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A nonboundary nef divisor on M0;12

AARON PIXTON

We describe a nef divisor DP on M0;12 that is not numerically equivalent to an
effective sum of boundary divisors.

14H10

0 Introduction

The moduli space of stable curves of genus 0 with n marked points, M0;n , has a
stratification where the codimension k strata are the irreducible components of the
locus of curves with at least k nodes. Fulton, motivated by analogy with toric varieties,
asked whether any effective cycle is numerically equivalent to an effective sum of these
strata (see Keel and McKernan [7, Question 1.1]). In the case of divisors, this is known
to be false; Keel and Vermeire [9] constructed effective divisors on M0;6 that are not
effective sums of boundary divisors (the codimension 1 strata).

For curves, however, the question is still open. The 1–dimensional strata are called
F–curves and the conjecture in this case (known as the F–conjecture) is that the cone
of effective curves is generated by the F–curves. It is often stated in the following
equivalent form:

Conjecture 1 (The F–conjecture) A divisor on M0;n is nef if and only if it has
nonnegative intersection with every F–curve.

Keel and McKernan [7] proved this conjecture for n� 7, and for n� 8 the conjecture
is still open. We usually say that a divisor that intersects every F–curve nonnegatively
is F–nef, so the F–conjecture states that a divisor on M0;n is nef if and only if it is
F–nef.

The following related conjecture will be the central subject of this paper. It is sometimes
called “Fulton’s Conjecture,” though it seems to have first been stated by Gibney, Keel,
and Morrison [5].

Conjecture 2 [5, Question 0.13] Every F–nef divisor on M0;n is numerically equiv-
alent to an effective sum of boundary divisors.
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This conjecture has also been proven for n � 7 (by Larsen [8]), and it has long
been understood that it would imply the F–conjecture by a straightforward inductive
argument, if true.

Gibney showed that this conjecture can be weakened slightly and still imply the F–
conjecture:

Conjecture 3 [4, Conjecture 1] Every F –nef divisor on M0;n is of the form
cKM0;n

CE , where c � 0 and E is an effective sum of boundary classes.

However, we provide a counterexample to Conjectures 2 and 3 when nD 12.

Proposition 1 The divisor DP on M0;12 is F–nef but is not numerically equiv-
alent to a nonnegative linear combination of boundary divisors and the canonical
divisor KM0;12

.

We currently have no geometric explanation for this counterexample, but it is related to
a highly symmetric combinatorial arrangement of subsets, the .11; 5; 2/ biplane (see
Section 1.1).

We do not know whether nD 12 is the minimal n for which Conjecture 2 is false. We
do give a simple argument (Lemma 2) allowing us to shift the counterexample to any
larger n, though, so there are only four values of n for which the status of Conjecture 2
is still unknown.

Question Does Conjecture 2 hold for M0;n with 8� n� 11?

We begin by reviewing notation in Section 1. In Section 2, we describe the coun-
terexample divisor DP appearing in Proposition 1 and show that its pullbacks under
forgetful maps also provide counterexamples. In Section 3, we list a few additional
properties of this divisor calculated by computer; in particular, it is basepoint free, and
hence nef.
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1 Notation

1.1 The .11; 5; 2/ biplane

The divisor we construct is based on the combinatorial data of the .11; 5; 2/ biplane, a
collection P of 11 five-element subsets of Œ11� WD f1; 2; : : : ; 11g with the properties:

(1) Any two elements of Œ11� are in precisely two elements of P .

(2) Any two elements of P have intersection of size two.

It turns out that P is unique up to renaming the elements of Œ11�; one way of constructing
such a biplane is to take the set f1; 3; 4; 5; 9g (the nonzero quadratic residues mod 11)
together with its translates (taken mod 11).

The .11; 5; 2/ biplane has symmetry group of order 660, isomorphic to PSL2.11/.
The divisor DP that we construct shares this symmetry group.

1.2 Divisors on M0;n

The simplest divisors on M0;n are the boundary divisors �S;T D�S D�T , where
fS;T g is a partition of f1; : : : ; ng with jS j; jT j � 2.

It is also convenient to define �fig D� i , the negative of the cotangent line at the i th

marked point.

These two types of divisors suffice to generate Pic.M0;n/ (in fact, the boundary divisors
alone do), and the space of relations between these generators has basis consisting of
the relations

(1)
X

i2S;j…S

�S D 0

for 1� i < j � n.

1.3 F–curves

The dual graph to an F–curve has exactly one vertex of degree 4. The class of the
F–curve just depends on the partition of the markings into 4 subsets determined by this
vertex. If fA1;A2;A3;A4g is a partition of f1; : : : ; ng into four nonempty subsets, we
write CA1A2A3A4

for the corresponding F–curve class.

The intersection number of any F–curve with any divisor �S;T has a simple formula:

(2) �S;T �CA1A2A3A4
D

8<:
1 if S DAi [Aj for some i ¤ j ;

�1 if S or T DAi for some i ;

0 else:
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2 The construction

We begin by describing a curve class CP on M0;12 that directly corresponds to the
biplane configuration P . It is uniquely determined by its pairings with the boundary
divisors �S;T , since they generate the Picard group:

CP ��S;T D

�
1 if S or T 2 P;
0 else:

Of course, for such a divisor to exist, these pairings have to respect the relations between
the divisors �S;T . The fact that they do turns out to be equivalent to every pair of
elements of Œ11� being contained in the same number of sets in the biplane P . This is
actually the only biplane property that we will directly use. Of course, there are many
similarly balanced configurations of subsets that we could consider using instead of P
to construct different interesting curve classes.

Since CP intersects every boundary divisor nonnegatively, any divisor that intersects it
negatively cannot be an effective sum of boundary. Thus we view CP as a witness to
the nonboundary nature of certain divisors.

We can also compute that

CP ��fig D

�
�2 if i D 12;

�3 else:

We now describe the divisor itself. Unlike with CP , the definition of DP does not seem
to have an obvious generalization to other combinatorial configurations of subsets.

The notation ES D�S[fng will be convenient here; these are the exceptional divisors
in the Kapranov model of M0;n with respect to the nth marked point (see [6]). Then
we define the divisor DP 2 Pic.M0;12/ by

DP D�5E∅� 4
X

Ei � 3
X

Eij� 2
X

Eijk �
X

Eijkl�
X

ES ;

where the first four sums are over all subsets of Œ11� of sizes 1; 2; 3; 4 and the last sum
runs over the subsets of Œ11� of size 5 or 6 that are either equal to or disjoint from one
of the eleven five-element subsets in the chosen biplane P .

We can now check that we have a counterexample to Conjectures 2 and 3.

Proof of Proposition 1 This is just a matter of checking four things:
(a) DP �CA1A2A3A4

� 0 for any F–curve class CA1A2A3A4
.

(b) �S;T �CP � 0 for jS j; jT j � 2.
(c) KM0;12

�CP � 0.

(d) DP �CP < 0.
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Of these, (b), (c) and (d) all follow immediately from the definition of CP , combined
with the identity

KM0;12
D�

12X
iD1

�fig� 2
X

jS j;jT j�2

�S;T

in the case of (c).

This leaves (a), which is just a matter of computing the intersection of DP with each
of the finitely many F–curve classes on M0;12 . There are 611501 such classes, so
this check can be easily completed with a computer using (2). Alternatively, we can
write DP DD0�D0P , where

D0 D�5E∅� 4
X

Ei � 3
X

Eij� 2
X

Eijk �
X

Eijkl;

D0P D
X
S2P

�
�S C

X
i…S

�S[fig

�
:

The divisor D0 here is very special; it is fully S12 –symmetric and can either be
interpreted as the pullback of the distinguished polarization of the (symmetrically
linearized) GIT quotient .P1/12==SL2 (see [1]) or as a conformal block divisor (see
[3, Theorem 4.5]). It is nef, and its degree on an F–curve CA1A2A3A4

has a simple
formula:

D0 �CA1A2A3A4
D

�
0 if max.jAi j/� 6;

min.min.jAi j/; 6�max.jAi j// else:

Using this formula along with (2), it is straightforward to check that

D0 �CA1A2A3A4
�D0P �CA1A2A3A4

for any F–curve CA1A2A3A4
. For example, if D0 � CA1A2A3A4

D 0 then jA1j � 6

(without loss of generality), and then the only possibility of D0P �CA1A2A3A4
being

positive is if A2[A3 2 P . But then A2[A4 and A3[A4 cannot be elements of P
(since the union of any two sets in P has cardinality 8> 12� 6), and A2[A3[A4

is an element of P with a single point added, so D0P �CA1A2A3A4
D 1� 1D 0. The

other cases are similar.

Although we expect that both Conjecture 2 and Conjecture 3 remain false for all n� 12,
we are only able to prove this for Conjecture 2 at the moment.
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Lemma 2 Let n� 3 and let � W M0;nC1!M0;n be the map given by forgetting the
final marking. If D is an F–nef divisor on M0;n that is not numerically equivalent to
an effective boundary divisor, then ��D also is F–nef and not numerically equivalent
to an effective boundary divisor.

Proof First, ��D being F–nef follows immediately from the fact that for any F–curve
class C , ��C is either 0 or another F–curve class.

Now suppose for contradiction that ��D is numerically equivalent toX
aS;T�S;T

with aS;T � 0, where the sum runs over all partitions of f1; : : : ; nC 1g into two sets
S and T of cardinality at least 2.

The F–curve CA;B;C;fnC1g is contracted by � , so we have

(3) 0D ��D �CA;B;C;fnC1g

D .aA[fnC1g;B[C � aA;B[C[fnC1g/C .aB[fnC1g;A[C � aB;A[C[fnC1g/

� .aA[B[fnC1g;C � aA[B;C[fnC1g/:

Let f .S/ D aS[fnC1g;Sc � aS;Sc[fnC1g for ∅ ¤ S � f1; : : : ; ng, where Sc is the
complement of S inside f1; : : : ; ng. Then (3) becomes

f .A[B/D f .A/Cf .B/;

where A and B are any two disjoint nonempty subsets of f1; : : : ; ng such that A[B

is a proper subset of f1; : : : ; ng.

We also have f .Ac/D�f .A/ by the definition of f . Thus

f .f1g/C � � �Cf .fng/D 0:

However, for each k we have f .fkg/D afk;nC1g;fkgc � 0. Thus f .fkg/D 0 for all
k , and hence f .S/D 0 for all S . In other words, aS[fnC1g;Sc D aS;Sc[fnC1g .

Note now that ���S;Sc D�S[fnC1g;Sc C�S;Sc[fnC1g . Then ��D is numerically
equivalent to ��B for

B D
X
fS;Scg

aS[fnC1g;Sc�S;Sc :

But ��W Pic.M0;n/! Pic.M0;nC1/ in injective (because � has a section), so this
implies that D is numerically equivalent to B , which is effective boundary. This is a
contradiction.
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3 Computations

We have checked a few basic properties of the divisor DP by computer. First, DP
generates an extremal ray in the cone of F–nef divisors on M0;12 . We do not know
whether there are any extremal rays on M0;12 other than the S12 –orbit containing DP
that contradict Conjecture 2.

Also, DP is effective, with a 66–dimensional space of sections. By straightforward
computation of the intersection of these sections using the Kapranov model for M0;12

as an iterated blow-up of P9 , we were able to check that this linear system is basepoint
free. Thus DP is nef, which can be interpreted as very weak evidence for the F–
conjecture.

Since DP is nef and extremal F–nef, it is also an extremal nef divisor. Unsurprisingly,
it is not extremal in the cone of effective divisors. Castravet and Tevelev have computed
that DP is in fact an effective sum of boundary divisors and a pullback from M0;8 of
the unique (up to symmetries) “hypertree” divisor there, so it is consistent with their
conjecture that the cone of effective divisors is generated by the boundary divisors and
the hypertree divisors (defined in [2]).

Finally, we can give a somewhat more geometric description of DP , again in terms of
the Kapranov morphism �12W M0;12! P9 . If Q is a generic quintic hypersurface in
P9 containing the eleven P4 spanned by the five-tuples in P along with the eleven
complementary P5 , then DP is the class of the proper transform of Q with respect
to �12 .
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