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Connected components of the compactification
of representation spaces of surface groups

MAXIME WOLFF

The Thurston compactification of Teichmüller spaces has been generalised to many
different representation spaces by Morgan, Shalen, Bestvina, Paulin, Parreau and
others. In the simplest case of representations of fundamental groups of closed
hyperbolic surfaces in PSL.2;R/ , we prove that this compactification behaves very
badly: the nice behaviour of the Thurston compactification of the Teichmüller space
contrasts with wild phenomena happening on the boundary of the other connected
components of these representation spaces. We prove that it is more natural to
consider a refinement of this compactification, which remembers the orientation of
the hyperbolic plane. The ideal points of this compactification are oriented R–trees,
ie, R–trees equipped with a planar structure.

53C23; 20H10, 32G15

1 Introduction

Let � be a discrete group with a given finite generating set S . In all this text, we
consider the space R�.n/D Hom.�; IsomC.Hn// of actions of � on the real hyper-
bolic space of dimension n by isometries preserving the orientation. The set R�.n/

naturally embeds in .IsomC.Hn//S , giving it a Hausdorff, locally compact topology.
The Lie groups IsomC.Hn/ and Isom.Hn/ act on R�.n/ by conjugation, and we will
consider the quotients R�.n/= Isom.Hn/ and R�.n/= IsomC.Hn/, equipped with
their quotient topologies.

We will mainly focus on the case when � D �1†g is the fundamental group of a
closed, oriented, connected surface of genus g � 2, with a given standard presentation
(ie, a marking); we then denote Rg.n/DR�1†g

.n/. Also, we are mainly interested in
the case nD 2 (thus IsomC.H2/D PSL.2;R/), and we denote Rg DRg.2/.

The space Rg is a real algebraic variety (see Culler and Shalen [9]), and is smooth,
of dimension 6g � 3 outside the set of abelian representations (see Weil [42] and
Goldman [19]). Outside the set of (classes of) elementary representations (ie, having a
global fixed point in H2 [ @H2 ), the quotient space Rg=PSL.2;R/, equipped with
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the quotient topology, is again smooth of dimension 6g � 6; one of its connected
components is naturally identified with the Teichmüller space of the surface (see
Goldman [18; 20]).

A function eW Rg! Z, called the Euler class, plays a key role in understanding the
spaces Rg and Rg=PSL.2;R/. There are several ways to define it; for instance, a
representation � 2Rg defines a circle bundle on †g , which has a Z–valued character-
istic class, the Euler class. We will review this Euler class and its properties in detail
in Section 2.3, and also refer to Milnor [30], Wood [44], Ghys [14], Matsumoto [28],
Goldman [20] and Calegari [6] for a deep understanding of this class.

In 1988, W Goldman proved [20] that Rg has 4g�3 connected components, which are
the preimages e�1.k/ for 2� 2g � k � 2g� 2 (the fact that the absolute value of the
Euler class is bounded by 2g�2 was previously known as the Milnor–Wood inequality
[30; 44]). He also proved that the space Rg.3/ D Hom.�1†g;PSL.2;C// has two
connected components. The elements of Rg of even Euler class, on one hand, and the
ones of odd Euler class on the other hand, fall into these two different components
of Rg.3/. The Euler class is still well-defined in the quotient space Rg=PSL.2;R/
(we denote eW Rg=PSL.2;R/! Z), whence the space Rg=PSL.2;R/ also admits
4g�3 connected components, similarly. However, only the absolute value of the Euler
class is defined on Rg= Isom.H2/, which has 2g � 1 connected components. The
main theorem of Goldman’s thesis [18] states that a representation � 2Rg has extremal
Euler class (je.�/j D 2g�2) if and only if � is discrete and faithful. It follows that, in
Rg=PSL.2;R/, the connected component e�1.2� 2g/ is naturally identified with the
Teichmüller space of †g .

In 1976, W Thurston [41] introduced a natural compactification of Teichmüller spaces;
his construction was intensively studied and detailed by Fathi, Laudenbach and Poé-
naru [11]. The data of the lengths of all geodesic closed curves suffices to determine a
hyperbolic structure, and, essentially, W Thurston’s compactification consists in consid-
ering points in the Teichmüller space as sets of lengths of curves, and then embedding
them in a projective space (thus, considering lengths only up to a scalar), in which the
Teichmüller space has a relatively compact image. A very important feature of this
compactification is that the boundary added to the Teichmüller space is homeomorphic
to a sphere of dimension 6g� 7, in such a way that the Thurston compactification of
the Teichmüller space is homeomorphic to a closed ball of dimension 6g� 6.

Thurston’s compactification has been extended to other connected components of
Rg=PSL.2;R/, and to other representation spaces in successive works. In 1984,
J Morgan and P Shalen [32], using techniques of algebraic geometry, defined a com-
pactification of the real algebraic variety X�;SL.2;R/ of characters of representations
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of � in SL.2;R/. We will denote this compactification by X�;SL.2;R/
MS , and by

Xg;SL.2;R/
MS in the case � D �1†g . Since all the representations of even Euler class

in PSL.2;R/ (and, in particular, elements of the Teichmüller space) lift to SL.2;R/
(see eg [20]), this defines a compactification of Teichmüller spaces, and it coincides
with Thurston’s. In [31], J Morgan generalized this construction to the group SO.n; 1/
for n� 2. In 1988, M Bestvina [4] and F Paulin [35], independently, gave a much more
geometric viewpoint of this compactification, for representations in IsomC.Hn/, n� 2.
In [36; 35], F Paulin defined and studied a very natural topology, called the equivariant
Gromov topology, for spaces of actions of a given discrete group on metric spaces.
He proved that the quotient topology, on the space R�.n/= Isom.Hn/, coincides with
the equivariant Gromov topology (this will be reviewed in Section 2.2). Equipped
with this topology, the space mfd

�
.n/ of (conjugacy classes of) faithful and discrete

representations has a natural compactification, which recovers the compactification of
[32; 31]. The ideal points of this compactification are actions of � on R–trees. Note,
finally, that A Parreau extended [33] this compactification to representation spaces in
higher rank groups.

This compactification being well-defined, it is a natural question to ask if it respects the
topology and geometry of Rg=PSL.2;R/, as does the Thurston compactification, when
restricted to the Teichmüller space alone. We shall prove this is not the case, and that this
compactification, as defined in all the works mentioned above, leads to a very wild space.

The works of J Morgan and P Shalen, of M Bestvina and of F Paulin all yield the same
compactification, and we shall follow the approach of F Paulin, in which it is easier
to add a notion of orientation. In order to use F Paulin’s construction, we first define
explicitly (see Section 2.1) the biggest Hausdorff quotients of R�.n/= Isom.Hn/ and
R�.n/= IsomC.Hn/, that we denote mu

�
.n/ and mo

�
.n/, respectively (indeed, these

spaces are not Hausdorff in general, so that M Bestvina and F Paulin’s constructions
cannot be extended literally to these spaces). Again, we write mu

�
Dmu

�
.2/, mu

g.n/D

m�1†g
.n/ and so on. Note that, in the space mu

g , only the absolute value of the Euler
class is still defined, and mu

g has 2g� 1 connected components. We denote by mu
g.n/

the compactification of mu
g.n/ as it is constructed by F Paulin.

Also, in all this text, for all k 2 f2� 2g; : : : ; 2g � 2g, we will denote by mo
g;k the

subset of mo
g consisting of classes of representations of Euler class k , and for k 2

f0; : : : ; 2g�2g, mu
g;k will denote the connected component of mu

g consisting of classes
of representations whose Euler class, in absolute value, equals k .

Theorem 1.1 Let g � 4 and k 2 f0; : : : ; 2g � 3g. Then, in mu
g , the boundary of

the Teichmüller space, @mu
g;2g�2

, is contained in @mu
g;k as a closed, nowhere dense

subset.
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In particular:

Corollary 1.2 For all g � 4, mu
g is connected.

We also prove that for gD 2 and gD 3, the space mu
g possesses at most two connected

components. Actually, Theorem 1.1 should hold for all g � 2, but the proof presented
here requires that g � 4.

In particular, the two connected components of Hom.�1†g;PSL.2;C//=PSL.2;C/
meet at their boundary in this compactification, as soon as g � 3:

Corollary 1.3 For all g � 3, the space mu
g.3/ is connected.

If we consider only representations of even Euler class (ie, that lift to SL.2;R/) then
the result holds for all g � 2:

Corollary 1.4 For all g � 2, the space Xg;SL.2;R/
MS is connected.

Theorem 1.1 not only implies that the space mu
g is connected, but it also implies that this

space is extremely wild. Since the connected components mu
g;k are of dimension 6g�6

(see Weil [42] or Goldman [19, Section 1]), one should expect that the boundary @mu
g;k

has dimension at most 6g� 7. However, the boundary of the Teichmüller space itself
has dimension 6g� 7 (see eg [11, Exposé 1, Théorème 1]). Therefore, it follows from
Theorem 1.1 that the compactifications mu

g;k of the “exotic” connected components
(ie, the connected components mu

g;k such that jkj � 2g� 3) have no PL structures, or
cell complex structures or so on, compatible with the compactification. This contrasts
very strongly with the behaviour of the Thurston compactification of the Teichmüller
spaces.

The proof of Theorem 1.1 uses the following fact, interesting for itself:

Proposition 1.5 The connected components of mo
g and mu

g are one-ended.

Actually, for all k ¤ 0, this follows from a theorem of N Hitchin (see [23, Proposition
10.2]), which says that the connected component mu

g;k is homeomorphic to a complex
vector bundle over the .2g�2�jkj/–th symmetric product of the surface †g . However,
the proof of Proposition 1.5 is far more simple and extends to the case k D 0.

The wild behaviour of the compactification of mu
g is due (at least) to the fact that the

equivariant Gromov topology forgets the orientation of the space Hn . This information,
in the case nD 2, is the information carrying the Euler class, and which separates the
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space mu
g into its connected components. By restoring this orientation, we define a

new compactification of these representation spaces, cancelling (partly, at least) this
wildness.

We define a notion of convergence in the sense of Gromov for oriented spaces, which
preserves the orientation. This enables us to define a new compactification of mo

�
, in

which the ideal points, added at the boundary, are oriented R–trees, which form a
set T o.�/:

Theorem 1.6 The map mo
�
!mo

�
[T o.�/ induces a natural compactification of mo

�
.

Moreover, the natural map � W mo
�
!mu

�
, which consists in forgetting the orientation,

is onto, and some of its fibres have the same cardinality as R.

By natural, we mean, following F Paulin [37], that the action of the group Out.�/ (or
the mapping class group, if � is a surface group) on mo

�
extends continuously to the

compact space mo
�

.

One can define an Euler class in a quite general context, as we will see in Section 2.3.
In particular, the actions of �1†g on oriented R–trees admit an Euler class, and we
shall prove the following:

Theorem 1.7 The Euler class eW mo
g! Z is a continuous function. In particular, the

compactification mo
g possesses as many connected components as the space mo

g .

By Theorem 1.6, it is a necessary condition, for an action of �1†g on an R–tree to be
in mu

g , to preserve some orientation. In particular, we can construct explicit actions
on R–trees which are not the limit of actions of surface groups on H2 . These explicit
actions can even be obtained as limits of actions of surface groups on H3 , so that we
get the following proposition:

Proposition 1.8 Let g � 3. There exist minimal actions of �1†g on R–trees by
isometries, which are in @mu

g.3/ but not in @mu
g.2/.

This contrasts again with the case of discrete and faithful representations. Indeed,
R Skora [40] proved that a minimal action of �1†g on an R–tree has small arc
stabilisers (ie, the stabiliser of any pair of distinct points of the tree is virtually abelian) if
and only if it is the limit of discrete and faithful representations of �1†g in PSL.2;R/
(or equivalently, it is a point in the boundary of the Teichmüller space), and it is
well-known (see eg [32; 35; 4]) that limits of discrete and faithful representations
in IsomC.Hn/ enjoy that property. As a corollary of R Skora’s result, we thus have
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@mfd
g .n/D @m

fd
g .2/. When we consider representations which may not be faithful and

discrete, Proposition 1.8 states that this equality does not hold any more.

Note that C McMullen [29] has developed, independently, a theory of oriented R–trees,
under the name of ribbon R–trees, in order to compactify the set of proper holomorphic
maps from the unit disk ��C into itself.

This text is organised as follows. Section 2 gathers every background material concern-
ing the spaces that we wish to compactify. Section 2.1 is devoted to the explicit con-
struction of mu

�
.n/ and mo

�
.n/, the biggest Hausdorff quotients of R�.n/= Isom.Hn/

and R�.n/= IsomC.Hn/. In Section 2.2, we review F Paulin’s point of view on
the compactification of mu

�
.n/, while adapting it slightly so that it indeed defines a

compactification of the whole space mu
�
.n/. In Section 2.3, we recall the construction

of the Euler class, and establish a technical lemma which will enable us to prove that
the Euler class extends continuously to the boundary (in the oriented compactification)
of mo

g (Theorem 1.7). Section 2.4 recalls an argument of Z Sela in the context of limit
groups, which plays a key role in the proof of Theorem 1.1. Section 3 contains the core
of our results on the compactification. It begins with the proof of Proposition 1.5, then
turns to the degenerations of mu

g , and finally we construct the oriented compactification.
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2 Preliminaries

2.1 The representation spaces

First note that the quotient topological spaces m0
�
.n/ D R�.n/= IsomC.Hn/ and

R�.n/= Isom.Hn/ are not Hausdorff in general. Indeed, in IsomC.H2/D PSL.2;R/,
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the element

˙

�
1 1

0 1

�
is conjugate to

˙

�
1 1=t2

0 1

�
;

for all t 2R� , hence its conjugacy class cannot be separated from the one of the identity.
As soon as there exists a morphism of � onto Z, we can therefore construct abelian
representations of � in PSL.2;R/, and more generally in IsomC.Hn/, which are not
separated from the trivial representation in these quotient spaces. However, in order to
use F Paulin’s construction of the compactification of these representation spaces, we
need to work with Hausdorff spaces.

We are thus going to define explicitly the biggest Hausdorff quotients of m0
�
.n/ and of

R�.n/= Isom.Hn/. The construction we propose here uses only elementary hyperbolic
geometry. It can be generalized by replacing Hn by nonpositively curved symmetric
spaces; see Parreau [34; 33].

First we need to fix some notation for the real hyperbolic space Hn and its group of
orientation-preserving isometries. We will be using the upper hyperboloid model, and
we refer to Benedetti and Petronio [3, Chapter A] for a complete overview.

Equip the space RnC1 with the quadratic form

q.x0;x1; : : : ;xn/D 2x0x1Cx2
2 C � � �Cx2

n :

The subspace
˚
x 2RnC1 j q.x/D�1

	
of RnC1 has two connected components, and

we define
Hn
D fx 2RnC1

j q.x/D�1;x1�x0 > 0g:

The form hx;yi D x0y1Cx1y0Cx2y2C � � �Cxnyn defines a scalar product on the
tangent space at each point of Hn , hence a Riemannian metric on Hn . The images of
the geodesics of this space are its intersections with the (linear) planes of RnC1 .

Denote by SOR.n; 1/ the subgroup of SL.nC1;R/ consisting of elements preserving q .
Denote by SOCR.n; 1/ the index 2 subgroup of SOR.n; 1/ formed by elements pre-
serving Hn (the other elements exchange the two connected components of q�1.�1/).
Then SOCR.n; 1/ is the group of orientation-preserving isometries of Hn .

The image of Hn on the hyperplane fx0�x1 D 0g, under the stereographic projection
of centre .1=

p
2;�1=

p
2; 0; : : : ; 0/ is an open disk of center 0 and radius 1; we denote

it by Dn . This yields the usual compactification of Hn , and the projection of any
geodesic of Hn on Dn is a geodesic in Dn for the Poincaré metric.
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In SOCR.n; 1/, the stabilizer of the point .1=
p

2; 1=
p

2; 0; : : : ; 0/2@Dn is the subgroup
formed by matrices of the form 0@� 0 .0/

r 1=� Y

Z .0/ A

1A ;
with �> 0, A2 SOR.n�1/, kY k2D�2r=� and AtY D�.1=�/Z . The subgroup of
elements which also fix the point .�1=

p
2;�1=

p
2; 0; : : : ; 0/ 2 @Dn (and in particular,

which preserve globally the geodesic Hn\fx2D � � � D xnD 0g) is formed by matrices
of the form 0@ � 0 .0/

0 1=� .0/

.0/ .0/ A

1A ;
with �> 0 and A2SOR.n�1/. By analogy with the classical case nD 2, and with the
model of the upper half plane, we denote by 0 the point .1=

p
2; 1=
p

2; 0; : : : ; 0/2@Dn ,
and the point .�1=

p
2;�1=

p
2; 0; : : : ; 0/ 2 @Dn is denoted by 1.

Elements of SOCR.n; 1/ having a fixed point in Hn are called elliptic (note in partic-
ular that the identity is elliptic: this convention differs from some textbooks such as
Katok [25] as well as our thesis [43]), elements with a unique fixed point in @Hn are
called parabolic, and elements ' 2 SOCR.n; 1/ such that infx2Hn d.x; '.x// > 0 (this
lower bound is then achieved) are called loxodromic. Loxodromic isometries fix two
points in @Hn , and are conjugate to a matrix of the form0@ � 0 .0/

0 1=� .0/

.0/ .0/ A

1A :
When AD Id, we also say that ' is hyperbolic.

The lower bound
d.u/D inf

x2Hn
d.x;u �x/

is achieved if and only if u is nonparabolic. In that case we denote by min.u/ the set
fx 2Hn j d.x;u �x/D d.u/g, and if r > 0, the set fx 2Hn j d.x;u �x/ < r C d.u/g

is denoted by minr .u/.

In order to prove the local compactness of the quotients mo
�
.n/ and mu

�
.n/, we will

use the following well-known fact, which says that minr .u/ is at bounded distance of
min.u/ whenever u is nonparabolic.

Fact 2.1 Let u 2 IsomC.Hn/ be a nonparabolic element. Then for all r > 0, there
exists k > 0 such that for all x 2minr .u/ we have d.x;min.u// < k .
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Also, we shall use the following classical property:

Fact 2.2 For every x 2Hn , and every d 2R, the set

f
 2 Isom.Hn/ j d.x; 
x/� dg

is compact.

Now we can define the space mo
�
.n/.

Definition 2.3 We denote by mo
�
.n/ the subspace of m0

�
.n/ formed by classes of

representations which have either 0, or at least 2 global fixed points in @Hn .

We have an inclusion i W mo
�
.n/ ,!m0

�
.n/. We can also define a map � W m0

�
.n/�

mo
�
.n/ as follows. If c 2mo

�
.n/, put �.c/D c (in particular, � is onto). If c D Œ�� 2

m0
�
.n/Xmo

�
.n/, then � has a unique fixed point r1 2 @H

n . Choose another point
r2 2 @H

n X fr1g arbitrarily, and denote by gk 2 SOCR.n; 1/ the hyperbolic isometry of
axis .r1; r2/, and attractive point r1 , with translation distance k .

Lemma 2.4 The sequence .g�1
k
�gk/k2N converges to a representation �1 2R�.n/

such that Œ�1� 2mo
�
.n/, and such that Œ�1� depends neither on the choice of � in the

conjugacy class c nor of the choice of r2 .

We can therefore set �.c/D Œ�1�.

Proof Choose a representant � of the conjugacy class c so that � fixes 0 2 @Hn (in
other words, conjugate � by an isometry sending r1 to 0). Take r2 D1. Then for all

 2 � , �.
 / is of the form

�.
 /D

0@�.
 / 0 .0/

r.
 / 1=�.
 / Y .
 /

Z.
 / .0/ A.
 /

1A :
In this basis, gk has the form

gk D

0@ tk .0/

1=tk
.0/ In�1

1A ;
where tk ! 0 as k!C1. Then g�1

k
�gk converges to the representation �1 such

that for all 
 2 � ,

�1.
 /D

0@�.
 / .0/

1=�.
 /

.0/ A.
 /

1A ;
which indeed fixes the points 0 and 1 at the boundary.
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Choosing another representant �0 of c fixing 0 would simply be the same as considering
a conjugate �0 D h�1�h, where h 2 SOCR.n; 1/ has the form

hD

0@� 0 .0/

r 1=� Y

Z .0/ A

1A ;
and conjugation by h does not touch the elements �.
 / and A.
 /, which determine
the representation �1 . Finally, the choice of another r2 amounts to conjugate � by an
orientation-preserving isometry of Hn fixing 0; we have just dealt with this case.

It follows that we can equip the set mo
�
.n/ both with the induced topology, and with

the final topology determined by the map � W m0
�
.n/ � mo

�
.n/. The object of this

section is to prove the following.

Theorem 2.5 The induced topology and the quotient topology coincide on mo
�
.n/

(in particular, � is continuous). Moreover, the space mo
�
.n/ is Hausdorff, and locally

compact.

In particular, this topology is also the final topology defined by the map R�.n/�mo
�
.n/.

It follows that mo
�
.n/ is the biggest Hausdorff quotient of m0

�
.n/, in the following

sense:

Definition 2.6 Let X be a topological space. A quotient space � W X !Xs is called
the biggest Hausdorff quotient of X if Xs is Hausdorff and if for every continuous
mapping f W X!Y to a Hausdorff space Y , there exists a unique function xf W Xs!Y

such that f D � ı xf .

Note that every topological space X has a biggest Hausdorff quotient, unique up to a
canonical homeomorphism. If x;y 2X , put x � y if x and y have the same image
in every Hausdorff quotient of X . This defines an equivalence relation, and X=� is
easily seen to be the biggest Hausdorff quotient of X .

The representations which have no fixed points in @Hn are called nonparabolic.

Lemma 2.7 (Compare with [33, Proposition 2.6].) The subset of conjugacy classes
of nonparabolic representations is open in m0

�
.n/.

Proof Let � 2 R�.n/ be nonparabolic. Then we must prove that Œ�� possesses,
in m0

�
.n/, a neighbourhood consisting of nonparabolic representations. The space

R�.n/ � .MnC1.R//
S is a metric space, and the map R�.n/ ! m0

�
.n/ is open,
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hence every point of m0
�
.n/ has a countable fundamental system of neighbourhoods;

it follows that we can use sequential criteria in this space.

Consider .Œ�k �/k 2m0
�
.n/N such that for all k , �k has a fixed point rk 2 @H

n ; and
suppose (up to conjugating these representations) that �k ! � : let us prove that � has
a fixed point in @Hn . Up to extracting a subsequence, rk converges to a point r 2 @Hn .
Then there exists hk 2 SOCR.n; 1/ such that hk.rk/D r and such that hk ! Id. Then
hk�kh�1

k
fixes r globally, and converges to � , hence � fixes r globally. It follows

that the set of representations which have at least one fixed point in @Hn is a closed
subset of m0

�
.n/.

The first step towards the continuity of � is the following.

Lemma 2.8 Let .�k/k be a sequence of representations, each having a unique fixed
point in @Hn , converging in R�.n/ to a representation � which has at least two fixed
points in @Hn . Then �.Œ�k �/ converges to Œ��, in the space m0

�
.n/.

Proof Let us first prove that up to considering a subsequence, the sequence �.Œ�k �/

converges to Œ��. The fixed point rk of �k stays in the compact space @Hn , hence
there is a subsequence r'.k/ of fixed points of �'.k/ which converges to a point
r 2 @Hn , which is therefore a fixed point of � . For all k , there exists an orientation-
preserving isometry h'.k/ of Hn such that h'.k/.r'.k//D r , satisfying h'.k/! Id.
Then h�1

'.k/
�'.k/h'.k/ converges to � , and fixes r . In other words, we may suppose

that �'.k/ fixes r , and up to conjugation we can further suppose that r D 0. Now for
all 
 2 � , �'.k/.
 / and �.
 / are of the form

�'.k/.
 /D

0@�'.k/.
 / 0 .0/

r'.k/.
 / 1=�'.k/.
 / Y'.k/.
 /

Z'.k/.
 / .0/ A'.k/.
 /

1A ; �.
 /D

0@�.
 / 0 .0/

0 1=�.
 / .0/

.0/ .0/ A.
 /

1A ;
and by construction, a representant (denote it ��'.k/ ) of the conjugacy class �.Œ�'.k/�/
has the form

��'.k/.
 /D

0@�'.k/.
 / 0 .0/

0 1=�'.k/.
 / .0/

.0/ .0/ A'.k/.
 /

1A :
Moreover, �'.k/.
 /! �.
 / for all 
 2 � , hence �'.k/.
 /! �.
 / and A'.k/.
 /!

A.
 /, so that ��'.k/! � .

The proof we have just given works for every subsequence of the sequence .�k/k . In
particular, every subsequence of .�.Œ�k �//k possesses a subsequence converging to Œ��.
This implies that �.Œ�k �/ converges to Œ��.
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We now define a natural function on R�.n/ which will be very useful: for every
� 2R�.n/, let

d.�/D inf
x2Hn

max
s2S

d.x; �.s/ �x/:

Also, for every � 2R�.n/, we put

min.�/D
n
x 2Hn

ˇ̌̌
max
s2S

d.x; �.s/ �x/D d.�/
o

min".�/D
n
x 2Hn

ˇ̌̌
max
s2S

d.x; �.s/ �x/ < d.�/C "
o
:and

Of course, d is constant on conjugacy classes, and defines a function dW m0
�
.n/!RC .

The restriction of d to mo
�
.n/ will also be denoted by d. If Œ�� is in mo

�
.n/, the

infimum used to define d.�/ is actually a minimum; to see this we use an argument of
M Bestvina [4, Proposition 1.2].

Lemma 2.9 (Compare with [33, Proposition 2.5].) Let Œ�� 2 mo
�
.n/. Then the

minimum
min

x2Hn
max
s2S

d.x; �.s/ �x/

is achieved.

Proof Consider a minimising sequence .xk/k2N for this number. If xk leaves every
compact subset of Hn , then up to considering a subsequence, xk converges to a
boundary point r 2 @Hn . In that case, r is a global fixed point of � , and since
Œ�� 2 mo

�
.n/, there exists at least one other. Hence � fixes (globally) a geodesic

line of Hn , and acts by translations on this geodesic, and then every point of this
geodesic achieves the minimum. On the other hand, if .xk/k is bounded, then it has a
subsequence converging to some point x1 2Hn , which realizes this minimum.

Lemma 2.10 Let �2mo
�
.n/. If � fixes at least one point of the boundary, then min.�/

is the convex hull of the fixed points of � in @Hn ; this is a totally geodesic subspace
of Hn . Otherwise, min.�/ is compact. In all cases, min".�/ is at bounded distance
from min.�/; that is, for all " > 0, there exists k > 0 such that for all x 2min".�/, we
have d.x;min".�// < k .

Proof First suppose that � has no fixed points in @Hn . If min".�/ was unbounded for
some "> 0, there would exist a sequence .xk/k2N of elements of min".�/, converging
to a point x1 2 @Hn , and then x1 would be a fixed point of � , a contradiction. Hence,
for all " > 0, min".�/ is bounded; moreover min.�/ is a closed subset of Hn , hence
compact; this finishes the proof in this case.

Geometry & Topology, Volume 15 (2011)



Components of the compactification of representation spaces of surface groups 1237

Now suppose that � has at least two distinct fixed points x1;x2 in @Hn . If d.�/¤ 0,
then there exists s 2 S such that �.s/ is loxodromic, of axis .x1;x2/, and then
min.�/Dmin.�.s//D .x1;x2/; so � does not have any other fixed points in Hn , and
for all " > 0, min".�/ lies at bounded distance from min.�/, by Fact 2.1. If d.�/D 0,
then � fixes pointwise at least the line .x1;x2/. Then

min.�/D
˚
x 2Hn

j 8s 2 S; �.s/ �x D x
	
D

\
s2S

min.�.s//

is an intersection of totally geodesic subspaces of Hn , hence it is a totally geodesic
subspace of Hn ; and it is the convex hull of the fixed points of � in @Hn . For all
" > 0, we then have min".�/D

T
s2S min".�.s//. By Fact 2.1, for all s 2 S , the set

min".�.s// is at bounded distance from the subspace min.�/. One then checks by
induction on Card.S/ that min".�/ is at bounded distance from min.�/.

Proposition 2.11 The function dW R�.n/!RC is continuous.

Proof Suppose �k ! � . By construction,

f� j d.�/ < ag D
n
�
ˇ̌̌

inf
x2@Hn

max
s2S

d.x; �.s/x/ < a
o

D
˚
� j 9x 2Hn; 8s 2 S; d.x; �.s/x/ < a

	
is open (that is, the function d is upper semicontinuous). For all ", we thus have
d.�k/ < d.�/C ", for k large enough. In particular d is continuous at every � such
that d.�/D 0. Hence, we suppose now d.�/ > 0.

If � has at least one global fixed point x2@Hn , then d.�/ is the maximum of translation
distances of the �.s/, s 2 S , such that �.s/ is loxodromic. Let s0 be an element
of S maximising this translation distance. Then, if " > 0, for all k large enough,
�k.s0/ is loxodromic, and its translation distance is close to that of �.s0/, so that
d.�k/ > d.�/� ".

Now suppose that � is nonparabolic. Let " > 0. Since the topology of IsomC.Hn/

coincides with the compact-open topology and since the set min3".�/ is compact, for
all k large enough, for all x 2min3".�/ and all s 2 S , we thus have jd.x; �k.s/x/�

d.x; �.s/x/j< ". It follows that the convex function x 7!maxs2S d.x; �k.s/x/ has
a local minimum in the open set min3".�/. It follows that this minimum is global,
whence jd.�/� d.�k/j � 4" for k large enough.

We turn to a second step towards the proof of Theorem 2.5.
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Proposition 2.12 The space mo
�
.n/, equipped with the induced topology, is Hausdorff.

Proof Once again, the space m0
�
.n/ being locally second countable, we can use

sequences in this space. Let Œ�1�, Œ�2� 2mo
�
.n/. Suppose that Œ�1� and Œ�2� cannot be

separated by open sets. This means that there exists a sequence .Œ�k �/k 2 .m
0
�
.n//N

converging to both Œ�1� and Œ�2�, in other words, there exist gk , hk 2 SOCR.n; 1/ such
that gk�kg�1

k
! �1 and hk�kh�1

k
! �2 . Up to conjugating �k by hk , we may

suppose that hk D 1.

First suppose �2 is nonparabolic. Note d.�1/D d.�2/, by Proposition 2.11. Let x 2

min.�1/; fix "> 0. Then for all 
 2� , d.gk�k.
 /g
�1
k

x;x/D d.�k.
 /g
�1
k

x;g�1
k

x/,
hence for all k large enough, g�1

k
x 2min".�2/. Since min".�2/ is bounded, gk stays

in a compact set (by Fact 2.2) and hence, up to taking a subsequence, .gk/k converges
to some element g1 2 IsomC.Hn/, and �1 and �2 are conjugate. Of course this
argument still works after exchanging the roles of �1 and �2 .

Now suppose that �1 and �2 each have at least two distinct fixed points in @Hn . Fix
x 2min.�1/. Then, as before, for all " > 0 and all k large enough we have g�1

k
x 2

min".�2/. If d.x;g�1
k

x/ is bounded then we can finish as in the preceding case. Let us
then suppose that up to considering a subsequence, the sequence

�
g�1

k
x
�
k

converges to
a point r1 2 @H

n . Then r1 is a fixed point of �2 . Choose another fixed point r2 2 @H
n

of �2 . Denote by rk the second end of the axis .r2;g
�1
k

x/. Then the sequence .rk/k
in @Hn converges to r1 . Hence there exists a sequence .uk/k2N of elements of
IsomC.Hn/, converging to IdHn and such that uk fixes r2 , and sends rk to r1 . Let
y be the projection of x on the axis .r1; r2/, and let 'k be the hyperbolic element
of axis .r1; r2/ sending ukg�1

k
x to y . We have 'kukg�1

k
x D y , the points x and y

being fixed: it follows from Fact 2.2 that, up to extract it, the sequence .'kukg�1
k
/k2N

converges to some ' 2 IsomC.Hn/. Now we have 'kuk�ku�1
k
'�1

k
! '�1'

�1 , and
�k ! �2 , thus also uk�ku�1

k
! �2 . Put �0

k
D uk�ku�1

k
, and up to conjugating

everything simultaneously, suppose that the axes .r1; r2/ and .0;1/ coincide. Since
�2 and 'k preserve that axis, for every 
 2� we can write the elements �2.
 /, �0k.
 /
and 'k in the form

�2.
 /D

0@�.
 / 0 .0/

0 1=�.
 / .0/

.0/ .0/ A.
 /

1A ; �0k.
 /D

0@ak.
 / bk.
 / Xk.
 /

ck.
 / dk.
 / Yk.
 /

Zk.
 / Wk.
 / Ak.
 /

1A
and 'k D

0@ tk .0/

1=tk
.0/ In�1

1A ;
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where limk!C1 tk DC1, up to conjugating in order to exchange the points 0 and1
in @Hn . Then

'k�
0
k.
 /'

�1
k D

0@ ak.
 / 1=t2
k

bk.
 / 1=tkXk.
 /

t2
k

ck.
 / dk.
 / tkYk.
 /

tkZk.
 / 1=tkWk.
 / Ak.
 /

1A
'�1.
 /'

�1
D

0@�.
 / 0 .0/

r.
 / 1=�.
 / Y .
 /

Z.
 / .0/ A.
 /

1A :so that

Since Œ�1� 2 mo
�
.n/, the representation '�1'

�1 fixes another point of @Hn than 0;
denote it by r3 . There exists an isometry � 2 IsomC.Hn/ fixing 0 and sending r3

to 1, and now �'�1'
�1��1 and �2 are conjugate.

Now we prove another step towards Theorem 2.5:

Proposition 2.13 On the set mo
�
.n/, the induced topology defined by mo

�
.n/ ,!

m0
�
.n/ and the final topology defined by � W m0

�
.n/� mo

�
.n/ coincide (in particular,

� is continuous).

Proof Let U be an open subset of mo
�
.n/ for the final topology. Then ��1.U / is

open in m0
�
.n/, hence the set mo

�
.n/\��1.U / is open for the induced topology. But

mo
�
.n/\��1.U /D U , since � is the identity on mo

�
.n/. Consequently, in order to

prove the proposition it suffices to prove that � is continuous. Once again, m0
�
.n/

being locally second countable, we can use a sequential criterium.

Suppose that �k ; � 2R�.n/ and �k ! � . We want to prove that �.Œ�.k/�/ converges
to �.Œ��/. The elements �k have either zero, or at least one fixed point in @Hn . Up
to consider two distinct subsequences, we may suppose that this situation does not
depend on k . If �k is nonparabolic, for all k , then �.Œ�k �/ D Œ�k � ! Œ��. Since
every neighborhood of �.Œ��/ contains Œ��, the sequence �.Œ�k �/ also converges to
�.Œ��/. Suppose finally that �k has at least one fixed point in @Hn , for all k 2N . By
Lemma 2.7, the representation � has at least one fixed point in @Hn , and as before,
Œ�k � also converges to �.Œ��/. Once again, �k has either at least two, or exactly one
fixed point in @Hn , and up to considering two subsequences, we may suppose that this
does not depend on k . In the first case, we have �.Œ�k �/D Œ�k � so �.Œ�k �/! �.Œ��/.
In the second case, Lemma 2.8 says that �.Œ�k �/ converges to �.Œ��/.

Now that we proved that these two topologies coincide, we will equip the set mo
�
.n/

with this topology in the sequel, without having to precise which topology we consider.
Now we finish the proof of Theorem 2.5:
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Corollary 2.14 The map dW mo
�
.n/ ! RC is continuous, and for all A > 0, the

preimage d�1.Œ0;A�/ is compact. In particular, the space mo
�
.n/ is locally compact.

Proof The continuous map dW R�.n/! RC is constant on the fibres of the map
R�.n/!mo

�
.n/, hence d is continuous, by considering the final topology on mo

�
.n/.

Now, let A> 0; let us prove that d�1.Œ0;A�/ is compact. Fix x0 2Hn , and denote by
RA
�
�R�.n/ the set of representations � satisfying

max
s2S

d.x0; �.s/x0/�A :

By Fact 2.2, this set RA
�

is compact. The projection pW R�.n/!mo
�
.n/ is continuous,

and takes values in a Hausdorff space, hence p.RA
�
/ is compact; it therefore suffices

to check that p.RA
�
/D d�1.Œ0;A�/.

Let Œ�� 2 d�1.Œ0;A�/. Then, by Lemma 2.9, there exists a point x 2 Hn such that
maxs2S .x; �.s/x/D d.�/, and up to conjugating � we may take xDx0 . We then have
�2RA

�
, so that Œ��2p.RA

�
/. Now let �2RA

�
. By definition of d.�/, we have d.�/�A,

hence d.Œ��/D d.�/�A, and p.�/ 2 d�1.Œ0;A�/. Thus p.RA
�
/D d�1.Œ0;A�/.

Since the space RC is locally compact, so is mo
�
.n/.

The group Isom.Hn/ of isometries which may not be orientation-preserving acts on
mo
�
.n/ by conjugation. We denote by mu

�
.n/ the quotient of mo

�
.n/ by this action

(“u” standing for “unoriented”).

In the case nD 2, we shall prove here that this quotient is identified to the space X�.2/

formed by characters of representations. First, let us set up some notation. From now
on, if

AD

�
a b

c d

�
2 SL.2;R/;

we will still denote by �
a b

c d

�
the corresponding element ŒA� 2 PSL.2;R/, without the symbol ˙. Following [25],
we denote tr.A/ D aC d and Tr.ŒA�/ D jaC d j. If � 2 R� D Hom.�;PSL.2;R//,
denote by �.�/W � ! RC its character, defined by �.�/.
 / D Tr.�.
 //. Note that
the groups PSL.2;R/ and SOCR.2; 1/ are isomorphic, being the groups of orientation
preserving isometries of two models of H2 . An easy way of writing down such an
isomorphism 'W PSL.2;R/ ! SOCR.2; 1/ is to consider the adjoint representation
SL.2;R/! GL.3;R/, which has kernel f˙ Idg and preserves the Killing form of
signature .2; 1/. A straightforward computation then gives, for all ŒA� 2 PSL.2;R/,
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tr.'.ŒA�//DTr.ŒA�/2�1. In particular, up to composition with a simple function, �.�/
is indeed the character of a linear representation of � .

Proposition 2.15 Let Œ�1�, Œ�2� 2 mo
�
.2/. Then �.�1/ D �.�2/ if and only if there

exists an isometry u of H2 such that �1 D u�2u�1 .

Proof Of course, the character is a conjugation invariant in Hom.�;PSL.2;R//;
hence there is only one direction to prove. The proof given here is inspired by the proof
of Proposition 1.5.2 of Culler and Shalen [9].

It is easy to check that elementary subgroups of PSL.2;R/ either have a global fixed
point in H2 [ @H2 , or are “dihedral”, fixing globally a pair fx;yg � @H2 , with a
hyperbolic element of axis .x;y/, and an order 2 elliptic element exchanging x and y .
In a subgroup of PSL.2;R/ with a fixed point in H2[@H2 , the trace of any commutator
is 2. In a dihedral subgroup of PSL.2;R/, there exists a hyperbolic commutator, but
the trace of any commutator of commutators is 2. In a nonelementary subgroup of
PSL.2;R/, we can use ping-pong to find a Schottky subgroup, so commutators of
commutators can have different traces. In particular, the character of any representation
determines if it has a fixed point, or if it is dihedral, or nonelementary.

Suppose first that �1 and �2 are not elementary. Then there exists 
0 2 � such that
�1.
0/ is hyperbolic; �2.
0/ is hyperbolic too, and up to conjugating �1 and �2 by
an element of PSL.2;R/, we have

�1.
0/D �2.
0/D

�
� 0

0 1
�

�
;

with � > 1. Since �1 is not elementary, there exists 
1 2 � such that �1.
1/ is
hyperbolic and has no fixed points in common with �1.
0/. Denote

�1.
1/D

�
a b

c d

�
and �2.
1/D

�
a0 b0

c0 d 0

�
:

Then for all n 2 Z, ja�nC d=�nj D ja0�nC d 0=�nj, hence, up to changing the signs
of a0 , b0 , c0 and d 0 we have a D a0 and d D d 0 . Up to conjugating by diagonal
matrices, we may also suppose that jbj D jb0j D 1, since 
0 and 
1 do not share any
fixed points. Up to conjugating by the reflection of axis .0;1/, we can further suppose
that b D b0 D 1, and then c D c0 .

Now consider any 
 2 � and denote

�1.
 /D

�
x y

z t

�
and �2.
 /D

�
x0 y0

z0 t 0

�
:
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Here again, up to simultaneously changing the signs of x0 , y0 , z0 and t 0 , we have xDx0

and t D t 0 . Now, for m; n 2 Z the equality Tr.�1.

n
0

1


m
0

 //D Tr.�2.


n
0

1


m
0

 //

yields

jax�nCm
C z�n�m

C cy�m�n
C dt��n�m

j

D jax�nCm
C z0�n�m

C cy0�m�n
C dt��n�m

j:

By taking nCmD0 and n�m large, this implies jzjD jz0j, jyjD jy0j and zz0 and yy0

must have the same sign. By taking mD 0 and n large, it implies jaxCzj D jaxCz0j

and jcy C dt j D jcy0C dt j. Since �1.
1/ is hyperbolic, we have a ¤ 0 or d ¤ 0;
hence z D z0 and y D y0 . This finishes the proof, in the “generic” case.

If �1 and �2 are dihedral, then as before, we can find 
0 , 
1 2 � such that

�1.
0/D �2.
0/D

�
� 0

0 1=�

�
with � > 1,

�1.
1/D �2.
1/D

�
0 1

�1 0

�
:and

For all 
 2 � , �i.
 / is then entirely determined by the absolute values of the traces of
�i.


n
0

 / and �i.


n
0

1
 /.

If �1 and �2 have at least one global fixed point in @H2 , then they have two, hence
all the elements �i.
 / are hyperbolic and share the same axis; �i then identifies to an
action of � on an axis R by translations, which is determined by its character. Finally,
if �1 possesses a global fixed point in H2 , then so does �2 . Hence, up to conjugating
�1 and �2 , there exist morphisms 'i W �!R such that for all 
 2 � ,

�i.
 /D

�
cos'i.
 / � sin'i.
 /

sin'i.
 / cos'i.
 /

�
;

with j cos'1j D j cos'2j. We can check again that �1 and �2 are conjugated by an
isometry.

The two quotients mu
�
.2/ and X�.2/ of the space R�.2/ are therefore identical. Hence,

mo
�
.2/ is just an oriented version of the space of characters.

2.2 A reminder of the Bestvina–Paulin compactification of mu
g.n/

2.2.1 The equivariant Gromov topology We are now going to recall F Paulin’s
construction of the compactification of representation spaces, in order to adapt it to the
whole space mu

�
.n/. We refer to [37] for an efficient exposition of this construction.
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Here we will be interested in metric spaces .X; d/, equipped with actions of � by
isometries, ie, morphisms �W � ! Isom.X; d/; we say that .�;X; d/ is equivalent
to .�0;X 0; d 0/ if there exists a � –equivariant isometry between X and X 0 . Let E
be a set of classes of actions of � on metric spaces up to equivariant isometries. If
.�;X; d/; .�0;X 0; d 0/ 2 E (in order to avoid too heavy notation, we denote again
by .�;X; d/ and .�0;X 0; d 0/ their classes under equivariant isometry), if " > 0, if
K D .x1; : : : ;xp/ and K0 D .x0

1
; : : : ;x0p/ are finite sequences (of the same length)

in X and X 0 , and if P is a finite subset of � , we say that K0 is a P –equivariant
"–approximation of K if for all g; h 2 P , and all i; j 2 f1; : : : ;pg, we have

jd.�.g/ �xi ; �.h/ �xj /� d 0.�0.g/ �x0i ; �
0.h/ �x0j /j< ":

Given .�;X; d/ 2 E and K , " and P as above, we define UK ;";P .�;X; d/ as the
subset of E consisting of those .�0;X 0; d 0/ such that X 0 contains a P –equivariant "–
approximation of K . The sets UK ;";P .�;X; d/ form a basis of open sets of a topology,
called the equivariant Gromov topology (see [35; 21]).

By definition, every representation � 2R�.n/ defines an action of � by isometries
on the metric space .Hn; dHn/ (where dHn is the usual distance on Hn ), and every
conjugation by an isometry of Hn defines an equivariant isometry. Hence, every element
Œ�� 2mu

�
.n/ defines a unique equivariant isometry class of actions .�;Hn; dHn/; we

can therefore consider the set mu
�
.n/ as a set of (equivariant isometry classes of) actions

of � on .Hn; dHn/ and we can equip this set with the equivariant Gromov topology.

Proposition 2.16 (F Paulin [35, Proposition 6.2]) On the set mu
�
.n/, the usual

topology and the equivariant Gromov topology coincide.

Since we will have to adapt this proposition to the oriented case when nD 2, we recall
here the proof given in [35], in that case. Note, anyway, that the general case n� 2 is
proved similarly.

Proof in the case nD 2 The usual topology is of course finer than the equivariant Gro-
mov topology, as the distances considered are continuous for the usual topology on mu

�
.

Conversely, fix "> 0, and let Œ�k � be a sequence converging to Œ�1� for the equivariant
Gromov topology. Let us prove that up to conjugating these representations, �k! �1
(since H2 is separable, the space mu

�
, equipped with the equivariant Gromov topology,

is locally second countable; hence we can indeed use sequences in that space). Consider
three points x1;x2;x3 2H2 which form a nondegenerate triangle. Then, for all "0 > 0,
and for k large enough, there exists a triple .xk

1
;xk

2
;xk

3
/ 2 H2 such that for every

i; j 2 f1; 2; 3g and every s1; s2 2 S ,

jd.�1.s1/xi ; �1.s2/xj /� d.�k.s1/x
k
i ; �k.s2/x

k
j /j< ":
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Now let S Dfs1; : : : ; sng and y1D �1.s1/x1;y2D �1.s1/x2; : : : ;y3nD �1.sn/x3 ,
and similarly define yk

1
; : : : ;yk

3n
2H2 . The following fact will enable us to conclude:

Fact 2.17 For all " > 0, there exists "0 > 0 such that for all x1; : : : ;xn;x
0
1
; : : : ;x0n

in H2 , if for all i; j , jd.xi ;xj /� d.x0i ;x
0
j /j < "

0 then there exists an isometry ' of
H2 such that d.'.xi/;x

0
i/ < ".

This is left as an exercise (see eg [43, Proposition 1.1.8]) and follows from the fact that
the sine and cosine laws, in the hyperbolic plane, can be used to recover continuously a
triangle from its three lengths. In particular, up to conjugating �k by an isometry of H2 ,
we have d.yi ;y

k
i /<", and for every s2S , it follows that d.xi ; �1.s/

�1 ��k.s/xi/<",
for the three nonaligned points x1;x2;x3 , so that �k ! �1 in the usual topology.

For all � 2mu
�
.n/, define

`.�/Dmax .1; d.�//

and equip the set Hn with the distance dHn=`.�/. From now on, every element
Œ�� 2 mu

�
.n/ will be associated to .�;Hn; dHn=`.�// instead of .�;Hn; dHn/ (this

is another realization of mu
�
.n/ as a set of (classes of) actions of � on Hn , and the

equivariant Gromov topology is still the same, by Proposition 2.16 and Corollary 2.14).

As such, the equivariant Gromov topology does not separate any action on a space
from the restricted actions on invariant subspaces. In particular, if we consider the
whole space mu

�
.n/ as well as actions of � on R–trees, including actions on lines,

this will yield a non-Hausdorff space, since some of the elements of mu
�
.n/ have an

invariant line. In order to get rid of this little degeneracy, we are going to modify slightly
the definition of the equivariant Gromov topology, so that elementary representations
in mu

�
will be separated from the corresponding actions on lines, when considered as

actions on R–trees. If E is a set of (classes of) actions of � by isometries on spaces
which are hyperbolic in the sense of Gromov, put U 0

K ;";P
.�;X; d/ to be the subset

of E consisting of those .�0;X 0; d 0/ such that there exist x0
1
; : : : ;x0p 2X 0 , such that

for all g; h 2 P , and all i; j 2 f1; : : : ;pg, we have

jd.�.g/ �xi ; �.h/ �xj /� d 0.�0.g/ �x0i ; �
0.h/ �x0j /j< " and jı.X /� ı.X 0/j< ":

By ı.X /, we mean the lowest constant such that X is Gromov ı.X /–hyperbolic.

As we shall see very soon (Proposition 2.18), this extra condition changes the equi-
variant Gromov topology only at the neighborhood of elementary representations. It is
comparable to the fact of adding 2 to characters, as it is done by J Morgan and P Shalen
in [32], in order not to bother with the neighborhood of the trivial representation.
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2.2.2 The space mu
�
.n/ Let us first recall that if X is a topological space, a compact-

ification of X is a couple . xX ; i/ such that xX is a compact Hausdorff space, i W X ,! xX

is a homeomorphism on its image, and such that i.X / is open and dense in xX .

Note that we request xX to be Hausdorff. In particular, a space X needs to be locally
compact in order to admit a compactification. If X is a locally compact space and
. xX ; i/ is a compactification of X , then the compact set xX XX is called the boundary
of X , and is denoted by @ xX , or @X if no confusion is possible between different
compactifications of X . The points in the boundary are called the ideal points of the
compactification.

Note that if X is locally compact and if . xX ; i/ is a compactification of X , then the
open subsets of xX containing @ xX are precisely the complements, in xX , of the compact
subsets of X .

Finally, if X is a locally compact space, if Y is Hausdorff and f W X!Y is continuous
and has a relatively compact image, then we can define a compactification of X as
follows (see [32, page 415]). Denote by yX DX[f1g the Alexandrov compactification
of X (the one-point compactification), we define i W X ! yX �Y by i.x/D .x; f .x//.
Denote by xX the closure of i.X / in yX �Y . Then . xX ; i/ is a compactification of X ;
we say that it is the compactification defined by f .

We say that an action of � on an R–tree T is minimal if T has no proper invariant
subtree. The equivalence classes of R–trees equipped with minimal actions of � by
isometries, up to equivariant isometry, form a set, and we denote by T 0.�/ the subset
formed by trees not reduced to a point. In order to exhibit this set, one can prove that the
R–tree T and the action of � are entirely determined by the set fd.p; 
 �p/ j 
 2 �g
(see [1; 32]).

We have modified the definition of the equivariant Gromov topology so that we would
be considering Hausdorff spaces, and for this reason we are also going to restrict the
set of R–trees we consider. If .�;T / possesses an end which is globally fixed by �
(we then say that this action is reducible; see eg [36]), then .�;T; d/ is not separated,
in the equivariant Gromov topology, from the action on a line which has the same
translation lengths. Therefore, we shall restrict ourselves to the subset T .�/� T 0.�/
consisting of actions on lines and actions on R–trees without fixed ends, such that
minx02T max
2S d.x0; 
 �x0/D 1.

In the sequel, we equip the set mu
�
.n/ [ T .�/ with the modified equivariant Gro-

mov topology, and we let mu
�
.n/ denote the closure of the set mu

�
.n/ in the space

mu
�
.n/[ T .�/.
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The following proposition is simply a detailed version of an argument of F Paulin [35]
saying that R–trees and hyperbolic structures are not indistinguishable by the equivari-
ant Gromov topology, so that the modified equivariant Gromov topology changes it
only at the boundary of degenerate representations.

In this section, we say that a finite sequence K is big if it contains four points
A;B1;B2;B3 such that d.A;Bi/D 1, d.B1;B3/D 2 and d.B1;B2/D d.B2;B3/.
In an R–tree, this means that their convex hull is a tripod of centre A, and this implies
that d.B1;B2/D 2. In Hn , this means that the segments ŒB1;B3� and ŒB2;A� meet
orthogonally at A.

Proposition 2.18 Let .�;X; d/ 2 mu
�
.n/ [ T .�/ and let K � X be a big finite

sequence. Let " > 0. Then for all "0 > 0 small enough, for all .�0;X 0; d 0/ 2
UK ;"0;f1g.�;X; d/, we have jı.X 0/� ı.X /j< ".

Here, by "0 small enough, we mean: "0 < �.ı.X /; "/, where �W RC �R�C!R�C is
some (universal) function.

Proof Let "0 > 0, and let K0 D .A0;B0
1
;B0

2
;B0

3
/ � X 0 be an "0–approximation

of K . Put B00
1
D B0

1
. We have jd.B00

1
;B0

3
/ � 2j < "0 so we can choose a point

B00
3
2X 0 such that d.B0

3
;B00

3
/ < "0 and d.B00

1
;B00

3
/D 2. Denote by r.t/ the geodesic

segment, in X 0 , such that r.0/ D B00
1

and r.2/ D B00
3

, and put A00 D r.1/. Then
the CAT.0/ property on X 0 implies that d.A0;A00/ <

p
2"0C "02 . Finally, we have

jd.A0;B0
2
/� 1j < "0 so there exists B00

2
2 X such that d.B0

2
;B00

2
/ < "0C

p
2"0C "02

and d.A00;B00
2
/D 1. We also have the inequalities jd.B00

1
;B00

2
/�1j< 2"0C

p
2"0C "02 ,

and jd.B00
3
;B00

2
/� d.B00

1
;B00

2
/j< 5"0C 2

p
2"0C "02 .

First suppose that ı.X / ¤ 0, and denote x D ıH2=ı.X /. The cosine law I, in
.H2; dH2/, implies that cosh.xd.B1;B2// D cosh2.x/. For all "0 small enough,
we have d.A00;B00i /D 1, d.B00

1
;B00

3
/D 2, d.B00

1
;B00

2
/ < 2 and d.B00

3
;B00

2
/ < 2, so that

X 0 cannot be an R–tree. Put also x0D ıH2=ı.X 0/. Then the cosine law I in X 0 implies
that cosh.x0d.B00

1
;B00

2
//Ccosh.x0d.B00

2
;B00

3
//D 2 cosh2.x0/. It follows from the study

of the function F W Œ0; 2��RC!R defined by F.b;x/D cosh2.x/� cosh.xb/, that
by taking "0 small enough we can force x and x0 to be arbitrarily close.

Now suppose that ı.X / D 0. If ı.X 0/ D 0 then there is nothing to do. Otherwise,
we have again cosh.x0d.B00

1
;B00

2
//C cosh.x0d.B00

2
;B00

3
//D 2 cosh2.x0/, where, for "0

small enough, the distances d.B00
1
;B00

2
/ and d.B00

2
;B00

3
/ can be taken arbitrarily close

to 2, which implies that x0 can be forced to be arbitrarily large.
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In particular, the modified equivariant Gromov topology and the equivariant Gromov
topology coincide in mu

�
.n/.

Now, every argument of M Bestvina [4] and F Paulin [35; 37] works, and we have the
following.

Theorem 2.19 (M Bestvina, F Paulin) The space mu
�
.n/, equipped with the function

mu
�
.n/ ,!mu

�
.n/, is a natural compactification of mu

�
.n/.

By “natural”, we mean that the action of Out.�/ on mu
�
.n/ extends continuously to

an action of Out.�/ on mu
�
.n/.

We refer to Paulin [37; 36] and Kapovich and Leeb [24] for a complete proof of this
result.

2.2.3 Other compactifications We now give a (very) short reminder on the compact-
ification of X�;SL.2;R/ by J Morgan and P Shalen. The countable collection .f
 /
2� ,
with f
 W � 7! �.
 /, generates the coordinate ring of X�;SL.2;R/ . Denote by PR� the
quotient of Œ0;C1/� X f0g by positive multiplication, and let � W X�;SL.2;R/! PR�

defined by �.x/D
�
log.jf
 .x/jC 2/

�

2�

: J Morgan and P Shalen proved [32, Propo-
sition I.3.1] that the image of X�;SL.2;R/ under � is relatively compact, so that �
defines a compactification of X�;SL.2;R/ .

We now restrict to the group � D �1†g with g � 2, and we denote by mu
g the space

mu
�
.2/. Then the absolute value of the Euler class is defined on mu

g , and we denote by
mu

g;even the subspace of mu
g consisting of representations of even Euler class (recall,

indeed, that a representation �W �1†g! PSL.2;R/ lifts to SL.2;R/ if and only if its
Euler class is even; we will see that in Section 2.3.4). Then the map � factors through
� 0W mu

g;even!PR� , which defines a compactification mu
g;even

MS of mu
g;even . Similarly,

the functions mu
g;even ,!mu

g ,!mu
g define a compactification mu

g;even of that space.
The ideal points of the compactifications mu

g;even and mu
g;even

MS are actions of �1†g

on R–trees. These actions on R–trees are irreducible, ie, without global fixed points, or
are actions on a line. The topology on @mu

g;even
MS is the axis topology; it is the coarsest

topology such that the functions `T .
 /D infx2T d.x; 
x/ are continuous. By the main
theorem of [36], the spaces @mu

g;even and @mu
g;even

MS are homeomorphic, and hence,
as F Paulin explains it in [35], the spaces mu

g;even and mu
g;even

MS are homeomorphic
(we refer to [32; 35; 36] for details). In particular, Corollary 1.4 concerns simply the
space mg;even and it is under that form that we shall prove it in Section 3.
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2.3 Euler class

As we mentioned it in the Introduction, the Euler class is a characteristic class which
distinguishes the connected components of Hom.�1†g;PSL.2;R//, for g � 2. It can
be defined in the more general context of actions, preserving the order, of any discrete
group � on a set equipped with a total cyclic order, as an element of the cohomology
group H 2.�;Z/. The definition of the Euler class, in this context, is rather standard.
An excellent introduction can be found in Ghys [16] in the context of actions on the
circle; and an efficient general overview is given by D Calegari [6, Section 2.3].

In order to prove the continuity of the Euler class (Theorem 1.7), we will need to prove
some technical lemmas about it, in Section 2.3.5. For this, it is important to use a
computation-oriented definition of this Euler class, which mimics (in a geometric way)
the case of actions on a circle. For this reason, we give a self-contained treatment of
the Euler class, and for simplicity of the exposition we will soon restrict to the case
when � is the fundamental group of a compact, connected hyperbolic surface, keeping
in mind the algorithm given by J Milnor in [30].

2.3.1 Cyclically ordered sets

Definition 2.20 Let X be a set. A (total) cyclic order on X is a function oW X 3!

f�1; 0; 1g such that

(i) o.x;y; z/D 0 if and only if Cardfx;y; zg � 2;

(ii) for all x , y and z , o.x;y; z/D o.y; z;x/D�o.x; z;y/;

(iii) for all x , y , z and t , if o.x;y; z/D 1 and o.x; z; t/D 1 then o.x;y; t/D 1.

Remark 2.21 If o.x;y; z/D 1 and o.x; z; t/D 1 then we also have o.x; z; t/D 1 and
o.y; z; t/D 1. Indeed, o.z;x;y/D o.z; t;x/D 1 so, by condition (iii) of the definition,
o.z; t;y/D 1, that is, o.y; z; t/D 1. Similarly, o.x;y; t/D 1 so o.t;x;y/D 1, which,
together with o.t;y; z/D 1, yields o.t;x; z/D 1, ie o.x; z; t/D 1. In other words, the
transitivity relation (iii) implies all the other “natural” transitivity relations. In particular,
for instance, on a set of 4 elements, there are as many total cyclic orders as injections
of that set in the oriented circle, up to orientation-preserving homeomorphism, that
is, 6.

Remark 2.22 A triple .x;y; z/ 2X 3 is called degenerate if Cardfx;y; zg � 2. Thus,
a cyclic order oW X 3! f�1; 0; 1g is determined by its restriction of the set of nonde-
generate triples; this restriction is takes values in f�1; 1g and satisfies conditions (ii)
and (iii) of Definition 2.20. This gives an alternative definition of a total cyclic order,
which will be used in Section 3.
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In all this text, we use only total cyclic orders (every triple defines an order). Conse-
quently, we will sometimes forget the word “total” when we refer to a cyclic order.

Now fix a set X equipped with a cyclic order o and a base point x0 2X . Once this
base point x0 is fixed, total cyclic orders on X are naturally identified with total orders
on X X fx0g:

Definition 2.23 We set y <x0
z if o.x0;y; z/D 1, and y �x0

z if y <x0
z or y D z .

It follows directly from the properties of o that the relation �x0
is a total order on

X X fx0g. Reciprocally, if � is a total order on X X fx0g, then there exists a unique
cyclic total order on X which satisfies o.x;y; z/ D 1 for all x;y; z ¤ x0 such that
x < y < z , and satisfying o.x0;y; z/D 1 as soon as y < z . For all x0 2X , these two
constructions realize a bijection, and its inverse, between the set of total cyclic orders
on X and the set of total orders on X X fx0g.

When defining the Euler class of an action on the circle, it is essential to consider lifts
of homeomorphisms of the circle to homeomorphisms of R. With this in mind, we
define the following.

Definition 2.24 On the set Z�X we put
� .m;x/ <x0

.n;y/ when m< n, for any x;y 2X ;
� .k;y/ <x0

.k; z/ when y <x0
z ;

� .k;x0/ <x0
.k;y/ for all y 2X X fx0g;

and we put .m;y/�x0
.n; z/ if .m;y/ <x0

.n; z/ or .m;y/D .n; z/.

In particular, when restricted to the set Z� .X X fx0g/ it is the lexicographic order.

We then check easily that the relation �x0
is a total order on the set Z�X .

Example 2.25 If X D S1 and x0 2 S1 , then X X fx0g is an interval,
:::

:::

f1g � .X X fx0g/

f0g � .X X fx0g/

f�1g � .X X fx0g/

.2;x0/

.1;x0/

.0;x0/

.�1;x0/

and Z�X is naturally identified to R; this identification depends canonically on x0 .
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Another example is the deck of playing cards. It is equipped with a cyclic order, which
is preserved as we make a “cut”. The choice of the “cut” consists in choosing a card x0 ,
and determines a total order in the deck. Here our definition of the order on Z�X

consists in choosing a cut, and then putting Z copies of the deck the ones above the
others.

2.3.2 Applications and lifts Orientation-preserving homeomorphisms of S1 can be
lifted to homeomorphisms of R, in a unique way up to integer translations. Here we
will see that the same happens for order-preserving bijections of a cyclically ordered
set.

Let f W X !X , and zf W Z�X ! Z�X be two functions. If the diagram

Z�X
zf //

pr2

��

Z�X

pr2

��
X

f // X

commutes, we say that zf is an arbitrary lift of f , and that zf projects on f .

We define an application hW Z�X ! Z�X by h.n;x/D .nC 1;x/.

Proposition 2.26 Let f W Z�X ! Z�X be a bijection preserving the order �x0

and which projects on IdX . Then there exists an integer n such that f D hn .

Proof Let f be such a function, and put n D pr1.f .0;x0//. Then the function
pr1 ıf . � ;x0/W Z ! Z is a bijection preserving the order, hence for all k 2 Z,
f .k;x0/D .nCk;x0/. Now, for all y 2XXfx0g, we have f .k;x0/�x0

f .k;y/�x0

f .kC 1;x0/, that is, .nCk;x0/�x0
f .k;y/�x0

.nCkC 1;x0/, hence f .k;y/D
.nC k;y/, since f projects on IdX .

Proposition 2.27 For all x0;x1 2X , there exists a unique bijection Fx0x1
of Z�X

which projects on IdX , such that for all a; b 2 Z � X , a <x0
b , Fx0x1

.a/ <x1

Fx0x1
.b/, and such that Fx0x1

.0;x0/D .0;x0/.

Proof If x0 D x1 , then by the preceding proposition, the unique possible function is
Fx0x1

D IdZ�X . Now suppose that x0 ¤ x1 . The application Fx0x1
must project on

IdX , so that we can only change the indices, in the way suggested by the following
picture.
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:::
:::

:::
:::

.1;x1/

.0;x1/

.�1;x1/

.2;x0/

.1;x0/

.0;x0/

.�1;x0/

.2;x1/

.1;x1/

.0;x1/

.2;x0/

.1;x0/

.0;x0/

.�1;x0/

Fx0x1

We put Fx0x1
.k;x0/D.k;x0/ and Fx0x1

.k;x1/D.kC1;x1/. For all y2XXfx0;x1g,
if o.x0;x1;y/D�1 we put Fx0x1

.k;y/D .k;y/, otherwise, Fx0x1
.k;y/D .kC1;y/.

Then Fx0x1
satisfies the Proposition; its unicity follows from Proposition 2.26.

Note that for all distinct points x0;x1 2X , we have Fx0x1
ıFx1x0

D h, contrary to
what our notation may suggest.

Proposition 2.28 Let X be a set equipped with a (total) cyclic order o, let x0 2 X ,
and let f W X ! X be a bijection preserving o. Then f admits at least one lift zf
preserving the order �x0

. Moreover, if zf and zf 0 are two such lifts then there exists
n 2 Z such that zf 0 D hn ı zf .

Proof Let f W X!X preserving o. We check easily that the map F W Z�X!Z�X

defined by F.n;x/D .n; f .x// satisfies: 8a; b 2Z�X , a�x0
b,F.a/�f .x0/F.b/.

Hence, the map zf D Ff .x0/x0
ıF is indeed a lift of f , preserving �x0

.

Now, if zf 0 is another lift of f preserving �x0
, then zf 0 ı zf �1 is a lift of IdX preserv-

ing �x0
, hence, by Proposition 2.26, zf 0 zf �1 D hn , for some n 2 Z.

Now denote by Ord.X; o/ the group of bijections of X which preserve o, and by
eOrd.X; o;x0/ the group formed by lifts of elements of Ord.X; o/ to Z�X which
preserve the order �x0

. By Proposition 2.27, the conjugation by Fx0x1
realizes a

canonical isomorphism between the groups eOrd.X; o;x0/ and eOrd.X; o;x1/, for all
x0;x1 2X . This group, considered up to isomorphism, is denoted by eOrd.X; o/, and
if there is no confusion possible about o, these two groups are denoted by Ord.X /
and eOrd.X /.
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2.3.3 Euler class Let .X; o/ be a cyclically ordered set, let † be a connected surface,
and let �W �1†! Ord.X / be a representation: we shall define an element e.�/ 2

H 2.†;Z/, which we call the Euler class of the representation.

The choice of an element x0 2 X gives rise to the group eOrd.X; o;x0/, and by
Proposition 2.28, the sequence

0! Z!eOrd.X; o;x0/
p
!Ord.X; o/! 1

is exact, and defines a central extension of Ord.X; o/ by Z. The canonical map p

being onto, we can choose a set theoretical section s .

Since we are considering a representation of �1† in a nonabelian group, we need to
choose a base point � 2 †. Let C D C0 [ C1 [ C2 , where Ci is the set

˚
� i
˛

	
˛

of
i –cells, be a cellulation of †, where every cell is equipped with an orientation, and
suppose that C0 D f�g.

Each loop 
 , based at �, in the 1–skeleton, is equivalent to a word .�1
1
/�1 � � � .�1

k
/�k ,

with �j D˙1, in the elements of C1 . It represents an element of �1.†;�/, which we
denote by Œ
 �. The boundary of any 2–cell �2

˛ is a loop @�2
˛ , based at �, as above,

well-defined only up to a cyclic permutation. Since @�2
˛ is contractible in †, the

element of eOrd.X; o;x0/:

s
�
�.Œ�1

1 �/
��1
� � � s

�
�.Œ�1

k �/
��k

is a power of h, so it does not depend on the cyclic permutation. By identifying Z
with the group generated by h in eOrd.X; o;x0/, this defines an integer n.�2

˛/. Finally,
if c D

P
�i�

2
i is a 2–cycle, we put e.�/ � c D

P
�in.�

2
i /.

Theorem 2.29 For every 2–cycle c , the integer e.�/ � c depends only on .X; o/ and
on � ; this defines an element e.�/ 2H 2.†;Z/, called the Euler class of � .

If the surface † is closed and oriented, then the evaluation of e.�/ on the fundamental
class is an integer, which we still call (abusively) the Euler class of the representation,
e.�/ 2 Z.

Proof Step 1 we first prove that given the base points � 2 †, x0 2 X and the
cellulation, e.�/ does not depend on the choice of the section s . Thus, let s1 and s2

be two sections of p . For every 1–cell �1 , there exists (by Proposition 2.26) an integer
n.�1/ such that s2.�.Œ�

1�//D s1.�.Œ�
1�// �hn.�1/ . Since h is central in eOrd.X; o;x0/,

for any 2–cell �2
˛ we have n2.�

2
˛/D n1.�

2
˛/C

Pk
jD1 �j n.�1

j /, with the same notation
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as above, with n1 and n2 being the integral maps n defined as above by using the
sections s1 and s2 , respectively. Therefore, for every 2–cycle c , we have

e.�/1 � c � e.�/2 � c D
X
�22c

X
�12@�2

n.�1/ ;

where e.�/i is the Euler class defined by the section si . This sum is zero, since c has
no boundary.

Step 2 we prove that e.�/ depends neither on the point � 2†, nor on the cellulation,
nor on the base point x0 2X . Independence with respect to � follows from the fact
that h is central in eOrd.X /, so that no global conjugation of a representation can
change its Euler class. Moreover, e.�/ is defined in terms of the cellulation of †,
and hence it is invariant under any isotopy of the cellulation of the surface. Now, let
C D f�g [C1 [C2 be a cellulation of † with one vertex, and suppose that one of
the 2–cells, say �2 , is not a triangle. We can therefore define a new cellulation C 0 by
adding a 1–cell �1 , and replacing the cell �2 by the two 2–cells �2

1
and �2

2
obtained

from cutting �2 along �1 , and with the orientation from �2 . Then every 2–cycle of C 0

has the same number of �2
1

and �2
2

(otherwise it would have a nonzero number of �1 in
its boundary). Hence, in order to prove that the Euler classes defined by C and C 0 are
the same, it suffices to prove that, for some section s , we have n.�2

1
/Cn.�2

2
/D n.�2/;

but this is immediate from the construction of n.�2/. It is a classical fact that this
operation on cellulations (of cutting a nontriangle 2–cell), together with its inverse and
with isotopies, enable to go from any cellulation (with a single 0–cell) to any other on
a same surface (we can even change from any triangulation to any other by using flips);
therefore the Euler class does not depend on C . Finally, let x0 , x0

0
be two points

in X . The conjugation by Fx0x0
0

defines an isomorphism between eOrd.X; o;x0/ and
eOrd.X; o;x0

0
/ descending on the identity on Ord.X /, hence it sends any section s

corresponding to x0 to a section s0 corresponding to x0
0

, and these sections define the
same Euler class because h commutes with Fx0x0

0
.

Remark 2.30 Let † be an oriented surface, � a representation and � W †0 ! † a
covering of degree d . Then e.� ı�/D d � e.�/.

Indeed, take a cellulation C of † and lift it to a cellulation C 0 of †0 . The cellulation C 0

no longer has a unique 0–cell, however, any 1–cell �1 of C 0 continues to define an
element �.Œ�.�1/�/, and we can define a number e.� ı�/ in that way here. Now, we
can prove that this number is invariant under removal of some 1–cells, and under the
merging of several 1–cells attached by a 0–cell, in a similar fashion as we did in Step 2
of the proof of Theorem 2.29; we leave the details as an exercise to the reader.
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The choice of defining the Euler class (for actions on cyclically ordered sets) in terms
of the cohomology of the surface is motivated by Milnor’s algorithm and it gives a
straightforward proof of it (see the next Section). However, the same construction can
be given in terms of the cohomology of the group �1†: all the sections of the projection
eOrd.X; o;x0/! Ord.X / define the same element of H 2.Ord.X /;Z/, which, pulled
back to H 2.�1†;Z/, defines, under the identification H 2.�1†;Z/'H 2.†;Z/, the
Euler class we have just constructed. We refer to Ghys [16, Sections 6.1 and 6.2] for
more details. In particular, we have the following:

Remark 2.31 Let � be a group such that H 2.�;Z/ D 0, and let �1W �1†g ! � ,
�2W �! Ord.X; o/. Then e.�1 ı �2/D 0.

2.3.4 Milnor’s algorithm Consider a closed, oriented surface of genus g , †g , and
equip it with a “standard” cellulation, featuring a single 2–cell, a single vertex and 4g

edges labelled by ai , bi , a�1
i and b�1

i , for 1� i � g . It yields a standard presentation
�1†g D

˝
a1; : : : ; bg j…i Œai ; bi �D 1

˛
. Then a representant of the fundamental class

c 2 H2.�1†g;Z/ is the 2–cycle consisting of the unique 2–cell, equipped with its
orientation.

Given a representation � 2 Hom.�1†g;Ord.X; o//, take some x0 2X and choose an
arbitrary lift e�.x/ for all x 2 fa1; b1; : : : ; ag; bgg. As we said before, we still denote
by e.�/ 2 Z the evaluation of e.�/ 2H 2.†g;Z/ on the fundamental class c . Thus,
by construction of the Euler class we have

(2-1) ŒA�.a1/; A�.b1/� � � � ŒA�.ag/; A�.bg/�D he.�/:

Since h is central in eOrd.X; o;x0/ and commutes with Fx0x1
for all x1 2X X fx0g,

the result of this product of commutators does not depend on x0 neither on the choices
of the lifts A�.ai/, A�.bi/, which could be made according to any section sW Ord.X /!
eOrd.X; o;x0/.

Let us come back to Example 2.25. The group Ord.S1/ is just HomeoC.S1/, and
its lift eOrd.X / is identified with the group HomeoC

1
.R/ of increasing bijections

of R which commute with integer translations. The group PSL.2;R/ of orientation-
preserving isometries of H2 acts faithfully on the circle @H2 ; this defines an inclusion
PSL.2;R/� Ord.S1/, and the subgroup of HomeoC

1
.R/ of lifts of PSL.2;R/ turns

out to be its universal cover, DPSL.2;R/. In this context, the central extension used in
Section 2.3.3 is also the extension of PSL.2;R/ by its fundamental group, isomorphic
to Z. Therefore, in the formula (2-1), h is identified with a generator of �1.PSL.2;R//.
In the intermediate cover SL.2;R/ of PSL.2;R/, the image of h is � Id. It follows
that a representation � 2Hom.�1†g;PSL.2;R// lifts to SL.2;R/ if and only if e.�/

is even.
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2.3.5 Finite sets suffice Denote by F2g the free group on the set fa1; b1; : : : ; ag; bgg,
and let w D Œa1; b1� � � � Œag; bg�. The images under the canonical surjection F2g !

�1†g of the subwords of w form a set P , and in all the sequel of this text we denote
by Pref the set P [P�1 . A major interest of Milnor’s algorithm is that we need only
finitely many pieces of information, concerning the action of the finite set Pref on the
ordered set X , in order to be able to compute the Euler class of a representation. This
is the key idea which will prove, in Section 3, that the Euler class extends continuously
to the boundary of mo

g .

More precisely, the idea is the following:

Proposition 2.32 Let .X; o/ and .X 0; o0/ be two cyclically ordered sets, equipped
with base points x0 , x0

0
. Let �W �1†g! Ord.X; o/ and �0W �1†g! Ord.X 0; o0/ be

two representations. Suppose that for all g1;g2;g3 2 Pref ,

o.g1x0;g2x0;g3x0/D o0.g1x0;g2x0;g3x0/:

Then e.�1/D e.�2/.

In fact we shall need a slightly more subtle statement, since we want the Euler class to
be stable under small degenerations. We have stated Proposition 2.32 in order to fix
the ideas, but we will not use it, and we leave its proof as an (easy) exercise. Instead
we will prove the following:

Proposition 2.33 Let .X; o/ and .X 0; o0/ be two cyclically ordered sets, equipped
with base points x0 , x0

0
. Let �W �1†g! Ord.X; o/ and �0W �1†g! Ord.X 0; o0/ be

two representations. Let y0 2 X and y0
0
2 X 0 . Suppose also that x0 62 Pref � y0 , that

Card.Pref �y0/� 2, and that for all g1;g2;g3 2 Pref ,

o.g1x0;g2x0;g3y0/D 1) o0.g1x00;g2x00;g3y00/D 1

o.g1x0;g2y0;g3y0/D 1) o0.g1x00;g2y00;g3y00/D 1:and

Then e.�1/D e.�2/.

Everything relies on the two following elementary lemmas:

Lemma 2.34 Let .X; o/ be a cyclically ordered set, and f 2 Ord.X /. Suppose we
have a base point x0 2X and an element y 2X X fx0g such that f .y/¤ x0 . Denote
by zf the lift of f to Z�X satisfying zf .0;x0/ D .0; f .x0//, and denote by n the
integer such that zf .0;y/D .n; f .y//. Then n depends only on o.x0; f .x0/; f .y//.
More precisely, nDmax.0;�o.x0; f .x0/; f .y///.
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Lemma 2.35 Let .X; o/ be a cyclically ordered set, f 2 Ord.X / and x0 2 X . Let
x1;x2 2 X be such that o.x0;x1;x2/ D o.f .x0/;x1;x2/ D 1. Then there exists a
lift zf of f to Z � X such that .�1;x2/ <x0

zf .0;x0/ <x0
.0;x1/. Moreover, if

y 2X is such that o.x1;x2;y/� 0 and o.x1;x2; f .y//� 0, then this lift zf satisfies
zf .0;y/D .0; f .y//.

Proof of Lemma 2.34 We have f .y/¤ f .x0/ hence y ¤ x0 and hence .0;x0/ <x0

.0;y/ <x0
.1;x0/. The function zf is increasing, so that .0; f .x0// <x0

.n; f .y// <x0

.1; f .x0//.

If o.x0; f .x0/; f .y//D 0 then x0 D f .x0/ and hence nD 0.

If o.x0; f .x0/; f .y// D 1 then .0; f .x0// <x0
.0; f .y// <x0

.1; f .x0// and then
nD 0.

If o.x0; f .x0/; f .y// D �1 then .�1; f .x0// <x0
.0; f .y// <x0

.0; f .x0// and in
that case nD 1.

Proof of Lemma 2.35 There are three cases to consider here.

� If f .x0/ D x0 , then .�1;x2/ <x0
.0; f .x0// <x0

.0;x1/, so we take zf such
that zf .0;x0/D .0; f .x0//. We then have .0;x0/ <x0

.0;y/ <x0
.1;x0/, hence, by

applying zf (which is strictly increasing): .0;x0/ <x0
zf .0;y/ <x0

.1;x0/, so that
zf .0;y/D .0; f .y//.

� If o.x0;x1; f .x0//D�1 then .�1;x2/ <x0
.0;x0/ <x0

.0; f .x0// <x0
.0;x1/ so

we take again zf such that zf .0;x0/D .0; f .x0//. By Lemma 2.34, it suffices to prove
that o.x0; f .x0/; f .y//� 0 in order to have nD 0 and thus zf .0;y/D .0; f .y//. But
if o.x0; f .y/; f .x0//D 1, since o.x0; f .x0/;x1/D 1 we get o.x0; f .y/;x1/D 1 so
o.x1;x0; f .y//D1 which, together with o.x1;x2;x0/D1, gives o.x1;x2; f .y//D1,
a contradiction.

� If o.x0;x1; f .x0//D 1 then we have o.x0;x2; f .x0//D 1 (indeed, this follows
from the equalities o.f .x0/;x0;x1/D o.f .x0/;x1;x2/D 1), hence

.�1;x2/ <x0
.�1; f .x0// <x0

.0;x0/ <x0
.0;x1/

and we take zf such that zf .0;x0/D .�1; f .x0//. In particular, zf D zf 0 ıh�1 , where
zf 0.0;x0/D .0; f .x0//. And we have o.x0; f .x0/; f .y//D�1 (indeed, if f .y/Dx1

or x2 we already have this equality, and otherwise o.x2;x1; f .y//D1, which, together
with the equality o.x2;x0;x1/D 1, gives o.x2;x0; f .y//D 1, ie o.x0; f .y/;x2/D 1,
which, together with o.x0;x2; f .x0//D 1, yields o.x0; f .y/; f .x0//D 1) therefore
Lemma 2.34 applied to zf 0 implies that zf 0.0;y/ D .1; f .y//, whence zf .0;y/ D
.0; f .y// once again.
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Proof of Proposition 2.33 Denote yi D Œ�.aiC1/; �.biC1/� � � � Œ�.ag/; �.bg/� � y0 .
Then in particular yg D y0 . The integers mi such that

ŒA�.ai/;A�.bi/�.0;yi/D .mi ;yi�1/

do not depend on the choices of the lifts A�.ai/, A�.bi/, and e.�/ D
Pg

iD1
mi , by

Milnor’s algorithm. We also use similar notation in X 0 .

The finite set Pref �y0 �X X fx0g, equipped with the order <x0
, contains a smallest

element x1 and a biggest element x2 . Similarly we define x0
1

and x0
2

in X 0 . Let then 
1

be an element of Pref such that 
1y0
0
Dx0

1
. Then for all 
 2Pref , o0.x0

0
; 
1y0

0
; 
y0

0
/�0,

hence o.x0; 
1y0; 
y0/� 0, so that 
1y0 is minimal among Pref �y0 in X Xfx0g for
the order <x0

, that is, 
1y0 D x1 . Similarly, x2 and x0
2

correspond to (at least) one
same element 
2 2 Pref . Moreover, since Card.Pref � y0/ � 2, we have x1 <x0

x2 ,
hence o.x0;x1;x2/D 1.

For every element 
 2 fa1; b1; : : : ; ag; bgg we define e�.
 / and A�0.
 / as follows.
If �.
 / � x0 ¤ x0 , we choose e�.
 / such that e�.
 /.0;x0/ D .0; �.
 / � x0/; and we
choose A�0.
 / such that A�0.
 /.0;x0

0
/ D .0; �0.
 / � x0

0
/. Otherwise, if �.
 / � x0 D x0

then we have o.x0;x1;x2/D o.�.
 / � x0;x1;x2/D 1 hence, by Lemma 2.35, �.
 /
possesses a lift e�.
 / such that .�1;x2/ <x0

e�.
 /.0;x0/ <x0
.0;x1/, and in that case

again we have o0.x0
0
;x0

1
;x0

2
/ D o0.�0.
 / � x0

0
;x0

1
;x0

2
/ D 1 (indeed, o.x0;x1;x2/ D

o.x0; 
1y0; 
2y0/D 1 so that o0.x0
0
;x0

1
;x0

2
/D 1 and, similarly, o.
x0;x1;x2/D 1 so

o0.�0.
 /x0
0
;x0

1
;x0

2
/D 1, since 
; 
1; 
2 2 Pref ). Therefore, still by applying Lemma

2.35, we can define A�0.
 / in such a way that .�1;x0
2
/ <x0

0

A�0.
 /.0;x0
0
/ <x0

0
.0;x0

1
/.

Now denote by ni1
; ni2

; ni3
; ni4

the integers such that

A�.bi/
�1.0;yi/D .ni4

; �.bi/
�1
�yi/;

A�.ai/
�1
� .0; �.bi/

�1
�yi/D .ni3

; �.ai/
�1�.bi/

�1
�yi/;

:::

and similarly we define integers n0i1
, . . . , n0i4

.

Let us first check that ni4
D n0i4

. Denote 
 D ŒaiC1; biC1� � � � Œag; bg� (that is the
element of �1†g defined by the subword following bi�1 in w ).

� If �.bi/ �x0¤ x0 , then o.x0; �.b
�1
i / �x0; �.b

�1
i 
 / �y0/¤ 0 (indeed, these three

points are all distinct since 
 and b�1
i 
 are in Pref ), and hence

o0.x00; �
0.b�1

i / �x00; �
0.b�1

i / �y0i/D o.x0; �.b
�1
i / �x0; �.b

�1
i / �yi/

so by Lemma 2.34 (applied to f D �.b�1
i /, y D yi and to f D �0.b�1

i / and
y D y0i ) we have ni4

D n0i4
.
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� If �.bi/ �x0 D x0 , then by Lemma 2.35, this time we have ni4
D n0i4

D 0.

Similarly we get ni3
� ni4

D n0i3
� n0i4

, . . . , ni1
� ni2

D n0i1
� n0i2

, so that mi D m0i ,
and hence e.�/D e.�0/.

2.4 Almost faithful morphisms

The connectedness of mu
g (Theorem 3.35) strongly relies on a property of surface groups

related to the fact that these groups are “limit groups” (see eg Sela [39], Guirardel [22]
and Champetier and Guirardel [7]).

Let us fix some notation first. Fix a standard presentation of the fundamental group

�1†g D ha1; : : : ; bg j Œa1; b1� � � � Œag; bg�D 1i

of the surface †g . The set S D fa1; : : : ; bgg generates �1†g , and we denote by
Bn � �1†g the ball of centre 1 and radius n for the Cayley metric associated to the
generating set S . Also, we denote by Fk a free group of rank k .

A group � is said to be residually free if for all 
 2 � X f1g, there exists a morphism
'W �! F2 such that '.
 /¤ 1. We say that � is fully residually free if for every finite
subset f
1; : : : ; 
ng � � X f1g, there exists a morphism 'W � ! F2 such that for all
i 2 f1; : : : ; ng, '.
i/¤ 1. We will use the following celebrated result:

Theorem 2.36 (G Baumslag [2]) For all g � 2, the group �1†g is fully residually
free. In other words, for every n � 0, there exists a morphism 'nW �1†g! F2 such
that ker.'n/\Bn D f1g.

Heuristically, the morphisms 'n are “more and more injective”. In the language of
[39; 7], the group �1†g is a “limit group” of the group F2 . In fact, we will also need
a statement a little more precise: we will need to make explicitly given morphisms
“more and more injective”, by composing them with automorphisms of �1†g . Let us
describe these morphisms here.

For all g � 3, we denote by egW �1†g ! �1†g�1 the morphism consisting of col-
lapsing the last handle. More precisely, given the two standard presentations

�1†g D

�
a1; : : : ; bg

ˇ̌̌̌ gY
iD1

Œai ; bi �D 1

�
;

�1†g�1 D

�
a1; : : : ; bg�1

ˇ̌̌̌ g�1Y
iD1

Œai ; bi �D 1

�
;
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the map eg is defined by eg.
 /D 
 for 
 D a1; b1; : : : ; ag�1; bg�1 and eg.
 /D 1

for 
 D ag; bg .

Now let g � 2; we will use a cocompact Fuchsian group Gg � PSL.2;R/ and a
morphism pgW �1†g!Gg , both depending on the parity of g .

If g is even, g D 2g0 , consider a cocompact Fuchsian group Gg of signature .g0I 2/
(we use the notation of [25] here). Recall that this is the fundamental group of the
hyperbolic orbifold of genus g0 with one conic singularity of angle � (D 2�=2). It
has the presentation

Gg D
˝
˛1; : : : ; ˇg0

ˇ̌ �
Œ˛1; ˇ1� � � � Œ˛g0 ; ˇg0 �

�2
D 1

˛
:

Then we define the map pgW �1†g ! Gg by letting pg.ai/D pg.ag0Ci/D ˛i and
pg.bi/D pg.bg0Ci/D ˇi for all i between 1 and g0 .

In the case when g is odd, g D 2g0C 1, we fix a cocompact Fuchsian group Gg of
signature .g0I 2; 2; 2/. It has the following presentation:

Gg D
˝
q1; q2; ˛1; : : : ; ˇg0

ˇ̌
q2

1 D q2
2 D 1; .q1q2Œ˛1; ˇ1� � � � Œ˛g0 ; ˇg0 �/

2
D 1

˛
:

We denote by pgW �1†g!Gg the morphism defined by pg.a1/Dq�1
1

, pg.b1/Dq�1
2

,
and pg.ai/D .q1q2/

�1˛i�1.q1q2/, pg.bi/D .q1q2/
�1ˇi�1.q1q2/, for all i between

2 and g0C 1, and pg.ai/D ˛i�g0�1 and pg.bi�g0�1/D ˇi when g0C 2� i � g .

In the two cases of parity of g , the discrete representation pg (as an element of Rg )
was proved [13, Proposition 4.5] to have Euler class 2g� 3; this is why we consider it.

Lemma 2.37 Let g � 4. Then for all n� 0, there exists an element 
n 2 Aut.�1†g/

such that the kernel of the morphism pg ı 
nW �1†g ! Gg does not contain any
nontrivial element of length less than n.

Similarly:

Lemma 2.38 Let g � 3. Then for all n� 0, there exists an element 
n 2 Aut.�1†g/

such that the kernel of the map eg ı 
nW �1†g ! �1†g�1 does not contain any
nontrivial elements of length less than n.

V Guirardel pointed out to me the following proof, which is due to Z Sela.

Proposition 2.39 Let † be a compact, connected, orientable surface, possibly with
boundary, of Euler characteristic less or equal to �1. Let 'W �1†! F be a morphism
of nonabelian image in a free group F , whose restrictions to the fundamental groups of
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the boundary components are injective. Then for all finite subset P � �1†Xf1g, there
exists a diffeomorphism 
P of †, preserving pointwise the boundary components, and
such that ker.' ı 
P�/\P D∅.

Corollary 2.40 Let g� 2, and let 'W �1†g! F be a morphism of nonabelian image.
Then for all n, there exists 
n 2 Aut.�1†g/ such that ker.' ı 
n/\Bn D f1g.

Lemma 2.37 and Lemma 2.38 follow:

Proof of Lemma 2.37 The map 'gW Gg! F2 defined by 'g.˛1/D x , 'g.˛2/D y

and 'g.u/D 1 for all the other generators u of Gg , with F2 D hx;yi, is a morphism
of nonabelian image, and 'g ıpgW �1†g! F2 is therefore a morphism satisfying the
hypotheses of Corollary 2.40. Thus, we can conjugate it by automorphisms of �1†g

in order to make it “arbitrarily injective”.

Proof of Lemma 2.38 If g � 3, the map 'gW �1†g�1! F2 defined by 'g.a1/D x ,
'g.a2/D y and 'g.u/D 1 for all the other generators �1†g�1 is still a morphism of
nonabelian image.

The proof of the proposition relies on the following two lemmas.

Lemma 2.41 (Z Sela [39, Lemma 5.13]) Let † be a compact, connected, orientable
surface, possibly with boundary, of Euler characteristic less or equal to �1. Let
'W �1†! F be a morphism of nonabelian image in a free group F , whose restrictions
to the fundamental groups of the boundary components are injective. Then there exists
a family of disjoint closed simple curves c1 , . . . , cp in †, which cut † into pairs of
pants, and such that the restriction of ' to the fundamental group of each pair of pant is
injective.

Lemma 2.42 (G Baumslag [2, Proposition 1]) Let F be a free group and let a1;: : : ;an ,
c 2 F be such that c does not commute with any of the ai ’s. Then for all k0; : : : ; kn

large enough, the element ck0a1ck1a2 � � � c
kn�1anckn is nontrivial in F .

Proof of Proposition 2.39 Denote by �.†/ and g.†/ the Euler characteristic and the
genus of †. We shall work by induction on .��.†/;g.†//, following the lexicographic
order.

If �.†/D�1, then ' is injective (see eg [7, Proposition 3.1]). Hence, suppose that
the proposition is true for all †0 such that .��.†0/;g.†0// < .��.†/;g.†// (for the
lexicographic order) and consider curves c1; : : : ; cp as in Z Sela’s lemma.
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Suppose first that c1 is a separating curve: denote † D †1 [c1
†2 . Put the base

point in †1 , near c1 . We have �1† D �1†1�˛�1†2 , where ˛ is represented by
the curve c1 , deformed so that it passes through the base point. Fix a finite subset
P � �1†. For every m 2 P , choose a writing mD a1˛

k1b1˛
l1 � � � an˛

knbn˛
ln , with

ai 2�1†1 and bi 2�1†2 , and such that ai , bi do not commute with ˛ (except maybe
a1 or bn , in which case we do not write them in m). Denote by P1 the subset of �1†1

defined by the elements ˛ai˛
�1a�1

i and denote by P2 the subset of �1†2 defined by
the elements ˛bi˛

�1b�1
i . By induction hypothesis, there exists a diffeomorphism 
1

of †1 fixing the boundary of †1 (as well as the boundary of the curve c1 ), and a
diffeomorphism 
2 of †2 fixing the boundary of †2 such that for all u 2 P1 we have
' ı 
1�.u/¤ 1 and such that for all u 2 P2 we have ' ı 
2�.u/¤ 1. Consider then a
diffeomorphism 
k W †!† defined by 
1 on †1 , 
2 on †2 and by k Dehn twists
along c1 . Then 
k�W �1†! �1† is defined as follows: if a1; : : : ; an 2 �1†1 and
b1; : : : ; bn 2 �1†2 , we have


k�

�
a1˛

k1b1˛
l1 � � � an˛

knbn˛
ln
�

D 
1�.a1/˛
k1Ck
2�.b1/˛

l1�k
� � � 
1�.an/˛

knCk
2�.b1/˛
ln�k :

Let m 2 P , and consider the expression m D a1˛
k1b1˛

l1 � � � an˛
knbn˛

ln chosen
before. We then have

' ı 
k� .m/D ' ı 
1�.a1/'.˛/
k1Ck' ı 
2�.b1/'.˛/

l1�k

� � �' ı 
1�.an/'.˛/
knCk' ı 
2�.bn/'.˛/

ln�k :

Since ˛ai˛
�1a�1

i 2 P1 , we have ' ı 
1�.˛ai˛
�1a�1

i /¤ 1, but 
1�.˛/D ˛ : hence
' ı
1�.ai/ does not commute with '.˛1/. All the conditions of G Baumslag’s lemma
are satisfied, and hence for all k large enough, ' ı 
k� sends every nontrivial element
of P on a nontrivial element of F .

Suppose finally that c1 is a nonseparating curve. Then †, this time, is obtained by
gluing two boundary components of a surface †1 , and we have ��.†/ D ��.†1/

but g.†1/ < g.†/. We have �1†D h�1†1; t jt
�1˛t D ˇi, where ˛; ˇ 2 �1†1 are

represented by the boundary components of †1 concerned by the gluing, and where t

is represented, in †, by a simple curve intersecting the curve c1 at a single point. The
elements m 2 �1† can be written (nonuniquely) as mD tk0a1tk1 � � � antkn with ai 2

�1†1 ; if 
 is a diffeomorphism of †1 fixing its boundary (as well as a neighborhood
of c1 containing the base point) then 
�.m/ D tk0
�.a1/t

k1 � � � 
�.an/t
kn , and the

image of m under k Dehn twists along c1 is equal to .˛k t/k0a1.˛
k t/k1 � � � an.˛

k t/kn .
The same argument as in the preceding case transposes here, thereby finishing the
induction.
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3 Compactifications, degenerations and orientation

Before going into the study of the compactifications mu
g and mo

g , we will need to prove
a technical fact, namely that the connected components of the spaces mo

g and mu
g are

one-ended. This implies that for every compactification considered, the boundaries of
these connected components are connected spaces.

3.1 The connected components of mu
g and mo

g are one-ended

Let us begin with a reminder about topological ends. We refer to Poénaru [38,
Chapitre II] for a systematic exposition.

Definition 3.1 Let X be a connected, locally connected, locally compact space. The
supremum of the number of unbounded components (ie, whose closure is noncompact)
of X XK , as K describes the set of compact subsets of X , is called the number of
ends of X .

And of course, if this number is 1 the space X is called one-ended. This notion will
be interesting for us for the following reason:

Proposition 3.2 Let X be a one-ended space and let . xX ; i/ be a compactification
of X . Then @ xX is connected.

Proof Suppose that @ xX DA[B , where A and B are disjoint, nonempty, open and
closed subsets of @ xX . The boundary @ xX being closed, A and B are closed subsets
of xX . Since xX is compact (and Hausdorff, in particular), it is normal. Hence, there
exist two open subsets U and V of xX such that A�U , B�V , and U \V D∅. The
open set U [V contains @ xX hence it is the complement of a compact subset K of X .
Now, in X , the complement of the compact set K is the open set .U XA/[ .V XB/,
and each of the disjoint open sets U XA and V XB are unbounded, hence X has at
least two ends.

We will use the following immediate criterium:

Proposition 3.3 Let X be a noncompact, connected, locally connected, locally com-
pact space such that for every compact subset K , there exists a compact K0 such that
K � K0 � X and such that any two points of X XK0 are in the same connected
component of X XK . Then X is one-ended.

Geometry & Topology, Volume 15 (2011)



Components of the compactification of representation spaces of surface groups 1263

Here, once again, we are interested in the case � D �1†g and n D 2; we denote
mo

g Dmo
�1†g

.2/, with the same notation as before. We fix the generating set

S D fa1; a
�1
1 ; b1; b

�1
1 ; : : : ; bg; b

�1
g g:

Recall (Corollary 2.14) that mo
g and mu

g are locally compact and the map dW mo
g!RC

defined as
d.�/D min

x2H2
max
s2S

d.x; �.s/x/

is continuous and proper. Moreover, mo
g and mu

g are locally connected (as a real
algebraic variety, Rg is locally connected, and the projection Rg!mo

g is open by
Proposition 2.13).

We are going to prove that the connected components of mo
g , as well as those of mu

g ,
are one-ended. Since the proof is exactly the same in both cases, until the end of this
section (and only in this section) we will denote by mg these representation spaces, and
by mg;k the corresponding connected components, being vague whether we consider
the oriented or the unoriented representation space.

In [23], N Hitchin proved that for all k 2 f1; : : : ; 2g� 2g, the connected component
mg;k of mg is homeomorphic to a complex vector bundle of dimension g� 1Cjkj

on the .2g � 2� jkj/–th symmetric product of the surface. It follows, in particular,
that the connected component mg;k is one-ended, for every k ¤ 0. We shall give a
much more elementary proof (than the one of [23]) of this result, and generalise it to
the case k D 0.

Proposition 3.4 For all g � 2, and all k such that jkj � 2g � 2, the space mg;k is
one-ended.

First let us fix some notation. If S 0 � S , we denote

dS 0.Œ��/D inf
x2H2

max
s2S 0

d.x; �.s/x/:

If r � 0 and S 0 � S , we denote

Kr
S 0 D

˚
Œ�� 2mg j dS 0.Œ��/� r

	
; Kr

DKr
S ; U r

S 0 Dmg XKr
S 0 :

If s 2 S , U r
fsg

is simply the set of conjugacy classes of representations � such that
�.s/ is a hyperbolic element whose translation length is strictly greater than r , which
is equivalent to Tr.�.s// > 2 cosh r . Of course, representations can go to infinity
without even leaving

T
s2S K0

fsg
: traces of single generators do not say much about

representations going to infinity. However, it suffices to consider pairs of generators:
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Lemma 3.5 Let Œ�� 2mgXKrC4gı.H2/ . Then there exist s1 , s2 2 fa1; : : : ; bgg such
that dfs1;s2g

.Œ��/ > r .

Recall that by ı.H2/ we mean the best constant of Gromov hyperbolicity of H2 . There
are several equivalent definitions of the Gromov hyperbolicity (see eg Papadopoulos [8,
Chapitre 1] or Ghys and de la Harpe [17, Chapitre 2]), and in all this text we say that a
geodesic metric space X is ı–hyperbolic if, for every geodesic triangle, there exists a
point at distance at most ı from each side of the triangle.

Proof If �2Rg , S 0�S and ˛>0, let F˛
S 0
.�/Dfx2H2 j8s2S 0; d.x; �.s/x/�˛g.

Let ˛ > 0, and suppose that F˛
fs1;s2g

.�/ ¤ ∅ for every pair fs1; s2g � fa1; : : : ; bgg.
Then for every triple fs1; s2; s3g, the convex sets F˛fs1g

.�/, F˛
fs2g

.�/, F˛fs3g
.�/ intersect

pairwise, hence, since H2 is ı.H2/–hyperbolic, there exists a point x at distance at
most ı.H2/ of each of these three sets. This implies that

x 2 F
˛C2ı.H2/

fs1;s2;s3g
.�/:

More generally, if u> 0 is such that for every k –tuple S 0 of fa1; : : : ; bgg, Fu
S 0
¤∅,

then, if fs1; : : : ; skC1g � fa1; : : : ; bgg, the convex sets

Fu
fs1;:::;sk�1g

.�/; Fu
fs1;:::;sk�2;skg

.�/ and Fu
fs1;:::;sk�2;skC1g

.�/

intersect pairwise, and it follows that

FuC2ı.H2/
fs1;:::;skC1g

.�/¤∅:

Therefore, by induction on Cardfa3; : : : ; bgg, we get that d.�/ � ˛C 4gı.H2/, as
soon as F˛fs1;s2g

.�/¤∅ for every pair fs1; s2g � fa1; : : : ; bgg.

Now if Œ��2mgXKrC4gı.H2/ , then there exists ">0 such that d.�/> rC4gı.H2/C",
which implies that there exists a pair fs1; s2g� fa1; : : : ; bgg such that F rC"

fs1;s2g
.�/D∅;

this implies that dfs1;s2g
.�/� r C " hence dfs1;s2g

.�/ > r .

For the proof of Proposition 3.4, it will be useful to write explicit deformations of
representations, which enable to go to infinity in the space of representations. For
all A 2 PSL.2;R/, we wish to choose a one-parameter subgroup .At /t2R passing
through A. If AD Id, we set At D Id, for all t 2R. If A is parabolic or hyperbolic,
we choose At such that A0 D Id and A1 DA. If A is elliptic and different from the
identity, we further require that At ¤ Id for all t 2 .0; 1�, and that At is a rotation of
positive angle for small t . Note that for all n 2 Z, we have An DAn .

Lemma 3.6 Let A;B 2 PSL.2;R/ such that ŒA;B�¤ Id. Then for all r > 0, there
exist x 2R and n 2Z such that at least one of the following holds: Tr .A � .BAx/

n/ >

2 cosh.r/, or Tr .B � .ABx/
n/ > 2 cosh.r/.
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Proof Suppose first that A is hyperbolic. Up to conjugating simultaneously A and B ,
we have

AD

�
� 0

0 1=�

�
with � > 1

B D

�
a b

c d

�
:and

If a¤ 0 or d ¤ 0, then Tr .B � .ABx/
n/ is as large as we need, provided jnj is large

enough (and x D 0). The condition aD d D 0 means that B is an elliptic element of
order 2 whose fixed point lies on the axis of A. In that case, if x is small, then A �Bx

is still a hyperbolic element, whose axis does not contain the fixed point of B any more
(this can be seen easily by decomposing Bx and A as products of two reflections).
Obviously this also deals with the case when B is hyperbolic.

If none of A and B is hyperbolic but, say, A is parabolic, then up to conjugation,

AD

�
1 1

0 1

�
and B D

�
a b

c d

�
:

Now, with nD 1 and x large enough, Tr .A � .BAx/
n/ is as large as we need, provided

x is large enough, except possibly if c D 0: but this would imply ŒA;B�D Id.

We are left with the case when A, B are elliptic, with distinct fixed points. If ` is
the geodesic line joining these two points, Ax (resp. B ) is the composition of the
reflection with respect to a line `Ax

(resp. `B ) and the reflection with respect to `. For
a suitable x , the lines `Ax

and `B do not intersect in H2 , hence BAx is a hyperbolic
element whose axis does not contain the fixed point of A. Thus, for jnj sufficiently
large, Tr .A � .BAx/

n/ is as large as needed.

Note that for all x;y 2R, ŒA;B�D ŒABx;B �.ABx/y �D ŒA �.BAx/y ;BAx �: we have
deformed A and B without changing their commutator. Hence, if � 2Rg , we may
define 'i;x;y.�/ 2Rg by setting 'i;x;y.�/.aj /D �.aj / and 'i;x;y.�/.bj /D �.bj / for
j ¤ i , and 'i;x;y.�/.ai/D �.ai/�.bi/x , 'i;x;y.�/.bi/D �.bi/ � .�.ai/�.bi/x/y , and,
similarly, define a deformation  i;x;y by using the other deformation of the commutator
Œ�.ai/; �.bi/�. Note that we always have 'i;0;0.�/D  i;0;0.�/D � .

Now we can prove that the connected components of mg are one-ended.

Proof of Proposition 3.4 We will use the criterium given by Proposition 3.3, and
prove that for every k 2 Z such that jkj � 2g � 2, and all r > 6ı.H2/, any two
representations �; �0 2mg;k XKrC4gı.H2/ can be joined by a path in mg;k XKr .
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The requirement that r � 6ı.H2/ is technical and will be used only at the end of this
proof, in the case when g D 2.

Step 1 Let �0 ,�12mg;k\U r
fa1g
\U r
fa2g

. Then there is a path �t2
S

s2fa1;b1;a2;b2g
U r
fsg

joining �0 and �1 .

By Lemma 10.1 of Goldman [20], for every k 2 Z such that jkj � 2g� 2, the set of
representations � such that Œ�.ai/; �.bi/�¤ Id is path-connected and dense in mg;k .
We can thus perturb �0 and �1 , and find a path �t 2mg;k joining �0 to �1 and such
that for all t 2 Œ0; 1� and all i 2 f1; : : : ;gg, Œ�t .ai/; �t .bi/�¤ Id.

Let t 2 Œ0; 1� and i 2 f1; 2g. By Lemma 3.6, there exist yi.t/ 2 Z and xi.t/ 2R such
that

Tr
�
 i;xi .t/;yi .t/.�t /.ai/

�
> 2 cosh r; or Tr

�
'i;xi .t/;yi .t/.�t /.bi/

�
> 2 cosh r:

These inequalities being strict, for all � there exists an interval .� � ı; � C ı/ such that
for all t 2 .� � ı; � C ı/\ Œ0; 1�, we still have

Tr
�
 i;xi .�/;yi .�/.�t /.ai/

�
> 2 cosh r; or Tr

�
'i;xi .�/;yi .�/.�t /.bi/

�
> 2 cosh r:

The compact set Œ0; 1� is covered by finitely many such intervals, hence there exists a
subdivision 0D t0 < t1 < � � �< tk D 1, and elements x

j
i , y

j
i 2R such that for every

i 2 f1; 2g and j 2 f0; : : : ; k � 1g and for all t 2 Œtj ; tjC1� we have

Tr
�
 i;xi .tj /;yi .tj /.�t /.ai/

�
> 2 cosh r; or Tr

�
'i;xi .tj /;yi .tj /.�t /.bi/

�
> 2 cosh r:

For simplicity, we will suppose that all the relevant deformations are the ' ’s.

Now we can construct a path joining �0 to �1 as follows. Start with �0 . Let .x;y/
go from .0; 0/ to .x1.0/;y1.0// to define a path  1;x;y.�0/; this path does not leave
U r
fa2g

. Then go to  2;x2.0/;y2.0/. 1;x1.0/;y1.0/.�//, similarly, without leaving U r
fb1g

.
Then let t vary from 0 D t0 to t1 along the path  2;x2.0/;y2.0/. 1;x1.0/;y1.0/.�//

which does not leave U r
fb2g

. Then let the indices .x1;y1/ vary from .x1.0/;y1.0// to
.x1.t1/;y1.t1// without leaving U r

fb2g
, then we deal with the indices .x2;y2/, and so

on. This finishes Step 1.

Step 2 Let � 2 mg;k XKrC4gı.H2/ . Then there exists a path �t taking values in
mg;k XKr , such that �0 D � and �1 2 U r

fa1g
\U r
fa2g

.

By Lemma 3.5, there exist s1; s2 2 fa1; : : : ; bgg such that F r
fs1;s2g

.�/¤∅. If g � 3,
then there exists i 2 f1; : : : ;gg such that fai ; big \ fs1; s2g D ∅. In that case, as in
Step 1, we can deform the handle i , without entering Kr since we do not touch �.s1/,
�.s2/. Then we can deform the handles 1 and 2 (or just one, if i 2 f1; 2g) without
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entering Kr because of the handle i . This completes the proof of Proposition 3.4, in
the case g � 3.

In the case when gD 2 and fs1; s2g D fa1; b1g or fs1; s2g D fa2; b2g, we do the same
as in the preceding case. Now suppose for instance that s1D a1 and s2D a2 (the other
cases are dealt with similarly: the roles of ai and bi are always symmetric). If �.a1/ or
�.a2/ is hyperbolic (say, for instance, �.a1/), then, exactly as in the proof of Lemma 3.6,
we can deform the handle 1 so that Tr.�t .b1// > 2 cosh r (almost) without touching
�.a1/, and leaving �.a2/ unchanged. Otherwise, if �.a1/ or �.a2/ is parabolic (say,
�.a1/), and if Œ�.a1/; �.b1/�¤ Id then for x large enough, Tr.�.b1/�.a1/x/ can be
made as large as needed (bigger than 2 cosh.r/), providing a deformation in the first
handle as desired.

The only case left is when �.a1/ and �.a2/ are elliptic. Note that �.a1a2/ has to
be hyperbolic in this case: indeed, let ` be the line joining the fixed points of �.a1/

and �.a2/, and suppose that �.a1/ is the composition of the reflection along a line `1

and the reflection along `, and that �.a2/ is the composition of the reflection along
` and the reflection along a line `2 . If `1 and `2 were allowed to meet in H2 , there
would be a point at distance at most ı.H2/ of each of these three lines, and this point
would be moved by less than 6ı.H2/ by �.a1/ and �.a2/. This time, instead of using
continuous Dehn twists inside the handles, we are going to do one along the curve
freely homotopic to a1a2 . Let us define �x.�/ as follows:

�x.�/.a1/D �.a1/; �x.�/.b1/D .�.a2/�.a1//x�.b1/;

�x.�/.a2/D �.a2/; �x.�/.b2/D .�.a1/�.a2//x�.b2/:

We need to check that �x defines indeed a morphism from �1†2 in PSL.2;R/.
This amounts exactly to check that for all x 2 R, �.a1/ � .�.a2/�.a1//x�.a1/

�1 D

.�.a1/�.a2//x . This is clearly true when x is an integer, hence �.a1/ maps the oriented
axis of the hyperbolic isometry .�.a1/�.a2//x (this is valid for all x ) to the one of
.�.a2/�.a1//x ; and these two hyperbolic isometries have the same translation length:
hence the desired relation indeed holds for all x . Now, the deformation x 7! �x.�/

does not change �.a1/ or �.a2/, hence �x.�/ stays in mg;k XKr . And for x large
enough, Tr.�.a2a1/x�.b1// can be made as large as we want, except if �.b1/ is elliptic
of order two with its fixed point on the axis of �.a2a1/, but this last accident can be
avoided by first replacing �.b1/ by �.b1/�.a1/y for a suitable y 2R. We conclude
as in the preceding cases.

Similarly, we can prove that every loop can be pushed out of every compact set. In
other words, the fundamental group of the space e�1.k/ is entirely carried by this only
end.
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3.2 Oriented compactification

In what follows we will mostly consider the case nD 2, and consider the compact-
ification of the space mu

�
of actions on the hyperbolic plane H2 . We will prove, at

least in the case when � is a surface group, that this compactification has quite a wild
behaviour; and it will seem more natural to study a compactification of the oriented
version mo

�
.

As we said before, the ideal points of the compactification mu
g of M Bestvina and

F Paulin are (equivariant isometry classes of) actions of �1†g by isometries on R–
trees. We shall prove that it is possible to equip these R–trees with an orientation; this
will enable us to define an Euler class on these trees, and to define a compactification
of mo

g , in which the Euler class extends continuously to the boundary.

3.2.1 Oriented R–trees Let X be a hyperbolic space in the sense of Gromov. A
germ of oriented segments, in X , is an equivalence class of nondegenerate oriented
segments, for the following equivalence relation: we say that two oriented segments
are equivalent if they coincide on some nontrivial initial segment.

Let T be an R–tree nonreduced to a point. At every point x 2 T , denote by G.x/ the
set of germs of oriented segments starting at x . An orientation of T is the data, for
all x 2 T , of a total cyclic order or.x/ in G.x/. The set of orientations on T will be
denoted by Or.T /.

Definition 3.7 � An R–tree equipped with an orientation is called an oriented
R–tree.

� Let .T; or/ and .T 0; or0/ be two oriented R–trees and let h2 Isom.T;T 0/ be an
isometry. Of course, h defines, at every point x 2 T , a bijection Ghx W G.x/!
G.h.x//. We say that h preserves the orientation if for every x 2 T , the
following diagram commutes:

G.x/3
or.x/ //

.Ghx/
3

��

f�1; 0; 1g :

G.h.x//3
or0.h.x//

88

The set of isometries of T which preserve the orientation or form a subgroup
of Isom.T /, which will be denoted by Isomor.T /.

� We say that an action �W �! Isom.X / of a group � by isometries preserves
the orientation or if it takes values into Isomor.T /.
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Since we are interested in defining the Euler class of actions on R–trees preserving the
orientation, we need to consider more particularly the boundary of the tree. Note that,
if r is a ray in a tree, its initial segments define a germ of oriented segments, and a
germ of rays in T will be an equivalence class of rays, for the relation of defining the
same germ of oriented segment. We say that a total cyclic order o on @1T is coherent
if for every x 2 T and every nondegenerate triple .Œr1�; Œr2�; Œr3�/ of germs rays starting
at x , the element o.r1; r2; r3/ does not depend on the chosen representatives r1 , r2 , r3

of Œr1�, Œr2�, Œr3�. For instance, in the following configuration

r1

r2r3

r4

a total cyclic order o on the boundary fr1; r2; r3; r4g is coherent if and only if it satisfies
o.r1; r2; r3/D o.r1; r2; r4/ and o.r1; r3; r4/D o.r2; r3; r4/.

Under natural conditions, there is an identification between orientations on an R–
tree and coherent total cyclic orders on its boundary at infinity. Let us begin with
some notation. Borrowing the terminology of B Leeb [26], we say that an R–tree
has extendible segments if every segment is contained in a complete geodesic (ie, a
geodesic isometric to R). Equivalently, every oriented segment is the initial segment
of some ray.

If x 2 T , let Trip.x/ denote the set of nondegenerate triples of germs of oriented
segments starting at x . The set of all elements of Trip.x/, as x describes T , will be
denoted by Trip.T /. If a0 2 T , and if the oriented segments Œa0; a1�, Œa0; a2�, Œa0; a3�

define three pairwise distinct germs of rays starting at a0 , the corresponding element in
Trip.a0/ will be denoted by Trip.a0; a1; a2; a3/. Such elements will be called germs
of tripods of T . With this notation, an orientation of T is simply a function from
Trip.T / to f�1; 1g satisfying the following conditions (see Remark 2.22):

or.Trip.a0;a1;a2;a3//D or.Trip.a0;a2;a3;a1//D�or.Trip.a0;a1;a3;a2//;(3-1) (
or.Trip.a0;a1;a2;a3//D or.Trip.a0;a1;a3;a4//D 1

) or.Trip.a0;a1;a2;a4//D 1:
(3-2)

Let us denote by Preor.T / the set of all functions Trip.T /!f�1; 1g and equip it with
the product topology. By Tikhonov’s theorem, it is a compact space. The conditions
(3-1) and (3-2) being closed, Or.T /, equipped with the induced topology, is compact.

In an R–tree with extendible segments, there is a natural identification between the set
of orientations, Or.T /, and the set of coherent cyclic orders on @1T . Let us denote
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by Preo.@1T / the set of all functions .@1T /3!f�1; 0; 1g. Then the set of coherent
cyclic orders on T is the subset O.@1T / of functions satisfying the conditions of
Definition 2.20 and the coherence condition.

For every nondegenerate triple .x;y; z/ 2 .@1T /3 , the intersection .x;y/\ .y; z/\
.x; z/ is a point, which will be denoted by Pxyz . Given an orientation or2Or.T /, and
a triple .x;y; z/2 .@1T /3 , we can set Push.or/.x;y; z/D 0 if Cardfx;y; zg � 2 and
otherwise, Push.or/.x;y; z/D or.ŒPxyz;x/; ŒPxyz;y/;Pxyz; z//, with a slight abuse
of notation (we have written rays instead of the germs of initial segments they define).
This defines a map PushW Or.T /! Preo.@1T /.

Proposition 3.8 Let T be an R–tree with extendible geodesics. Then Push induces a
bijection Or.T /!O.@1T /.

And of course, if we equip Preo.T / with the product topology, this bijection becomes
a homeomorphism.

Proof First let us check that Push has image in O.@1T /. Let or 2 Or.T /, and
o D Push.or/. It follows directly from the construction of Push that o satisfies the
conditions (i) and (ii) of Definition 2.20, as well as the coherence condition. Now let
r1; r2; r3; r4 2 @1T be such that o.r1; r2; r3/ D o.r1; r3; r4/ D 1, we need to prove
that o.r1; r2; r4/D 1. If Pr1r3r4

2 .r1;Pr1r2r3
/, then

r1

r2

r3

r4

Pr1r3r4

Pr1r2r3

Pr1r2r4
D Pr1r3r4

and the germs of ŒPr1r2r4
; r2/ and ŒPr1r2r4

; r3/ are identical, so
that o.r1; r2; r4/D 1. If Pr1r3r4

2 .Pr1r2r3
; r3/ the argument is similar. If Pr1r3r4

D

Pr1r2r3
, then the germs of the rays ŒPr1r2r3

; r2/ and ŒPr1r2r3
; r4/ are distinct since

we have o.r1; r3; r2/¤ o.r1; r3; r4/: hence ŒPr1r2r3
; r1/ , . . . , ŒPr1r2r3

; r4/ define four
pairwise distinct germs of rays issued from Pr1r2r3

, and we have o.r1; r2; r4/ D 1

because or satisfies condition (3-2).

Now, using the assumption that T has extendible geodesics, given an element o 2
O.@1T /, if Trip.a0; a1; a2; a3/ is a germ of tripods of T , we can extend the oriented
segments Œa0; a1�, Œa0; a2� and Œa0; a3� to rays r1 , r2 and r3 starting at a0 , and define
Push�1.o.Trip.a0; a1; a2; a3/// D o.r1; r2; r3/. This function Push�1.o/ obviously
satisfies the conditions (3-1) and (3-2), and by constructions, Push and Push�1 are
inverse bijections.
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Now recall that an action of a group � by isometries on an R–tree T is called minimal
if T possesses no subtree T 0 � T , invariant under the action of � , distinct from ∅
and T .

In the sequel, � is a finitely generated group and we consider minimal actions of � on
R–trees. In that case, T is the union of the translation axes of the hyperbolic elements
in the image of � (see eg [32; 36]). In particular, such trees have extendible segments
(this is Lemma 4.3 of [36]).

Also, we will need to consider the set of classes of minimal actions of � on oriented
R–trees, preserving the orientation, up to equivariant isometry preserving the order.
General arguments of cardinality enable to do that, but the following proposition enables
us to see this as an explicit set.

If .T; or/ is an oriented R–tree and if u; v; w 2 T are not aligned, then they define a
class of tripods denoted by Trip.u; v; w/, and we denote by o.u; v; w/ 2 f�1; 1g the
image of this tripod by or. If u; v; w are aligned, then we write o.u; v; w/D 0 (only
in this section). We will come back to this notation in the following section.

Proposition 3.9 Let .T; or/ be an oriented R–tree, let x0 2 T , and let �W � !
Isomor.T / be a minimal action of a finitely generated group � , preserving the orienta-
tion. Then the R–tree T , the orientation or and the action � are entirely determined
by the functions f W �2!R and gW �3! f�1; 0; 1g defined by

f .
1; 
2/D dT .
1x0; 
2x0/ and g.
1; 
2; 
3/D o.
1x0; 
2x0; 
3x0/:

More precisely, if �W �! Isomor.T / and �0W �! Isomor0.T 0/ define the same func-
tions f and g , for some choices of base points in T and T 0 , then there exists an
equivariant isometry 'W T ! T 0 preserving the order and the base point.

Proof This is well-known (see eg [36]) for minimal actions of a finitely generated
groups on R–trees; here we simply need to add the orientation.

Let us begin with the following remark. Let T and T 0 be two oriented R–trees and
x1; : : : ;xn 2 T , x0

1
; : : : ;x0n 2 T 0 such that for all i; j , d.xi ;xj /D d.x0i ;x

0
j / and all

i; j ; k , or.xi ;xj ;xk/D or0.x0i ;x
0
j ;x
0
k
/. Denote K D fx1; : : : ;xng. Then the function

'K W fx1; : : : ;xng ! fx
0
1
; : : : ;x0ng defined by 'K .xi/ D x0i extends uniquely to an

orientation-preserving isometry

'Hull.K /W Hull.fx1; : : : ;xng/! Hull.fx01; : : : ;x
0
ng/

(the subsets Hull.fx1; : : : ;xng/ and Hull.fx0
1
; : : : ;x0ng/, as subtrees of T and T 0 , are

oriented trees, by the restrictions of or and or0 ).
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We prove this by induction. If n D 1, there is not very much to do. Denote again
K D fx1; : : : ;xng and suppose that 'Hull.K / is an orientation-preserving isometry
between Hull.fx1; : : : ;xng/ and Hull.fx0

1
; : : : ;x0ng/. Denote by ynC1 the projection

of xnC1 on Hull.K/. The following relation, true in every R–tree,

˛ D 1
2

�
d.a; b/C d.a; c/� d.b; c/

�
;

a

b
c

˛

allows us to find ynC1 in the tree Hull.K/: the real numbers d.x1;xnC1/; : : : ;

d.xn;xnC1/ determine a unique point ynC1 2 Hull.K/; similarly they determine a
unique point y0

nC1
2 Hull.fx0

1
; : : : ;x0ng/, and 'Hull.K /.ynC1/ D y0

nC1
. If xnC1 D

ynC1 then Hull.fx1; : : : ;xng/ D Hull.fx1; : : : ;xnC1g/ and Hull.fx0
1
; : : : ;x0ng/ D

Hull.fx0
1
; : : : ;x0

nC1
g/ and the induction is proved. Otherwise, Hull.fx1; : : : ;xnC1g/

is obtained by gluing at the point ynC1 the tree Hull.fx1; : : : ;xng/ and the segment
ŒxnC1;ynC1�, whose length is determined by the real numbers d.x1;xnC1/; : : : ;

d.xn;xnC1/; and similarly for Hull.fx0
1
; : : : ;x0

nC1
g/ in T 0 . In that way, the isometry

'Hull.K / extends to a unique isometry 'Hull.fx1;:::;xnC1g/ . Since 'Hull.K / preserves the
orientation, we need only check that 'Hull.fx1;:::;xnC1g/ preserves the orientation at the
vertex ynC1 . But this follows from the fact that all the classes of the tripods of centre
ynC1 have a representant of the type Hull.fxi ;xj ;xnC1g/, where Cardfi; j ; nC1gD3.

Now suppose that .�;T / and .�0;T 0/ define the same functions f and g ; denote by
x0 and x0

0
the base points. Let P be a finite subset of � . We then have a unique

isometry 'Hull.P �x0/ between Hull.P �x0/ and Hull.P �x0
0
/, preserving the orientation,

such that 'Hull.P �x0/.
 �x0/D 
x0
0

. In particular, for every finite subset Q of P the
restriction of 'Hull.P �x0/ to Hull.Q �x0/ equals 'Hull.Q�x0/ , so that we can construct
an isometry 'W

S
P�� Hull.P �x0/!

S
P�� Hull.P �x0

0
/, such that for all 
 2 � we

have '.
 � x0/ D 
 � x
0
0

; and we also deduce that for every 
 2 � and every finite
subset P of � we have

8y 2 Hull.P �x0/; �0.
 / �'Hull.P �x0/ D 'Hull.
P �x0/.�.
 / �y/;

which ensures that the isometry ' is equivariant for the actions � , �0 on the treesS
P�� Hull.P � x0/ and

S
P�� Hull.P � x0

0
/. Every tripod in

S
P�� Hull.P � x0/

is in Hull.P � x0/ for P big enough, hence ' preserves the orientation. Finally,
since the actions � and �0 are minimal, we have

S
P�� Hull.P � x0/ D T andS

P�� Hull.P �x0
0
/D T 0 ; whence 'W T ! T 0 is an orientation-preserving equivariant

isometry such that '.x0/D x0
0

.
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Of course, f and g depend on x0 , anyway it follows from this proposition that
the classes of minimal actions of � on oriented R–trees not reduced to a point,
up to orientation-preserving equivariant isometry, form a set, which we denote by
T 00.�/. We denote by T o.�/ its subset formed by those .�;T / 2 T 00.�/ such that
minx02T max
2S dT .x0; 
 �x0/D 1 and such that whenever � possesses at least one
global fixed point in @1T , the tree T is isometric to R.

Our aim now is to define a topology on the set mo
�
.2/[ T o.�/.

3.2.2 Rigidity of the order We first need to give some technical lemmas indicating
that the orders given by triples of points in oriented R–trees, as well as in H2 , are
stable under small perturbations of the tree or of the plane. In all this section, X will
be an oriented R–tree or the hyperbolic plane H2 , equipped with its orientation (and
hence, with a total cyclic order on its boundary), and with a metric dH2=d proportional
to its usual metric. Its best constant of hyperbolicity is then ı.X /D ı.H2/=d .

Lemma 3.10 Let x1;x2;x3 2X . Then there exists a unique x0 2X which minimises
the function x 7! d.x;x1/C d.x;x2/C d.x;x3/. Moreover, the function X 3! X

defined by .x1;x2;x3/ 7! x0 is continuous.

Proof If X is an R–tree, then we check easily that the unique point m 2 X such
that Œx1;x2� \ Œx1;x3� D Œx1;m� is the point x0 wanted. If X is the hyperbolic
plane H2 equipped with a metric proportional to dH2 , then the function x 7!d.x;x1/C

d.x;x2/C d.x;x3/ is convex, proper, hence achieves a minimum. And the CAT.0/
inequality implies that this function cannot be constant on any nondegenerate segment,
hence this minimum is unique. Moreover, this convex function depends continuously
on x1 , x2 and x3 , hence its unique minimum also depends continuously on x1 , x2

and x3 .

Remark 3.11 In the Euclidean plane R2 , the point x0 is called the Fermat point of
the triangle �.x1;x2;x3/. If this triangle has angles smaller than 2�=3, then this
point coincides with the Torricelli point, which, in that case, sees every edge of the
triangle under an angle equal to 2�=3 (see eg [12]). When one of the angles of the
triangle is at least 2�=3, this Fermat point coincides with the corresponding vertex.

Let A� 0. We denote by V .A/�X 3 the set of .x1;x2;x3/ 2X 3 such that for every
permutation .i; j ; k/ of .1; 2; 3/, we have d.xi ;xj /C d.xj ;xk/ � d.xi ;xk/ > A.
Note that V .A/� V .A0/ if A0 �A.

Lemma 3.12 For all .x1;x2;x3/ 2 V .6ı.X //, we have x0 62 fx1;x2;x3g, where x0

is as in Lemma 3.10.
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Proof Let x1;x2;x3 2X such that .x1;x2;x3/ 2 V .6ı.X //. By definition of hyper-
bolicity, there exists a point a 2X at distance at most ı.X / of each of the geodesic
segments Œxi ;xj �. The triangle inequality then gives

2d.a;x1/C 2d.a;x2/C 2d.a;x3/� 6ı.X /C d.x1;x2/C d.x2;x3/C d.x3;x1/:

Since .x1;x2;x3/ 2 V .6ı.X //, it follows that d.a;x1/ C d.a;x2/ C d.a;x3/ <

d.x1;x2/Cd.x1;x3/, and similarly when permuting x1 , x2 and x3 ; and by definition
of x0 it follows that x0 62 fx1;x2;x3g.

From now on, suppose that X is either the hyperbolic plane or an R–tree with extendible
segments. Define a set U � X 6 as follows: say that .x1;x2;x3;y1;y2;y3/ 62 U if
there exist i; j 2 f1; 2; 3g, i ¤ j , and rays ri , rj starting at xi , xj and passing through
yi , yj respectively, such that ri , rj represent the same point of @1X , in the case when
X is a tree (heuristically, .x1; : : : ;y3/2U if the oriented segments Œxi ;yi � point three
distinct directions). This implies, in particular, that xi ¤ yi , for all i . If X DH2 , then
there is a unique ray (up to parametrisation) issued from xi and passing through yi ;
the condition .x1; : : : ;y3/ 2 U expresses the fact that the ends of these three rays are
three distinct points of @H2 . In the case of an R–tree, we can also give the following
equivalent condition:

Lemma 3.13 Let X be an R–tree with extendible segments. Then .x1; : : : ;y3/ 2 U

if and only if y1 , y2 and y3 are pairwise distinct, and for every i 2 f1; 2; 3g, the points
xi , yiC1 and yiC2 (we are using here a cyclic notation for the indices) are in the same
connected component of X X fyig.

Proof We first check that .x1; : : : ;y3/2U implies that y1 , y2 and y3 are not aligned.
Suppose that y1 , y2 and y3 are three pairwise distinct points, and are aligned (the
case when some of them coincide is treated similarly). For instance, take y2 2 Œy1;y3�.
If Œy1;x1� and Œy1;y2� define the same germ of oriented segments and if Œy3;x3� and
Œy3;y2� also define the same germ of oriented segments, then, regardless of the position
of x2 there exists a ray starting at x2 , passing through y2 , and having the same end as
some ray starting at xi and passing through yi , for some i 2 f1; 3g, contradicting the
definition of U . Suppose then, for instance, that the oriented segments Œy1;x1� and
Œy1;y2� are in distinct germs. Then Œy3;x3� and Œy3;y2� have to be in distinct germs,
otherwise there would exist two rays, one starting at x3 and passing through y3 , the
other starting at x1 , and passing through y1 and then y3 , going to the same end. Now,
it is again impossible to place x2 in such a way that .x1; : : : ;y3/ is in U . Suppose now
that y1;y2;y3 are not aligned, and suppose, say, that the oriented segments Œy1;x1�

and Œy1;y2� are in distinct germs (this is equivalent to the condition that x1 and y2
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(or y3 ) lie in two distinct components of X Xfy2g). Then x2 is impossible to position
so that .x1; : : : ;y3/ can be in U : indeed if Œy2;x2� and Œy2;y1� are in distinct germs
then Œx1;y3� and Œx2;y3� pass through y1 and y2 respectively, and can be continued
in the same way; otherwise Œx1;y2� and Œx2;y2� can be continued in the same way
(and Œx1;y2� passes through y1 ). The condition of the lemma is therefore necessary,
and is obviously sufficient: for each i , the segment Œxi ;yi � has to be continued (in
order to form a ray) on a connected component of X X fyig different from the one
where yiC1 and yiC2 lie.

In this section, X is either the hyperbolic plane or an oriented R–tree. In both cases,
its boundary @1X is equipped with a total cyclic order o.

Lemma 3.14 If .x1; : : : ;y3/ 2 U and if ri ; r
0
i are rays issued from xi and passing

through yi , then o.r1; r2; r3/D o.r 0
1
; r 0

2
; r 0

3
/.

We write o.x1; : : : ;y3/D o.r1; r2; r3/ in that case.

Proof We have xi ¤ yi so in the case when X DH2 , there exists a unique ray ri

issued from xi and passing through yi . Now suppose that X is an oriented R–
tree. By Lemma 3.13, y1 , y2 and y3 are not aligned; let then y0 be such that
Œy1;y2�\ Œy1;y3�D Œy1;y0�. Then y1;y2;y3 define three distinct germs of rays issued
from y0 . Still by Lemma 3.13, the condition .x1; : : : ;y3/2U implies that for every i ,
xi lies in the connected component of X X fyig containing y0 . In particular, every
ray r issued from xi and passing through yi defines a unique ray issued from y0 and
passing through yi : it is the ray joining y0 to yi , and which then continues as the
ray r . Therefore, the equality o.r1; r2; r3/D o.r 0

1
; r 0

2
; r 0

3
/ follows from the coherence

condition on the order o of the oriented R–tree we are considering.

Lemma 3.15 The function oW U ! f�1; 1g thereby defined is continuous.

Proof If X DH2 , it is immediate that the function X 2 X�! @X (where � is the
diagonal) sending .x;y/ on the end of the ray issued from x and passing through y

is continuous (where @X D S1 is equipped with the usual topology), and hence
oW U ! f�1; 1g is simply the composition of two continuous functions. In the case
when X is an oriented R–tree, the proof is similar to that of the preceding lemma.

Lemma 3.16 Let x1; : : : ;y3 such that for every i 2f1; 2; 3g, we have
P

j d.xi ;yj /<P
j d.yi ;yj /. Then .x1; : : : ;y3/ 2 U .
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Proof Let x1; : : : ;y3 2X with .x1; : : : ;y3/ 62 U . Then, up to changing the indices,
there exist rays r1 and r2 extending the oriented segments Œx1;y1� and Œx2;y2�, with
Œr1� D Œr2� in @1X . Up to changing the indices again, we may suppose that y2 is
“closer” to this point at infinity than y1 , in the sense that

(3-3) lim
t!C1

.d.y1; r1.t//� d.y2; r1.t///� 0:

We will prove that d.x1;y2/� d.y1;y2/. With the triangle inequality, this will imply
that d.x1;y1/C d.x1;y2/C d.x1;y3/� d.y1;y2/C d.y1;y3/, hence the lemma.

The limit (3-3) gives a Euclidean comparison triangle

Sx1
Sy1

Sy2

r1.t/`C �

`C "

with � � 0 fixed, " as small as we want and ` as large as we want, for t big enough.
The CAT.0/ inequality then actually implies d.x1;y2/ > d.y1;y2/.

In particular, if .x1;x2;x3/2V .6ı.X // and if x0 realizes the minimum of the function
x 7! d.x;x1/C d.x;x2/C d.x;x3/, then we have .x0;x0;x0;x1;x2;x3/ 2 U . We
set o.x1;x2;x3/D o.x0; : : : ;x3/ in that case.

Remark 3.17 Let y1;y2;y3 2 X . The hypotheses of Lemma 3.16 being convex
conditions on x1 , x2 and x3 , they define convex subsets of X . In particular, by
Lemma 3.15, if .y1;y2;y3/2V .6ı.X // and if for every i 2 f1; 2; 3g,

P
j d.xi ;yj / <P

j d.yi ;yj /, then we have o.x1; : : : ;y3/D o.y1;y2;y3/.

Remark 3.18 Suppose that the spaces X and X 0 are the hyperbolic plane (equipped
with a distance proportional to the usual distance) or an R–tree, and let x1;x2;x3 2X ,
x0

1
;x0

2
;x0

3
2 X 0 . Suppose that .x1;x2;x3/ 2 V .6ı.X /C a/, jı.X / � ı.X 0/j < "1 ,

and jd.xi ;xj /� d.x0i ;x
0
j /j< "2 for all i; j 2 f1; 2; 3g. Then we have .x0

1
;x0

2
;x0

3
/ 2

V .6ı.X 0/C a� 6"1� 3"2/.

Therefore, the sets V .A/ provide open conditions, robust under "–approximations
(for " sufficiently small, given A), guaranteeing that we can consider the orientations
defined by triples of points.
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Notation In all this text, regardless whether X is an oriented R–tree or the hyperbolic
plane, we use (coherent) cyclic orders on @1X , which are always denoted by a bold
letter (o). This is necessary for our treatment of the Euler class. In order to compare
spaces and use an equivariant Gromov topology, we also need to use a local version
of this same information: if X is an oriented R–tree, its orientation (which is a
function on Trip.X /) is always denoted by or. And in both cases, if three points are
sufficiently far from being aligned (this is the V .6ı// condition) they come in a certain
order, which will always denoted by a simple letter o. In what follows, an element of
mo
�
.2/[ T o.�/, be it an action on H2 or on a tree, will be denoted by .�;X; d; o/,

where o is the function V .6ı.X //! f�1; 1g we have just defined.

3.2.3 Oriented equivariant Gromov topology

Definition 3.19 Let .�;X; d; o/ and .�0;X 0; d 0; o0/ 2 mo
�
.2/ [ T o.�/. Let K D

.x1; : : : ;xp/ and K0 D .x0
1
; : : : ;x0p/ be finite sequences in X and X 0 , respectively.

Let " > 0 and let P be a finite subset of � , with 1 2P . We say that K0 is an oriented
P –equivariant "–approximation of K if it is a P –equivariant "–approximation of
K and if, moreover, for all .xi ;xj ;xk/ 2 V .6ı.X /C 9"/, we have o.xi ;xj ;xk/ D

o0.x0i ;x
0
j ;x
0
k
/.

If .xi ;xj ;xk/ 2 V .6ı.X /C 9"/, it follows from Remark 3.18 that both o.xi ;xj ;xk/

and o0.x0i ;x
0
j ;x
0
k
/ are well defined, hence Definition 3.19 makes sense.

Now if .�;X / 2mo
�
.2/[ T o.�/, if " > 0, if K D .x1; : : : ;xp/ is a finite sequence

in X and if P is a finite subset of � containing 1, we denote by U 00
K ;";P

.�;X / the
set of .�0;X 0/ 2 mo

�
.2/[ T o.�/ such that X 0 contains an oriented P –equivariant

"–approximation of K .

Proposition 3.20 The sets U 00
K ;";P

.�;X / form the basis of open sets of some topology;
we call it the oriented equivariant Gromov topology.

Proof Of course, we always have .�;X /2U 00
K ;";P

.�;X /. Hence, we need only check
that if .�;X /2U 00

K1;"1;P1
.�1;X1/\U 00

K2;"2;P2
.�2;X2/ then, for some K , �>0 and P

such that 1 2P , we have U 00
K ;�;P

.�;X /�U 00
K1;"1;P1

.�1;X1/\U 00
K2;"2;P2

.�2;X2/. It
is just a technical verification. Denote K1D .a

0
1
; : : : ; a0n1

/, K2D .a
0
n1C1

; : : : ; a0n1Cn2
/.

Then jı.X /� ı.X1/j < "1 , jı.X /� ı.X2/j < "2 , and there exists a finite sequence
K D .a1; : : : ; an1Cn2

/�X such that

8i; j �n1;8
1; 
2 2P1; jdX .�.
1/�ai ; �.
2/�aj /�dX1
.�1.
1/�a

0
i ; �1.
2/�a

0
j /j<"1;
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and such that oX1
.a0i ; a

0
j ; a
0
k
/ D oX .ai ; aj ; ak/ for every i; j ; k � n1 that satisfies

.a0i ; a
0
j ; a
0
k
/ 2 V .6ı.X1/C9"1/, and similarly for elements ai , aj and ak with indices

i; j ; k � n1C 1. Since all these finitely many inequalities are strict, there exists � > 0

such that

jdX .�.
1/ � ai ; �.
2/ � aj /� dX1
.�1.
1/ � a

0
i ; �1.
2/ � a

0
j /j< "1��;(3-4)

jı.X /� ı.X1/j< "1��;

and such for all .a0i ; a
0
j ; a
0
k
/ 2 V .6ı.X1/C 9"1/ we actually have

.a0i ; a
0
j ; a
0
k/ 2 V .6ı.X1/C 9"1C 9�/;

for all i; j ; k � n1 , and such that the similar inequalities hold, concerning X2 .

Now, take .�00;X 00/ 2 U 00
K ;�;P1[P2

.�;X /, and let K00 D .a00
1
; : : : ; a00n1Cn2

/ � X 00 be
an oriented P1[P2 –equivariant �–approximation of K . Then in particular, for every
i; j � n1 and every 
1; 
2 2 P1 ,

(3-5) jdX 00.�
00.
1/ � a

00
i ; �
00.
2/ � a

00
j /� dX .�.
1/ � ai ; �.
2/ � aj /j< �;

jı.X /� ı.X 00/j < �, and for every i; j ; k such that .ai ; aj ; ak/ 2 V .6ı.X /C 9�/,
oX .ai ; aj ; ak/D oX 00.a

00
i ; a
00
j ; a
00
k
/. Now, the conditions (3-4) and (3-5) imply that for

every i; j � n1 and every 
1; 
2 2 P1 ,

jdX 00.�
00.
1/ � a

00
i ; �
00.
2/ � a

00
j /� dX1

.�1.
1/ � a
0
i ; �1.
2/ � a

0
j /j< "1:

And for all i; j ; k � n1 such that .a0i ; a
0
j ; a
0
k
/ 2 V .6ı.X1/ C 9"1/, we also have

.a0i ; a
0
j ; a
0
k
/2V .6ı.X1/C9"1C9�/, so .ai ; aj ; ak/2V .6ı.X /C9�/, by Remark 3.18.

Hence o00.a00i ; a
00
j ; a
00
k
/D o0.a0i ; a

0
j ; a
0
k
/, so finally .�00;X 00/ 2 U 00

K1;"1;P1
.�1;X1/, and,

similarly, .�00;X 00/ 2 U 00
K2;"2;P2

.�2;X2/.

Proposition 3.21 The oriented equivariant Gromov topology coincides with the usual
topology on mo

�
.2/.

Proof It is the same proof as the one of F Paulin’s Proposition 6.2 in [35], with minor
modifications. In that proof (recalled here, as Proposition 2.16), the only difference is
that the isometry � of Fact 2.17, is now an orientation-preserving isometry.

Of course, we denote by mo
�
.2/ the closure of mo

�
.2/ in the space mo

�
.2/[ T o.�/,

equipped with the oriented equivariant Gromov topology.

We also write mu
�
Dmu

�
.2/ and mo

�
Dmo

�
.2/.
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3.2.4 The space mo
�

is compact Denote by � W mo
�
! mu

�
the natural function

consisting in forgetting the orientation.

Proposition 3.22 The map � is continuous, and its fibres are compact Hausdorff
spaces.

Proof First, the continuity of � follows directly from the definition of these two
topologies.

Now, let .�;T / 2 mu
�

. If T is H2 , then the fibre ��1.�;T / has cardinal 2 in the
Hausdorff space mo

�
(by Theorem 2.5), hence it is compact Hausdorff. Suppose now that

T is an R–tree. By definition, the set ��1.�;T / is a subset of Or.T /. The induced
topology on ��1.�;T / in Or.T / coincides with the oriented equivariant Gromov
topology. Indeed, an open basis of the topology on Or.T / is given by the condition that
some fixed germ of tripods Trip.a0; a1; a2; a3/ is oriented positively, and by taking
K D fa1; a2; a3g, " small enough and P D fIdg, this is open in the induced topology
on mo

�
. Reciprocally, in order to be in U 00

K ;";P
.�;T /, a space .�0;X 0; d 0; o0/ 2 mo

�

needs to contain an oriented P –equivariant "–approximation of K . For a given "–
approximation K0 of K , this amounts to check finitely many equalities, hence this is
an open condition: thus, the intersection ��1.�;T /\U 00

K ;";P
.�;T / is a union of open

sets of Or.T /.

We shall notice now that mo
�

is Hausdorff. Indeed, if .�;X; d; o/ and .�0;X 0; d 0; o0/
are distinct and are not separated by open sets, then ı.X / D ı.X 0/. The open set
mo
�

being Hausdorff, this means that X and X 0 are oriented R–trees. Since the map
� W mo

�
! mu

�
is continuous, this implies that these two spaces differ only by the

orientation: but by definition of the oriented equivariant Gromov topology, there are
two open sets separating .�;X; d; o/ and .�0;X 0; d 0; o0/.

Finally, ��1.�;T / is the preimage of the point .�;T / in the Hausdorff space mu
g

by the continuous map � , hence it is closed for the topology of mo
g , whose induced

topology on ��1.�;T / coincides with that of Or.T /, which is compact. Hence the
fibre ��1.�;T / is compact.

Theorem 3.23 The space mo
�

, equipped with the function mo
�
,! mo

�
, is a natural

compactification of mo
�

.

Here again, after [37], by “natural”, we mean that the action of Out.�/ on mo
�

extends
continuously to an action of Out.�/ on mo

�
.
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Proof Since mo
�

is open and dense in mo
�

and since, by definition of the oriented
equivariant Gromov topology, the action of Out.�/ on mo

�
is continuous, it suffices

to prove that the space mo
�

is compact Hausdorff. We have already seen that mo
�

is Hausdorff, and by the definition of compactness in terms of ultrafilters (see eg [5,
page 59]), we need only prove that every ultrafilter in mo

�
converges.

Let ! be an ultrafilter in mo
�

. Then the image of the ultrafilter �.!/ is an ultrafilter
in the compact space mu

�
(see eg [5, Proposition 10, page 41]), hence it converges to

some action .�1;X1/ 2mu
�

. If X1DH2 , then it follows from Proposition 3.21 that
X is equipped with an orientation, compatible with the convergence of the ultrafilter.
We need only prove that if X1 is an R–tree (denote .�;T / D .�1;X1/ in that
case) then there exists an orientation or 2 Or.T /, which is invariant under the action
of � , and such that .�;T /, equipped with this order, is indeed the limit, in mo

�
, of the

ultrafilter ! .

Consider an increasing sequence Tk � T of finite, closed subtrees of T , such thatS
k�1 Tk D T . Suppose for simplicity that T1 is a singleton fx0g. For all k � 1,

denote by Fk the finite sequence (let us simply pick these finitely many points in
some arbitrary order) of all elements of Tk whose distance to x0 is a multiple of
1=2k , as well as all the end points and all the vertices of Tk , and denote by �k the
smallest distance between two points in Fk . Since the ultrafilter �.!/ converges
to .�;T /, for all k � 1, " > 0, and for every finite subset P � � containing 1,
for all M 2 ! , there exists .�M ;XM ; dM ; oM / 2 M such that .�M ;XM ; dM / 2

U 0
Fk ;";P

.�;T /, ie there exists a P –equivariant "–approximation between Fk and
some finite sequence KM in XM . For all M 2 ! , denote by Ok;";P;M the set
of functions preor 2 Preor.T / such that there exists such an approximation, such
that for every x1;x2;x3 2 Fk with .x1;x2;x3/ 2 V .9"/, and for all corresponding
x0

1
;x0

2
;x0

3
2 KM , we have preor.Trip.x1;x2;x3// D oM .x0

1
;x0

2
;x0

3
/ (this is indeed

well defined, thanks to Remark 3.17).

We cut the end of the proof into the two following lemmas:

Lemma 3.24 For every k; ", P �� containing 1 and every M 2! , the set Ok;";P;M

is closed, and nonempty. Moreover, if k > k 0 , " < "0 , P 0 � P and M �M 0 , we have
Ok;";P;M �Ok0;"0;P 0;M 0 .

By compactness of Preor.T /, it follows that
T

k;";P;M Ok;";P;M ¤∅.

Lemma 3.25 Let preor 2
T

k;";P;M Ok;";P;M . Then preor satisfies the conditions
(3-1) and (3-2): it is an orientation. Moreover, it is invariant under the action of � ,
and the element .�;T /, equipped with the orientation preor, is the limit, in mo

�
, of the

ultrafilter ! .
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Proof of Lemma 3.24 It follows from the definition that Ok;";P;M � Ok0;"0;P 0;M 0

if k > k 0 , " < "0 , M � M 0 and P 0 � P (indeed, we then have Fk0 � Fk ). The
hypotheses concern only Trip.Tk/, which is a finite subset of Trip.T /, and hence
Ok;";P;M is closed. We need to prove that it is also nonempty.

Let " > 0 be sufficiently small (see below) and let us choose a (nonoriented) "–
approximation between Fk and a finite sequence KM �XM , for some XM as above
(such an approximation exists, since �.!/ converges to .�;T / in mu

g ). For every tripod
Trip.a0; a1; a2; a3/ with ai 2 Fk , put preor.Trip.a0; a1; a2; a3//D oXM

.a0
1
; a0

2
; a0

3
/:

all we need is to check that this is well defined. Hence, we need to check that whenever
Trip.a0; a1; a2; a3/ and Trip.a0; b1; b2; b3/ define the same germ of tripods in Tk , the
corresponding elements a0i , b0i in XM satisfy oM .a0

1
; a0

2
; a0

3
/D oM .b0

1
; b0

2
; b0

3
/.

We can go from the triple .a1; a2; a3/ to the triple .b1; b2; b3/ by a sequence of moves
consisting of replacing a1 , a2 or a3 by one of its close neighbours in Tk , hence we
may suppose that .b1; b2/D .a1; a2/, and that a3 2 Œa0; b3�. Denote `1D dT .a0; a1/,
`2 D dT .a0; a2/, `3 D dT .a0; a3/ and `4 D dT .a3; b3/. All these lengths are greater
or equal to �k . Let a0.t/, t 2 Œ0; 1� be the geodesic segment joining a0.0/D a0

3
and

a0.1/D b0
3

in XM . Then, denoting by d the distance in XM , we have

`1C `2� "� d.a01; a
0
2/� `1C `2C ";

and d.a0
1
; a0.t//�d.a0

1
; a0

3
/Cd.a0

3
; a0.t//�`1C`3C"C.`4C"/t hence d.a0

1
; a0.t//�

`1C `3C t`4C 2", and similarly d.a0
1
; a0.t//� d.a0

1
; b0

3
/�d.b0

3
; a0.t//� `1C `3C

`4� .`4� "/.1� t/ so

`1C `3C t`4� 2"� d.a1; a
0.t//� `1C `3C t`4C 2":

`2C `3C t`4� 2"� d.a2; a
0.t//� `2C `3C t`4C 2":Similarly,

Together with the inequality ı.XM /� ", all these inequalities imply .a0
1
; a0

2
; a0.t// 2

V .6ı.XM // for all t 2 Œ0; 1�, provided that 11" � 2�k . It then follows from the
continuity of the order (and more precisely, from Lemma 3.10 and Lemma 3.15) that
oXM

.a0
1
; a0

2
; a0

3
/D oXM

.b0
1
; b0

2
; b0

3
/.

Proof of Lemma 3.25 It is immediate that preor satisfies condition (3-1). Condi-
tion (3-2), as well as the invariance of preor under the action of � , are proved by
considering a big enough subtree Tk of T containing the desired branched points, and
by deriving the properties of preor from the corresponding properties for oM , which
are supposed to be true since .�M ;XM ; dM ; oM / 2 mo

�
. As an example we prove

that preor satisfies condition (3-2); the proof of its invariance under � is similar. Let
a0; : : : ; a42T be such that preor.Trip.a0; a1; a2; a3//Dpreor.Trip.a0; a1; a3; a4/D1.
Since we are considering germs of tripods, we may suppose that all these points
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a0; : : : ; a4 are in Tk , for some k . Then, for all "–approximation between Fk and
KM � XM , with " small enough, we have .a0

0
; a0

0
; a0

0
; a0i ; a

0
j ; a
0
k
/ 2 U in XM , and

then the equality preor.Trip.a0; a1; a2; a4/D 1 indeed follows from the fact that oM

is defined (see Lemma 3.14 and the following line) by a cyclic order on @1XM ,
satisfying the third condition of Definition 2.20.

Now, for all M 2 ! , we have U 00
Fk ;";P

.�;T; o/\M ¤∅, and by density of
S

k Fk

in T , we have U 00
K ;";P

.�;T; o/\M ¤ ∅ for every finite sequence K in T . This
means, by definition, that the point .�;T; o/ 2mo

g is adherent to the filter ! , and since
! is an ultrafilter this implies that ! converges to .�;T; o/.

Corollary 3.26 The map � W mo
�
!mu

�
is onto.

Proof Of course, mo
�
!mu

�
is onto. Now, let T 2 @mu

�
, and �n 2mo

�
be such that

�.�n/ converges to T . Then � possesses a subsequence converging to some �1 , and
by continuity of � we have �.�1/D T .

Remark 3.27 It is possible to write this proof without using ultrafilters (see [43]),
and to prove the sequential compactness first (by considering a sequence instead of
an ultrafilter on mo

g ), and then to prove the compactness of mo
g by using elementary

general topology.

3.2.5 The space mo
g has 4g�3 connected components We are now going to focus

on the case when � D �1†g . We denote Tg D T .�1†g/, and T o
g D T o.�1†g/. If

.�;T /2 T o
g , the set @1T is equipped with a total cyclic order, preserved by the action

of �1†, and hence it possesses an Euler class, as defined in Section 2.3. Notice that if
T is a line, then it follows from the definition of the Euler class that e.�;T /D 0.

Theorem 3.28 The Euler class eW mo
g [ T o

g ! Z is a continuous function.

This proof will use the technical statements established in Section 2.3, which imply
that we need only finitely many information about the order in order to compute the
Euler class of a representation. We will be using here the notation introduced in that
section.

Proof First, the set mo
g D f.�;X / j ı.X / ¤ 0g is open in mo

g [ T o
g , and it follows

from the formula (2-1), in Section 2.3.4, that e is continuous on mo
g .

Now take an element .�T ;T / 2mo
g Xmo

g . We shall prove that there exists a neighbor-
hood of T , in the sense of the oriented equivariant Gromov topology, consisting only
in representations of the same Euler class as T . First suppose that T is not reduced to
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a line, so that it has at least three ends (in that case, T possesses infinitely many ends).
Take x;y 2 @1T , such that x 62 Pref � y . We may suppose that Card.Pref � y/ � 2;
otherwise �1†g would fix every end of T , and, by minimality, T would be a point or
a line.

Every triple fa; b; cg of pairwise distinct elements of Pref � fx;yg determines a unique
class of tripods in T ; we will denote by Pabc the centre of this tripod. Let K1 be the
convex hull

K1 D Hull
˚
Pabc

ˇ̌
.a; b; c/ 2 .Pref � fx;yg/

3;Cardfa; b; cg D 3
	
:

Put dT Dmaxfd.p; 
p/ jp 2K1; 
 2Prefg and let dK1
be the diameter of K1 . Also,

for every nondegenerate triple fa; b; cg � Pref � fx;yg, let Pa
abc
2 .a; b/ \ .a; c/ be

such that d.Pa
abc
;Pabc/D L, where L > 0 will be a sufficiently large number (see

below), and let K2 be the convex hull

K2 D Hull
˚
Pa

abc

ˇ̌
.a; b; c/ 2 .Pref � fx;yg/

3;Cardfa; b; cg D 3
	
:

Finally, fix a point p0 2K1 .

x

a.x/

b.x/


2y


3y

y

a.y/

b.y/


1y

K1

K2

p0

Let a.x/ be the closest point to x in K2 . Let b.x/ be the projection of a.x/ on K1 .
We define a.y/ and b.y/ similarly. We put K D fp0; a.x/; b.x/; a.y/; b.y/g and we
consider .�;X / 2 U 00

K ;";Pref
.�T ;T /, where " > 0 will be a sufficiently small number

(see below). We shall prove that .�T ;T / and .�;X / have the same Euler class, by
applying Proposition 2.33. In the space X , denote by p0

0
; a0.y/; b0.y/; a0.x/; b0.x/

the corresponding points. Denote by x0 2 @1X the end of some ray starting at b0.x/
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and passing through a0.x// and by y0 2 @1X the end of some ray starting at b0.y/

and passing through a0.y// (chosen arbitrarily, in the case of an R–tree).

Let 
1; 
2; 
3 2 Pref be such that o.
1x; 
2x; 
3y/ D 1. We want to prove that
o.
1x0; 
2x0; 
3y0/D 1. For this, we shall prove the three following equalities:

o.
1x; 
2x; 
3y/D o.
1a.x/; 
2a.x/; 
3a.y//;(3-6)

o.
1x0; 
2x0; 
3y0/D o.
1a0.x/; 
2a0.x/; 
3a0.y//;(3-7)

o.
1a.x/; 
2a.x/; 
3a.y//D o.
1a0.x/; 
2a0.x/; 
3a0.y//:(3-8)

We can check that for every 
 2Pref , L�dT � d.
a.y/;K1/�LCdT , and similarly
if we replace y by x . Since the centre of the tripod determined by 
1a.x/, 
2a.x/

and 
3a.y/ lies in K1 , we have

.
1a.x/; 
2a.x/; 
3a.y// 2 V

�
L� dT

2

�
:

If L is sufficiently large and " sufficiently small, all the terms of Equations (3-6),
(3-7) and (3-8) are well-defined (by Lemma 3.16), and Equation (3-8) holds (by
Definition 3.19). Put p1 D 
1a.x/, p0

1
D 
1a0.x/, . . . , p3 D 
3a.y/, p0

3
D 
3a0.y/.

Then dX .p
0
0
;p0i/ < dK1

CLC dT C ", and dX .p
0
i ;p
0
j / > 2L� 2dT � ", so that for

every i 2 f1; 2; 3g,
P

j dX .p
0
0
;p0j / <

P
j dX .p

0
i ;p
0
j /, provided that L is large enough

and " small enough. These inequalities are even finer in T , and by Lemma 3.16 and
Remark 3.17, the equalities (3-6) and (3-7) hold. Similarly, if 
1; 
2; 
3 2 Pref are
such that o.
1x; 
2y; 
3y/¤ 0 then o.
1x0; 
2y0; 
3y0/D o.
1x; 
2y; 
3y/, so that
the conditions of Proposition 2.33 are satisfied. This finishes the proof, in the case
when T is not a line.

Now, suppose that T is a line. We want to prove that there exists a neighborhood of T

consisting only in representations of Euler class zero. For simplicity we will prove the
following:

Lemma 3.29 There exists a neighborhood V 0 of T in which every oriented R–tree
has Euler class zero.

This lemma implies the theorem, for the following reason. For all k ¤ 0 such that
jkj � 2g�2, denote by L� T o

g the set of actions on lines, and denote by Fk �L the
set of actions on lines .�;T / such that every neighborhood (in mo

g ) of .�;T / contains
actions on H2 of Euler class k . That is, Fk DL\mo

g;k . Hence, Fk is a closed subset
of @mo

g;k (indeed, L is a closed set, as, by definition of the topology, it is an open
condition to contain a nondegenerate tripod). Now, let .�;T / 2 Fk . By Lemma 3.29,
.�;T / has a neighborhood V � T o

g [mo
g in which every oriented R–tree has Euler
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class 0. Put V 0 D V \ @mo
g;k . It is an open subset of @mo

g;k . If there was a tree
.�0;T 0/ 2 V 0 not reduced to a line, then by the preceding argument, .�0;T 0/ would
have a neighborhood consisting of actions (on hyperbolic planes or on trees) of Euler
class 0, which is a contradiction since .�0;T 0/ 2mo

g;k . Hence, V 0 consists of actions
on lines, ie, Fk is open in @mo

g;k . By Proposition 3.4, the space mo
g;k is one-ended,

hence @mo
g;k is connected. And we can prove easily that @mo

g;k contains actions not
reduced to a line, hence Fk ¤ @mo

g;k . Whence, Fk D∅, for all k ¤ 0. In other words,
every action on a line has a neighborhood consisting of actions of Euler class 0; this
finishes the proof of Theorem 3.28.

Proof of Lemma 3.29 Let .�;T / be a line with minx02T max
2S d.x0; 
 �x0/D 1.
Consider some point x0 2 T realizing this minimum. Let d1 be the greatest distance
between x0 and 
x0 , for every 
 2 Pref . Consider points x1 , x2 , y1 , y2 of T with
x1 , x2 on either side of x0 , such that xi , yi are on the same side of x0 , such that
d.x0;yi/Dd1C4 and d.x0;xi/D 2d1C6. Let K be the finite subset of T consisting
of x1 , x2 , y1 , y2 and Pref �x0 . Let .�0;T 0/ 2 U 00K ;1=6;Pref

.�;T /\ T , we shall prove
that e.�0;T 0/D 0. If T 0 is a line, then there is nothing to do. Otherwise, for every point
p0i 2K0 approximating K , denote by p00i its projection on the segment Œx0

1
;x0

2
�. This

defines a new approximation, which realizes .�0;T 0/ as an element of U 00
K ;1;Pref

.�;T /,
and such that K00 is contained in a segment. Let r be the end of a ray starting at x00

0
and

which leaves the segment Œx0
1
;x0

2
� at a point p0 at distance at most 2 of x00

0
(such a ray

does exist, since max
2S d.x00
0
; 
 �x00

0
/< 2). For every 
 2Pref , d.
 �p0;x

00
0
/<d1C3,

and hence the segment Œx0
1
;x0

2
�\Hull.Pref �p0/ is contained (strictly, on each side),

in the segment Œy00
1
;y00

2
�. Similarly, for every 
 2 Pref , Œy001 ;y

00
2
�� Œ
 � x0

1
; 
 � x0

2
�. For

i D 1; 2, let Ui be the set of ends of rays issued from x00
0

and passing through x0i , and
let U 0

2
be the set of ends of rays issued from x00

0
and passing through y00i . Then Pref

sends U1[U2 on a subset of U 0
1
[U 0

2
. Then it follows from the coherence condition on

the order on T 0 that for all x 2 U 0
1

, y 2 U 0
2

, o.r;x;y/ 2 f�1; 1g is constant. Suppose
for instance that o.r;x;y/D 1 for all x 2 U 0

1
, y 2 U 0

2
. Thus, for every 
 2 Pref , the

situation is the following.

� If 
 sends U1 on a subset of U 0
1

, and U2 on a subset of U 0
2

(or, equivalently,
if �.
 / preserves the orientation of T ), then o.
 � r;x;y/D 1 for all x 2 U 0

1
,

y 2 U 0
2

. Denote by A the set of these ends 
 � r .
� If 
 sends U1 on a subset of U 0

2
, and U2 on a subset of U 0

1
(or, equivalently,

if �.
 / reverses the orientation of T ), then o.
 � r;x;y/D�1 for all x 2 U 0
1

,
y 2 U 0

2
. Denote by B the set of such ends 
 � r .

Now equip the set fa;u1; b;u2g with the cyclic order in which we wrote them here.
Denote by h the order-preserving bijection which exchanges a and b and exchanges
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u1 and u2 . Then we can consider the action �1†g ! f1; hg on this ordered set,
defined as follows: if 
 2 �1†g preserves the orientation of the line T then we send
it to 1, otherwise we send it to h. Of course, this action has Euler class zero, and now
it follows from Proposition 2.33, which applies here, that e.�0;T 0/D 0.

3.3 Degeneracy of the unoriented compactification

3.3.1 Nonorientable R–trees Now we are going to prove that the existence of an
orientation, on an R–tree, preserved by the action of the group, is indeed a restrictive
condition. More precisely:

Proposition 3.30 Let g � 3. Then the inclusion @mu
g.2/� @m

u
g.3/ is strict.

Proof Of course, every isometric embedding of H2 into H3 gives rise to an embedding
mu

g.2/ � mu
g.3/ and it follows that @mu

g.2/ � @m
u
g.3/. In order to prove that this

inclusion is strict, we shall prove that there exists an element .T; �1/ 2 @mu
g.3/ such

that no orientation on T is preserved by �1 . Since the map � W mo
g.2/!mu

g.2/ is
onto, this implies that .T; �1/ 62 @mu

g.2/.

Consider the realization of �1†2 as a Fuchsian group acting on H2 with a fundamental
domain as symmetric as possible, that is, a regular octagon, �0W �1†2! PSL.2;R/.

x

y

˛1

�0.a1/

�0.b1/

�0.a2/

�0.b2/

Denote by �0.a1/; : : : ; �0.b2/ 2 PSL.2;R/ the hyperbolic isometries suggested in
the above picture. The element ˛1 D �0.a

�1
1

b�1
1

a2b2/ is hyperbolic, of axis .x;y/
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represented above (indeed, ˛1 �x D y , and if �!u is a unit tangent vector at x pointing
towards y , the angles of �!u and of its successive images with the edges of the octagon
enable to check that the image of �!u is again a vector whose direction is the one of
the axis .x;y/, pointing in the opposite direction of x ). Note that ˛1 is represented
by a nonseparating simple closed curve on the surface †2 . Thus, we can complete
the family .˛1/ into .˛1; ˇ1; ˛2; ˇ2/ represented by a system of curves on †2 , with
˛1; ˇ1; ˛2; ˇ2 2 �0.�1†2/. Define then �nW �1†2 ! PSL.2;R/ by the formulas
�n.ai/ D ˛i , �n.b2/ D ˇ2 , �n.b1/ D ˇ1˛

n
1

, for all n � 1. Then �n is faithful
and discrete, and, as subgroups of PSL.2;R/, we have Im.�n/ D Im.�0/. Since
�0 is purely hyperbolic (ie, every element of �1†2 X f1g is sent to a hyperbolic
element), the hyperbolic elements ˛1; ˇ1 do not share any fixed points on @H2 . Hence
Tr.ˇ1˛

n
1
/! C1 as n! C1. Now denote by S 2 Isom.H2/ the inversion with

respect to the axis .x;y/ (that is, the reflection whose fixed point set is the translation
axis of ˛1 ).

We now define hnW �1†g ! IsomC.H3/, for every g � 3, as follows. Consider
an isometric embedding i W H2 ,! H3 ; this determines an injection PSL.2;R/ ,!
IsomC.H3/. Every reflection in H2 can then be realized as a rotation in H3 , and we
denote again by ˛1 , ˇ1 , ˛2 , ˇ2 and S the corresponding elements of IsomC.H3/. We
put hn.ai/D�n.ai/ and hn.bi/D�n.bi/ for iD1; 2, and we put hn.ai/Dhn.bi/DS

for 3� i � g .

We then have hn 2 Rg.3/, and hn.b1/ is a hyperbolic element whose translation
distance tends to C1 as n ! C1, so that limn!C1d.hn/ D C1; hence there
exists an accumulation point .T; h1/ 2 @mu

g.3/ of this sequence of representations.
We claim that no orientation on T is preserved by �1 . In order to prove this, it suffices
to find a nondegenerate tripod Trip.a; b; c; d/ 2 Trip.T /, with central point a, and an
element 
 2 �1†g , such that 
 .a/D a, 
 .b/D b , 
 .c/D d and 
 .d/D c .

Note that when A;B are hyperbolic and do not have any common fixed points in @H2 ,
then the repulsive fixed point of ABn , as n ! C1, converges to the one of B ,
whereas the attractive fixed point of ABn converges to the image, by A, of the
one of B . Hence, the axis of �n.b1/ converges to some fixed geodesic line in H2 .
Since the images �n.
 / of the other generators 
 2 fa1; a2; b2; : : : ; ag; bgg are fixed,
there exists a sequence .xn

0
/n 2 .H2/N converging to a point in H2 , such that for

all n, xn
0
2min.�n/ and i.xn

0
/ 2min.hn/. Then d.i.xn

0
/; hn.a3/ � i.x

n
0
// is bounded.

Moreover, hn.b
�1
1
/ D ˛�n

1
ˇ�1

1
. Since the axis of the symmetry S D hn.a3/ is the

axis of the translation ˛1 , we have

d.˛�n
1 ˇ�1

1 i.xn
0/;S : ˛

�n
1 ˇ�1

1 i.xn
0//D d.ˇ�1

1 i.xn
0/;Sˇ

�1
1 i.xn

0//;
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and this number is bounded, hence the distance d.hn.b
�1
1
/:i.xn

0
/; hn.a3b�1

1
/:i.xn

0
// is

bounded. Let x1
0
2 T be the point representing the sequence .xn

0
/n2N . It follows that

x1
0

and h1.b
�1
1
/ �x1

0
are fixed by h1.a3/. Thus, the segment Œx1

0
; �1.b

�1
1
/ �x1

0
�

is globally fixed by h1.a3/. This segment is nondegenerate, as �1.b1/ is a hy-
perbolic isometry of T . Since .h1.a3//

2
D IdT , in order to prove that there is a

tripod Trip.a; b; c; d/ such that h1.a3/.a/D a, h1.a3/.b/D b , h1.a3/.c/D d and
h1.a3/.d/ D c , it suffices to prove that h1.a3/ ¤ IdT . This follows for instance
from the fact that hn.a2b1a�1

2
/ is a hyperbolic element whose fixed points in @H2 are

distinct from those of ˛1 and of hn.b1/, hence for n large enough the distance between
hn.a2b1a�1

2
/ � i.xn

0
/ and the axis of the symmetry hn.a1/ is of the order of d.hn/.

3.3.2 The space mu
g has at most 3 connected components Now we shall exhibit an-

other example of degeneracy. Fix an injective representation �W �1†g�1! PSL.2;R/.
The circle S1 being uncountable, we can take two points r0 , r1 2 S1 D @H2 such that
for all 
 2 �1†g�1 , �.
 /ri D rj , 
 D 1 and i D j . Choose a point x0 in the line
.r0; r1/. Denote by An the hyperbolic element with axis .r0; r1/ and attractive point r0 ,
and translation length n. We define a representation �0nW �1†g! PSL.2;R/ by letting
�0n.ai/D �.ai/, �0n.bi/D �.bi/ for i � g� 1, and �0n.ag/D 1, �0n.bg/DAn .

Proposition 3.31 The sequence .�0n/n 2 mu
g

N converges to an action �1 on an
R–tree T , which does not depend on � .

In [10], J DeBlois and R Kent proved that every connected component of Rg�1 contains
injective representations. It follows that this R–tree is a common point to all the @mu

g;k

in mu
g , for every k 2 f0; : : : ; 2g� 4g, since, of course, the representation �0n is also of

Euler class k (this follows immediately from Milnor’s algorithm; see formula (2-1)),
for all n 2N . This proves the following result:

Corollary 3.32 Let g�2. Then the space mu
g.2/ has at most 3 connected components.

More precisely, the components of Euler class between 0 and 2g� 4 all meet at their
boundary.

Moreover, every injective representation in Rg�1 of Euler class k , with jkj� 2g�4, is
nonelementary (indeed, elementary subgroups of PSL.2;R/ are virtually abelian, hence
they do not contain isomorphic copies of �1†g�1 ) and nondiscrete (by W Goldman’s
Corollary C of [20], faithful and discrete representations have Euler class 2g� 4 or
4� 2g ). It is then a consequence of Proposition 2-2 of [15] that every conjugacy class
of injective representations gives rise to a distinct order. These conjugacy classes, by
the theorem of DeBlois and Kent [10], have the same cardinality as R. Hence:
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Corollary 3.33 The surjective map mo
g � mu

g has a fibre which has the cardinality
of R.

It is known (see [20]) that the space mu
g.3/ has two connected components, one

containing all the representations of even Euler class in mu
g.2/, and the other containing

those of odd Euler class. The following result follows:

Corollary 3.34 Let g � 3. Then the space mu
g.3/ is connected.

Proof of Proposition 3.31 Let G D �1†g�1 �Z. This HNN extension of �1†g�1

defines a Bass–Serre tree T , together with an action without inversions of G on T by
isometries. The quotient of �1†g by the normal subgroup generated by ag yields a
“pinch” map pW �1†g! �1†g�1 �Z, the generator bg of �1†g being mapped to a
generator of the Z factor. This defines (by composition) an action of �1†g on T by
isometries. This action is minimal, without inversions; its kernel is exactly the normal
subgroup of �1†g generated by ag . Denote it by �1 . Now we want to prove that
.H2; �0n/! .T; �1/ in mu

g .

The action �1 is minimal. Supposing z is a generator of the Z factor and c D

g1zn1g2zn2 � � �gkznk is an element of �1†g�1�Z, then its translation length, with re-
spect to �1 , is

P
jnj j. We need only check that any accumulation point of .�0n/ is an ac-

tion on a tree with these same translation lengths. If the word cDg1bn1
g g2b

n2
g � � �gkb

nk
g

is reduced, with gj 2 �1†g�1 , and if nk ¤ 0, in H2 , a best choice (up to constants)
of starting point will be the x0 we have chosen first, and we are going to prove that,
asymptotically, the distance .1=n/dH2.�0n.c/x0;x0/ approaches

Pm
iD1jnk j. We work

by induction on k . Let c0 D g2b
n2
g � � �gkb

nk
g , and suppose that

d.�0n.c
0/x0;x0/D n

kX
iD2

jni jCO.1/:

d.�0n.c/x0; �
0
n.g1bn1

g /x0/D n

kX
iD2

jni jCO.1/:Then

d.�0n.g1bn1
g /x0;x0/D d.An1

n x0; �
0
n.g
�1
1 /x0/D njn1jCO.1/:Besides

The isometry �0n.g1b
n1
g / of H2 preserves the angles, and the angle

4�0n.c/x0; �0n.g1b
n1
g /x0;x0 D

6�0n.c0/x0;x0; �0n.b
�n1
g g�1

1
/x0

does not go to zero as n goes to infinity, with c fixed (indeed, �0n.c
0/x0 goes to

�.g2/r0 or �.g2/r1 depending on the sign of n2 , and �0n.b
�n1
g g�1

1
/x0 goes to r0
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or r1 depending on the sign of n1 , as n goes to infinity). This, combined with cosine
law I, implies that

d.�0n.c/x0;x0/D n

kX
iD1

jni jCO.1/;

which completes the proof.

3.3.3 The space mu
g is connected We will now prove Corollary 1.2.

Theorem 3.35 � For all g � 2, the space mu
g has at most two connected compo-

nents. More precisely, all the connected components, except possibly the one of
Euler class 2g� 3, meet at their boundaries.

� For all g � 4, the space mu
g is connected.

We still consider the generating set S D fa1; : : : ; bgg of �1†g . The main idea is the
following.

Lemma 3.36 Let � be a finitely generated group and let �W � ! PSL.2;R/ be a
discrete, faithful representation of cocompact image. Denote by Bn the closed ball
of radius n for the Cayley metric on �1†g for the generating set S , and suppose
that �nW �1†g! � is a noninjective morphism such that ker.�n/\Bn D f1g. Then
d.� ı�n/!C1 as n!C1. Let .T; �1/ be an accumulation point in @mu

g of the
sequence .� ı�n/n2N . Then the action �1 has small edge stabilizers.

Proof First, let us prove that limn!C1d.� ı�n/DC1. By contradiction, suppose
that, up to extracting a subsequence, .d.� ı�n//n2N converges to a real number
d 2 RC . Fix a point x0 2 H2 . Since the image �.�/ is cocompact, there exist
gn 2 �.�/ and

xn 2min
�
gn � .� ı�n/ �g

�1
n

�
such that the distance d.x0;xn/ is bounded; say d.x0;xn/ � k . Denote by �n

the representation gn � .� ı �n/ � g
�1
n . Then for every n � 0, �n is discrete, and

ker.�n/\BnDf1g. For every n2N and every 
 2S , d.�n.
 / �x0;x0/�d.�n/C2k ,
and limn d.�n/D d hence, by Fact 2.2, up to extract it, .�n/n converges to a repre-
sentation � 2Rg . By construction, we have �n.�1†g/� �.�/, hence � is a discrete
representation. And for every 
 2 � X fIdg, we have �n.
 / 2 �.�/X fIdg for all n

large enough: hence �.
 /¤ Id, and � is faithful. Hence, � is discrete and faithful,
hence je.�/j D 2g�2, thus � is the limit of representations �n which are noninjective,
in particular je.�n/j ¤ 2g� 2: this is in contradiction with the continuity of the Euler
class (in fact it is not necessary to use the Euler class here, but it gives the shortest
proof).
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Now denote �n D � ı�n . It follows that there exists an accumulation point .T; �1/ 2
@mu

g of the sequence .�n/n2N . We still have to prove that this action has small edge
stabilizers. But our representation �n , for all n � 0, is discrete. We can therefore
apply the same argument as M Bestvina [4] and F Paulin [35], consisting of applying
Margulis’ lemma. Here we follow the lines of the proof of Theorem 6.7 of [35, pages
78–79], and refer the reader to this text for more details.

Margulis’ lemma There exists a constant � > 0, depending only on n, such that for
every discrete group � of isometries of Hn , and for all x 2Hn , the subgroup generated
by f
 2 � j d.x; 
x/ < �g is virtually abelian.

Let us suppose that there exists a segment Œx1;y1� of the limit R–tree, whose stabilizer
contains a free group of rank 2. Up to considering a subgroup of index 2, we may
suppose that there exists a free group of rank 2, h˛; ˇi � �1†g , such that ˛ and ˇ fix
x1 and y1 . Hence, for all " > 0, and for n large enough, there exist xn;yn 2H2

such that ˇ̌̌̌
1

`.�n/
dH2.xn;yn/� 1

ˇ̌̌̌
< ";

dH2.xn; �n.˛/xn/ < "`.�n/; dH2.yn; �n.˛/yn/ < "`.�n/;

and similarly for �n.ˇ/. Denote by zn the middle of the segment Œxn;yn�: it can be
proved [35] that if " is small enough and if `.�n/ is large enough, then the elements
Œ�n.˛/; �n.ˇ/� and Œ�n.˛

2/; �n.ˇ/� move the point zn by a distance less than �. By
Margulis’ lemma, the elements �n.Œ˛; ˇ�/; �n.Œ˛

2; ˇ�/2 PSL.2;R/ generate a virtually
abelian subgroup of PSL.2;R/. But it is an easy exercise (see eg [43, Lemme 1.1.18])
to check that virtually abelian subgroups of PSL.2;R/ are metabelian, ie, all the
commutators commute. In particular, denote for instance

w.˛; ˇ/D
�
ŒŒ˛; ˇ�; Œ˛2; ˇ��; ŒŒ˛; ˇ�2; Œ˛2; ˇ��

�
:

Then we have �n.w.˛; ˇ// D 1 for all n large enough. If n is large enough, and
larger than the length of the word w.˛; ˇ/ in the generators ai ; bi , this implies that
w.˛; ˇ/ D 1 in �1†g (since ker.�n/ \ Bn D f1g), which contradicts the fact that
h˛; ˇi is free. Hence, the action �1 indeed has small edge stabilizers.

Proof of Theorem 3.35 Fix a cocompact Fuchsian group � , a subgroup F2 � �

isomorphic to a free group of rank 2, and �W �! PSL.2;R/ the tautological represen-
tation (the inclusion). Consider the morphism �nW �1†g! F2 given by Theorem 2.36,
and let �n D � ı�n . Then �n factors through the free group, which has a trivial H 2 ,
hence by Remark 2.31, the representation �n has Euler class zero. By Lemma 3.36,
.�n/n2N possesses an accumulation point .T; �1/ 2 @mu

g , which has small edge
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stabilizers. By R Skora’s theorem [40], this implies that this limit is also at the
boundary of the Teichmüller space; in other words, this action on an R–tree is also the
limit of representations of Euler class 2g� 2. Hence, the closures of the connected
components of mu

g of Euler classes 0 and 2g�2 meet. By Corollary 3.32, we already
knew that the connected components of Euler classes 0, 1, . . . , 2g� 4 meet at their
boundaries; this concludes the proof of the first point.

By Proposition 4.5 of [13], the map pgW �1†g ! PSL.2;R/ that we defined in
Section 2.4 is discrete and has Euler class 2g� 3. We have seen (Lemma 2.37) that
for all n � 0, there exists �n 2 Aut.�1†g/ such that ker.pg ı �n/\Bn D f1g. The
representation pg ı�n is still discrete, and we have je.pg ı�n/j D 2g� 3, hence, as
before, Lemma 3.36 ensures that the connected components of mu

g of Euler classes
2g� 3 and 2g� 2 meet at their boundaries.

Remark 3.37 For all g�2, consider the action .�1;T / exhibited in Proposition 3.31.
The representation �1W �1†g ! Isom.T / factors through the group �1†g�1 �Z,
which acts on T with trivial arc stabilizers. Since there exists a morphism �1†g�1 �

Z � F2 with nonabelian image to some free group of rank 2, as in Section 2.4 we can
prove that there exist automorphisms �n of �1†g such that ker.�1 ı�n/\Bn D f1g.
Following the proof of Lemma 5.7 of [35] (see also [35, Remark (1), page 73]), we
can prove that up to extract it, the sequence .�1 ı�n;T / converges to an action on an
R–tree with small stabilizers. This proves that for all g� 2 and all k 2 f0; : : : ; 2g�4g,
mu

g;k \mu
g;2g�2

¤∅.

Hence, for all g � 4 and all k 2 f0; : : : ; 2g� 3g, we have mu
g;k \mu

g;2g�2
¤∅.

3.3.4 Dynamics Finally, here we complete the proof of Theorem 1.1, which implies
that the compactification mu

g is extremely wild.

Proposition 3.38 Let g � 4 and k 2 f0; : : : ; 2g � 3g. Then the boundary of the
Teichmüller space embeds in @mu

g;k �mu
g as a closed, nowhere dense subset.

Proof Fix g � 4 and k 2 f0; : : : ; 2g � 3g. Put Fk D @mu
g;2g�2

\ @mu
g;k . By

Remark 3.37, we have Fk ¤ ∅. Since mu
g;2g�2

and mu
g;k are invariant under the

(natural) action of Out.�1†g/, it follows that Fk is invariant, too, under this action.
It is well-known (see [11, Exposé 6, Théorème VII.2, page 117]; see also [27]) that
the action of Out.�1†g/ on @mu

g;2g�2
is minimal, that is, every closed subset of

@mu
g;2g�2

, invariant under Out.�1†g/, is either empty of is mu
g;2g�2

itself. Since Fk

is a closed subset, this implies that @mu
g;2g�2

D Fk � @mu
g;k .

Now denote by Gk the boundary of @mu
g;2g�2

in the space @mu
g;k . We can easily

produce elements in @mu
g;k which do not have small stabilizers (if k � 2g�4 then the
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tree .�1;T1/ of Proposition 3.31 is an example; if k D 2g� 3 then we can compose
the map pg with Dehn twists along the last handle: this does not touch the kernel of
the map pg , hence this yields a sequence of actions with a fixed nontrivial kernel in
�1†g , converging (up to extract it) to an action on an R–tree, with this nontrivial
kernel). Hence, @mu

g;k ¤ @mu
g;2g�2

. By Proposition 3.4, the space mu
g;k is connected:

it follows that Gk ¤∅. Since @mu
g;2g�2

is closed, we have Gk � @mu
g;2g�2

, and Gk

is again invariant under the action of the mapping class group. So Gk D @mu
g;2g�2

.
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