugacy in the conclusion of this lemma need not be a map,
i.e., it need not be simplicial. Nonsimplicial conjugacies resulting from Lemma 6.4
will proliferate into the proof of Proposition 6.1 given in Section 6.3, and that proof
will have a certain step dedicated to patching up this problem.

Pushing down corrugation peaks One key strategy occurring in the proof of Propo-
sition 6.1 is to set up applications of Lemma 6.4 by finding pushdown subgraphs in
peaks of normalized W diagrams. Of course this is impossible if the W diagram is
geodesic. Nevertheless in Proposition 6.5 we will show that when combing a fold path
across an arbitrary W diagram, even one which is geodesic, one can always locate
enough pushdown subgraphs to carry out the pushdown process in a useful fashion, as
long as the fold path is sufficiently long when measured in free splitting units.

Consider a fold sequence T 0
0
7! � � � 7! T 0

J
. Consider also a zig-zag path

T 0
J �! T 1

J

Œ�J �
 �� T 2

J

ŒˇJ �
���! T 3

J  � T 4
J

in FS 0.F /, regarded as a W diagram, not assumed to be a geodesic, nor even to be
normalized, but we do assume that T 2

J
D ˇJ [ �J . Consider finally a stack of four

combing rectangles combined into one commutative diagram as shown in Figure 10,
where the given fold sequence is the T 0 row along the bottom of the diagram, and
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the W zig-zag is the TJ column along the right side (in such diagrams, in general we
refer to rows by dropping subscripts, and to columns by dropping superscripts). Such a
diagram can be constructed, for example, by starting with the bottom row and right
side, and applying Propositions 4.3, then 4.4, then 4.3, then 4.4, in that order, to comb
the given fold sequence along each of the four edges of the given zig-zag path. We
will also encounter such diagrams constructed by other combing processes involving
concatenation and deconcatenation of combing rectangles.

T 4
0

//

��

� � � // T 4
I

//

��

� � � // T 4
J

��
T 3

0
// � � � // T 3

I
// � � � // T 3

J

T 2
0

//

Œˇ0�

OO

Œ�0�

��

� � � // T 2
I

//

ŒˇI �

OO

Œ�I �

��

� � � // T 2
J

ŒˇJ �

OO

Œ�J �

��
T 1

0
// � � � // T 1

I
// � � � // T 1

J

T 0
0

//

OO

� � � // T 0
I

//

OO

� � � // T 0
J

OO

Figure 10: A diagram of four combing rectangles over F . The T 0 row along
the bottom is assumed to be a fold sequence. In the TJ column we assume
that T 2

J
D �J [ˇJ .

We can visualize Figure 10 as a piece of corrugated metal. The T 2 row forms a peak
of the corrugation that we wish to push down all at once, by parallel applications of
Lemma 6.4. Of course this is impossible in general, for instance when the TJ column
is a geodesic path in FS 0.F /. We describe a process that allows us to push down
the corrugation peak along the T 2 row, at the expense of throwing away the portion
of the diagram to the right of the TI column that is depicted in Figure 10. The next
lemma says that this is possible as long as the bottom row has enough free splitting
units between T 0

I
and T 0

J
. As a consequence, the Tj columns for 0 � j � I are

not geodesic paths in FS 0.F / because d.T 0
j ;T

4
j /� 2, even when the TJ on the far

right is geodesic. We thus obtain a key indicator of “hyperbolic” behavior: local curve
shortening.
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The following proposition introduces the constant 4 rank.F /� 3, which is needed for
the proof of Proposition 6.1.

Proposition 6.5 For any diagram as in Figure 10, if the number of free splitting units
between T 0

I
and T 0

J
is at least 4 rank.F /� 3 then there is a commutative diagram

T 4
0

//

��

� � � // T 4
I

��

T h3
0

//

�0

� � � // T h3
I

�I

T h1
0

// � � � // T h1
I

T 0
0

//

OO

� � � // T 0
I

OO

such that the top and bottom horizontal rows are the same foldable sequences as
the top and bottom rows of Figure 10 between the T0 and TI columns, the T h1

and T h3 rows are foldable sequences, for each j D 0; : : : ;J the function �j is a
(nonsimplicial) conjugacy between T h1

j and T h3
j , and the top and bottom horizontal

rectangles are combing rectangles obtained from the top and bottom combing rectangles
of Figure 10 between the T0 and TI columns by application of the composition of
combing rectangles Lemma 4.5.

Proof There are three steps to the proof: normalization, pullback and pushdown.

Step 1: Normalization Knowing that T 2
J
D ˇJ [ �J , and knowing for each j D

0; : : : ;J that ǰ , �j are the union of the edgelets mapped to ˇJ , �J , respectively,
under the foldable map T 2

j 7! T 2
J

, it follows that T 2
j D ǰ [ �j . If the TJ column

is already normalized, that is, if ˇJ [ �J D TJ is a blue–red decomposition, then
the same is true of ǰ [ �j D Tj , and so each Tj column is normalized and we pass
directly to Step 2.

Otherwise, suppose that ˇJ , �J have some edgelets in common, the union of which
is a subgraph with nondegenerate components which, abusing notation, we denote
ˇJ \ �J � T 2

J
. It follows that for each j D 0; : : : ;J the graphs ǰ ; �j have some

edgelets in common, these edgelets mapping to ˇJ \�J by the foldable map T 2
j 7!T 2

J
;

their union forms a subgraph ǰ \ �j � T 2
j . For each j D 0; : : : ;J we may now

construct normalization diagrams in parallel, the j th such diagram shown in Figure 11.
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T 4
j

��

T 2
j

Œˇj �

��

Œˇj\�j �

��
Œ�j �

��

T 0
j

��

T 02j

Œˇj n.ˇj\�j /�

yy

Œ�j n.ˇj\�j �

&&
T 3

j T 1
j

Figure 11: Parallel normalization diagrams associated to the W zig-zags in Figure 10

We claim that for each of the seven arrows in Figure 11, as j varies from 0 to J

we obtain a combing rectangle. One can visualize this statement as a 3–dimensional
commutative diagram where the normalization diagrams are lined up in parallel vertical
planes, connected up by six foldable sequences (one for each of the six positions in
the normalization diagram) and seven combing rectangles (one for each of the seven
arrows). The claim is true by hypothesis for the four arrows on the top of the diagram.
To obtain the combing rectangle with vertical arrows from T 2

j to T 02j , since ǰ \ �j

is the inverse image of ˇJ \�J under the foldable map T 2
j 7! T 2

J
, by Proposition 4.3

the collapse maps

T 2
j

Œ ǰ\�j �
�����! T 02j

fit together in a combing rectangle as follows:

T 2
0

//

Œˇ0\�0�

��

� � � // T 2
I

//

ŒˇI\�I �

��

� � � // T 2
J

ŒˇJ\�J �

��
T 02

0
// � � � // T 02

I
// � � � // T 02

J

The two combing rectangles with vertical arrows from T 02j to T 1
j and from T 02j to

T 3
j , respectively, are obtained by two applications of Lemma 4.6, decomposition of

combing rectangles, the first application using the T 2
j to T 1

j and the T 2
j to T 02j comb-

ing rectangles, and the second using the T 2
j to T 3

j and the T 2
j to T 02j combing

rectangles. This proves the claim.

The outcome of the claim is a commutative diagram of the form shown in Figure 12, in
which the top and bottom rectangles are the same combing rectangles as in Figure 10.
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By construction (see Figure 8), the zig-zag path on the right side of Figure 12 is
normalized, completing Step 1.

T 4
0

//

��

� � � // T 4
I

//

��

� � � // T 4
J

��
T 3

0
// � � � // T 3

I
// � � � // T 3

J

T 02
0

//

OO

��

� � � // T 02
I

//

OO

��

� � � // T 02
J

OO

��
T 1

0
// � � � // T 1

I
// � � � // T 1

J

T 0
0

//

OO

� � � // T 0
I

//

OO

� � � // T 0
J

OO

Figure 12: The outcome of normalizing Figure 10, using the parallel normal-
ization diagrams of Figure 11

Step 2: Pullback This is the central argument where the concepts of free splitting
units are used to their maximal effect.

Having carried out Step 1, we may now go back to Figure 10 and assume that each
Tj column is a normalized W zig-zag. In other words, for each j we have a blue–red
decomposition ˇ2

j [ �
2
j D T 2

j .

Let ‡ be the number of free splitting units along the bottom row of the diagram
between T 0

I
and T 0

J
, and choose a sequence I � i.0/ < � � � < i.‡/ � J so that for

each uD 1; : : : ; ‡ there is at least 1 free splitting unit between T 0
i.u�1/

and T 0
i.u/

. By
hypothesis we have ‡ � 4 rank.F /� 3.

We prove that the blue–red decomposition ˇI [ �I D T 2
I

is not natural. Arguing by
contradiction, suppose that ˇI [ �I D T 2

I
is natural. By Definition 5.1, it follows

that ˇi [ �i D T 2
i is natural for I � i � J . By Lemma 5.2, the interval I � i � J

breaks into no more than 4 rank.F /� 3 subintervals on each of which the complexity
of ˇi is constant. By Definition 5.6, on each of these subintervals there is less than 1
free splitting unit, and so each of these subintervals contains at most one entry from
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the sequence i.0/ < � � �< i.‡/. It follows that ‡ � 4 rank.F /� 4, contradicting the
hypothesis.

Remark The previous version of this paper contained an invalid argument, starting
from the statement that the blue–red decomposition ˇi[�iDT 2

i is natural for I � i�J .
The erroneous statement, which incorrectly exploited ˇi ; �i , said that if one expands
T 2

i by blowing up each vertex v 2 ˇi \�i , pulling the blue and red edges at v apart to
form two vertices connected by a gray edge, then the resulting tree with F –action is a
free splitting. The error is that the inserted gray edges might have nontrivial stabilizers.
Correcting this error led to a revamping of the theory of free splitting units presented
in Section 5. In particular, the concept of an “invariant natural blue–red decomposition”
in Definition 5.1, and the diameter bounds of Lemma 5.2, are new to this version of
the paper and were concocted to correctly exploit the subgraphs ˇi ; �i � T 2

i .

Step 3: Pushdown Having carried out Steps 1 and 2, we assume now that we have
a commutative diagram as shown in Figure 13, in which each column is normalized
and the blue–red decomposition ˇI [ �I D T 2

I
is not natural. It follows that T 2

I
has a

natural edge e that contains both red and blue edgelets. Using this, we shall produce
the commutative diagram needed for the conclusion of Proposition 6.5. The argument
will be a somewhat more intricate version of the parallel normalization process used in
Step 1, using parallel baseball diagrams instead.

Define a proper F –equivariant natural subgraph �I D T 2
I

to be the complement of
the orbit of e , and so every natural edge of T 2

I
not in �I contains both a red and a

blue edgelet. By decreasing induction on j 2 f0; : : : ; I � 1g define an F –equivariant
subgraph �j �T 2

j to be the inverse image of �jC1 under the foldable map T 2
j 7!T 2

jC1

(ignoring degenerate components as usual); equivalently �j is the inverse image of �I

under T 2
j 7!T 2

I
. It follows that the subgraphs �j �T 2

j are proper for all j D 0; : : : ; I .

We claim that for j D 0; : : : ; I the graph �j is a pushdown subgraph of T 2
j . To

prove this, given a natural edge �j � T 2
j such that �j 6� �j , we must find a red and a

blue edgelet in �j , neither of which is in �j . Foldable maps take natural vertices to
natural vertices and natural edges to nondegenerate natural edge paths, so the image
of �j under the foldable map T 2

j 7! T 2
I

is a nondegenerate natural edge path denoted
�I � T 2

I
. Since �j 6� �j , it follows that �I 6� �I , and so �I contains a natural edge

not in �I , which therefore has both a red and a blue edgelet. Since natural edges not in
�I have interior disjoint from �I it follows that �I contains a red and a blue edgelet
neither of which is in �I . By pulling back under the foldable map T 2

j 7! T 2
I

we obtain
a red and a blue edgelet in �j neither of which is in �j .
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T 4
0

//

��

� � � // T 4
I

��
T 3

0
// � � � // T 3

I

T 2
0

//

Œˇ0�

OO

Œ�0�

��

� � � // T 2
I

ŒˇI �

OO

Œ�I �

��
T 1

0
// � � � // T 1

I

T 0
0

//

OO

� � � // T 0
I

OO

Figure 13: Each of the four horizontal rectangles is a combing rectangle. We
assume that every column is a normalized W zig-zag and that the tree T 2

I has
an edge e containing both red and blue edgelets.

We now apply Lemma 6.4 in parallel to each column j of Figure 13 for j D 0; : : : ; I .
The resulting baseball diagrams, commutative diagrams of collapse maps, are shown
in Figure 14 (compare Figure 9). Lemma 6.4 also produces conjugacies T

p
j 7! T h3

j

and T
p

j 7! T h1
j and hence conjugacies T h1

j ! T h3
j . What we are still missing,

however, are the conclusions of Proposition 6.5 concerned with combing rectangles
and commutativity.

We claim that for each of the nine arrows in Figure 14, as j varies from 0 to I ,
we obtain a combing rectangle. As in Step 1, one visualizes this as a 3–dimensional
commutative diagram by lining up the baseball diagrams in parallel vertical planes,
connected up by eight foldable sequences (one for each of the eight positions in the
baseball diagram) and nine combing rectangles (one for each of the nine arrows). The
claim is true by hypothesis for the four arrows on the top of the diagram.

For the arrow from 2nd base to the pitcher’s mound, since �j is the inverse image of
�J under the foldable map T 2

j 7! T 2
I

, by Proposition 4.3 the collapse maps

T 2
j

Œ�j �
��! T

p
j
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T 4
j

��

T 2
j

Œˇj �

||

Œ�j �

��

Œ�j �

""

T 0
j

��
T 3

j

��

T
p
j


j~~ �j   

T 1
j

��

T h3
j T h1

j

Figure 14: The baseball diagram associated to the W-diagram from T 0
j to T 4

j

fit together in a combing rectangle:

T 2
0

//

Œ�0�

��

� � �

I

// T 2
I

Œ�I �

��
T

p
0

// � � � // T
p
I

Notice that for each j D 0; : : : ; I , the subgraph �j [�j is proper, because any natural
edge not in �j contains a blue edgelet not in �j , which is also not in �j [�j . Similarly
the subgraph �j [ ǰ is proper. By Proposition 4.3, since �j [ �j is the inverse image
of �jC1 [ �jC1 , and since �j [ ǰ is the inverse image of �jC1 [ ǰC1 , we obtain
combing rectangles

T 2
0

//

Œ�0[ˇ0�

��

� � �

II

// T 2
I

Œ�I[ˇI �

��

T h3
0

// � � � // T h3
0

T 2
0

//

Œ�0[�0�

��

� � �

III

// T 2
I

Œ�I[�I �

��

T h1
0

// � � � // T h1
0

Rectangles II and III do not correspond to any of the nine arrows in the baseball diagram,
but to invisible arrows going from 2nd base to the point halfway between 1st base and
home plate and from 2nd base to the point halfway between 3rd base and home plate.

For the arrows going from the pitcher’s mound to the points halfway between 1st and
home and halfway between 3rd and home, apply Lemma 4.6, decomposition of combing
rectangles, first to combing rectangles II and I and then to combing rectangles III and I,
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to obtain combing rectangles

T
p
0

//

Œˇ0n.�0\ˇ0/� 
0

��

� � �

IV

// T
p
I

ŒˇIn.�I\ˇI /�
I

��

T h3
0

// � � � // T h3
0

T
p
0

//

Œ�0n.�0\�0/� �0

��

� � �

V

// T
p
I

Œ�In.�I\�I /��I

��

T h1
0

// � � � // T h1
0

where we follow the same notation convention for subgraphs of T
p
0

as used in the
original baseball diagram Figure 9.

For the arrows going from 1st base and 3rd base to the points halfway home, applying
Lemma 4.6, decomposition of combing rectangles to combing rectangle II and the 2nd

base to 3rd base combing rectangle, and then to combing rectangle III and the 2nd base
to 1st base combing rectangle, we obtain combing rectangles:

T 3
0

//

Œ�0n.�0\ˇ0/� 
0

��

� � �

VI

// T 3
I

Œ�In.�I\ˇI /�

��

T h3
0

// � � � // T h3
0

T 1
0

//

Œ�0n.�0\�0/� �0

��

� � �

VII

// T 1
I

Œ�In.�I\�I /�

��

T h1
0

// � � � // T h1
0

Applying Lemma 4.5, composition of combing rectangles, by composing the two
combing rectangles corresponding to the arrows along the 1st base foul line in Figure 14
we obtain the combing rectangle from the T 0 row to the T h1 row needed for the
conclusion of Proposition 6.5. Similarly, by composing the two combing rectangles
corresponding to the arrows along the 3rd base foul line we obtain the combing rectangle
from the T 4 row to the T h3 row.

To complete Step 3 and the proof of the proposition, it remains to construct the com-
mutative diagram of conjugacy maps �j W T h1

j ! T h3
j in the conclusion of the lemma.
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For this purpose it suffices to replace combing rectangles IV and V by commutative
diagrams of conjugacies of the form

T
p
0

//

x
0

��

� � �

IV

// T
p
I

x
I

��

T h3
0

// � � � // T h3
I

T
p
0

//

x�0

��

� � �

V

// T
p
I

x�I

��

T h1
0

// � � � // T h1
I

for then defining �j D x
j ı x��1
j W T

h1
j ! T h3

j , we will be done. While Lemma 6.4
produces conjugacies T h1

j !T h3
j for each j D 0; : : : ;J , if that lemma is used crudely

there is no guarantee that these conjugacies will form commutative diagrams as needed.
With a little care in how Lemma 6.4 is applied we can get the needed guarantee. We
construct diagram IV in detail, the construction of V being similar. The construction
is by induction, starting from the TI column on the far right and moving leftward.

First apply Lemma 6.4 to produce a conjugacy x
I W T
p

I
! T h3

I
so that the restrictions

of 
I and x
I to natural vertex sets are the same. Proceeding by decreasing induction
on j , suppose that for some j we have produced all the conjugacies from column
Tj to TI in diagram IV making that portion of the diagram commute, and so that the
restrictions to natural vertex sets of the conjugacies in diagrams IV and IV are the same
from column Tj to column TI . We must choose the conjugacy x
j�1W T

p
j�1
! T h3

j�1

so as to fill in a commutative diagram of F –equivariant functions

T
p
j�1

x
j�1

��

fj // T
p
j

x
j

��
T h3

j�1

gj // T h3
j

where fj , gj are the foldable maps in rectangle IV, and where the restrictions of
x
j�1 and 
j�1 to natural vertex sets are the same. This tells us how to define x
j�1

on natural vertex sets. Consider a natural edge � � T
p

j�1
. By Lemma 6.4 its image


j�1.�/�T h3
j�1

is a natural edge whose endpoints are the x
j�1 images of the endpoints
of �. The foldable map fj W T

p
j�1
7!T

p
j is injective on �, the conjugacy x
j is injective

on fj .�/, and we have the following equation of subsets:

gj .
j�1.�//D 
j .fj .�//D x
j .fj .�//:

The foldable map gj is injective on the natural edge 
j�1.�/, and therefore has a
homeomorphic inverse g�1

j W x
j .fj .�//! 
j�1.�/, and so we can define

x
j�1 j �D .g
�1
j ı x
j ıfj / j �:
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This completes Step 3 and the proof of Proposition 6.5.

6.3 Proof of Proposition 6.1

Prologue Consider a fold sequence S0 7! � � � 7! SK over F , a free splitting F Õ T ,
and an augmented projection diagram of maximal depth kT D �.T / as notated in
Figure 5 of Section 6.1, whose top row has the fold sequence TkT

7! � � � 7! TL D T

as a terminal segment. Let ‡ be the number of free splitting units between TkT
and

TL D T . Using the constant b1 D 4 rank.F /� 3 from Proposition 6.5, we list every
bth

1
term of the back greedy subsequence of this fold sequence as

kT �L� <L��1 < � � �<L1 <L0 DL;

where �D b‡=b1c. Thus L! is the greatest integer less than L!�1 such that there
are exactly b1 free splitting units between TL!

and TL!�1
, for each ! D 1; : : : ; �.

Emphasizing only those T s with subscripts from the list L�; : : : ;L0 , and assigning
them a superscript 0 for later purposes, we may write the augmented projection diagram
in the form

T 0
0

//

��

� � � // T 0
kT

��

// � � � // T 0
L�

// T 0
L��1

// � � � // T 0
L1

// T 0
L0
D T

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

where the foldable map T 0
kT
! T 0

L�
may just be the identity map.

Consider also a vertex R 2FS 0.F / and a geodesic path from T to R in FS 0.F /. We
shall assume here that d.T;R/� 3; the case that d.T;R/� 2 will be considered in
the epilogue. If the path from T to R starts with an expansion of T , prefix the path
with an improper collapse. The result is a zig-zag path of the form

T D T 0
L0
! T 1

L0
 T 2

L0
! T 3

L0
� � �T D

L0
DR;

where D D d.T;R/ or d.T;R/C 1 and D � 3. The peaks along this zig-zag are the
even terms strictly between 0 and D , the first such peak being T 2

L0
. For each peak

along this path, applying Lemma 6.3 together with the assumption that d.T;R/� 3

it follows that the peak is the union of its two collapse graphs. The number of peaks
along this zig-zag path equals b.D� 1/=2c, which equals .D� 2/=2 if D is even and
.D� 1/=2 if D is odd.

Geometry & Topology, Volume 17 (2013)



1658 Michael Handel and Lee Mosher

By combing the foldable sequence T 0
0
7! � � � 7! T 0

L0
across each collapse or expansion

of the zig-zag path T 0
L0
! T 1

L0
 � � �T D

L0
D R, alternately applying combing by

collapse Proposition 4.3 and combing by expansion Proposition 4.4, and by stacking
the resulting combing rectangles atop the augmented projection diagram, we obtain the
Big diagram, Step 0, shown in Figure 15.

Proposition 6.1 will be proved by explicitly transforming the Big diagram, Step 0 into a
projection diagram from R onto S0 7! � � � 7! SK of an appropriate depth l needed to
verify the conclusions of the proposition. This transformation is primarily an induction
that uses the pushdown tools of Section 6.2, followed by an epilogue which uses the
pushdown tools one more time. As the proof progresses we will consider the truncated
fold sequences T 0

kT
7! � � � 7! T 0

L!
for increasing values of ! , but such truncation

will not affect measurements of free splitting units between T 0
i and T 0

j as long as
kT � i � j �L! (see the remark following Definition 5.10).

Induction We explain in detail how to carry out the first step of the induction. Under
our assumption that d.T;R/ � 3, the TL0

column of the Big diagram, Step 0 has a
peak at T 2

L0
. Assuming furthermore that ‡ � b1 , equivalently � � 1, then L1 is

defined and there are at least b1 D 4 rank.F /� 3 free splitting units between T 0
L1

and
T 0

L0
. We may therefore apply Proposition 6.5 to the portion of the diagram between

the T 0 and T 4 rows as follows: trim away all portions of the Big diagram, Step 0 that
lie to the right of the TL1

column and below the T D row, and use the conclusion of
Proposition 6.5 to replace the combing rectangles between the T 0 and T 4 rows, to
get the Big diagram, Step 0.1, shown in Figure 16.

The rectangles of the Big diagram, Step 0.1 between the T 0 and T h1 rows and between
the T h3 and T 4 rows are combing rectangles. Each �j W T h1

j ! T h3
j is a conjugacy,

possibly nonsimplicial. Now we must pause to patch things up in order to make these
conjugacies simplicial.

We claim that, by an operation of equivariant subdivision of simplicial structures and
re-assignment of barycentric coordinates on edgelets, carried out over all free splittings
in the Big diagram, Step 0.1, but without changing any of the functions, we may assume
that the conjugacies �i are indeed simplicial maps. Here are the details of this operation.

Consider first the conjugacy �L1
W T h1

L1
!T h3

L1
. We may subdivide T h1

L1
at the pre-image

of the vertex set of T h3
L1

, and simultaneously subdivide T h3
L1

at the image of the vertex
set of T h1

L1
, to obtain new equivariant vertex sets on which �L1

is a bijection; it is also
a bijection of edgelets, although it may not yet respect barycentric coordinates. We may
then reassign the barycentric coordinates on one edgelet of T h1

L1
in each F –orbit, and

move these coordinates around by the F –action, to obtain a new simplicial structure
on T h1

L1
. We may then push these coordinates forward under the map �L1

to obtain new
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T D
0

// � � � // T D
kT

// � � � // T D
L�

// � � � // T D
L1

// � � � // T D
L0

R

T 4
0

//

��

� � � // T 4
kT

��

// � � � // T 4
L�

//

��

� � � // T 4
L1

//

��

� � � // T 4
L0

��

T 3
0

// � � � // T 3
kT

// � � � // T 3
L�

// � � � // T 3
L1

// � � � // T 3
L0

T 2
0

//

Œ�0�

��

Œˇ0�

OO

� � � // T 2
kT

ŒˇkT
�

OO

Œ�kT
�

��

// � � � // T 2
L�

//

Œ�L�
�

��

ŒˇL�
�

OO

� � � // T 2
L1

//

Œ�L1
�

��

ŒˇL1
�

OO

� � � // T 2
L0

Œ�L0
�

��

ŒˇL0
�

OO

T 1
0

// � � � // T 1
kT

// � � � // T 1
L�

// � � � // T 1
L1

// � � � // T 1
L0

T 0
0

//

��

OO

� � � // T 0
kT

��

OO

// � � � // T 0
L�

//

OO

� � � // T 0
L1

//

OO

� � � // T 0
L0

OO

T

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 15: Big diagram, Step 0. We emphasize the columns indexed by
L�; : : : ;L1;L0 . Each horizontal row is a foldable sequence, and the rec-
tangle between any two rows is a combing rectangle. The bottom row is a
fold sequence, and the T 0 row from T 0

kT
to T 0

L0
is a fold sequence. Each

peak of the TL0
column is the union of its two collapse graphs. Rows in

this and subsequent diagrams will be indicated by stripping off subscripts,
for instance the “T 0 row” refers to the foldable sequence T 0

0 7! � � � 7! T 0
L0

;
similarly, columns are indicated by stripping off superscripts. Since each peak
of column TL0

between rows T 0 and T D is the union of its two collapse
graphs, it follows that each peak of each column Tj between rows T 0 and
T D is the union of its two collapse graphs, because the two collapse graphs at
a column j peak T 2i

j are the pullbacks under the foldable map T 2i
j 7! T 2i

L0

of the two collapse graphs at the corresponding column L0 peak T 2i
L0

.
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T D
0

// � � � // T D
kT

// � � � // T D
L�

// � � � // T D
L1

// � � � // T D
L0

R

T 4
0

//

��

� � � // T 4
kT

��

// � � � // T 4
L�

//

��

� � � // T 4
L1

��

T h3
0

�0

// � � � // T h3
kT

�kT

// � � � // T h3
L�

�L�

// � � � // T h3
L1

�L1

T h1
0

// � � � // T h1
kT

// � � � // T h1
L�

// � � � // T h1
L1

T 0
0

//

��

OO

� � � // T 0
kT

��

OO

// � � � // T 0
L�

//

OO

� � � // T 0
L1

OO

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 16: Big diagram, Step 0.1

barycentric coordinates on the edgelets of T h3
L1

. Having carried out these operations,
the map �L1

is now a simplicial conjugacy.

Now we move left one step: by a similar subdivision/re-assignment on T h1
L1�1

, pulling
back vertices and barycentric coordinates under the foldable map T h1

L1�1
7! T h1

L1
, we

may assume that this map is simplicial. Similarly, by a subdivision/re-assignment on
T h3

L1�1
, we may assume that the foldable map T h3

L1�1
7! T h3

L1
is simplicial. We have

now verified that in the commutative diagram

T h3
L1�1

//

�L1�1

T h3
L1

�L1

T h1
L1�1

// T h1
L1
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the top, bottom, and right sides are simplicial maps; by commutativity, the left side is
therefore automatically simplicial.

Now we continue to move left: by similar subdivisions/re-assignments carried out one
at a time on the trees in rows T h1 and T h3 , moving to the left one at a time from
the last map in each row, we may assume that these rows are simplicial; having done
this, by commutativity each of the maps �j W T h1

j ! T h3
j is automatically a simplicial

conjugacy. Now we move up: by similar subdivisions/re-assignments carried out one
at a time on the trees in rows T 4; : : : ;T D , starting with the collapse maps T 4

j 7! T h3
j

and moving upward, we may assume that each vertical arrow above row T h3 is
simplicial; having done this, each of the horizontal arrows from row T h3 upward and
between columns T0 and TL1

is automatically simplicial. Now, from T D
L1

we move to
the right: by similar subdivisions/re-assignments we may assume that each of the maps
T D

L1
7! � � � 7! T D

L0
DR is simplicial. Finally, in a similar manner moving down from

row T h3 to row S , then moving right from SkT
to SK , we have proved the claim.

Knowing now that we have simplicial conjugacies �j W T h1
j ! T h3

j , and using commu-
tativity of the rectangle between rows T h1 and T h3 , we may identify T h1

j and T h3
j

via the map �j , replacing these two rows by a single row as shown in the Big diagram,
Step 1.

In summary, when d.T;R/� 3 and ‡ � b1 , we have completed the first iteration of the
induction argument: starting from the Big diagram, Step 0, by applying Proposition 6.5,
trimming away everything to the right of column TL1

and below row T D , and replacing
everything between rows T 0 and T 4 , we get the Big diagram, Step 0.1, and then
by subdividing and re-assigning barycentric coordinates we may assume that the
conjugacies between rows T h1 and T h3 are simplicial. Identifying rows T h1 and
T h3 , we obtain the Big diagram, Step 1, shown in Figure 17. In the process we have
decreased by 2 the lengths of all vertical zig-zag paths and the number of combing
rectangles between the T 0 and T D rows. Observe that the conjugacy class of the free
splitting R, and the equivalence class of the fold sequence S0 7! � � � 7! SK , have not
been altered by these subdivision/re-assignment operations.

To complete the inductive step there is one last thing to do, namely to verify that along
the zig-zag path in column TL1

on the right side of the Big diagram, Step 1, each peak
is the union of its two collapse graphs. This is evident for each peak from T 6

L1
upward,

since the collapse maps and collapse graphs are unchanged at those peaks from the Big
diagram, Step 0. For the peak at T 4

L1
, one of the collapse graphs is unchanged from

the Big diagram, Step 0, namely that of the map T 4
L1
7! T 5

L1
. For the collapse graph

of the map T 4
L1
7! T h

L1
, we use the part of the conclusion of Proposition 6.5, which

tells us that the combing rectangle in the Big diagram, Step 1 between the T 4 and T h
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T D
0

// � � � // T D
kT

// � � � // T D
L�

// � � � // T D
L1

// � � � // T D
L0

R

T 4
0

//

��

� � � // T 4
kT

��

// � � � // T 4
L�

//

��

� � � // T 4
L1

��

T h
0

// � � � // T h
kT

// � � � // T h
L�

// � � � // T h
L1

T 0
0

//

��

OO

� � � // T 0
kT

��

OO

// � � � // T 0
L�

//

OO

� � � // T 0
L1

OO

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 17: Big diagram, Step 1

rows is obtained by an application of composition of combing rectangles, Lemma 4.5,
using the combing rectangle in the Big diagram, Step 0 between the T 4 and T 3 rows
and between the T0 and TL1

columns. What Lemma 4.5 allows us to conclude is that
the collapse graph of the Step 0 map T 4

L1
7! T 3

L1
is contained in the collapse graph

of Step 1 map T 4
L1
7! T h

L1
. The union of the two collapse graphs of T 4

L1
in the Big

diagram, Step 1, is therefore still equal to T 4
L1

.

Remark The reader may wonder why the initial normalization step was necessary in
the proof of Proposition 6.5: we could have started with a normalized zig-zag geodesic
on the right side of the Big diagram, Step 0. This would imply that the T 4 column
in that diagram is normalized at T 4

L1
. Nonetheless it is possible that the T 4 column

in the Big diagram, Step 1 is not normalized at T 4
L1

, because the collapse graph for
T 4

L1
7! T h

L1
may be strictly larger than the collapse graph for T 4

L1
7! T 3

L1
. If so then

the normalization step of Proposition 6.5 is inescapable in the next step of the induction.

We now describe the induction step in general. From the hypothesis we have d.T;R/�

maxf2�; 1g. If d.T;R/� 2 then we refer to the epilogue below. Otherwise, under the

Geometry & Topology, Volume 17 (2013)



The free splitting complex of a free group, I: Hyperbolicity 1663

assumption d.T;R/� 3, we have D � d.T;R/C 1� 2�C 1, and so we may repeat
the above argument inductively a total of b.D�1/=2c times, removing the corrugation
peaks one at a time. For each ! D 2; : : : ; b.D � 1/=2c, the ! step of the induction
will transform the Big diagram, Step ! � 1 into the Big diagram, Step ! . The Big
diagram Step ! � 1, in comparison with the Big diagram, Step 1, will have L!�1 in
place of L1 and T 2! in place of T 4 , and will have a stack of D� 2!C 2 combing
rectangles between the T 0 and T D rows. To carry out the transformation, first we trim
away the portion of the diagram to the right of column TL!

, on or above row T 0 , and
below row T D . Then we replace the four combing rectangles between rows T 0 and
T 2!C2 by two combing rectangles and a commutative diagram of conjugacies. Then
we carry out a subdivision/re-assignment operation, which allows us to assume that the
conjugacies are simplicial. Then we collapse the commutative diagram of conjugacies,
identifying its two rows into a single row. We have now produced the Big diagram,
Step ! , with a stack of D� 2! combing rectangles between the T 0 and T D rows:
we have decreased by 2 the lengths of all vertical zig-zag paths between the T 0 and
T D rows and decreased by 1 the number of corrugation peaks. Finally we verify that
each peak along column TL!

is still the union of its two collapse graphs.

At each stage of the induction, we have not altered the conjugacy class of R nor the
equivalence class of S0 7! � � � 7! SK .

Epilogue If d.T;R/ � 3, when the induction process stops we have backed up to
column TL!

where ! D b.D� 1/=2c, and there are no remaining corrugation peaks
above row T 0 . We obtain the Big diagram, Step b.D� 1/=2c, a not-so-big diagram
that comes in two cases. The Case 1 diagram occurs when D is even, and it has two
combing rectangles between row T 0 and row T D ; see Figure 18. The Case 2 diagram
occurs when D is odd and has only one such combing rectangle; see Figure 19. In
each of these diagrams, the conjugacy class of R and the equivalence class of the fold
sequence S1 7! � � � 7! SK have not been changed from the initial setup in the prologue.

If d.T;R/� 2 then, starting from the augmented projection diagram depicted in the
prologue, and depending on the nature of the geodesic from T to R, we proceed
as follows. If d.T;R/ D 1 and there is a collapse T � R, we comb the T 0 row
along this collapse to obtain the Case 2 diagram with ! D 0 and T D

L!
D T D

L0
DR. If

d.T;R/D 1 and there is an expansion T �R then we append an improper collapse
T � T to get a length 2 collapse–expand zig-zag T � T �R, and we comb the T 0

row along this collapse–expand to obtain the Case 1 diagram with similar notation
changes. If d.T;R/D 2 and there is a collapse–expand from T to R then, combing
the T 0 row along this collapse–expand, we produce the Case 1 diagram with similar
notation changes. Finally, if d.T;R/ D 2 and there is an expand–collapse from T
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T D
0

//

��

� � � // T D
kT

//

��

� � � // T D
L!

//

��

� � � // T D
L0
DR

T 0
0

// � � � // T 0
kT

// � � � // T 0
L!

T 0
0

//

��

OO

� � � // T 0
kT

//

��

OO

� � � // T 0
L!

OO

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 18: Case 1 a collapse–expand from T 0 to T D

T D
0

// � � � // T D
kT

// � � � // T D
L!

// � � � // T D
L0
DR

T 0
0

//

��

OO

� � � // T 0
kT

//

��

OO

� � � // T 0
L!

OO

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 19: Case 2 a collapse from T 0 to T D

to R, then combing the T 0 row along this expand–collapse, we obtain the Case 3
diagram in Figure 20.

We now finish off Case 1; afterwards we shall reduce Cases 2 and 3 to Case 1. In the
Case 1 diagram, trim off everything to the right of column TkT

, on or above row T 0 ,
and below row T D , to obtain the diagram shown in Figure 21, which has a corrugation
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T 2
0

// � � � // T 2
kT

// � � � // T 2
L0
DR

T 0
0

//

OO

��

� � � // T 0
kT

//

OO

��

� � � // T 0
L0

OO

��

T 0
0

//

��

� � � // T 0
kT

//

��

� � � // T 0
L0
D T

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 20: Case 3 an expand–collapse from T 0 to T 2

peak along the T 0 row. We must consider two subcases, depending on whether the
peak T 0

kT
of the W zig-zag in column kT is the union of its two collapse graphs

bkT
; rkT

.

Suppose first that T 0
kT
¤ bkT

[ rkT
in Figure 21. For each j D 0; : : : ; kT , in the tree

T 0
j , which is the peak of the W zig-zag in column j , the union of its two collapse graphs

bj[rj is a proper subgraph, that subgraph being the inverse image of bkT
[rkT

under the
foldable map T 0

j 7!T 0
kT

. We may therefore carry out the simplistic pushdown depicted
in Figure 7, in parallel as j varies from 0 to kT , resulting in a diagram of the form
depicted in Figure 22. In Figure 22, the T 00 row is obtained by applying Proposition 4.3,
combing by collapse, using the collapse graphs bj [ rj � T 0

j , and the middle two
combing rectangles are each obtained by an application of Lemma 4.6, decomposition of
combing rectangles. By applications of Lemma 4.5, composition of combing rectangles,
we may compose the lower two and the upper two combing rectangles of Figure 22 to
produce a depth kT projection diagram from R to S0 7! � � � 7! SK , and the proof of
Proposition 6.1 is complete in this case.

Suppose next that T 0
kT
DbkT

[rkT
in Figure 21. From the hypothesis of Proposition 6.1,

there are at least b1 D 4 rank.F /� 3 free splitting units along the bottom row of the
diagram between S0 and SkT

. Let ` 2 f0; : : : ; kT g be the largest integer such that
there are at least b1 free splitting units between Sl and SkT

, from which it follows
that there are exactly b1 free splitting units between Sl and SkT

. We may now carry
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T D
0

//

��

� � � // T D
kT

//

��

� � � // T D
L0
DR

T 0
0

// � � � // T 0
kT

T 0
0

//

Œr0�

��

Œb0�

OO

� � � // T 0
kT

ŒrkT
�

��

ŒbkT
�

OO

S 0
0

// � � � // S 0
kT

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 21: The Case 1 diagram, trimmed down

T D
0

//

��

� � � // T D
kT

//

��

� � � // T D
L0
DR

T 0
0

//

��

� � � // T 0
kT

��
T 00

0
// � � � // T 00

kT

S 0
0

//

OO

� � � // S 0
kT

OO

S0
//

OO

� � � // SkT
//

OO

� � � // SK

Figure 22: The result of a parallel simplistic pushdown on Figure 21, in
the case when T 0

kT
¤ ˇkT

[ �kT
. Concatenating the upper two combing

rectangles into a single one, and the same for the lower two, we obtain a
projection diagram.
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out one last iteration of the induction. Applying Proposition 6.5, remove all portions
of the diagram in Figure 21 to the right of column l , above the S row, and below
the T D row, and replace the four combing rectangles by two combing rectangles
and a commutative diagram of conjugacies. After an operation of subdivision and
re-assignment of barycentric coordinates, we may assume that the conjugacies are all
simplicial. After collapsing the commutative diagram of conjugacies, identifying its
two rows to a single row, we obtain the diagram depicted in Figure 23, in which the
conjugacy class of the free splitting R and the equivalence class of the fold sequence
S0 7! � � � 7! SK remain unchanged. This is the desired projection diagram from the
free splitting R to the fold sequence S0 7! � � � 7! SK , which completes the proof of
Proposition 6.1 in Case 1.

T D
0

//

��

� � � // T D
l

//

��

� � � // T D
L0
DR

Sh
0

// � � � // Sh
l

S0
//

OO

� � � // Sl
//

OO

� � � // SK

Figure 23: The projection diagram resulting from one last iteration of the
induction carried out on Figure 21, in the case when T 0

kT
D ˇkT

[ �kT

Remark As was remarked earlier regarding the Big diagram, Step 1, depicted in
Figure 17, in the context of Case 1 depicted in Figure 23, the initial normalization step
in the proof of Proposition 6.5 cannot be avoided, because there is no guarantee that
the SkT

column is normalized at T 0
kT

.

We reduce Case 2 to Case 1 by producing a Case 1 diagram: just attach an improper
combing rectangle to the top of the case 2 diagram, by defining the foldable sequence
T 0

0
7! � � � 7! T 0

L�
to equal the foldable sequence T D

0
7! � � � 7! T D

L�
, and defining for

each j D 0; : : : ;L� an improper collapse map T D
j ! T 0j that is just the identity map.

We also reduce Case 3 to Case 1. First trim away everything in the Case 3 diagram
to the right of the kT column, on or above the T 0 row, and below the T 2 row. Next,
apply Lemma 4.5, composition of combing rectangles, to the two combing rectangles
between the S 0 row and the T 0 row, concatenating them into a single combing rectangle.
Finally, attach an improper combing rectangle to the top of the diagram as in Case 2.
The result is a Case 1 diagram, completing the reduction.
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Glossary
Collapse and expansion: Inverse relations amongst free splittings, denoted S � T and

T � S respectively, defined so that T is obtained from S by collapsing to a point each
component of some proper, equivariant, natural subgraph of S .

Conjugacy: An equivariant homeomorphism between free splittings, which need not be a
map.

Edgelet: A 1–cell of some given simplicial structure on a tree. The term is also used in a
relative sense; given a foldable map f W S ! T and an edgelet e of T , an e–edgelet of
f is any edgelet of S mapped by f to e .

Foldable sequence: A sequence of maps of free splittings in which any composition of
any subinterval of that sequence is a foldable map.
� A fold sequence is a special kind of foldable sequence in which each map is a fold.
� A fold path is the sequence of vertices in FS 0.F / obtained from the conjugacy

classes of the free splittings along a fold sequence.

Free splitting: A minimal action of a free group on a simplicial tree such that the stabilizer
of each edge is trivial. The action is properly discontinuous if and only if the stabilizer
of each vertex is trivial, if and only if each vertex has finite valence.

Map: An equivariant simplicial function between free splittings. Important types of maps
include:
� A collapse map collapses to a point each edge in an equivariant subgraph.
� A foldable map is injective on each natural edge, and has at least 3 gates at each

natural vertex.
� A fold map is a foldable map defined by identifying initial segments of some pair of

natural edges with the same initial vertex.

Natural cell structure: Every tree with no isolated ends and no valence 1 vertices — in
particular every free splitting of a free group of rank at least 2 — has a natural cell
structure, whose vertices are the points that (locally) separate the tree into some number
of components at least 3 . A natural subgraph is a subcomplex of the natural cell structure.
Any other cell structure on the graph is a refinement of the natural cell structure.

Zig-zag path: An edge path in FS 0.F / which alternates between expansions and col-
lapses. Examples include all geodesic edge paths in FS 0.F / .
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Index

back greedy subsequence, 1635
baseball diagram, 1646

collapse, 1587, 1589, see also Glossary
map, see also Glossary under Map
proper and improper, 1591

combing rectangle, 1608
conjugacy, 1581, 1586, see also Glossary

derivative, 1593
direction, 1593

edgelet, 1587, see also Glossary
of a foldable map, 1594

expansion, 1589, see also Glossary
properly discontinuous, 1589

fold, 1597
full, 1598

improper, 1598
proper, 1598

type IA, 1598
type IIIA, 1598

fold factorization, 1602
fold map, 1597, see also Glossary under Map
fold path, 1601, see also Glossary under Foldable

sequence

fold sequence, 1600, see also Glossary under Fold-
able sequence

equivalence, 1601
foldable map, 1594, see also Glossary under Map
foldable sequence, 1608, see also Glossary
free splitting, 1581, 1585, see also Glossary
free splitting unit, 1634
front greedy subsequence, 1635

gate, 1593

map, 1585, see also Glossary
collapse, 1581, 1587
fold, 1597
foldable, 1594

natural cell structure, 1586, see also Glossary
natural core, 1589
normalization diagram, 1645

projection diagram, 1609
augmented, 1638

W diagram, 1643

zig-zag, 1592, see also Glossary
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