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On the Hopf conjecture with symmetry

LEE KENNARD

The Hopf conjecture states that an even-dimensional, positively curved Riemannian
manifold has positive Euler characteristic. We prove this conjecture under the addi-
tional assumption that a torus acts by isometries and has dimension bounded from
below by a logarithmic function of the manifold dimension. The main new tool is the
action of the Steenrod algebra on cohomology.

53C20; 55S10

Positively curved spaces have been of interest since the beginning of global Riemannian
geometry. Unfortunately, there are few known examples (see Ziller [20] for a survey
and Petersen and Wilhelm [12], Dearricott [7], and Grove, Verdiani and Ziller [9] for
recent examples) and few topological obstructions to any given manifold admitting
a positively curved metric. In fact, all known closed, simply connected examples in
dimensions larger than 24 are spheres and projective spaces, and all known obstructions
to positive curvature for closed, simply connected manifolds are already obstructions
to nonnegative curvature.

One famous conjectured obstruction to positive curvature was made by Heinz Hopf in
the 1930s. It states that closed, even-dimensional manifolds admitting positive sectional
curvature have positive Euler characteristic. This conjecture holds in dimensions two
and four by the theorems of Gauss and Bonnet or Bonnet and Myers (see Bishop and
Goldberg [4] or Chern [5]), but it remains open in higher dimensions.

In the 1990s, Karsten Grove proposed a research program to address our lack of
knowledge in this subject. The idea is to study positively curved metrics with large
isometry groups. This approach has proven to be quite fruitful (see Wilking [19] or
Grove [8] for surveys). Our main result falls into this category:

Theorem A Let M n be a connected, closed Riemannian manifold with positive
sectional curvature. If n� 0 mod 4 and M admits an effective, isometric T r –action
with r � 2 log2 n� 2, then �.M / > 0.

Previous results showed that �.M n/ > 0 under the assumption of a linear bound on r .
For example, a positively curved n–manifold with an isometric T r –action has positive
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Euler characteristic if n is even and r � n=8 or if n � 0 mod 4 and r � n=10 (see
Rong and Su [14] and Su and Wang [16]).

Theorem A easily implies similar results where the assumption on the symmetry rank,
ie, rank.Isom.M //, is replaced by one where the symmetry degree, ie, dim.Isom.M //,
is large or the cohomogeneity, ie, dim.M= Isom.M //, is small (see Section 6).

A key tool is Wilking’s connectedness theorem (see [17]), which has proven to be
fundamental in the study of positively curved manifolds with symmetry. The theorem
relates the topology of a closed, positively curved manifold with that of its totally
geodesic submanifolds of small codimension. Since fixed-point sets of isometries are
totally geodesic, this becomes a powerful tool in the presence of symmetry.

Part of the utility of the connectedness theorem is to allow proofs by induction over
the dimension of the manifold. Another important implication is a certain periodicity
in cohomology. By using the action of the Steenrod algebra on cohomology, we refine
this periodicity in some cases. For example, we prove:

Theorem B (Periodicity Theorem) Let M n be a closed, one-connected, positively
curved manifold that contains a pair of totally geodesic, transversely intersecting
submanifolds of codimensions k1 � k2 . If k1 C 3k2 � n, then H�.M IQ/ is
gcd.4; k1; k2/–periodic.

It follows from [17] that, under these assumptions, H�.M IQ/ is gcd.k1; k2/–periodic.
For a connected, closed, orientable n–manifold M and a coefficient ring R, we
say that H�.M IR/ is k –periodic if there exists x 2H k.M IR/ such that the map
H i.M IR/!H iCk.M IR/ induced by multiplication by x is surjective for 0� i <

n � k and injective for 0 < i � n � k . In particular, there is a surjective map of
RŠH 0.M IR/ onto H k.M IR/.

To illustrate the strength of the conclusion of Theorem B, we observe the following:

� If gcd.4; k1; k2/D 1, then M is a rational homology sphere.

� If gcd.4; k1; k2/D 2, then M has the rational cohomology of Sn or CPn=2 .

� If gcd.4; k1; k2/D 4 and n 6� 2 mod 4, then M has the rational cohomology
ring of Sn , CPn=2 , HPn=4 , or S3 �HP .n�3/=4 .

When gcd.4; k1; k2/ D 4 and n � 2 mod 4, the rational cohomology rings of Sn ,
CPn=2 , S2 �HP .n�2/=4 and

M 6
D .S2

�S4/ # .S3
�S3/ # � � � # .S3

�S3/
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are 4–periodic, but we do not know whether other examples exist in dimensions above
six. This uncertainty is what prevents us from proving Theorem A in all even dimensions
(see Section 6).

The main step in the proof of Theorem B is the following topological result:

Theorem C If M n is a closed, one-connected manifold such that H�.M IZ/ is
k –periodic with 3k � n, then H�.M IQ/ is gcd.4; k/–periodic.

To prove Theorem C, we note that the assumption implies the same periodicity with
coefficients in Zp . We then use the action of the Steenrod algebra for pD 2 and pD 3

to improve these periodicity statements with coefficients in Zp . When combined, this
information implies gcd.4; k/–periodicity with coefficients in Q. See Proposition 1.3
and Proposition 2.1 for more general periodicity statements with coefficients in Zp ,
which together can be viewed as a generalization of Adem’s theorem on singly generated
cohomology rings (see [2]).

With the periodicity theorem in hand, we briefly explain some of the tools that go
into the proof of Theorem A. The starting point is a theorem of Conner, which states
that the Euler characteristic satisfies �.M /D �.M T /, where M T is the fixed-point
set of the torus action. Since M is even-dimensional with positive curvature, M T is
nonempty by a theorem of Berger. Writing �.M T /D

P
�.F / where the sum runs

over components F of M T , we see that it suffices to show �.F / > 0 for all F . In
fact, we prove that every F has vanishing odd Betti numbers. An important tool is
another theorem of Conner, which states that, if P is a manifold on which T acts,
then bodd.P

T /� bodd.P /, where bodd denotes the sum of the odd Betti numbers. The
strategy is to find a submanifold P on which T acts such that bodd.P /D 0 and such
that F is a component of PT .

In order to find such a submanifold P , we investigate the web of fixed-point sets of
H � T , where H ranges over subgroups of involutions. These fixed-point sets are
totally geodesic submanifolds on which T acts, so, under the right conditions, we
can induct over dimension. In addition, studying fixed-point sets of involutions has
the advantage that we can easily control the intersection data by studying the isotropy
representation at a fixed point of T .

In order to apply the periodicity theorem, we must find a transverse intersection in this
web. To strip away complication while preserving the required codimension, symmetry,
and intersection data, we define an abstract graph � where the vertices correspond to
involutions whose fixed-point sets satisfy certain codimension and symmetry conditions.
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An edge exists between two involutions if the intersection of the corresponding fixed-
point sets is not transverse. We then break up the proof into several parts, corresponding
to the structure of � .

Here is a short description of the individual sections. In Sections 1 and 2, we prove
the mod 2 and mod p generalizations, respectively, of Adem’s theorem on singly
generated cohomology rings. In Section 3, we bring together these results to prove
Theorem C. In Section 4, we prove Theorem B, and in Section 5, we prove Theorem A.
Finally, in Section 6, we derive a corollary of Theorem A, state a periodicity conjecture
that would generalize Adams’ theorem on singly generated cohomology rings, and
explain how a proof of this conjecture would imply that Theorem A holds in all even
dimensions.

Acknowledgements

This work is part of the author’s PhD thesis. The author would like to thank his advisor,
Wolfgang Ziller, for his encouragement and numerous suggestions along the way. The
author would also like to thank Anand Dessai and Jason DeVito for helpful comments,
as well as the referee for providing multiple suggestions for improvement. The author
is partially supported by National Science Foundation grant DMS-1045292.

1 Periodicity with coefficients in Z2

We begin by stating the definition of periodicity:

Definition 1.1 For a topological space M , a ring R, and an integer c , we say that
x 2H k.M IR/ induces periodicity in H�.M IR/ up to degree c if M is connected
and the maps H i.M IR/!H iCk.M IR/ given by multiplication by x are surjective
for 0� i < c � k and injective for 0< i � c � k .

When such an x 2 H k.M IR/ exists, we say that H�.M IR/ is k –periodic up to
degree c . If, in addition, M is a closed, orientable manifold with dim.M /D c , we
say that H�.M IR/ is k –periodic.

While we could define periodic cohomology for spaces that are not connected, we will
not require it. Moreover, we wish to emphasize that throughout this paper, spaces with
periodic cohomology in this sense are connected. In particular, we can immediately
conclude from the definition that

dimR H ik.M IR/� dimR H 0.M IR/D 1
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and that xi generates H ik.M IR/ for 0< i < c=k when R is a field.

As another immediate application of the definition, when M n is a closed, simply
connected manifold with k –periodic Zp –cohomology ring, H 1Cik.M IZp/D 0 and
H n�1�ik.M IZp/D 0 for all i with 0< 1C ik < n.

We remark that H�.M IR/ is trivially k –periodic up to degree c when k � c . By
a slight abuse of notation, we also say that H�.M IR/ is k –periodic if 2k � c and
H i.M IR/ D 0 for 0 < i < c . One thinks of 0 as the element inducing periodicity.
This convention simplifies the discussion.

We start with a general lemma about periodicity:

Lemma 1.2 Let R be a field. If x 2 H k.M IR/ is a nonzero element inducing
periodicity up to degree c with 2k � c , and if xr D yz for some 1 � r � c=k with
deg.y/ 6� 0 mod k , then y also induces periodicity. In particular, if x D yz with
0< deg.y/ < k , then y induces periodicity.

The way in which we will use this lemma is to take an element x of minimal degree
that induces periodicity, and to conclude that the only factorizations of xr are those of
the form .axs/.bxt / where a; b 2R are multiplicative inverses and r D sC t .

Proof Use periodicity to write y D y0y00 and z D z0z00 where y00 and z00 are powers
of x , 0< deg.y0/ < l , and 0< deg.z0/ < l . Since x generates H k.M IR/, it follows
that y0z0 D ax for some multiple a 2 R. If a D 0, then xr D .ax/y00z00 D 0, a
contradiction to periodicity and the assumption that x ¤ 0. Supposing therefore that
a¤ 0, we may multiply by a�1 to assume without loss of generality that x D y0z0 .
Since y00 is a power of x , it is easy to see that it induces periodicity up to degree c , so
it suffices to show that y0 induces periodicity up to degree c . Let k 0 D deg.y0/.

Since multiplication by x induces an injection H i.M IR/!H iCk.M IR/ for 0< i �

c�k , and since this map factors as multiplication by y0 followed by multiplication by z0 ,
it follows that multiplication by y0 induces an injection H i.M IR/!H iCk0.M IR/

for 0< i � c�k . In addition, observe that multiplication by y0 and then by x induces
a map

H i�k.M IR/!H i�kCk0.M IR/!H iCk0.M IR/

that is equal to the map

H i�k.M IR/!H i.M IR/!H iCk0.M IR/

induced by multiplication by x and then by y0 . Since the first composition is injective,
and since the first map in the second is an isomorphism, we conclude that multiplication
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by y0 induces an injection H i.M IR/!H iCk0.M IR/ for all 0 < i � c � k 0 . The
proof that multiplication by y0 is surjective in all required degrees is similar.

In [2], Adem showed that, for a topological space M , if H�.M IZ2/ is isomorphic to
Z2Œx� or Z2Œx�=x

qC1 with q � 2, then k D deg.x/ is a power of 2. Observe that such
a cohomology ring is k –periodic and that k is the minimal period. We now prove the
following generalization of Adem’s theorem:

Proposition 1.3 (Z2 –periodicity theorem) Suppose x 2H k.M IZ2/ is nonzero and
induces periodicity in H�.M IZ2/ up to degree c with 2k � c . If x has minimal
degree among all such elements, then k is a power of 2.

The key tool in the proof is the existence of Steenrod squares, so we review some of
their properties now. The Steenrod squares are group homomorphisms

Sqi
W H�.M IZ2/!H�.M IZ2/;

which exist for all i � 0 and satisfy the following properties:
(1) If y 2H j .M IZ2/, then Sqi.y/ 2H iCj .M IZ2/, and

� if i D 0, then Sqi.y/D y ,
� if i D j , then Sqi.y/D y2 , and
� if i > j , then Sqi.y/D 0.

(2) (Cartan formula) If y; z 2H�.M IZ2/, then

Sqi.yz/D
X

0�j�i

Sqj .y/Sqi�j .z/:

(3) (Adem relations) For a< 2b , one has the following relation among composi-
tions of Steenrod squares:

SqaSqb
D

ba=2cX
jD0

� b�1�j

a�2j

�
SqaCb�j Sqj :

A consequence of the Adem relations is the following: If k is not a power of two,
there exists a relation of the form Sqk

D
P

0<i<k aiSqiSqk�i for some constants
ai . Indeed, if k D 2c C d for integers c and d � 0 mod 2cC1 , the Adem relation
with .a; b/D .2c ; d/ has the property that the j D 0 term on the right-hand side is
Sqk , while the j > 0 terms and the SqaSqb on the left-hand side are of the form
SqiSqk�i for some 0 < i < k . (See Hatcher [10, page 497] for a complete, more
detailed argument.)

The first application of the Steenrod squares in the presence of periodicity is to show
the following:
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Lemma 1.4 Suppose x 2H k.M IZ2/ is nonzero and induces periodicity up to degree
c with 2k � c . If x D Sqi.y/ for some i > 0, then x factors as a product of elements
of degree less than k .

Combined with Lemma 1.2, we conclude that if i > 0 and if xDSqi.y/2H k.M IZ2/

is nonzero and induces periodicity up to degree c with 2k � c , then there is another
nonzero element x0 inducing periodicity up to degree c with 0< deg.x0/ < k .

Proof Let i > 0 be maximal such that x D Sqi.y/ for some cohomology element y .
Using the Cartan relation, we compute x2 as follows:

x2
D Sqi.y/2 D Sq2i.y2/�

X
j¤i

Sqj .y/Sq2i�j .y/:

Now Sqj .y/ and Sq2i�j .y/ commute, so the sum over j ¤ i is twice the sum over
j < i . Hence x2 D Sq2i.y2/.

Next, Sqi.y/ D x ¤ 0 implies i � deg.y/. Moreover, i D deg.y/ implies that x

factors as y2 . Suppose then that i < deg.y/. Since k D i C deg.y/ < deg.y2/, it
follows from the surjectivity assumption of periodicity that y2D xy0 for some y0 with
0< deg.y0/ < deg.y/. Using periodicity again, observe that Sqj .x/ for 0� j < k can
be factored as xxj for some xj 2H j .M IZ2/. Applying the Cartan formula again,
we have

x2
D Sq2i.xy0/D x

X
j�2i

xj Sq2i�j .y0/:

The injectivity assumption of periodicity implies we may cancel an x and conclude
that

x D
X

j�2i

xj Sq2i�j .y0/:

But periodicity also implies that x is the generator of H k.M IZ2/Š Z2 , so we have
x D xj Sq2i�j .y0/ for some j � 2i . Because i was chosen to be maximal, we must
have j > 0, that is, we must have that x factors as a product of elements of degree
less than k .

We proceed to the proof of Proposition 1.3. Suppose x 2 H k.M IZ2/ is nonzero,
induces periodicity up to degree c with 2k � c , and has minimal degree among all
such elements. Assume k is not a power of 2. We will show that x factors nontrivially
or that x D Sqi.y/ for some i > 0, which contradicts Lemmas 1.2 and 1.4.
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The first step is to evaluate an Adem relation of the form Sqk
D
P

0<i<k aiSqiSqk�i

on x . Using the factorization Sqj .x/Dxxj as above, together with the Cartan formula,
we obtain

x2
D Sqk.x/D

X
0<i<k

aiSqi.xxk�i/D
X

0<i<k

ai

X
0�j�i

xxj Sqi�j .xk�i/:

As in the proof of Lemma 1.4, we use periodicity to cancel the x and conclude that
x D xj Sqi�j .xk�i/ for some 0 < i < k and 0 � j � i . If j > 0, we have proven a
nontrivial factorization of x , and if j D 0, we have proven that x D Sqi.xk�i/ for
some i > 0. As explained at the beginning of the proof, this is a contradiction.

2 Periodicity with coefficients in Zp

In this section, we prove the Zp –analogue of Proposition 1.3:

Proposition 2.1 (Zp –periodicity theorem) Let p be an odd prime. Suppose x 2

H k.M IZp/ is nonzero and induces periodicity in H�.M IZp/ up to degree c with
pk � c . If x has minimal degree among all such elements, then k D 2�pa for some
a� 0 and � jp� 1.

The proof uses Steenrod powers. These are group homomorphisms

Pi
W H�.M IZp/!H�.M IZp/

for i � 0 that satisfy the following properties:

(1) If y 2H j .M IZp/, then Pi.y/ 2H jC2i.p�1/.M IZp/, and the following hold:
� if i D 0, then Pi.y/D y ,
� if 2i D j , then Pi.y/D yp , and
� if 2i > j , then Pi.y/D 0.

(2) (Cartan formula) For y; z 2H�.M IZp/, Pi.yz/D
P

0�j�i Pj .y/Pi�j .z/.

(3) (Adem relations) For a< pb ,

(1) PaPb
D

ba=pcX
jD0

.�1/aCj
� .p�1/.b�j /�1

a�pj

�
PaCb�j Pj :

As with Steenrod squares, the Adem relations imply that Pi decomposes unless i is a
power of p . However, we will need a more refined statement about this decomposability.
Let A be the algebra over Zp generated by fPigi�0 modulo the Adem relations. The
following lemma does not use periodicity.
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Lemma 2.2 Assume kD2 .�paC�/ where a�0, 0<�<p , and ��0 mod paC1 .
For all 1�m� �, there exist Qi 2A such that Pk=2 D Pmpa

ıQaC
P

i<a Ppi

ıQi .

Proof We induct over k . For k D 2, we have � D 1, m D 1, a D 0, and � D 0,
so we can take Q0 D P0 to conclude the result. Suppose the result holds for all even
k 0<k . Write kD 2 .�paC�/ where a� 0, 0<�<p , and �� 0 mod paC1 , and let
1�m��. If �D0 and mD�, then Pk=2DPmpa

DPmpa

ıP0 is already of the desired
form. If not, then mpa < p.k=2�mpa/, and we have the Adem relation (see (1))

c0Pk=2
D Pmpa

Pk=2�mpa

�

mpa�1X
jD1

cj Pk=2�j Pj :

For 1� j �mpa�1 , k=2� j is less than k=2 and is not congruent to 0 modulo pa .
Hence, the induction hypothesis implies that each Pk=2�j D P.k�2j/=2 term is of the
form

P
i<a Ppi

Qi . It therefore suffices to prove that c0 6� 0 mod p .

For this, we use a theorem of Lucas, which states the following: For a prime p , if

˛ D
X
i�0

˛ip
i and ˇ D

X
i�0

ˇip
i

are base–p expansions of integers ˛ and ˇ , then binomial coefficient
�
˛
ˇ

�
satisfies the

congruence
�
˛
ˇ

�
�
Q�˛i

ˇi

�
mod p . Applying Lucas’s theorem, we have that� .p�1/.k=2�mpa/�1

mpa

�
�

� .p�1/.��m/pa�1

mpa

�
�

�p�.��m/�1

m

�
modulo p . The first term is .�1/mc0 , and the last term is nonzero modulo p since
0<m� p� .��m/� 1< p , hence the proof is complete.

Despite the similarity of the statements of Propositions 1.3 and 2.1, the proof in the
odd prime case is more involved. To simplify the remainder of the proof, we assume
throughout the rest of the section that x 2H k.M IZp/ is nonzero, induces periodicity
up to degree c with pk � c , and has minimal degree among all such elements. In
particular, Lemma 1.2 implies that the only factorizations of axr with a¤ 0 and r �p

are of the form .a0xr 0/.a00xr 00/ with a0; a00 2 Zp and r D r 0C r 00 .

We proceed with a sequence of steps, the first of which is an analogue of Lemma 1.4:

Lemma 2.3 No nontrivial multiple of x is of the form Pi.y/ with i > 0.
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Proof Without loss of generality, we may assume x itself is equal to Pi.y/ for some
i > 0. Set d D deg.y/. Our first task is to write some power of x as Pi1.y1/ with
0< deg.y1/ < d . Because x ¤ 0, we have 2i � d , which implies deg.yp/� k . Let
r be the integer such that kCd > deg.yr /� k . Lemma 1.2 implies a strict inequality
here. Using periodicity, write yr D xy1 with 0< d1 < d .

Next we use the expression x D Pi.y/ and the Cartan relation to calculate

xr
D .Pi.y//r D Pri.yr /�

X
cj1;:::;jr

Pj1.y/ � � � Pjr .y/

where the cj1;:::;jr
are constants and the sum runs over j1�� � ��jr with j1C� � �Cjr D

r i and .j1; : : : ; jr / ¤ .i; : : : ; i/. Observe that j1 > i , so Pj1.y/ D xzj1
for some

zj1
2H 2.j1�i/.p�1/.M IZp/. Using yr D xy1 , the first term on the right-hand side

becomes

Pri.yr /D Pri.xy1/D
X

0�h�ri

Ph.x/Pri�h.y1/D x
X

0�h�ri

xhPri�h.y1/

for some xh 2H 2h.p�1/.M IZp/. Combining these calculations, and using periodicity
to cancel the x , we obtain

xr�1
D

X
0�h�ri

xhPri�h.y1/C
X

cj1;:::;jr
zj1

Pj2.y/ � � � Pjr .y/:

Now r � 1 < p , so periodicity implies that xr�1 generates H .r�1/k.M IZp/. By
Lemma 1.2, every term of the form zj1

Pj2.y/ � � � Pjr .y/ vanishes since

0< deg.Pjr .y// < deg.Pi.y//D k:

Similarly, all terms of the form xhPri�h.y1/ vanish unless Pri�h.y1/ is a nontrivial
multiple of a power of x . Hence without loss of generality, some power of x is of the
form Pi1.y1/, as claimed.

We now show that, given an expression xrj D Pij .yj / for some j � 1 with 0 <

deg.yj / < d , there exists another expression xrjC1 D PijC1.yjC1/ with

0< deg.yjC1/ < d:

Moreover, it will be apparent that kC deg.yjC1/D deg.yj /Cmj d for some integer
mj . First, with yj fixed, choose an expression of the form xrj D Pij .yj / with
minimal rj (equivalently, with minimal ij ). Next, note that Pij .yj /D xrj ¤ 0 implies
p deg.yj /� rj k , which together with pd � k implies

p deg.yj yp�rj /D p deg.yj /C .p� rj /pd � pk:
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Hence, we can choose an integer mj � p� rj satisfying k � deg.yj /Cmj d < kCd .
Once again, Lemma 1.2 implies both inequalities are strict. Using periodicity, we can
write yj ymj D xyjC1 with 0< deg.yjC1/ < d and kCdeg.yjC1/D deg.yj /Cmj d .
We now calculate

xrjCmj D Pij .yj /Pi.y/mj D PijCmj i.yj ymj /�
X

Ph0.yj /Ph1.y/ � � � Phmj .y/

where the sum runs over .h0; : : : ; hmj /¤ .ij ; i; : : : ; i/ with h0C� � �Chmj D ijCmj i .
As when we calculated xr above, we are able to factor an x from each term on the
right-hand side and use periodicity to cancel it. Using Lemma 1.2 and the fact that
xrjCmj�1 generates H .rjCmj�1/k.M IZp/, together with the assumption that rj is
minimal, we conclude the existence of an expression of the form xrjC1 D PijC1.yjC1/,
as claimed.

We therefore have a sequence of cohomology elements y1;y2; : : : with 0<deg.yj /<d

and kCdeg.yjC1/Ddeg.yj /Cmj d for some integer mj for all j �1. This cannot be.
Indeed, adding the equations kCdeg.y1/D rd and kCdeg.yjC1/D deg.yj /Cmj d

for 1� j � d � 1 yields

kd C deg.yd /D .r Cm1C � � �Cmd�1/d;

which implies that deg.yd / is divisible by d . But 0 < deg.yd / < d , so this is a
contradiction.

Lemma 2.3 implies the following:

Lemma 2.4 If 1� r �p and 0< i<k=.2.p�1//, then P i W H rk�2i.p�1/.M IZp/!

H rk.M IZp/ is zero.

Proof Let 1 � r � p , 0 < i < k=.2.p � 1//, and y 2 H rk�2i.p�1/.M IZp/. We
claim that Pi.y/D 0. The estimate on i implies deg.y/D rk �2i.p�1/ > .r �1/k ,
hence periodicity implies y D xr�1z for some z with 0< deg.z/ < k . Applying the
Cartan formula and writing Pi�j .xr�1/D xr�1wj for all 0� j � i , we have

Pi.y/D
X

0�j�i

xr�1wj Pj .z/:

Suppose for a moment that some wj Pj .z/ ¤ 0. Since this element has degree k ,
the fact that x generates H k.M IZp/ implies that bx D wj Pj .z/ for some nonzero
b 2Zp . If j < i , then deg.wj / > 0, a contradiction to Lemma 1.2, and if j D i , then
wj D 1 and bx D Pj .z/, a contradiction to Lemma 2.3. Hence every wj Pj .z/D 0,
so the expression Pi.y/D

P
xr�1wj Pj .z/ implies Pi.y/D 0.
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So far, we have established that powers of x cannot decompose in certain ways. The
next stage of the proof uses Lemma 2.2 to prove that, unless k has the desired form,
some power of x decomposes in one of these forbidden ways. Lemma 2.5 is a step in
this direction. After we prove it, we will conclude the proof of Proposition 2.1.

Lemma 2.5 Suppose that k takes the form 2 .�paC�/ with a� 0, 0< � < p , and
�� 0 mod paC1 . For all 1�m� �, there exists y 2H pk�2mpa.p�1/.M IZp/ such
that xp D Pmpa

.y/.

Proof Let k D 2.�paC�/ as in the assumption, and let 1�m� �. By Lemma 2.2,
there exist Qi 2A such that

Pk=2
�Pmpa

ıQa D

X
i<a

Ppi

ıQi :

Evaluating on x , the left-hand side becomes Pk=2.x/�Pmpa

.Qa.x//, or xp�Pmpa

.y/

where y D Qa.x/. On the right-hand side, we get zero by Lemma 2.4 since pi �

pa�1 < k=.2.p� 1//. This completes the proof.

Proof of Proposition 2.1 Suppose x 2H k.M IZp/ is nonzero, induces periodicity
up to degree c with pk � c and has minimal degree among all such elements. Observe
that p > 2 implies x3 ¤ 0, so k is even. Let pa denote the smallest power of p

in the p–adic expansion of k=2, and write k D 2 .�paC�/ with 0 < � < p and
�� 0 mod paC1 . We must show that �D 0 and � jp� 1.

We first show that �D 0. Suppose instead that � > 0. Taking mD 1 in Lemma 2.5,
we have xp D Ppa

.y/ for some y 2H�.M IZp/. Since � > 0, we have

pa
D

2.paCpaC1/

2.pC 1/
�

2.�paC�/

2.pC 1/
<

k

2.p� 1/
;

so Ppa

W H pk�2pa.p�1/.M IZp/! H pk.M IZp/ is zero. Since x ¤ 0 and hence
xp ¤ 0 by periodicity, this is a contradiction.

Suppose therefore that �D 0. Let g D gcd.�;p� 1/, and observe that our task is to
prove g D �. We break the proof into two cases and proceed by contradiction.

Suppose first that 1D g < �. Choose integers m and l such that m.p�1/D�1C l�.
By adding or subtracting multiples of � and p � 1 from m and l , respectively, we
may assume 0 � m < �. Moreover, since 1 < �, we have 0 < m < �, and since
l�Dm.p� 1/C 1< �.p� 1/C 1, we have l � p� 1.
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By Lemma 2.5, there exists y 2H pk�2mpa.p�1/.M IZp/ such that xp D Pmpa

.y/.
Using periodicity, we can write y D xp�lz for some z 2H 2pa

.M IZp/. Applying
the Cartan formula and writing Pmpa�j .xp�l/D xwj for all 0� j �mpa , we have

xp
D

X
0�j�mpa

xwj Pj .z/:

Using periodicity, we can conclude that bxp�1 D wj Pj .z/ for some 0 � j � mpa

and some nonzero b 2Zp . By Lemma 1.2, k divides deg.Pj .z//D 2j .p� 1/C 2pa .
Since pa divides k , we conclude from this that pa divides j . On the other hand,
deg.z/D 2pa implies Pj .z/D 0 if j > pa , so we must have j D 0 or j D pa . In
both cases, we have that bxp�1 has a factor of z since P0.z/D z and Ppa

.z/D zp .
Since 1< � implies 0< deg.z/ < k , we have a contradiction to Lemma 1.2.

Suppose now that 1< g<�. By Lemma 2.5, there exists y 2H pk�2pa.p�1/.M IZp/

such that xp D Ppa

.y/. Using periodicity, write y D xp�r z for some 0� r � p and
some z 2H rk�2pa.p�1/.M IZp/ such that 0� deg.z/ < k . In fact, 0< deg.z/ < k

since g < �. Observe that r satisfies

.p� r C 1/k > .p� r/kC deg.z/D deg.y/D pk � 2pa.p� 1/;

or, after dividing by 2gpa ,
r�

g
<
�

g
C

p�1

g
:

Since g > 1 and � < p� 1, this implies r�=g < p . We will use this later.

From the expressions xp D Ppa

.y/ and y D xp�r z , the Cartan formula implies

xp
D Ppa

.xp�r z/D
X

0�j�pa

xp�rwj Pj .z/

where we have used periodicity to write Ppa�j .xp�r /D xp�rwj for all 0� j � pa .
Applying periodicity again, we conclude that xrDwj Pj .z/ for some j . By Lemma 1.2,
k divides deg.wj /, so pa divides j . Since j D 0 would imply that xr has a factor
of P0.z/D z , another contradiction to Lemma 1.2, we conclude that j D pa , wj D 1,
and xr D Ppa

.z/.

Now recall that r�=g < p , hence .xr /�=g D xr�=g ¤ 0 and generates

H .r�=g/k.M IZp/:

On the other hand, we have

.xr /�=g D
�
Ppa

.z/
��=g
D P.�=g/p

a

.z�=g/�
X

Pi1.z/ � � � Pi�=g.z/
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where the sum runs over nonnegative ij such that i1 C � � � C i�=g D .�=g/pa and
.i1; : : : ; i�=g/¤ .p

a; : : : ;pa/. The first term on the right-hand side is zero by Lemma
1.2 since

deg.z�=g/D �

g
deg.z/��2�pa

�
p�1

g

�
� 0 mod k

and 0< deg.z/ < k . As for the other terms on the right-hand side, Lemma 1.2 requires
that any nonzero term Pi1.z/ � � � Pi�=g.z/ has ij > 0 and ij � 0 mod pa for all j . But,
there is no such term in the sum, so we conclude our desired contradiction.

Since neither of these cases occurs, we conclude g D � and hence that � jp� 1. This
concludes the proof of Proposition 2.1.

3 Proof of Theorem C

In this section, we use Propositions 1.3 and 2.1 to prove Theorem C in the introduction.
We are given a closed, connected, simply connected manifold M n and an element
x 2H k.M IZ/ inducing periodicity with 3k � n. Note that if x is a torsion element,
then periodicity implies that M is a rational homology sphere. Since H�.M IQ/ is
then trivially gcd.4; k/–periodic, we may assume x is not a torsion element.

In particular, since multiplication by x induces a surjection Z Š H 0.M IZ/ !
H k.M IZ/, we have that H k.M IZ/ Š Z with generator x . Let �W H k.M IZ/!
H k.M IZ2/ be the reduction homomorphism induced by the coefficient map Z!Z2 ,
and set x2 D �.x/.

Lemma 3.1 The element x2 2H k.M IZ2/ induces periodicity in H�.M IZ2/.

Proof Recall that � fits into the Bockstein sequence, which is the long exact sequence

� � � �!H i.M IZ/
2�
�!H i.M IZ/

�
�!H i.M IZ2/ �!H iC1.M IZ/ �! � � �

associated to the short exact sequence

0 �! Z
2�
�! Z

�
�! Z2 �! 0

of coefficient rings. In particular, since x generates H k.M IZ/ŠZ, exactness implies
�.x/ ¤ 0. In addition, H kC1.M IZ/ Š H 1.M IZ/ D 0 by periodicity, so we have
H k.M IZ2/ŠZ2 by the universal coefficients theorem. This proves that multiplication
by x2 induces a surjection (in fact, an isomorphism) H 0.M IZ2/!H k.M IZ2/.

On the other end, Poincaré duality implies H n�k.M IZ2/ŠH k.M IZ2/Š Z2 and
that the generator y 2H n�k.M IZ2/ satisfies x2y ¤ 0. In particular, multiplication
by x2 induces an injection H n�k.M IZ2/!H n.M IZ2/.
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It remains to show that multiplication by x2 induces isomorphisms H i.M IZ2/!

H iCk.M IZ2/ for all 0 < i < n� k . The five lemma together with the Bockstein
sequence above accomplishes this for 1< i < n� 1. For i D 1, the five lemma only
implies that multiplication map H i.M IZ2/!H iCk.M IZ2/ is surjective, and for
i D n � 1, it only proves injectivity. On the other hand, Poincaré duality implies
0 D H 1.M IZ2/ Š H n�1.M IZ2/, so both of these maps are isomorphisms. This
concludes the proof that x2 2H k.M IZ2/ induces periodicity.

Given that some element induces periodicity in H�.M IZ2/, we can consider an
element y 2H l.M IZ2/ of minimal degree inducing periodicity in H�.M IZ2/. By
Proposition 1.3, l is a power of 2. We claim that l divides k . The proof relies on the
following lemma:

Lemma 3.2 Let D be the set of positive integers d � k such that H�.M IZ2/ is
d –periodic. If d1; d2 2D with d1 > d2 , then d1� d2 2D .

Proof Choose elements z1 2H d1.M IZ2/ and z2 2H d2.M IZ2/ inducing period-
icity in H�.M IZ2/. Since z2 induces periodicity, there exists z3 2H d1�d2.M IZ2/

such that z1 D z2z3 . Since z1 induces periodicity, Lemma 1.2 implies that z3 does as
well.

To see that this lemma implies l j k , observe that k; l 2D . By this lemma, gcd.k; l/2D .
But l is minimal, so l D gcd.k; l/ and therefore divides k . Observe that periodicity
implies yk= l D x2 .

Next we show that y comes from an integral element zy 2 H l.M IZ/ such that the
map H i.M IZ/!H iCl.M IZ/ induced by multiplication by zy has finite kernel for
all 0< i � n� l . First observe by periodicity that 0DH 1.M IZ2/ŠH 1Cl.M IZ2/,
so blC1.M /� blC1.M IZ2/D 0. Next consider the following portion

H l.M IZ/!H l.M IZ2/!H lC1.M IZ/!H lC1.M IZ/!H lC1.M IZ2/

of the Bockstein sequence. We see that H lC1.M IZ/!H lC1.M IZ/ is a surjection
and hence an isomorphism since H lC1.M IZ/ is finite. Using exactness again, we
conclude �W H l.M IZ/ ! H l.M IZ2/ is surjective, so that we can choose some
zy 2 H l.M IZ/ with �.zy/ D y . Now H k.M IZ/ is generated by x , so zyk= l D ax

for some a 2 Z. Applying � to both sides yields

ax2 D �.zy
k= l/D yk= l

D x2 ¤ 0;

hence a ¤ 0. This proves for all 0 < i � n� k that multiplication by zy induces a
map H i.M IZ/!H iCk.M IZ/ with finite kernel. In degrees n� k < i � n� l , we
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conclude this property by observing that multiplication by x and multiplication by zy
commute.

Moving to rational coefficients, we conclude that xy 2H l.M IQ/, the image of zy under
the coefficient map H l.M IZ/!H l.M IQ/, induces periodicity in H�.M IQ/.

A completely analogous argument using Proposition 2.1 with p D 3 shows that
H�.M IQ/ is m–periodic for some m that divides k and is of the form 2 � 3s or
4 � 3s . Using an argument like that in Lemma 3.2, we conclude that H�.M IQ/ is
g–periodic where g divides gcd.k; l;m/ and hence divides gcd.4; k/.

4 Proof of Theorem B

The starting point of the proof is the following theorem of Wilking:

Connectedness Theorem [17] Suppose M n is a closed Riemannian manifold with
positive sectional curvature.

(1) If N n�k is a closed, embedded, totally geodesic submanifold of M , then N ,!

M is .n� 2kC 1/–connected.

(2) If N
n�k1

1
and N

n�k2

2
are closed, embedded, totally geodesic submanifolds of

M with k1 � k2 , then N1\N2 ,!N2 is .n� k1� k2/–connected.

Recall an inclusion N ,!M is called h–connected if �i.M;N /D 0 for all i � h.
It follows from the relative Hurewicz theorem that the induced map Hi.N IZ/ !
Hi.M IZ/ is an isomorphism for i < h and a surjection for i D h. The following is a
topological consequence of highly connected inclusions of closed, orientable manifolds:

Theorem 4.1 [17] Let M n and N n�k be closed, orientable manifolds. If N ,!M

is .n � k � l/–connected with n � k � 2l > 0, then there exists e 2 H k.M IZ/
such that the maps H i.M IZ/! H iCk.M IZ/ given by x 7! ex are surjective for
l � i < n� k � l and injective for l < i � n� k � l .

Combining these results with Theorem C, we will prove in this section the following
slightly stronger version of Theorem B.

Theorem 4.2 Let M n be a closed, one-connected Riemannian manifold with positive
sectional curvature. Let N

n�k1

1
and N

n�k2

2
be closed, embedded, totally geodesic

submanifolds of M that intersect transversely. Suppose k1 � k2 .
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(1) If k1C 3k2 � n, the rational cohomology rings of M , N1 , N2 , and N1\N2

are gcd.4; k1; k2/–periodic.

(2) If 2k1C 2k2 � n, the rational cohomology rings of M , N1 , N2 , and N1\N2

are gcd.4; k1/–periodic.

(3) If 3k1C k2 � n and if N2 is one-connected, the rational cohomology rings of
N2 and N1\N2 are gcd.4; k1/–periodic.

We make two remarks. First, all three codimension assumptions imply that N1 is
one-connected and that N1 \ N2 is one-connected if N2 is. This follows by the
connectedness theorem since the bounds on the codimensions imply that the inclusions
N1 ,!M and N1\N2 ,!N2 induce isomorphisms of fundamental groups. Similarly
the first two bounds on k1 and k2 imply that N2 is one-connected, but the third
condition does not.

Second, in the proof of Theorem A, we will only use the following consequence of
Theorem 4.2:

Corollary 4.3 Let M n be a closed, connected positively curved manifold with n�

0 mod 4. If N
n�k1

1
and N

n�k2

2
are closed, embedded, totally geodesic submanifolds

that intersect transversely and have 2k1 C 2k2 � n, then bodd.M / D 0 where bodd

denotes the sum of the odd Betti numbers.

Proof of Corollary 4.3 Let � W �M ! M denote the universal Riemannian cover-
ing. The submanifolds ��1.Ni/�M are transversely intersecting, totally geodesic,
.n� ki/–dimensional submanifolds of the closed, simply connected, positively curved
manifold �M . Since 2k1C2k2�n, Theorem 4.2 implies that H�. �M IQ/ is 4–periodic.

Observe that 4–periodicity and Poincaré duality imply bodd. �M /D 0 since �1. �M /D 0

and n � 0 mod 4. Recall now that the transfer theorem implies that H�.M IQ/ is
isomorphic to H�. �M IQ/�1.M / , the subring of invariant elements under the action of
�1.M / on H�. �M IQ/. Since bodd. �M /D 0, it follows that bodd.M /D 0.

We proceed now to the proof of Theorem 4.2. Recall that we have a closed, simply
connected Riemannian manifold M n with positive sectional curvature. We also have
totally geodesic, transversely intersecting submanifolds N

n�k1

1
and N

n�k2

2
with k1 �

k2 . As discussed above, we may assume that N1 , N2 and N1 \ N2 are simply
connected and therefore orientable.

Observe that we have 3k1Ck2� n in all three cases. By the corollary to the connected-
ness theorem, H�.N2IZ/ is k1 –periodic since the intersection is transverse. The bound
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on the codimensions implies 3k1� dim.N2/, hence Theorem C implies H�.N2IQ/ is
g–periodic, where gD gcd.4; k1/. Since N1\N2 ,!N2 is dim.N1\N2/–connected,
H�.N1\N2IQ/ is g–periodic as well. This concludes the proof of the third statement.

Assume now that 2k1 C 2k2 � n. We claim that H�.M IQ/ is g–periodic. Let
j W N2 ,!M be the inclusion map, and let x0 2H g.N2IQ/ be an element inducing
periodicity in H�.N2IQ/. Because n� 2k2 � 2k1 > g , the connectedness theorem
implies j �W H g.M IQ/!H g.N2IQ/ is an isomorphism. Let x 2H g.M IQ/ satisfy
j �.x/D x0 . We will show that x induces g–periodicity in H�.M IQ/.

First, we claim that it suffices to show that x induces injective maps H i.M IQ/!
H iCg.M IQ/ via multiplication for all 0< i�n�g . Indeed, periodicity in H�.N2IQ/
implies that x0 generates H g.N2IQ/, hence the fact that j � is an isomorphism in
degree g implies that x generates H g.M IQ/. In particular, multiplication by x

induces a surjection H 0.M IQ/! H g.M IQ/. As for the surjectivity of the maps
H i.M IQ/!H iCg.M IQ/ for 0< i < n�g , note that the injectivity of these maps
together with Poincaré duality would imply that

bi � biCg D bn�i�g � bn�i D bi

for all 0< i < n�g , where bi D dim H i.M IQ/. Hence equality would hold, so the
proof that H�.M IQ/ is g–periodic would be complete.

We proceed to proof that x induces an injective map H i.M IQ/!H iCg.M IQ/ via
multiplication for 0< i � n�g :

� For i < k1 , first observe that connectivity and periodicity imply that the map
H i.M IQ/ ! H iCg.N2IQ/ given by j � followed by multiplication by x0

is injective. Since this map is the same as multiplication by x followed by
j � , we conclude that multiplication by x induces an injection H i.M IQ/!
H iCg.M IQ/ in these degrees.

� For k1 � i � n� 2k1C 1, first consider that, by the connectedness theorem,
the inclusion N1 ,!M is .n� k1� .k1� 1//–connected. Hence, there exists
e1 2 H k1.M IZ/ inducing isomorphisms H i.M IZ/ ! H iCk1.M IZ/ via
multiplication for k1 � i � n � 2k1 . Denote by e1 the image of e1 under
the natural map H k1.M IZ/ ! H k1.M IQ/, and note that e1 satisfies the
corresponding property with rational coefficients.
Next, because g divides k1 , periodicity implies .x0/k1=g generates H k1.N2IQ/.
Since j W N2 ,!M is .n�2k2C1/–connected and hence .2k1C1/–connected,
j �W H k1.M IQ/!H k1.N2IQ/ is an isomorphism. In particular, xk1=g gen-
erates H k1.M IQ/, so axk1=g D e1 for some a 2Q.
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Multiplication by e1 induces an injection H i.M IQ/!H iCk1.M IQ/ for all
k1 � i � n� 2k1 C 1, and this map factors as multiplication by x followed
by multiplication by axk1=g�1 , hence multiplication by x induces an injection
H i.M IQ/!H iCg.M IQ/ for k1 � i � n� 2k1C 1.

� Finally, for n�2k1C1< i � n�g , we use the following commutative diagram

H i.M / �! Hn�i.M / �! Hn�i.N2/  � H i�k2.N2/

# # # #

H iCg.M / �! Hn�g�i.M / �! Hn�g�i.N2/  � H i�k2Cg.N2/

in rational cohomology where the vertical maps are cup or cap products with
x 2 H g.M IQ/ or x0 2 H g.N2IQ/, the horizontal maps in the middle are
induced by the inclusion j , and the other horizontal maps are Poincaré duality
isomorphisms. The bounds on i , periodicity in H�.N2IQ/, and the connectivity
of j W N2 ,!M imply that the rightmost vertical map is an injection and that
all horizontal maps are isomorphisms. It follows that the leftmost map, namely,
multiplication by x from H i.M IQ/ to H iCg.M IQ/, is an injection.

This concludes the proof that H�.M IQ/ is g–periodic.

Next let g0 D g if k1C 3k2 > n and g0 D gcd.4; k1; k2/ if k1C 3k2 � n. Our proof
will be complete once we show that M , N1 , N2 , and N1\N2 are g0–periodic. First,
we claim that M is g0–periodic.

If k1C3k2>n, then H�.M IQ/ is already g0–periodic. Suppose then that k1C3k2�

n. By the corollary to the connectedness theorem, there exists e2 2H k2.M IQ/ such
that the maps H i.M IQ/ ! H iCk2.M IQ/ induced by multiplication by e2 are
isomorphisms for k2 � i � n� 2k2 . Given that x and e2 commute, we conclude that
e2 induces periodicity in H�.M IQ/. Indeed, suppose 0� i < k2 . Choose j � 0 with
k2� iCjg<k2Cg . Then iCjg�n�2k2 , so multiplication by e2 induces an isomor-
phism H iCjg.M IQ/!H iCjgCk2.M IQ/. In addition, iCjgCk2< n implies that
multiplication by xj induces an isomorphism H iCk2.M IQ/!H iCjgCk2.M IQ/.
Hence, since multiplication by xj from H i.M IQ/ to H iCjg.M IQ/ is a surjection
for i D 0 and an isomorphism for 0 < i < k1 , it follows from commutativity that
multiplication by e2 from H i.M IQ/ to H iCk2.M IQ/ is a surjection for iD0 and an
isomorphism for 0< i <k2 . The required periodicity conditions for n�2k2< i �n�k2

follow from a similar argument. Hence, we have that H�.M IQ/ is k2 –periodic
and g–periodic. As in the proof of Lemma 3.2, it follows now that H�.M IQ/ is
gcd.g; k2/–periodic and hence g0–periodic.

Using this periodicity, we now conclude that the rational cohomology rings of N1 , N2 ,
and N1\N2 are g0–periodic. First, since 4k1 � 2k1C 2k2 � n, N1 ,!M induces
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isomorphisms on cohomology up to half of the dimension of N2 . Using Poincaré
duality, it follows from the fact that M is rationally g0–periodic that N1 is too. Second,
observe that N2 ,!M is n�2k2C1� 2k1C1 connected. Hence H�.N2IQ/ is both
g–periodic and g0–periodic up to degree 2k1 , which is at least twice g . Since N2 is
rationally g–periodic, it follows that N2 is rationally g0–periodic by arguments similar
to those above. Finally, N1\N2 ,!N2 is dim.N1\N2/–connected, so N1\N2 is
clearly g0–periodic as well. This concludes the proof of the Theorem 4.2.

5 Proof of Theorem A

Before we begin, we state two well-known theorems for easy reference:

Berger’s Theorem [3] If T is a torus acting by isometries on a compact, even-
dimensional, positively curved manifold M , then the fixed-point set M T is nonempty.

Conner’s Theorem [6] If T is a torus acting on a manifold M , then

(1) the Euler characteristic satisfies �.M /D �.M T /, and

(2) the sum of the odd Betti numbers satisfies bodd.M
T /� bodd.M /.

We recall the setup of Theorem A. We are given a closed, positively curved Riemannian
manifold M n with n� 0 mod 4, and we have an effective, isometric action by a torus
T with dim.T / � 2 log2.n/� 2. By Berger’s theorem, M T is nonempty, and, by
the first part of Conner’s theorem, �.M / D �.M T /, hence it suffices to show that
bodd.F /D 0 for all components F of M T .

Fix a component F of M T . Our goal is to find a submanifold P with F � P �M

and bodd.P /D 0 such that T acts on P . It would follow that F is a component of
PT , hence the second part of Conner’s theorem would imply bodd.F /D 0.

In order to find such a submanifold P , the first step is to set up a sort of induction
argument. To do this, we look at our situation from the point of view of F . We consider
all closed, totally geodesic submanifolds N such that

(1) F �N �M ,

(2) dim.N /� 0 mod 4,

(3) the T –action on M restricts to a T –action on N , and

(4) the kernel ker.T jN / of this induced action satisfies

2 log2.n/� dim ker.T jN /� 2 log2.dim N /:
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Clearly M itself is one such submanifold, so the collection of submanifolds N satis-
fying these properties is nonempty. We complete the induction setup by choosing a
submanifold N of minimal dimension such that these properties hold. Now that N is
fixed, we set T 0 D T= ker.T jN /.

Before continuing with the proof, we make a few remarks. First, observe that T 0 acts
effectively on N and that

dim.T 0/D dim.T /� dim ker.T jN /� 2 log2.dim N /� 2

by property .4/ above. Second, observe that F is a component of the fixed-point set
N T 0 since F � N �M . Since our goal is to show bodd.F /D 0, and since we will
do this by finding a submanifold F � P �N on which T 0 acts with bodd.P /D 0, we
may forget about M and T and instead focus on N and T 0 . For this reason, it will
be convenient to adopt the following notation (recall that F , N , and T 0 are fixed):

Definition 5.1 (1) For a submanifold Q�N , let cod.Q/ denote the codimension
of Q in N .

(2) For a subgroup H � T 0 , let F.H / denote the component of the fixed-point set
N H of H containing F . If H is generated by � 2 T 0 or by a collection of
elements �1; : : : ; �i 2 T 0 , we will write F.�/ or F.h�1; : : : ; �ii/, respectively,
in place of F.H /.

The first step in the proof is to apply the minimality of our choice of N . We remark
that this is one of the two places where the logarithmic bound appears. We will refer to
it frequently.

Lemma 5.2 For a nontrivial subgroup H � T 0 with dim F.H /� 0 mod 4, we have
dim F.H / > .dim N /=2d=2 where d D dim ker

�
T 0jF.H /

�
.

Proof Suppose that dim F.H / � .dim N /=2d=2 . Combining this estimate with the
fact N satisfies property (4), we have

2 log2.n/� dim ker.T jF.H //D 2 log2.n/� dim ker.T jN /� dim ker.T 0jF.H //

� 2 log2.dim N /� d

� 2 log2.dim F.H //:

It follows that F.H / satisfies properties .1/, .2/, .3/, and .4/ above. But dim F.H /<

dim N since the action of T 0 on N is effective, so this contradicts our choice of N .
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We now proceed with the second part of the proof, in which we study the array of
intersections of fixed-point sets of involutions in T 0 . The strategy is to find H � T 0

such that bodd.F.H //D 0. Since F �F.H / and T 0 acts on F.H /, we set P DF.H /

and conclude from our remarks at the beginning of the proof that bodd.F /D 0. This
would complete the proof of Theorem A.

In the course finding such a submanifold F.H / � N , we will use Corollary 4.3 to
conclude bodd.F.H //D0. This requires finding a pair of totally geodesic submanifolds
of F.H / that intersect transversely in F.H / and have small codimension in F.H /.
We will conclude that the codimensions are small by applying Lemma 5.2, but finding
a transversely intersecting pair takes work and is the heart of the proof. To organize the
required intersection, codimension, and symmetry data, we define an abstract graph
that simplifies the picture while retaining this information.

Definition 5.3 Define a graph � by declaring the following:

� An involution � 2 T 0 is in � if cod F.�/� 0 mod 4 and dim ker
�
T 0jF.�/

�
� 1.

� An edge exists between distinct �; � 2 � if F.�/\F.�/ is not transverse.

We are ready to prove the existence of a submanifold F.H /�N with bodd.F.H //D 0.
As we will see, F.H / may be N itself. In this case, H is simply the identity subgroup.
We separate the proof into five cases, according to the structure of � .

Lemma 5.4 (Case 1) Let r D dim.T 0/. If � does not contain r � 1 algebraically
independent involutions, then bodd.N /D 0.

Proof Let 0� j � r � 2 be maximal such that there exist �1; : : : ; �j 2 � generating a
Zj

2
. We wish to show that bodd.N /D 0.

Consider the isotropy representation �W T 0 ,! SO.TxN / for some x 2 F . Choose
a basis of the tangent space so that the image of the Zr

2
� T 0 lies in a copy of

Zm
2
�T m� SO.TxN / where mD 1

2
dim N . In particular, every � 2Zr

2
has an image

of the form
�.�/D diag.�1I2; �2I2; : : : ; �mI2/

for some �i 2 f1;�1g where I2 is the 2–by–2 identity matrix. Observe that cod F.�/

is the dimension of the .�1/–eigenspace of �.�/, and that this is exactly twice the
number of �i that equal �1. In particular, cod F.�/ is divisible by four if and only
if the number of �i D�1 is even. Define a map Zr

2
! Z2 by composing � 7! �.�/

with the map that takes �.�/ D diag.�1I2; : : : ; �mI2/ to
Qm

iD1 �i 2 f1;�1g. This
map is clearly a homomorphism. Moreover, � 2 Zr

2
lies in the kernel if and only if
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cod F.�/� 0 mod 4. Hence there exists Zr�1
2
� Zr

2
such that every � 2 Zr�1

2
has

cod F.�/� 0 mod 4.

Since j � r�2, there exists �jC1 2Zr�1
2
nh�1; : : : ; �j i. Choosing �jC1 to have minimal

cod F.�jC1/ ensures that dim ker
�
T 0jF.�jC1/

�
� 2. Indeed, dim ker

�
T 0jF.�jC1/

�
� 3

would imply that a three–torus, and hence a copy of Z3
2

, fixes F.�jC1/. As argued in
the previous paragraph, we could then choose a Z2

2
� Z3

2
such that every � 2 Z2

2
has

cod F.�/� 0 mod 4. We could then choose � 2Z2
2
nh�jC1i. Because the action of T 0

is effective, it would follow that F.�jC1/�F.�/�N and F.�jC1/�F.��jC1/�N

with all inclusions strict. Since � or ��jC1 lies in Zr�1
2
n h�1; : : : ; �j i, this would

contradict the choice of �jC1 .

Next, because j is maximal, we cannot have �jC1 2� . Hence cod F.�jC1/� 0 mod 4

implies that dim ker
�
T 0jF.�jC1/

�
D 2. In particular, a copy of Z2

2
� T r fixes F.�jC1/,

hence there exists � 2Z2
2
nh�jC1i. Effectivity of the T 0–action implies that F.�jC1/�

F.�/�M with both inclusions strict.

We claim that F.�jC1/ is the transverse intersection of F.�/ and F.��jC1/. Indeed,
write the images of �jC1 , �, and their product as

and

�.�jC1/D diag.�1I2; : : : ; �mI2/;

�.�/D diag.ı1I2; : : : ; ımI2/;

�.��jC1/D diag.�1ı1I2; : : : ; �mımI2/

where �i ; ıi 2 f1;�1g. Since F.�jC1/�F.�/, ıi D�1 implies �i D�1. In particular,
ıi and �iıi cannot both be �1. Since .�1/’s in the isotropy correspond to normal
directions of the fixed-point set, this is precisely the statement that F.�jC1/ and
F.��jC1/ are transverse.

Finally, Lemma 5.2 and dim ker
�
T 0jF.�jC1/

�
D2 imply that dim F.�jC1/>.dim N /=2,

so
2 cod F.�/C 2 cod F.��jC1/D 2 cod F.�jC1/ < dim N:

It follows from Corollary 4.3 that bodd.N /D 0.

Lemma 5.5 (Case 2) If there exist distinct �; � 2 � such that dim ker
�
T 0jF.h�;�i/

�
�

3, then bodd.F.�//D 0.

Proof Let H Dh�; �i. Since dim ker
�
T 0jF.H /

�
� 3 and dim ker

�
T 0jF.�/

�
� 1, there

exists a 2–torus that acts almost effectively on F.�/ and fixes F.H /. Restricting our
attention to the action on F.�/, we may divide by the kernel of this action to conclude
that a 2–torus acts effectively on F.�/ and fixes F.H /. This implies the existence of
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an involution � such that F.H /� F.�/� F.�/ with all inclusions strict. Since F.H /

is the F –component of the fixed-point set of the � –action on F.�/, it follows that
F.H / is the transverse intersection inside F.�/ of F

�
�jF.�/

�
and F

�
�� jF.�/

�
.

Lemma 5.2 implies dim F.�/� .dim N /=
p

2> 2
3

dim N and similarly for dim F.�/.
Hence,

codF.�/ F.�jF.�//C codF.�/ F.�� jF.�//

D codF.�/ F.� jF.�//� cod F.�/ < 1
2

dim F.�/:

Corollary 4.3, together with the observation

dim F.�/D dim N � cod F.�/� 0 mod 4;

therefore implies bodd.F.�//D 0.

Lemma 5.6 (Case 3) If there exist distinct �; � 2 � with no edge connecting them,
then bodd.N /D 0 or bodd.F.�//D 0.

Proof Let H Dh�; �i. If dim ker
�
T 0jF.H /

�
� 3, then bodd.F.�//D 0 by Lemma 5.5.

We may assume therefore that dim ker
�
T 0jF.H /

�
� 2. By Lemma 5.2, dim F.H / >

1
2

dim N . The assumption that no edge exists between � and � means that F.�/\F.�/

is transverse. Since

2 cod F.�/C 2 cod F.�/D 2 cod F.H / < dim N;

Corollary 4.3 implies bodd.N /D 0.

Lemma 5.7 (Case 4) If there exist distinct �; � 2 � such that �� 62 � , then
bodd.F.�//D 0 or bodd.N /D 0.

Proof Keeping the notation from the proof of Lemma 5.4, we may permute the basis
of the isotropy representation so that the images of � and � take the form

and

�.�/D diag.�I;�I; I; I/

�.�/D diag.�I; I;�I; I/

where the sizes of the blocks in both matrices are the even numbers a, cod F.�/� a,
cod F.�/� a, and dim F .h�; �i/. It follows that

cod F.��/D cod F.�/C cod F.�/� 2a� cod F.�/C cod F.�/� 0 mod 4:
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Since �� 62 � , we must have dim ker
�
T 0jF.��/

�
� 2. On the other hand, the fact that

F.H /� F.��/ implies

dim ker
�
T 0jF.��/

�
� dim ker

�
T 0jF.H /

�
;

and by Lemma 5.5, we may assume that dim ker
�
T 0jF.H /

�
� 2, hence we have

dim ker
�
T 0jF.��/

�
D 2.

This implies the existence of an involution � 2 T 0 satisfying F.��/ � F.�/ �M

with all inclusions strict, which in turn implies F.��/ is the transverse intersection in
M of F.�/ and F.���/. Additionally, dim ker

�
T 0jF.��/

�
D 2 implies dim F.��/ >

1
2

dim N by Lemma 5.2. Hence,

2 cod F.�/C 2 cod F.���/D 2 cod F.��/ < dim N;

so Corollary 4.3 implies bodd.N /D 0.

We pause before considering the last case. By the proof of Cases 3 and 4, we may
assume that � is a complete graph and that the set of vertices in � is closed under
multiplication in T 0 . Adding the proof of Case 1, we may assume that � is a complete
graph on Zs

2
for some s � dim.T 0/� 1. The last case considers this possibility.

Lemma 5.8 (Case 5) Suppose � is a complete graph on Zs
2

with s � dim.T 0/� 1.
There exists H � T 0 such that bodd.F.H //D 0.

Proof Set l D b.sC 1/=2c. We claim that there exist subgroups

� � Zs
2 � Zs�1

2 � � � � � Zs�.l�1/
2

and involutions
�i 2 Zs�.i�1/

2
n h�1; : : : ; �i�1i

for 1� i � l such that the following holds for all � 2 Zs�.i�1/
2

:

� cod
�
F.�jRi�1

/�Ri�1

�
� 0 mod 4, and

� cod
�
F.�jRi�1

/�Ri�1

�
� ki

where Ri�1 D F.h�1; : : : ; �i�1i/, R0 DM and ki D cod
�
F.�i jRi�1

/�Ri�1

�
D

cod .Ri �Ri�1/.

To see this, we first take Zs
2

to be the entire vertex set of � , and we choose �12Zs
2

such
that k1D cod F.�1/D cod

�
F.�1jR0

/�R0

�
is maximal. Observe that for all � 2Zs

2
,

� cod
�
F.�jR0

/�R0

�
D cod F.�/� 0 mod 4 because � 2 � , and
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� cod
�
F.�jR0

/�R0

�
D cod F.�/� cod F.�1/D k1 by choice of �1 .

Next, suppose for some 1� i < l that we have already chosen � �Zs
2
� � � ��Zs�.i�1/

2

and involutions �1; : : : ; �i satisfying the above conditions. Keeping the notation from
Lemma 5.4, we may permute the basis of TxN so that the isotropy images of the �i

take the form

and

�.�1/D diag.�I; I; : : : ; I; I/;

�.�2/D diag. �;�I; : : : ; I; I/;

:::

�.�i/D diag. �; �; : : : ;�I; I/

where the blocks have size k1; k2; : : : ; ki ; dim.Ri/. We define a homomorphism
Zs�.i�1/

2
!Z2 by composing � with the map that takes �.�/D diag.�1I2; : : : ; �mI2/

to
Q

i>k=2 �i where kDk1C� � �Cki . Observe that the product of the �i is over indices
i that correspond to tangent directions of F.h�1; : : : ; �ii/ D Ri . In particular, � 2
Zs�.i�1/

2
lies in the kernel if and only if cod.F.�jRi

/�Ri/�0 mod 4. Choose a copy
of Zs�i

2
�Zs�.i�1/

2
that lies inside this kernel, then choose �iC1 2Zs�i

2
nh�1; : : : ; �ii

such that cod
�
F.�iC1jRi

/�Ri

�
is maximal. Observe that such a choice exists since

i < l D b.sC 1/=2c. In addition, observe that, for all � 2 Zs�i
2

,

� cod
�
F.�jRi

/�Ri

�
� 0 mod 4 by our choice of Zs�i

2
, and

� cod
�
F.�jRi

/�Ri

�
� cod

�
F.�iC1jRi

/�Ri

�
D kiC1 by our choice of �iC1 .

This completes the proof of the claim.

We now claim that our choices imply the following:

(1) dim.Rh/� 0 mod 4 for all h,

(2) kh � 2khC1 for all h, and

(3) kl D 0.

The first claim follows by observing that dim.Rh/ D .dim N /� .k1C � � � C kh/ by
definition and that ki � 0 mod 4 for all i .

To prove the second claim, fix h� 1. Observe that

�h 2 Zs�.h�1/
2

and �hC1 2 Zs�h
2 � Zs�.h�1/

2
;

so �h�hC1 2 Zs�.h�1/
2

as well. By our choice of �h , we have both of the following:

and

cod
�
F
�
�hC1jRh�1

�
�Rh�1

�
� kh;

cod
�
F
�
�h�hC1jRh�1

�
�Rh�1

�
� kh:
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To derive the second property from these bounds, we recall that our choice of basis for
TxM implies that

and

�.�h/D diag.�; : : : ;�;�I; I; I/;

�.�hC1/D diag.�; : : : ;�;A;�I; I/

for some A where the blocks are of size k1; : : : ; kh; khC1; dim.RhC1/. Write AD

diag.�I; I/ where the blocks have size, say, a and kh� a. Then we have

and

cod
�
F.�hC1jRh�1

/�Rh�1

�
D aC khC1;

cod
�
F.�h�hC1jRh�1

/�Rh�1

�
D .kh� a/C khC1:

Substituting these expressions into the bounds above on kh and adding the inequalities,
we conclude that 2khC1 � kh .

Finally, we prove the third claim. The bounds on s and dim.T 0/ imply

l D

�
sC 1

2

�
�

�
dim.T 0/

2

�
�

dim.T 0/� 1

2
� log2.n/�

3

2
:

By the second claim, kl � k1=2
l�1 , and by Lemma 5.2, k1 < n=

p
2. Putting together

these estimates, we obtain

kl <
n

2l�1=2
�

n

2log2.n/�2
D 4:

But kl � 0 mod 4 by our choice of �l , so kl D 0. This concludes the proof of the
three claims.

We now use these facts to find a transverse intersection. Let 0< j � l be the smallest
index such that kj D0. Recall that we have represented �.�j / as diag.�; : : : ;�;�I; I/

with blocks of size k1; : : : ; kj�1; kj D 0; dim.Rj /. Since kj D 0, we can write this as
�.�j /Ddiag.A1; : : : ;Aj�1; I/. Set ai equal to the dimension of the .�1/–eigenspace
of Ai . Geometrically, ai is the codimension of

F.�i jRi�1
/\F.�j jRi�1

/� F.�i�j jRi�1
/:

By replacing �j by �j�1�j if necessary, we can ensure that aj�1 � kj�1=2. Observe
that this may change ai for i < j � 1. Next, replace �j by �j�2�j if necessary to
ensure that aj�2 � kj�2=2. Observe again that the ai may have changed for i < j �2,
but that aj�1 does not. Continuing in this way, we may replace �j by ��j for some
� 2 h�1; : : : ; �j�1i to ensure that ai � ki=2 for all i < j .

Now some of the aj�1; aj�2; : : : may be zero, but they cannot all be zero because the
action of T 0 is effective and �j 62 h�1; : : : ; �j�1i. Let 1� i � j �1 denote the largest
index where ai > 0.
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Observe that ai �
ki

2
implies ki � ai > 0. Also observe that F.�j jRi�1

/ and
F.�j�i jRi�1

/ intersect transversely in Ri�1 with intersection Ri . If the codimensions
ai and ki � ai satisfy

2ai C 2.ki � ai/� dim.Ri�1/;

then Corollary 4.3 would imply that bodd.Ri�1/D 0. Since Ri�1DF.h�1; : : : ; �i�1/,
this would complete the proof.

To check the required bound on the codimensions, first note that Lemma 5.2 implies
dim.R1/ > .dim N /=

p
2, hence k1 � .dim N /=2. Next, note that dim.Ri�1/ D

.dim N /� .k1C � � �C ki�1/, so the bound we wish to verify is equivalent to

2ki C ki�1C � � �C k1 � dim N:

But 2kh � kh�1 for all h, so the left-hand side is at most 2k1 and hence at most
dim N . This completes the proof of Lemma 5.8.

To summarize, we have shown in all five cases the existence of a submanifold F �

P � N on which T 0 acts such that bodd.P / D 0. As explained at the beginning of
the proof, Conner’s theorem implies bodd.F /D 0, so by repeating this argument for
all components F �M T , we have bodd.M

T / D 0. By Berger’s theorem, M T is
nonempty, so �.M /D �.M T / > 0, as claimed.

6 A corollary and a conjecture

Our first point of discussion regards general Lie group actions. By examining the list
of simple Lie groups, one easily shows that .2 rank.G//2 � dim.G/ for all compact,
one-connected, simple Lie groups. The inequality persists for all compact Lie groups.
In addition, dim.M n=G/� n� d clearly implies dim.G/� d . Hence, letting I.M /

denote the isometry group of M , we have the following corollary:

Corollary 6.1 Let M n be a closed Riemannian manifold with positive sectional
curvature and n � 0 mod 4. If dim I.M / � .4 log2 n � 4/2 or dim M=I.M / �

n� .4 log2 n� 4/2 , then �.M / > 0.

We remark that, for closed, even-dimensional manifolds with positive sectional cur-
vature, it was shown in Püttmann and Searle [13] that �.M n/> 0 if dim M=I.M /< 6,
and it follows from the main theorems in Wilking [18] that �.M n/ > 0 if
dim M=I.M /�

p
n=18� 1 or dim I.M /� 2n� 6.

To conclude, we state a conjecture that would improve the conclusion of the periodicity
theorem. Recall that the periodicity theorem rested on Propositions 1.3 and 2.1, which
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we referred to as generalizations of Adem’s theorem on singly generated cohomology
rings. The conclusion of Adem’s theorem when p D 2 was improved by Adams after
he developed the theory of secondary cohomology operations (see [1]). The analogous
strengthening for odd primes is due to Liulevicius [11], and Shimada and Yamanoshita
[15]. The result is the following:

Theorem 6.2 (Adams, Liulevicius, Shimada and Yamanoshita) Let p be a prime,
and let M be a topological space. Assume H�.M IZp/ is isomorphic to Zp Œx� or
Zp Œx�=x

qC1 with p � q . Set k D deg.x/.

(1) If p D 2, then k 2 f1; 2; 4; 8g. Moreover, k D 8 only occurs when q D 2.

(2) If p > 2, then k D 2� for some � jp� 1.

Observe that singly generated cohomology rings are periodic in the sense of this paper.
The corresponding strengthening in our case would be the following:

Conjecture 6.3 Let p be a prime, and let M be a topological space. Assume x 2

H k.M IZp/ is nonzero and induces periodicity up to degree pk , and suppose x has
minimal degree among all such elements.

(1) If p D 2, then k 2 f1; 2; 4; 8g. Moreover, if x induces periodicity up to degree
3k , then k ¤ 8.

(2) If p > 2, then k D 2� for some � jp� 1.

We first note that, regarding the first statement, Sk�1 � Sk is k –periodic but not
k 0–periodic for any k 0 < k , and S7 �CaP2 is 8–periodic but not 4–periodic. Hence
one must assume periodicity up to degree 2k , respectively 3k .

Second, we wish to outline how a proof of this conjecture would imply that Theorem A
holds in all even dimensions. First, one would use the conjecture to improve Proposition
1.3 to prove the following: If M is a simply connected, closed manifold such that
H�.M nIZ2/ is k –periodic with 3k � n, then M has the Z2 –cohomology ring of
Sn , CPn=2 , HPn=4 , HP .n�3/=4�S3 or HP .n�2/=4�S2 . Indeed, a proof of the Z2 –
periodicity conjecture combined with Poincaré duality implies this when n 6� 2 mod 4.

Suppose then that n � 2 mod 4. We may assume without loss of generality that
H 4.M IZ2/Š Z2 and that the generator x has minimal degree among all elements
inducing periodicity. It follows from Lemmas 1.2 and 1.4 that Sq1.H 3.M IZ2//D 0,
Sq1.H 7.M IZ2//D 0 and Sq2.H 2.M IZ2//D 0.

By periodicity and Poincaré duality, H 2.M IZ2/Š Z2 . Let z2 2 H 2.M IZ2/ be a
generator. If H 3.M IZ2/D0, it follows that H�.M IZ2/ŠH�.S2�HP .n�2/=4IZ2/.
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To see that this is the case, suppose there exists a nonzero u 2 H 3.M IZ2/. Using
Poincaré duality and periodicity again, we conclude the existence of a relation uv D

xz for some v 2 H 3.M IZ2/. One can now use the Cartan formula to prove that
Sq4.uv/D 0 and Sq4.xz/D x2z ¤ 0, which is a contradiction.

Given this, the basic outline of our proof of Theorem A implies the result without the
assumption that the dimension is divisible by four. In fact, the proof simplifies since
one does not have to keep track of the divisibility of the codimensions. The optimal
bound, as far as the proof is concerned, would be r � log2.n/� 2.
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