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Galois actions on homotopy groups of algebraic varieties

JONATHAN P PRIDHAM

We study the Galois actions on the `–adic schematic and Artin–Mazur homotopy
groups of algebraic varieties. For proper varieties of good reduction over a local
field K , we show that the `–adic schematic homotopy groups are mixed represen-
tations explicitly determined by the Galois action on cohomology of Weil sheaves,
whenever ` is not equal to the residue characteristic p of K . For quasiprojective
varieties of good reduction, there is a similar characterisation involving the Gysin
spectral sequence. When `D p , a slightly weaker result is proved by comparing the
crystalline and p–adic schematic homotopy types. Under favourable conditions, a
comparison theorem transfers all these descriptions to the Artin–Mazur homotopy
groups �ét

n .X xK /˝yZ Q` .

Introduction

In [2], Artin and Mazur introduced the étale homotopy type of an algebraic variety. This
gives rise to étale homotopy groups � Ket

n .X; xx/; these are pro-finite groups, abelian for
n� 2, and � Ket

1
.X; xx/ is the usual étale fundamental group. In [49, Section 3.5.3], Toën

discussed an approach for defining `–adic schematic homotopy types, giving `–adic
schematic homotopy groups $n.X; xx/; these are (pro-finite-dimensional) Q`–vector
spaces when n� 2. In [33], Olsson introduced a crystalline schematic homotopy type,
and established a comparison theorem with the p–adic schematic homotopy type.

Thus, given a variety X defined over a number field K , there are many notions of
homotopy group:

� for each embedding K ,!C , both classical and schematic homotopy groups of
the topological space XC ;

� the étale homotopy groups of X xK ;

� the `–adic schematic homotopy groups of X xK ;

� over localisations Kp of K , the crystalline schematic homotopy groups of XKp
.
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However, despite their long heritage, very little was known even about the relation
between étale and classical homotopy groups, unless the variety is simply connected.

The étale and `–adic homotopy types carry natural Galois actions, and the main aim of
this paper is to study their structure. In many respects, the analogous question for XC

has already been addressed, with Katzarkov, Pantev and Toën [22] and the author [34]
describing mixed Hodge structures on the classical and real schematic homotopy types.

In [37], the author introduced a new approach to studying nonabelian cohomology and
schematic homotopy types of topological spaces. Its primary application was to transfer
cohomological data (in particular mixed Hodge structures) to give information about
homotopy groups. The bulk of this paper is concerned with adapting those techniques
to pro-simplicial sets. This allows us to study Artin–Mazur homotopy types of algebraic
varieties, and to translate Lafforgue’s Theorem and Deligne’s Weil II theorems into
statements about homotopy types. We thus establish arithmetic analogues of the results
of [34], with Galois actions replacing mixed Hodge structures.

The main comparison results are Proposition 1.39 (showing when étale homotopy
groups are pro-finite completions of classical homotopy groups), Theorem 3.40 (de-
scribing `–adic schematic homotopy groups in terms of étale homotopy groups), and
Proposition 7.26 (comparing p–adic and crystalline homotopy groups).

If X is smooth or proper and normal, then Corollary 6.7 shows that the Galois actions
on the `–adic schematic homotopy groups are mixed, with Remark 6.9 indicating when
the same is true for étale homotopy groups. Corollaries 6.11 and 6.16 then show how
to determine `–adic schematic homotopy groups of smooth varieties over finite fields
as Galois representations, by recovering them from cohomology groups of smooth Weil
sheaves, thereby extending the author’s paper [38] from fundamental groups to higher
homotopy groups, and indeed to the whole homotopy type. Corollaries 7.4 and 7.36 give
similar results for `–adic and p–adic homotopy groups of varieties over local fields.

The structure of the paper is as follows.

In Section 1, we recall standard definitions of pro-finite homotopy types and homotopy
groups, and then establish some fundamental results. Proposition 1.29 shows how
Kan’s loop group can be used to construct the pro-finite completion yX of a space X ,
and Proposition 1.39 describes homotopy groups of yX .

Section 2 reviews the pro-algebraic homotopy types of [37], with the formulation of
multipointed pro-algebraic homotopy types from [34], together with some new material
on hypercohomology.

We adapt these results in Section 3 to define nonabelian cohomology of a variety
with coefficients in a simplicial algebraic group over Q` . The machinery developed
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in [37] applies to give a pro–Q`–algebraic homotopy type, which is a nonnilpotent
generalisation of the Q`–homotopy type of Weil II (see Deligne [5]). Its homotopy
groups are `–adic schematic homotopy groups, and Theorem 3.40 gives conditions
for relating these to étale homotopy groups. Explicitly, if �1X is algebraically good
(see Definition 3.35), and the higher homotopy groups have finite rank, then the higher
homotopy groups of the pro–Q`–algebraic homotopy type are just � Ket

n X ˝yZ Q` . For
complex varieties, we also compare the pro-algebraic homotopy types associated to the
étale and analytic topologies.

Section 4 contains technical results showing how to extend the machinery of Section 3
to relative and filtered homotopy types. The former facilitate p–adic Hodge theory,
while the latter are developed in order to study quasiprojective varieties. We also
explore what it means for a pro-discrete group to act algebraically on a homotopy type.
In Section 5, we investigate properties of homotopy types endowed with algebraic
Galois actions.

In Section 6, the techniques of [38] for studying Galois actions on algebraic groups then
extend the finite characteristic results of the author in [35] to nonnilpotent and higher pro–
Q`–algebraic homotopy groups. The results are similar to [34], substituting Frobenius
actions for Hodge structures. Over finite fields, Theorem 6.10 uses Lafforgue’s Theorem
and Deligne’s Weil II theorems to show that the pro–Q`–algebraic homotopy type of
a smooth projective variety is formal – this means that it can be recovered from cup
products on cohomology of local systems. For quasiprojective varieties, Corollary 6.15
establishes a related property we call quasiformality, which is analogous to Morgan’s
description of the rational homotopy type [31] in terms of the Leray spectral sequence.

Section 7 then addresses the same question, but over local fields. In unequal characteris-
tic, smooth specialisation suffices to adapt results from finite characteristic for varieties
with good reduction. In equal characteristic, we show how pro–Qp –algebraic homotopy
types relate to the framework of p–adic Hodge theory. Proposition 7.26 is a reworking
of Olsson’s nonabelian p–adic Hodge theory, and this has various consequences for
Galois actions on Artin–Mazur homotopy types (Theorems 7.28–7.35). Explicitly, the
homotopy type becomes formal as a Galois representation only after tensoring with the
ring B�cris of Frobenius-invariant periods, which means that the Hodge filtration is the
only really new structure on the relative Malcev homotopy type (Remarks 7.37(2)).
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for patiently reading through the manuscript. As well as identifying numerous errors,
their suggestions have greatly improved the exposition.
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1 Pro-finite homotopy types

Definition 1.1 Let S be the category of simplicial sets, and take sGpd to consist
of those simplicial objects in the category of groupoids whose spaces of objects are
discrete (ie sets, rather than simplicial sets).

Let Top denote the category of compactly generated Hausdorff topological spaces.

Definition 1.2 Given G 2 sGpd, we define �0G to be the groupoid with objects
Ob G , and morphisms .�0G/.x;y/D �0G.x;y/.

Definition 1.3 A map f W X ! Y in Top is said to be a weak equivalence if it gives
an isomorphism �0X ! �0Y on path components, and for all x 2 X , the maps
�n.f /W �n.X;x/! �n.Y; f x/ are all isomorphisms.

We give S the model structure of Goerss and Jardine [11, Theorem V.7.6]; in particular,
a map f W X ! Y in S is said to be a weak equivalence if the map jf jW jX j ! jY j
of topological spaces is so, where j � j is the realisation functor of [11, Section I.2].
Likewise, for x 2X0 we write �n.X;x/ WD �n.jX j;x/.

A map f W G ! H in sGpd is a weak equivalence if the map �0G ! �0H is an
equivalence, and for all objects x 2 Ob G , the maps �n.G.x;x//! �n.H.f x; f x//

are all isomorphisms.

For each of these categories, we define the corresponding homotopy categories Ho.S/,
Ho.Top/, Ho.sGpd/ by localising at weak equivalences.

Note that there is a functor from Top to S which sends X to the simplicial set

Sing.X /n D HomTop.j�
n
j;X /:

This is right adjoint to realisation, and these functors are a pair of Quillen equivalences,
so become quasi-inverse on the corresponding homotopy categories. From now on, we
will thus restrict our attention to simplicial sets.

Definition 1.4 Given G 2 sGpd, define the category SG of G–spaces to consist
of simplicial representations of G . Explicitly, X 2 SG consists of X.a/ 2 S for
each a 2 Ob G , together with maps G.a; b/�X.b/! X.a/, satisfying the obvious
associativity and unit axioms.
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Definition 1.5 Recall from [11, Section V.4] that for G 2 sGpd, the G –space W G

is defined by

.W G/n.x/D
a

yn;:::;y02Ob G

Gn.x;yn/�Gn�1.yn;yn�1/� : : :�G.y1;y0/

with operations

@i.gn;gn�1; : : : ;g0/D

8̂<̂
:
.@ign; @i�1gn�1; : : : ; i < n;

.@0gn�i/gn�i�1;gn�i�2; : : : ;g0/

.@ngn; @n�1gn�1; : : : ; @1g1/ i D n;

�i.gn;gn�1; : : : ;g0/D .�ign; �i�1gn�1; : : : ; �0gn�i ; id;gn�i�1; : : : ;g0/;

and for h 2Gn.z;x/ and .gn;gn�1; : : : ;g0/ 2 .W G/.x/,

h.gn;gn�1; : : : ;g0/D .hgn;gn�1; : : : ;g0/:

Note that W G.x/ is contractible for each x 2 Ob G .

Definition 1.6 As in Goerss and Jardine [11, Chapter V.7], there is a classifying space
functor SW W sGpd! S , given by SW G D GnW G , the coinvariants of the G–action.
This has a left adjoint GW S! sGpd, Dwyer and Kan’s loop groupoid functor [7], and
these form a pair of Quillen equivalences, so give equivalences Ho.S/�Ho.sGpd/. The
objects of G.X / are X0 , and for any x;y 2X0 , the geometric realisation jG.X /.x;y/j
is weakly equivalent to the space of paths from x to y in jX j. These functors have the
additional properties that �0G.X /Š�f jX j (the fundamental groupoid), �f .j SW Gj/Š

�0G , �n.G.X /.x;x// Š �nC1.jX j;x/ and �nC1.j SW Gj;x/ Š �n.G.x;x//. This
allows us to study simplicial groupoids instead of topological spaces.

Definition 1.7 If X 2 S , then a local system is just a representation of the groupoid
�fX , ie a functor �fX ! Gp from the fundamental groupoid to the category of
groups. As in [11, Section VI.5], homotopy groups form a local system �nX , whose
stalk at x is �n.X;x/.

1.1 Pro-simplicial L–groupoids

Definition 1.8 Given a set L of primes, we say that an L–group is a finite group G for
which only primes in L divide its order. We define an L–groupoid to be a groupoid H

for which H.x;x/ is an L–group for all x 2 Ob H .
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Definition 1.9 Given a category C , recall that the category pro.C/ of pro-objects in C
has objects consisting of filtered inverse systems fA˛g in C , with

Hompro.C/.fA˛g; fBˇg/D lim
 �
ˇ

lim
�!
˛

HomC.A˛;Bˇ/:

Remark 1.10 A discrete topological space is just a set. Given a pro-set fX˛g, we can
thus take the limit lim

 �˛
X˛ in the category of topological spaces. This functor gives a

faithful embedding of pro.Set/ into topological spaces, so lim
 �˛

X˛ is discrete if and
only if fX˛g lies in the essential image of Set! pro.Set/. We will thus refer to the
essential image of Set! pro.Set/ as the discrete objects.

In fact, pro-sets endow a topological structure which cannot be detected by weak
equivalences, which is why shape theory is modelled using the category pro.S/, as in
Isaksen [19].

Definition 1.11 Given a groupoid G and a set L of primes, define G^L 2 pro.Gpd/
by requiring that G^L be the completion of G with respect to all L–groupoids H .
In other words, G^L is an inverse system of L–groupoids, with a canonical map
G!G^L inducing isomorphisms

Hom.G^L ;H /! Hom.G;H /

for all L–groupoids H .

In particular, Ob G^L D Ob G and G^L.x;x/ is the pro–L completion of the group
G.x;x/ (in the sense of Friedlander [10, Section 6]). If L is the set of all primes, we
write yG WDG^L , so yG.x;x/ is the pro-finite completion of G.x;x/ (in the sense of
Serre [47, Section 1]).

Note that G^L is a pro–L–groupoid in the sense of Definition 1.9. However, beware
that a pro-groupoid can be isomorphic to a pro–L–groupoid without actually being an
inverse system of L–groupoids, since f�˛g˛2I Š f�˛g˛�˛0

for any ˛0 2 I .

Definition 1.12 Say that a simplicial groupoid � is a simplicial L–groupoid if �i is
an L–groupoid for all i . Denote the category of such groupoids by sGpdL .

Definition 1.13 Given a groupoid � , define a disconnected normal subgroupoid
KC� to consist of subgroups K.x/��.x;x/ for all x2Ob� , with aK.x/a�12K.y/

for all a 2 �.y;x/.
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Note that disconnected normal subgroupoids K C � are in one-to-one correspondence
with isomorphism classes of surjections f W �!H for which Obf W Ob�! Ob H

is an isomorphism. The equivalence is given by setting H.x;y/D �.x;y/=K.y/D

K.x/n�.x;y/, and conversely by setting K.x/ WD ker.f W �.x;x/!H.f x; f x//.

Definition 1.14 Given � 2sGpd, define a simplicial disconnected normal subgroupoid
K C � to consist of disconnected normal subgroupoids Kn C �n , closed under the
operations @i ; �j .

Definition 1.15 Given � 2 sGpd, define �^L 2 pro.sGpdL/ to be the inverse sys-
tem f�=KgK , where K ranges over the poset of all simplicial disconnected normal
subgroupoids K C � for which �=K is a simplicial L–groupoid.

Given � D f�˛g˛ 2 pro.sGpd/, define �^L 2 pro.sGpdL/ by

�^L D lim
 �
˛

�^L
˛ ;

where the limit is taken in pro.sGpdL/. This corresponds to saying that �^L is the
pro-object f�˛=K˛g.˛;K˛/ indexed by pairs .˛;K˛/, for K˛ C �˛ .

Lemma 1.16 For � 2 pro.sGpd/ and A 2 pro.sGpdL/, the canonical map

Hompro.sGpdL/.�
^L ;A/! Hompro.sGpd/.�;A/

is an isomorphism.

Proof By the definition of morphisms in pro-categories, it suffices to prove this
when A 2 sGpdL . Then A is cofinite in both pro.sGpdL/ and pro.sGpd/ (ie
Hom.lim

 �˛
�˛;A/ Š lim

�!˛
Hom.�˛;A/ for filtered inverse systems f�˛g˛ ), so we

may also assume that � 2 sGpd.

Now, for any morphism f W �!A, the image H is a simplicial L–groupoid of the
form H D �=K , for K C � a disconnected normal subgroupoid. Therefore

HomsGpd.�;A/D lim
�!
K

HomsGpd.�=K;A/D Hompro.sGpd/.�
^L ;A/;

as required.

Lemma 1.17 For � 2 pro.sGpd/, the pro–L–groupoid .�^L/n is just the pro–L

completion of �n .
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Proof Given A 2 GpdL , define A�n (not to be confused with A�
n

) to be the
simplicial groupoid on objects Ob A with

A�n.x;y/i WDA.x;y/�
i
n ;

with @j W .A�n/i ! .A�n/i�1 coming from @j W �i�1 ! �i , and �j coming from
�j W �iC1!�i . Then A�n is clearly an L–groupoid, and has the key property that

HomsGpd.�;A
�n/Š HomGpd.�n;A/

for all � .

Taking colimits extends this to all � 2 pro.sGpd/, and then

Hompro.sGpdL/.�
^L ;A�n/Š Hompro.GpdL/..�

^L/n;A/;

but the left-hand side is just

Hompro.sGpd/.�;A
�n/Š Hompro.Gpd/.�n;A/;

so .�^L/n is the pro–L completion of �n .

Definition 1.18 Given X DfX˛g 2 pro.S/, define the category of local systems on X

to be the direct limit (over ˛ ) of the categories of local systems on X˛ (in the sense of
Definition 1.7).

Remark 1.19 Our motivation for working with pro.S/ comes from [10, Definition
4.4], which associates an object XKet 2 pro.S/ to each locally Noetherian simplicial
scheme X . Finite local systems on XKet then correspond to finite locally constant étale
sheaves on X .

Definition 1.20 Given a pro-simplicial set X , and a map �fX!� to a pro-groupoid
with discrete objects, define the covering system zX by

zX .a/ WDX �B� B.�#a/ 2 pro.S/

for a2Ob� , noting this is equipped with a natural associative action �.a; b/� zX .a/!
zX .b/ in pro.S/. Here, B is the nerve functor (equal to SW in this context), and �#a

denotes the slice category of morphisms in � with target a.

Definition 1.21 Given �fX ! � as above, with a continuous representation S of �
in pro-sets (ie S.a/ 2 pro.Set/ for a 2 Ob� , equipped with an associative action
�.a; b/�S.a/! S.b/ of pro-sets), define the cosimplicial set C�.X;S/ by

Cn.X;S/ WD Hom�;pro.Set/. zXn;S/:
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From now on, local systems will be abelian unless stated otherwise.

Definition 1.22 Given X D fX˛g 2 pro.S/ and a local system M on Xˇ define
cohomology groups by

H�.X;M / WD lim
�!
˛

H�.X˛;M /;

where H�.X˛;�/ is cohomology with local coefficients, and we also write M for the
pullbacks of M to X˛ and to X . Given G 2pro.sGpd/, set H�.G;�/ WDH�. SW G;�/.

Note that the cosimplicial complex C�.X;M / extends [11, Section VI.4] to pro-spaces,
and that H�.X;M /D H�.C�.X;M //, the cohomology groups with local coefficients.

Definition 1.23 Given X 2 pro.S/ with X0 discrete, and an inverse system M D

fMigi2N of local systems on X , define the continuous cohomology groups H�.X;M /

as follows. First form the cosimplicial complex C�.X;M / WD lim
 �

C�.X;Mi/, for C�

as in Definition 1.21, then set

H�.X;M / WD H�.C�.X;M //;

noting that this agrees with Definition 1.22 when Mi DM for all i .

Remark 1.24 Observe that there is a short exact sequence

0! lim
 �

1Hn�1.X;Mi/! Hn.X;M /! lim
 �

Hn.X;Mi/! 0;

so Hn.X;M /Š lim
 �

Hn.X;Mi/ whenever the inverse system fHn�1.X;Mi/gi satisfies
the Mittag–Leffler condition (for instance if the groups are finite).

When working with the étale homotopy type XKet , we will usually apply this construction
to Z`–local systems fMi DM=`igi . In that case, the exact sequence above becomes
the comparison between étale cohomology and Jannsen’s continuous étale cohomology
(see Example 3.18 for details).

Lemma 1.25 Given X 2 S and an inverse system M D fMigi2N of local systems
on X , there is an isomorphism

H�.X; lim
 �

Mi/Š H�.X;M /:

Proof As in Definition 1.22, H�.X; lim
 �

Mi/ is cohomology of the complex

lim
 �

C�.X;Mi/D C�.X; lim
 �

Mi/;

Cn.X; lim
 �

Mi/D HomSet.Xn; lim
 �

Mi/D lim
 �

HomSet.Xn;Mi/D Cn.X;M /;but

as required.
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We will occasionally refer to groups and groupoids as “discrete”, to distinguish them
from topological (or simplicial) groups and groupoids. As in Remark 1.10, we regard a
pro-groupoid as a kind of topological groupoid, so “discrete” will indicate that both
simplicial and pro structures are trivial.

Definition 1.26 Given a set L of primes, say that a pro-groupoid G with discrete
object set is .L; n/–good if for all G^L –representations M in abelian L–groups, the
canonical map

�M W Hi.G^L ;M /! Hi.G;M /

is an isomorphism for all i � n and an inclusion for i D nC 1. When L is the set of
all primes, we say that G is n–good. Observe that any inverse system of .L; n/–good
groupoids is .L; n/–good. Say that G is L–good if it is .L; n/–good for all n.

Lemma 1.27 Free groups are L–good for all L.

Proof Let F D F.X / be a free group generated by a set X , and let � WD F^L . By
the argument of [47, I, Section 2.6, Exercise 1(a)], it suffices to show that H�.�;M /!

H�.F;M / is surjective for all discrete �–representations M in abelian L–groups.
Since F is free, Hn.F;M /D 0 for n> 1, so it only remains to establish surjectivity
for nD 1.

This amounts to showing that every derivation ˛W F !M factors through � . The
derivation gives rise to a map ˇW F !M ÌG , for some finite L–torsion quotient G

of F . Since M ÌG is an L–group, ˇ factors through � .

Examples 1.28 (1) L–groups are L–good.

(2) If 1 ! F ! � ! … ! 1 is an exact sequence of groups, with F and …

L–good, F^L ! �^L injective, and Ha.F;M / finite for all finite L–torsion
� –modules, then � is L–good.

(3) All finitely generated nilpotent groups are L–good for all L.

(4) The fundamental group of a compact Riemann surface is L–good for all L.

Proof (2) This is essentially [47, I, Section 2.6, Exercise 2(c)].

(3) Express � as a successive extension of finite groups and Z, then apply (2).

(4) Choose a smooth complex projective curve C of genus g > 0, with �1.C /D � .
It suffices to show that for all finite L–torsion �^L –representations M , the map

H�.�^L ;M /! H�
Ket.C;M /

is an isomorphism.
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Letting zC be the universal étale pro–L cover of C , this is equivalent (by the Serre
spectral sequence) to showing that H�

Ket.
zC ;Fp/D Fp for all p 2 L. zC is the inverse

limit all finite L–covers C 0! C , giving

Hi
Ket.
zC ;Fp/D lim

 �
C 0

Hi
Ket.C

0;Fp/;

which can only be nonzero for i D 0; 1; 2.

Note that �1. zC / D ker.y� ! �^L/. Thus the pro–L completion �1. zC /
ab;L of the

abelianisation of �1. zC / must be 0, or we would have a larger pro–L quotient of y�
than �^L . Hence H1

Ket.
zC ;Fp/D 0 for all p 2L.

We now adapt the proof of Schmidt [45, Proposition 15]. Since any curve C 0 has a
cover C 00 of degree p , with the map H2

Ket.C
0;Fp/! H2

Ket.C
00;Fp/ thus being 0, we

deduce that H2
Ket.
zC ;Fp/D 0, which completes the proof.

Proposition 1.29 For any X 2 S , the canonical morphism

X ! SW .G.X /^L/

in pro.S/ induces an isomorphism .�fX /^L!�f SW .G.X /^L/ of pro-groupoids, and
has the property that for all finite abelian .�fX /^L –representations M in L–groups,
the canonical map

H�. SW .G.X /^L/;M /! H�.X;M /

is an isomorphism.

Proof The statement about fundamental groupoids is immediate, since completion
commutes with taking quotients. Now, observe that

Hn. SW .G.X /^L/;M /Š Hn.G.X /^L ;M /;

tautologically from Definition 1.22.

It thus suffices to show that the simplicial groupoid G.X / is L–good, in the sense
that H�.G.X /;M /ŠH�.G.X /^L ;M / for all �0G.X /^L –representations in abelian
L–groups M . This is equivalent to showing that for all x 2X0 , the simplicial groups
G.X /.x;x/ are L–good. This will follow if the groups Gn.x;x/ are all L–good,
because there is a spectral sequence

Hq.Gp;M / H) HpCq.G;M /:

Since the groups Gn.x;x/ are all free, this then follows from Lemma 1.27.
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Given a property P of groups, we will say that a groupoid � locally satisfies P if the
groups �.x;x/ satisfy P , for all x 2 Ob� .

Definition 1.30 Define pro.S/ı to be the full subcategory of pro.S/ consisting of
pro-spaces X for which X0 is discrete (as in Remark 1.10, so X0 is a set, not just a
pro-set).

Define S^L to be the full subcategory of pro.S/ı consisting of spaces X for which
the groups �n.X;x/ are all pro–L–groups. If L is the set of all primes, we write
yS WD S^L .

Definition 1.31 A morphism f W X!Y in pro.S/ı is said to be an Artin–Mazur weak
equivalence if �0X ! �0Y is an isomorphism, and the maps �n.X;x/! �n.Y; f x/

are pro-isomorphisms for all n� 1 and all x 2X0 .

Define Ho.pro.S/ı/ and Ho.S^L/ by formally inverting all Artin–Mazur weak equiv-
alences.

In [19], Isaksen established a model structure on pro.S/ with the right properties for
modelling pro-homotopy types. In particular, [19, Corollary 7.5] shows that a morphism
in pro.S/ı is a weak equivalence in pro.S/ if and only if it is an Artin–Mazur weak
equivalence.

Proposition 1.32 Fix N 2 Œ1;1�, and let f W X ! Y be a morphism in pro.S/ı such
that .�fX /^L ! .�f Y /^L is a pro-equivalence of pro-groupoids, with the property
that for all abelian .�f Y /^L –representations M in L–groups, the map

Hn.f /W Hn.Y;M /! Hn.X;M /

is an isomorphism for all n�N and injective for nDN C 1. Then for all Z 2 S^L

with �iZ D 0 for i >N (resp. i >N C 1), the map

f �W HomHo.pro.S/ı/.Y;Z/! HomHo.pro.S/ı/.X;Z/

is an isomorphism (resp. an inclusion).

Proof First observe that if M is a �f .Y /^L –representation in abelian pro–L groups,
we can express it as an inverse system fM˛g of �f .Y /–representations in L–groups.
Then the complex C�.Y;M / of M –cochains is given by

C�.Y;M /' R lim
 �
˛

C�.Y;M˛/:
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This implies that for all such M , the map Hn.f /W Hn.Y;M / ! Hn.X;M / is an
isomorphism for all n�N , and injective for nDN C 1.

Now consider the Moore–Postnikov tower [11, Definition VI.3.4] PnZ of a fibrant
replacement for Z . The pro-equivalence on �f gives the required isomorphism if
Z D P1Z , and we can proceed by induction.

Assume that we have a homotopy class of maps X!PnZ , for n<N . The obstruction
to lifting this to a homotopy class of maps X ! PnC1Z lies in HnC2.X; �nC1Z/,
and if nonempty, the latter homotopy class is a principal HnC1.X; �nC1Z/–space. As
�nC1Z is a pro–L–group, the isomorphism HnC1.Y;�/Š HnC1.X;�/ and the in-
clusion HnC2.Y;�/ ,!HnC2.X;�/ (resp. the inclusion HnC1.Y;�/ ,!HnC1.X;�/)
mean that the pro-homotopy class of lifts Y ! PnC1Z is similarly determined (resp.
embeds into the class of lifts X ! PnC1Z ), completing the inductive step.

Since the map Z!PN Z (resp. Z!PNC1Z ) is an Artin–Mazur weak equivalence,
this completes the proof for N <1. In the case N D1, the analysis above gives an
isomorphism

f �W HomHo.pro.S/ı/.Y; lim �
n

PnZ/! HomHo.pro.S/ı/.X; lim �
PnZ/I

since the canonical map Z ! lim
 �n

PnZ is an Artin–Mazur weak equivalence, this
completes the proof.

Corollary 1.33 The inclusion functor S^L ! pro.S/ı has a homotopy left adjoint,
which we denote by X  X^L . This has the property that for X 2 S^L , X^L 'X .

Proof Proposition 1.29 and Proposition 1.32 imply that for X 2S , the object X^L WD

SW .G.X /^L/ 2 S^L has the required properties. Given an inverse system X D fX˛g,
set X^L WD lim

 �
.X˛/

^L .

Remarks 1.34 Comparing with [10, Theorem 6.4 and Corollary 6.5], we see that this
gives a generalisation of Artin and Mazur’s pro–L homotopy type [2] to unpointed
spaces. Their context for pro-homotopy theory was formulated slightly differently,
in terms of pro.Ho.S//, which is not very well-behaved. See [19] for details of the
comparison.

Since this paper was first written, an alternative pro-finite completion functor has been
developed by Quick [42]. However, the category of pro-finite homotopy types in [42]
is larger than ours, because for its pro-spaces X , the pro-set �0X is pro-finite rather
than discrete. The pro-finite completion functor thus differs from ours in that it also
takes the pro-finite completion of the set �0X .
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An important feature of [42] is the existence of a model structure for pro-finite spaces,
and this raises the question of whether there is a model structure on pro.sGpdL/, and
how the respective model structures compare. The most likely solution is that there
is a fibrantly cogenerated model structure on pro.sGpdL

F /, where sGpdL
F is the full

subcategory of sGpdL consisting of simplicial groupoids with finite object set. For
this model structure, the cogenerating fibrations should be morphisms in sGpdL

F which
are fibrations in sGpd, possibly with some additional Artinian condition analogous to
[40, Theorem 2.14]. The right adjoint pro.sGpdL

F /! pro.sGpdL/ should then induce
a fibrantly cogenerated structure on the latter, while the functor SW from pro.sGpdL

F /

to simplicial pro-finite sets should be a right Quillen equivalence when L is the set of
all primes.

1.2 Comparing homotopy groups

We now investigate when we can describe the homotopy groups of X^L in terms of
the homotopy groups of X .

Lemma 1.35 If A is a finitely generated abelian group, then for n� 2, completion of
the Eilenberg–Mac Lane space is given by K.A; n/^L DK.A^L ; n/.

Proof By Proposition 1.32, we need to show that the maps

H�.K.A^L ; n/;M /! H�.K.A; n/;M /

are isomorphisms for all abelian L–groups M . By considering the spectral sequence
associated to a filtration, it suffices to consider only the cases M D Fp , for p 2L.

If A D A0 � A00 , then K.A; n/ D K.A0; n/ � K.A00; n/, so H�.K.A; n/;Fp/ D

H�.K.A0; n/;Fp/˝H�.K.A00; n/;Fp/. The structure theorem for finitely generated
abelian groups therefore allows us to assume that ADZ=q , for q a prime power or 0.

Now, if q is neither zero nor a power of p , then Hr .K.A; n/;Fp/ D 0 for r > 0;
since A^L is a quotient of A, we also get Hr .K.A^L ; n/;Fp/D 0. If q D ps , then
A^L DA, making isomorphism automatic.

If q D 0, then A D Z;A^L D
Q
`2L Z` , and Hr .K.Z`; n/;Fp/ D 0 for r > 0 and

`¤ p . We need to show that

H�.K.Zp; n/;Fp/! H�.K.Z; n/;Fp/

is an isomorphism, or equivalently that K.Z; n/^p D K.Zp; n/. This follows from
[43, Theorem 1.5].
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Proposition 1.36 Take a morphism f W X ! Y in pro.S/ı such that .�fX /^L !

.�f Y /^L is a pro-equivalence of pro-groupoids. Then the following are equivalent:

(1) For all abelian .�f Y /^L –representations M in L–groups, the map

Hn.f /W Hn.Y;M /! Hn.X;M /

is an isomorphism for all n�N and injective for nDN C 1.

(2) The map
�n.f /W �n.X

^L ;x/! �n.Y
^L ; fy/

is a pro-isomorphism for n�N and a pro-surjection for nDN C 1.

In particular, a pro-groupoid G with discrete object set is .L;N /–good if and only if

�n..BG/^L/D 0

for all 2� n�N .

Proof The key observation is that we have the isomorphism HomHo.pro.S/ı/.Y;PnZ/Š

HomHo.pro.S/ı/.PnY;PnZ/, which is deduced from the corresponding result for S .
Thus Proposition 1.32 implies that

PN .X
^L/! PN .Y

^L/

becomes an isomorphism in Ho.pro.S/ı/, while

PNC1.X
^L/! PNC1.Y

^L/

is an epimorphism. Since isomorphisms in Ho.pro.S/ı/ are just Artin–Mazur weak
equivalences, this completes the “only if” part.

For the converse, note that the hypothesis is equivalent to saying that the homotopy
fibre F of f ^L W X^L! Y ^L is N –connected, by looking at the long exact sequence
of homotopy groups. Thus Hj .F;A/ D 0 for all 0 < j � N and all abelian L–
groups A. For any �f Y ^L –representation M in abelian L–groups, the Leray spectral
sequence

Hi.Y ^L ;Hj .F;M // H) HiCj .X^L ; f �1M /

forces the maps Hi.Y ^L ;M /! HiCj .X^L ;M / to be isomorphisms for i �N and
injective for i DN C 1, as required.

The final statement is given by taking X D BG and Y D B.G^L/.
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Lemma 1.37 If f W X ! Y is a morphism in pro.S/ı for which the map

�n.f /W �n.X;x/! �n.Y; fy/

is a pro-isomorphism for n�N and a pro-surjection for nDN C 1, then the map

�n.f /W �n.X
^L ;x/! �n.Y

^L ; fy/

is a pro-isomorphism for n�N and a pro-surjection for nDN C 1.

Proof The proof of Proposition 1.36 adapts to show that for any �fY –representation M ,
the maps Hi.Y;M / ! Hi.X;M / are isomorphisms for i � N and injective for
i DN C 1. Thus the hypotheses of Proposition 1.36 are satisfied, giving the required
results.

Definition 1.38 Given a group-valued representation H of a groupoid � (ie a functor
from � to the category of groups), recall from [37, Definition 2.15] that the semidirect
product HÌ� is a groupoid with objects Ob.HÌ�/DOb.�/ and has .HÌ�/.x;y/D
Hx Ì�.x;y/.

Proposition 1.39 Fix X 2 S . If �n.X;x/ is finitely generated for all n�N , and if
the image of �1.X;x/! Aut.�n.X;x/˝Fp/ is L–torsion for all n�N , all p 2L,
and all x 2X , then there is an exact sequence

�NC1.X
^L ;x/ // �NC1..B�1.X;x//

^L/

rr
�N .X;x/

^L // �N .X
^L ;x/ // �N ..B�1.X;x//

^L/ // : : :

: : : // �2.X;x/
^L // �2.X

^L ;x/ // �2..B�1.X;x//
^L/ // 0:

Hence if in addition �fX is .L;NC1/–good (resp. .L;N /–good), then the natural
map

�n.X /
^L ! �n.X

^L/

is a pro-isomorphism for all n � N (resp. a pro-isomorphism for all n < N and a
pro-surjection for nDN ).

Proof We adapt the argument of [37, Theorem 1.58]. Let fX.n/gn be the Postnikov
tower for X . We will prove the proposition inductively for the groups X.n/. Thanks to
Lemma 1.37, we may replace X with X.N /, so may assume that the groups �n.X;x/

are finitely generated for all n. Write � WD �fX .
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For n D 1, X.1/ is weakly equivalent to B�fX , so .B�fX /^L ' X.1/^L and
�n.X.1/;x/D 0 for all n� 2, making the exact sequence above immediate.

Now assume that X.n�1/ satisfies the inductive hypothesis, and consider the fibration
X.n/ ! X.n � 1/. This is determined up to homotopy by a k-invariant [11, Sec-
tion VI.5] � 2 HnC1.X.n� 1/; �n.X //. Since �n.X /˝ Fp is a finite-dimensional
�^L –representation for all p 2 L, the group A WD �n.X /

^L is an inverse limit of
finite �^L –representations. Now, the element

� 2 HnC1.X.n� 1/;A/Š HnC1.X.n� 1/^L ;A/

comes from a map
G.X.n� 1//^L ! .N�1AŒ�n�/Ì�;

where N�1 denotes the denormalisation functor [52, 8.4.4] from chain complexes to
simplicial complexes (the Dold–Kan correspondence).

Let LA be the chain complex with A concentrated in degrees n; n�1, and d W .LA/n!

.LA/n�1 the identity, and define G to be the pullback of this map along the surjection
N�1LAÌ�! .N�1AŒ�n�/Ì� of simplicial locally pro-finite L–torsion groupoids.
This gives an extension

N�1AŒ1� n�! G!G.X.n� 1//^L :

Applying SW gives the fibration

SW N�1AŒ1� n�! SW G!X.n� 1/^L

in pro.S/, corresponding to the k-invariant f �� 2 Hn.X.n� 1/^L ;A/ for the map
f W X.n� 1/!X.n� 1/^L . This in turn gives a map X.n/! SW G , compatible with
the fibrations.

The long exact sequence of homotopy applied to the map SW G!X.n� 1/^L shows
that �m. SW G;x/D�m.X.n�1/^L/ for all m¤ n; nC1, and gives an exact sequence

0! �nC1. SW G;x/! �nC1.X.n� 1/^L/

!A.x/! �n. SW G;x/! �n.X.n� 1/^L/! 0:

The inductive hypothesis shows that �m.X.n � 1/^L/ D �m..B�1.X;x//
^L/ for

m� nC 1, so we deduce that there is a long exact sequence

: : : // �m.X.n/;x/
^L // �m. SW G;x/ // �m..B�1.X;x//

^L/ // : : :

: : : // �2.X.n/;x/
^L // �2. SW G;x/ // �2..B�1.X;x//

^L/ // 0:
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As SW G 2 S^L , it will therefore suffice to show that F W G.X.n//^L ! G is a weak
equivalence. We now apply the Hochschild–Serre spectral sequence, giving

Hp.X.n� 1/;Hq.N�1AŒ1� n�;M //D Hp.G.X.n� 1//^L ;Hq.N�1AŒ1� n�;M //

H) HpCq.G;M /:

Similarly Hp.X.n� 1/;Hq.E.n/;V // H) HpCq.X.n/;V /;

for all �^L –representations M in abelian L–groups, where E.n/ is the fibre of
X.n/!X.n� 1/.

Now, E.n/ is a K.�n.X /; n/–space, and SW N�1AŒ1� n� is a K.A; n/–space. By
Lemma 1.35, it follows that E.n/! SW N�1AŒ1� n� is pro–L completion, giving an
isomorphism of cohomology with coefficients in M . Thus F induces isomorphisms
on homology groups, hence must be a weak equivalence by Proposition 1.32.

Finally, if � is .L;m/–good, Proposition 1.36 shows that �n..B�/
^L ;x/D 0 for all

1< n�m.

2 Review of pro-algebraic homotopy types

Here we give a summary of the results from [37; 34]. The motivation for these is
that they provide a framework to transfer information about local systems and their
cohomology to statements about homotopy types. Fix a field k of characteristic zero.

2.1 Pro-algebraic groupoids

Given a local system V of finite-dimensional k –vector spaces on a topological space
X , we can form the affine k –scheme Iso.Vx;Vy/ of isomorphisms of stalks, for each
pair of points x;y 2X . These combine to form a kind of groupoid G whose objects
are the points of X . This is the motivating example of a pro-algebraic groupoid; in
this case it comes equipped with a canonical groupoid homomorphism �fX !G.k/.

For the general case, we now recall some definitions from [37, Sections 2.1–2.3].

Definition 2.1 Define a pro-algebraic groupoid G over a field k to consist of the
following data:

(1) A discrete set Ob.G/.

(2) For all x;y 2 Ob.G/, an affine scheme G.x;y/ (possibly empty) over k .

(3) A groupoid structure on G , consisting of a multiplication morphism mW G.x;y/�

G.y; z/ ! G.x; z/, identities Spec k ! G.x;x/ and inverses G.x;y/ !

G.y;x/, satisfying associativity, identity and inverse axioms.
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Note that a pro-algebraic group is just a pro-algebraic groupoid on one object. We
say that a pro-algebraic groupoid is reductive (resp. pro-unipotent) if the pro-algebraic
groups G.x;x/ are so for all x 2 Ob.G/. An algebraic groupoid is a pro-algebraic
groupoid for which the G.x;y/ are all of finite type.

If G is a pro-algebraic groupoid, let O.G.x;y// denote the global sections of the
structure sheaf of G.x;y/.

Remark 2.2 The terminology “pro-algebraic groupoid” follows the characterisation
of pro-algebraic groups in Deligne, Milne, Ogus and Shih [6, Chapter II]. A linear
algebraic group is an affine group scheme of finite type, and there is an equivalence of
categories between affine group schemes and pro-objects in linear algebraic groups. A
more accurate term for pro-algebraic groupoids would thus be “linear pro-algebraically
enriched groupoids”.

Definition 2.3 Given morphisms f;gW G!H of pro-algebraic groupoids, define a
natural isomorphism � between f and g to consist of morphisms

�x W Spec k!H.f .x/;g.x//

for all x 2 Ob.G/, such that the following diagram commutes, for all x;y 2 Ob.G/:

G.x;y/
f .x;y/
����! H.f .x/; f .y//

g.x;y/

??y ??y��y

H.g.x/;g.y//
�x �
����! H.f .x/;g.y//:

[If we reversed our order of composition in Definition 2.1, this would be the same as a
natural transformation of functors of categories enriched in affine k –schemes.]

A morphism f W G!H of pro-algebraic groupoids is said to be an equivalence if there
exists a morphism gW H !G such that fg and gf are both naturally isomorphic to
identity morphisms. This is the same as saying that for all y 2 Ob.H /, there exists
x 2 Ob.G/ such that H.f .x/;y/.k/ is nonempty (essential surjectivity), and that for
all x1;x2 2 Ob.G/, G.x1;x2/!H.f .x1/; f .x2// is an isomorphism.

Definition 2.4 Given a pro-algebraic groupoid G , define a finite-dimensional linear
G–representation to be a functor � from G to the category of finite-dimensional
k –vector spaces, respecting the algebraic structure. Explicitly, this consists of a
set fVxgx2Ob.G/ of finite-dimensional k –vector spaces, together with morphisms
�xy W G.x;y/! Hom.Vy ;Vx/ of affine schemes, respecting the multiplication and
identities.
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A morphism f W .V; �/! .W; %/ of G –representations consists of fx 2Hom.Vx;Wx/

such that
fx ı %xy D �xy ıfy W G.x;y/! Hom.Vx;Wy/:

Definition 2.5 Given a pro-algebraic groupoid G , define the reductive quotient Gred

of G by setting Ob.Gred/D Ob.G/, and

Gred.x;y/DG.x;y/=Ru.G.y;y//D Ru.G.x;x//nG.x;y/;

where Ru.G.x;x// is the pro-unipotent radical of the pro-algebraic group G.x;x/. The
equality arises since if f 2G.x;y/; g 2Ru.G.y;y//, then fgf �1 2Ru.G.x;x//, so
both equivalence relations are the same. Multiplication and inversion descend similarly.
Observe that Gred is then a reductive pro-algebraic groupoid. Representations of Gred

correspond to semisimple representations of G , since k is of characteristic 0.

Definition 2.6 Recall from [6, Definition II.1.7] that a tensor category C is said to be
rigid if it has an internal Hom–functor Hom, satisfying
� Hom.X;Y /˝Hom.X 0;Y 0/ŠHom.X ˝X 0;Y ˝Y 0/ and
� .X_/_ ŠX for all X 2 C ,

where X_ DHom.X; 1/, with 1 the unit for ˝.

Definition 2.7 Recall from [6, Section II.2] that a neutral Tannakian category over k

is a k –linear rigid abelian tensor category C , equipped with a faithful exact tensor
functor ! (the fibre functor) from C to the category of finite-dimensional k –vector
spaces.

In [37, Section 2.1], this was extended to multifibred Tannakian categories, which have
several exact tensor functors f!xgx2S , jointly faithful in the sense that Hom.U;V / ,!Q

x2S Hom.!xU; !xV /.

A Tannakian subcategory D � C is a full subcategory closed under the formation of
subquotients, direct sums, tensor products, and duals.

Tannakian duality [6, Theorem II.2.11] then states that for any neutral Tannakian
category .C; !/ over a field, there is a canonical equivalence between C and the
category of finite-dimensional representations of a unique affine group scheme G .
Explicitly, G is the scheme of tensor automorphisms of ! .

If C is multifibred, with a set S of fibre functors, we form a pro-algebraic groupoid G

on objects S by setting G.x;y/ to be the affine scheme of tensor isomorphisms
from !x to !y . This gives a canonical equivalence between C and the category of
finite-dimensional G–representations, with !x being pullback along the inclusion
fxg ,!G .
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Definition 2.8 Let AGpd denote the category of pro-algebraic groupoids over k , and
observe that this category contains all limits.

Lemma 2.9 Consider the functor G 7! G.k/ from AGpd to Gpd, the category of
abstract groupoids. This has a left adjoint, the algebraisation functor, denoted � 7!�alg ,
which is determined by the finite-dimensional linear representations of � .

Proof The algebraisation functor can be given explicitly by setting Ob.�/algDOb.�/,
and

�alg.x;y/D �.x;x/alg
�
�.x;x/ �.x;y/;

where �.x;x/alg is the pro-algebraic (or Hochschild–Mostow) completion of the group
�.x;x/ [17], and X �G Y is the quotient of X �Y by the relation .gx;y/� .x;gy/

for g 2G .

Alternatively, the finite-dimensional linear representations of � (as in Definition 2.4)
correspond to those of �alg (if the latter exists). These form a multifibred Tannakian
category (with one fibre functor for each object of � ), so Tannakian duality provides
unique pro-algebraic groupoid G with the same finite-dimensional representations as � .
For any pro-algebraic groupoid H and any groupoid homomorphism �!H.k/, we
then have a functor from H –representations to � representations, and thus a unique
compatible morphism G!H , so �alg ŠG .

Example 2.10 The motivating example for this setup is when �D�fX , the fundamen-
tal groupoid of a topological space. Then .�fX /alg is the pro-algebraic groupoid corre-
sponding to the multifibred Tannakian category of local systems of finite-dimensional
k –vector spaces on X . The fibre functors are given by V 7! Vx . Likewise, .�fX /red

is the object corresponding to the Tannakian category of semisimple local systems.

Definition 2.11 Given a pro-algebraic groupoid G , and U DfUxgx2Ob.G/ a collection
of pro-algebraic groups parametrised by Ob.G/, we say that G acts on U if there are
morphisms Ux �G.x;y/

�
!Uy of affine schemes, satisfying the following conditions:

(1) .uv/�gD .u�g/.v�g/, 1�gD 1 and .u�1/�gD .u�g/�1 , for g 2G.x;y/

and u; v 2 Ux .

(2) u� .gh/D .u�g/�h and u�1D u, for g 2G.x;y/; h 2G.y; z/ and u 2Ux .

If G acts on U , we construct G ËU as in Definition 1.38.
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Definition 2.12 Given a pro-algebraic groupoid G , define the pro-unipotent radical
Ru.G/ to be the collection Ru.G/x D Ru.G.x;x// of pro-unipotent pro-algebraic
groups, for x 2 Ob.G/. G then acts on Ru.G/ by conjugation, ie

u�g WD g�1ug;

for u 2 Ru.G/x , g 2G.x;y/.

Now assume that the field k is of characteristic 0.

Proposition 2.13 For any pro-algebraic groupoid G , there is a Levi decomposition
G DGred ËRu.G/, unique up to conjugation by Ru.G/.

Proof [37, Proposition 2.17].

2.2 The pro-algebraic homotopy type of a topological space

We now recall the results from [37, Section 2.4]. The motivation here is that we wish
to study the whole homotopy type, not just fundamental groupoids. This will involve
working with the loop groupoid, which is a simplicial groupoid, so we need a simplicial
framework.

Definition 2.14 Given a simplicial object G� in the category of pro-algebraic group-
oids, with Ob.G�/ constant, define the fundamental groupoid �0.G�/ of G� to have
objects Ob.G/, and for x;y 2 Ob.G/, set �0.G/.x;y/ to be the coequaliser

G1.x;y/
@1 //

@0

//G0.x;y/ //�0.G/.x;y/

in the category of affine schemes. Thus �0.G/ is a pro-algebraic groupoid on objects
Ob.G/, with multiplication inherited from G0 .

Definition 2.15 Define a pro-algebraic simplicial groupoid to consist of a simplicial
complex G� of pro-algebraic groupoids, such that

(1) Ob.G�/ is constant, and

(2) for all x 2Ob.G/, G.x;x/� 2 sAGp, ie the maps Gn.x;x/!�0.G/.x;x/ are
pro-unipotent extensions of pro-algebraic groups.

We denote the category of pro-algebraic simplicial groupoids by sAGpd.
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For any G� 2 sAGpd and x 2 Ob.G�/, observe that G�.x;x/ is a simplicial affine
group scheme, so has homotopy groups �n.G�.x;x//. That these are also affine group
schemes follows from the standard characterisation

�n.G�.x;x//D Hn.NG�.x;x/; @0/

of homotopy groups of simplicial groups.

Lemma 2.16 There is a model structure on sAGpd in which a morphism f W G�!H�
is

(1) a weak equivalence if the map �0.f /W �0.G�/!�0.H�/ is an equivalence of pro-
algebraic groupoids, and the maps �n.f;x/W �n.G�.x;x//!�n.H�.f x; f x//

are isomorphisms for all n and for all x 2 Ob.G/;

(2) a fibration if the morphism Nn.f /W N.G.x;x//n!N.H.x;x//n of normalised
groups is surjective for all n > 0 and all x 2 Ob.G/, and f satisfies the path-
lifting condition that for all x 2 Ob.G/;y 2 Ob.H /, and h 2 H0.f x;y/.k/,
there exists z 2 Ob.G/, g 2G0.x; z/.k/ with fg D h. Equivalently, this says
that G.k/!H.k/ is a fibration in the category of simplicial groupoids.

Proof This is [37, Theorem 2.25].

We define Ho.sAGpd/ to be the localisation of sAGpd at weak equivalences.

There is a forgetful functor .k/W sAGpd! sGpd, given by sending G� to G�.k/. This
functor has a left adjoint G� 7! .G�/

alg . We can describe .G�/alg explicitly. First let
.�0.G//

alg be the pro-algebraic completion of the abstract groupoid �0.G/, then let
.Galg/n be the relative Malcev completion (defined in [13] for pro-algebraic groups) of
the morphism

Gn! .�0.G//
alg:

In other words, Gn! .Galg/n
f
�! .�0.G//

alg is the universal diagram with f a pro-
unipotent extension.

Proposition 2.17 The functors .k/ and .�/alg give rise to a pair of adjoint functors

Ho.sGpd/
Lalg

//
Ho.sAGpd/

.k/

?oo ;

with LalgG.X /DG.X /alg , for any X 2 S and G as in Definition 1.6.

Proof [37, Proposition 2.26] shows that the functors are a Quillen pair, so the statement
follows from the observation that all objects in sAGpd are fibrant, making .k/ its own
derived right Quillen functor. Since G.X / is cofibrant, LalgG.X /DG.X /alg .
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The reason that we need to take Lalg in the Proposition is that .�/alg is not an exact
functor, so only preserves weak equivalences between cofibrant objects (which roughly
correspond to free simplicial groupoids). In Examples 2.24, we will see examples of
discrete groups � for which the map Lalg�! �alg is not a weak equivalence.

Definition 2.18 Given a simplicial set (or equivalently a topological space), define
the pro-algebraic homotopy type of X over k to be the object

G.X /alg

in Ho.sAGpd/, where G.X / is the loop groupoid of Definition 1.6. Define the pro-
algebraic fundamental groupoid by $f .X / WD �0.G.X /

alg/. Note that �0.G
alg/ is

the pro-algebraic completion of the fundamental groupoid �0.G/.

We then define the higher pro-algebraic homotopy groups $n.X / (as $fX –represen-
tations) by

$n.X / WD �n�1.G.X /
alg/;

where �n.G/ is the representation x 7! �n.G.x;x//, for x 2 Ob.G/.

Remark 2.19 We can interpret G.X /alg as the classifying object for nonabelian
cohomology. Given G 2 sAGpd, we can define H1.X;G/ to be the homotopy class
of maps G.X /alg!G , which is just ŒX; SW G.k/�. When G is just a linear algebraic
group, this recovers the usual definition of the set H1.X;G/ of classes of G–torsors
on X . When A is a simplicial finite-dimensional vector space (regarded as a simplicial
algebraic group), this definition gives

H1.X;A/DH1.X;NA/;

hypercohomology of the normalised complex associated to A.

2.3 Relative Malcev homotopy types

Definition 2.20 Assume we have an abstract groupoid G , a reductive pro-algebraic
groupoid R, and a representation �W G!R.k/ which is an isomorphism on objects
and Zariski-dense on morphisms (ie �W G.x;y/!R.k/.�x; �y/ is Zariski-dense for
all x;y 2 Ob G ). Define the Malcev completion .G; �/Mal (or G�;Mal , or GR;Mal )
of G relative to � to be the universal diagram

G! .G; �/Mal p
�!R;

with p a pro-unipotent extension, and the composition equal to � . Explicitly, the
objects are Ob.G; �/Mal D Ob G and

.G; �/Mal.x;y/D .G.x;x/; �/Mal
�

G.x;x/G.x;y/:
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If G and R are groups, observe that this agrees with the usual definition (of [13]).

If %W G!R.k/ is any Zariski-dense representation (ie essentially surjective on ob-
jects and Zariski-dense on morphisms) to a reductive pro-algebraic groupoid (in most
examples, we take R to be a group), we can define another reductive groupoid zR
by setting Ob zR D Ob G , and zR.x;y/ D R.%x; %y/. This gives a representation
�W �fX ! zR satisfying the above hypotheses, and we define the Malcev completion
of G relative to % to be the Malcev completion of G relative to � . Note that zR!R

is an equivalence of pro-algebraic groupoids.

Definition 2.21 Given a Zariski-dense morphism �W �fX ! R.k/, let the Malcev
completion G.X; �/Mal of X relative to � be the pro-algebraic simplicial group
.G.X /; �/Mal . Observe that the Malcev completion of X relative to .�fX /red is just
G.X /alg . Let $f .X; �/Mal D �0G.X; �/Mal and $n.X; �/

Mal D �n�1G.X; �/Mal .
Note that �f ..X; �/Mal/ is the relative Malcev completion of �W �fX !R.k/.

Beware that the relative Malcev completion of X is defined by completing a loop
space for X , rather than X itself. However, Theorem 2.74 will give other equivalent
formulations of the homotopy type, effectively by completing a covering space for X .

Lemma 2.22 Let f W X ! Y be a morphism in S for which the map

�n.f /W �n.X /! �n.Y /

is an isomorphism for n�N and a surjection for nDN C 1, and take a Zariski-dense
morphism �W �f Y !R.k/. Then the map

$n.f /W $n.X; � ıf /
Mal
!$n.Y; �/

Mal

is an isomorphism for n�N and a surjection for nDN C 1.

Proof As in the proof of Lemma 1.37, for any �f Y –representation M , the maps
Hi.Y;M /! Hi.X;M / are isomorphisms for i �N and injective for i DN C 1.

Now, [37, Proposition 4.37] gives a convergent Adams spectral sequence

E1
pq.X /D .Lie�p.zH�C1.X;O.R//_//pCq H) $pCqC1.X; � ıf /

Mal;

in the category of pro-finite-dimensional vector spaces, where zH denotes reduced
cohomology, Lie� is the free graded Lie algebra functor, and O.R/ is the local system
of Definition 2.75. Since E1

pq.X /!E1
pq.Y / is an isomorphism for pC q <N and

surjective for pC q DN , the result follows.

Geometry & Topology, Volume 15 (2011)



526 Jonathan P Pridham

Definition 2.23 Say that a groupoid � is n–good with respect to a Zariski-dense
representation �W � ! R.k/ to a reductive pro-algebraic groupoid if for all finite-
dimensional ��;Mal –representations V , the map

Hi.��;Mal;V /! Hi.�;V /

is an isomorphism for all i � n and an inclusion for i D nC 1. Say that � is good
with respect to � if it is n–good for all n.

See Lemma 3.36 for alternative criteria to determine when a groupoid is n–good.

Examples 2.24 By [37, Examples 3.20], finite groups, free groups, finitely generated
nilpotent groups and fundamental groups of compact Riemann surfaces are all good
with respect to all Zariski-dense representations. Superrigid groups (such as SL3.Z/)
give examples of groups which are not good with respect to any real (or complex)
representations. This is because �R;Mal DR in these cases, but H�.�;R/¤R.

Theorem 2.25 If X is a topological space with fundamental groupoid � , equipped
with a Zariski-dense representation �W �!R.k/ to a reductive pro-algebraic groupoid
for which

(1) � is .NC1/–good with respect to � ,

(2) �n.X;�/ is of finite rank for all 1< n�N , and

(3) the � –representation �n.X;�/˝Z k is an extension of R–representations (ie a
��;Mal –representation) for all 1< n�N ,

then the canonical map

�n.X;�/˝Z k!$n.X
�;Mal;�/

is an isomorphism for all 1< n�N .

Proof When N D 1, this is [37, Theorem 3.21], but the same proof gives the
conclusion above if we only assume that � is .NC1/–good (while still requiring the
other conditions to hold for all n). For arbitrary N , and X as above, this means that
the N –th stage X.N / in the Postnikov tower for X gives isomorphisms

�n.X;�/˝Z k!$n.X.N /�;Mal;�/

for all 1< n�N , since �iX.N /D 0 for i >N , while �iX.N /D �iX for i �N .

Applying Lemma 2.22 to the morphism X !X.N / now completes the proof.
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2.4 Cohomology and hypercohomology

2.4.1 Simplicial groupoids

Definition 2.26 For a simplicial groupoid �� , a cosimplicial ��–representation con-
sists of the following:

(1) a �n –representation V n for all n, with g � @iv D @i..@ig/ � v/, for g 2 �nC1 ,
v 2 V n ;

(2) operations @i ; � i making V �.x/ into a cosimplicial complex for each x 2Ob�� ,
satisfying the additional conditions that

g � .@iv/D @i..@ig/ � v/ h � .� iv/D � i..�ig/ � v/

for g 2 �nC1.x;y/, h 2 �n�1.x;y/, v 2 V n.y/.

Remark 2.27 If ��DG.X /, then we can think of a cosimplicial ��–representation as
being a kind of hyperlocal system on X . As we will see below, these give a sufficiently
large category to recover cohomology, but objects with constant cosimplicial structure
are still just local systems.

Definition 2.28 Given a simplicial groupoid �� and a cosimplicial ��–represen-
tation V , define the cosimplicial complex C�.��;V / by

Cn.��;V /D Hom�n
..W ��/n;V

n/;

for the functor W from Definition 1.5, with operations .@if /.x/D @i
V
.f .@ix// for

x 2 .W ��/nC1 , and .� if /.x/D � i
V
.f .�ix// for x 2 .W ��/n�1 .

Then define hypercohomology groups Hi.��;V / by Hi.��;V /D HiC.��;V /. If V

is a �0��–representation, regard V as a cosimplicial ��–representation (with constant
cosimplicial structure) and write Hi.��;V / WDHi.��;V /.

Lemma 2.29 If �� is a simplicial groupoid and V a �0��–representation, then

Hi.��;V /D Hi. SW ��;V /:

Proof Observe that �0.��/ �
�� .W ��/ is the universal covering system of SW �� .

Since V is a �0��–representation,

Hom�n
..W ��/n;V /D Hom�0��..�0��/�

�n .W ��/n;V /

D Hom�f SW �.
B. SW ��/n;V /;

so C�.��;V /DC�. SW ��;V / (as defined in Definition 1.21), which gives the result.

Geometry & Topology, Volume 15 (2011)



528 Jonathan P Pridham

Lemma 2.30 If �� is a simplicial groupoid and V a cosimplicial ��–representation,
then there is a convergent spectral sequence

Hi.��;Hj .V // H) HiCj .��;V /;

where H j .V / is the �0��–representation given by setting H�.V /.x/ to be cohomol-
ogy of the cosimplicial complex V .x/, for all x 2 Ob�� .

Proof Form the filtration fFnV gn of V by setting FnV to be the image of the n–
skeleton skn V ! V ; FnV is the subcomplex of V generated under the operations @i

by V �n , and its Dold–Kan normalisation is given by

N.FnV /i D

8̂<̂
:

N iV i � n;

dN nV i D nC 1;

0 i � nC 2:

Note that the condition g@iv D @i..@ig/v implies that FnV is ��–equivariant. Also
note that FnV =Fn�1V is quasi-isomorphic to the denormalisation DH n.V /Œ�n�. The
spectral sequence associated to this filtration is thus

HiCj .��;DHj .V /Œ�j �/ H) HiCj .��;V /:

Let K� WD ker.��! �0��/; since Hj V is a �0��–representation, there is a bicosim-
plicial complex

C a;b
WD Hom�0.��/.Kan.W ��/a;D

bHj .V /Œ�j �/;

Hn.��;DHj .V /Œ�j �/D Hn.diag C /:with

By the Eilenberg–Zilber Theorem [52, Theorem 8.5.1], N diag C is quasi-isomorphic
to the total complex of Hom�0��.N Z.K�nW ��/;Hj .V /Œ�j �/, therefore Hn.C /D

Hn�j .G;Hj .V //, and the spectral sequence becomes

Hi.��;H
j .V // H) HiCj .��;V /:

Lemma 2.31 Given a weak equivalence f W ��!�� of simplicial groupoids, and a
cosimplicial ��–representation V , the map

f �W H�.��;V /!H�.��; f
�1V /

is an isomorphism.

Proof Lemma 2.30 gives a morphism of convergent spectral sequences, so we may
assume that V is a �0��–representation. Since SW f W SW �� ! SW�� is a weak
equivalence of simplicial sets, Lemma 2.29 completes the proof.
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Lemma 2.32 Given a simplicial group �� , a cosimplicial ��–representation V and a
simplicial abelian group A, the simplicial abelian group

Tot.V ˝A/

has a canonical ��–action, where TotW S� ! S is the total space functor of [11,
Chapter VIII], originally defined in [3, Chapter X].

Proof Given X 2 S� and K 2 S , define e.X;K/ 2 S� by e.X;K/n WD .X n/Kn ,
with obvious cosimplicial operations. Note that Tot.e.X;K//D Tot.X /K .

The ��–action on V is the same as a cosimplicial map f W V ! e.V; ��/, so we have
maps

V ˝A
f
�! e.V; ��/˝A! e.V ˝A; ��/;

thus a map Tot.V˝A/!Tot.V˝A/�� . This is equivalent to a map ���Tot.V˝A/!

Tot.V ˝A/ of simplicial sets, and the argument above adapts to show that this action
is associative.

In order to simplify the definitions and exposition, we will now take �� to be simplicial
group, although everything can be extended to simplicial groupoids.

Definition 2.33 For a simplicial group �� , a simplicial ��–representation consists
of a simplicial abelian group A, together with a �n –action on An for all n, com-
patible with the simplicial operations. Let s Rep.��/ be the category of simplicial
��–representations.

Note that Lemma 2.32 provides us with examples of simplicial ��–representations
constructed from cosimplicial ��–representations. Also note that for any simplicial ��–
representation V , taking duals levelwise gives a cosimplicial ��–representation V _

given by .V _/n D .Vn/
_ .

Lemma 2.34 Given a simplicial group �� , there is a cofibrantly generated model
structure on s Rep.��/, in which a morphism f W A! B is

(1) a weak equivalence if the maps �i.f /W �i.A/! �i.B/ are isomorphisms for
all i ;

(2) a fibration if the underlying map in S is a fibration, or equivalently if the maps
Ni.f /W Ni.A/!Ni.B/ on the Dold–Kan normalisation are surjective for all
i > 0.
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Proof The forgetful functor from s Rep.��/ to simplicial sets preserves filtered direct
limits and has a left adjoint F.S/D Z.�� �S/. Thus for any finite object I 2 S , the
object FI is finite in s Rep.��/, so a fortiori permits the small object argument. The
model structure on S is cofibrantly generated by finite objects, so [16, Theorem 11.3.2]
gives the required model structure on s Rep.��/.

Lemma 2.35 We may characterise hypercohomology groups by

Hi.��;V /D HomHo.sAb.��//.Z;Tot.V ˝Z N�1ZŒ�i �//:

Proof We first note that ZŒW ��� is a cofibrant replacement for Z, so for a simplicial
abelian group A,

R HomsAb.��/.Z;Tot.V ˝Z A//' HomsAb.��/.ZŒW ���;Tot.V ˝Z A//I

as observed in the proof of Lemma 2.32,

HomsAb.ZŒW ���;Tot.V ˝Z A//Š Tot.e.V ˝Z A;W ��//;

HomsAb.��/.ZŒW ���;Tot.V ˝Z A//Š Tot.e.V ˝Z A;W ��/
��/:so

Now, e.V˝ZA;W ��/
�� is given in simplicial level n by C�.��;V˝ZAn/. When An

is free and finitely generated, this becomes C�.��;V /˝Z An . Taking ADN�1ZŒ�i �

thus gives

HomHo.sAb.��//.Z;Tot.V ˝Z N�1ZŒ�i �//

Š �0R HomsAb.��/.Z;Tot.V ˝Z N�1ZŒ�i �//

Š Tot.C�.��;V /˝Z N�1ZŒ�i �/:

Given a cosimplicial simplicial abelian group B , the normalisation N Tot B is equiva-
lent to the good truncation in nonnegative chain degrees of the product total complex
Tot

Q
NcNB of the binormalisation of B (which is a cochain chain complex). Thus

�0 Tot.C�.��;V /˝Z N�1ZŒ�i �/Š H0 Tot
Q
..NcC�.��;V //˝Z ZŒ�i �/;

and Tot
Q
..NcC�.��;V //˝Z ZŒ�i �/ is just the complex NcC�.��;V / turned upside

down and shifted i places, so

H0 Tot
Q
..NcC�.��;V //˝Z ZŒ�i �/D HiNcC�.��;V /DHi.��;V /;

as required.

The following is an analogue of the Leray spectral sequence, and will play a key role
in Theorem 3.32.
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Proposition 2.36 Given a surjection ��!�� of simplicial groups with kernel B� ,
and a cosimplicial ��–representation V , there is a canonical convergent spectral
sequence

Hi.��;H
j .B�;V // H) HiCj .��;V /;

which we refer to as the Hochschild–Serre spectral sequence.

Proof Given T 2 sAb.��/ and U;W 2 sAb.��/, we have an isomorphism

HomsAb.��/.T;HomsAb.B�/.U;W //Š HomsAb.��/.T ˝U;W /:

This defines a right Quillen functor sAb.��/opp � sAb.��/opp � sAb.��/! S ; since
any cofibrant ��–representation is cofibrant as a B�–representation, the isomorphism
above gives an equivalence

R HomsAb.��/.T;R HomsAb.B�/.U;W //' R HomsAb.��/.T ˝
L U;W /:

In particular,

R HomsAb.��/.Z;W /' R HomsAb.��/.Z;R HomsAb.B�/.Z;W //:

Setting W D Tot.V ˝Z N�1ZŒ�n�/, this gives an isomorphism

Hn.��;V /Š HnC�.��;C�.B�;V //;

so the morphism C�.��;V /! C�.��;C�.B�;V // is a quasi-isomorphism, and the
result now follows from Lemma 2.30.

2.4.2 Simplicial pro-algebraic groupoids

Definition 2.37 Given G 2 sAGpd, define a cosimplicial G–representation to be
an O.G/–comodule V in cosimplicial k –vector spaces. Thus we have cosimplicial
complexes V .x/ for all x 2 Ob G , together with a coassociative coaction V .x/!

O.G/.x;y/˝V .y/.

Note that the category of cosimplicial G–representations is opposite to the category
s 2FD Rep.G/ of pro-finite-dimensional simplicial G–representations from [37, Sec-
tion 1.5].

Definition 2.38 Given G 2 sAGpd and a cosimplicial G–representation V , define
the cosimplicial complex C�.G;V / by

Cn.G;V /DO..W G/n/˝
Gn V n;

for the functor W from Definition 1.5, with operations @i ˝ @i and � i ˝ � i .
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Then define hypercohomology groups Hi.G;V / by Hi.G;V /D HiC.G;V /. If V is
a �0G–representation, regard V as a cosimplicial G–representation (with constant
cosimplicial structure) and write Hi.G;V / WDHi.G;V /.

Now, [37, Example 1.45] ensures that Hi.G;V /_ DHi.G;V
_/ in the notation of [37,

Definition 1.48]. In particular, this means that hypercohomology groups of G are an
invariant of the homotopy type of G .

Proposition 2.39 A morphism f W G!K of pro-algebraic simplicial groupoids is a
weak equivalence if and only if

(1) f .Ru.G//� Ru.K/, with the quotient map

Gred
!Kred

an equivalence, and

(2) for all finite-dimensional irreducible K–representations V , the maps

Hi.f /W Hi.K;V /! Hi.G; f �V /

are isomorphisms for all i > 0.

Proof This is [37, Corollary 1.55], adapted from groups to groupoids.

Note that the analogue of Lemma 2.32 for pro-algebraic simplicial groupoids thus
ensures that weak equivalences induce isomorphisms on hypercohomology.

Lemma 2.40 For a cofibrant pro-algebraic simplicial group G (for the model structure
of Lemma 2.16), and a finite-dimensional �0G–representation V , the cohomology
group Hi.G;V / is isomorphic to the homotopy class of maps G!GË .N�1V Œ1� i �/

in the model category sAGpd#G .

Proof Consider the morphism k!O.G/, and let the cokernel be C . As in the proof
of [37, Proposition 1.50], C is fibrant as a cosimplicial G–representation. Likewise,
V ˝ O.G/ and V ˝ C are both fibrant, so H�.G;V / is cohomology of the cone
complex of

V ˝G O.G/! V ˝G C:

Now, V ˝G O.G/ is just V , so we need to describe V ˝G C .

Letting E WD O.G/_ , we see that C_ is the kernel of E ! k . Elements � of
V ˝G

n C n are then just morphisms � W .C_/n ! V satisfying ˛.gc/ D g˛.c/, for
g 2 Gn; c 2 .C

_/n . There is a map E! C_ given by a 7! a� 1, so � composed
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with this gives a linear morphism � 0W En! V , satisfying � 0.ga/D g� 0.a/C � 0.g/

for g 2Gn .

Regarding En as an affine scheme, there is a morphism Gn!En , so we see that �
corresponds to a derivation � 0W Gn! V . Since derivations G! V are just morphisms
G!G ËV over G , the statement now follows from the description of the path object
in sAGpd from [37, Lemma 2.29].

Lemma 2.41 If �� is a cofibrant simplicial groupoid (eg G.X / for X 2 S), and V is
a finite-dimensional �0�

R;Mal
� –representation, then the map

H�.�R;Mal
� ;V /! H�.��;V /

is an isomorphism.

Proof This is implicit in [37, Section 1.5.3]. Replacing �� with a disjoint union
of simplicial groups, Lemma 2.40 gives that H�.�R;Mal

� ;V / is the homotopy class
of maps from �

R;Mal
� to �R;Mal

� Ë .N�1V Œ1� i �/ over �R;Mal
� . Since any map from

�
alg
� to a pro-unipotent extension of R factors through �R;Mal

� , this is the same as the
homotopy class of maps from �

alg
� to �R;Mal

� Ë .N�1V Œ1� i �/ over �R;Mal
� .

The Quillen adjunction of Proposition 2.17 then shows that this is equivalent to the
homotopy class of maps from �� to ��Ë.N�1V Œ1�i �/ in the slice category sGpd#�� ,
which is just Hi.��;V /.

Note if we have �� 2 sGpd and G 2 sAGpd together with a morphism f W ��!G.k/

of simplicial groupoids, then every cosimplicial G–representation V naturally gives
rise to a cosimplicial ��–representation f �V . For any coalgebra C , every C –
comodule is a nested union of finite-dimensional comodules. Thus every cosimplicial
G–representation V is a filtered direct limit lim

�!˛
V˛ of levelwise finite-dimensional

cosimplicial G–representations, and we tweak the construction of pullbacks slightly
by regarding f �V as the ind-object (ie filtered direct system) ff �V˛g of levelwise
finite-dimensional cosimplicial ��–representations. We then define C�.��; f �V / WD
lim
�!˛

C�.��; f �V˛/, and H�.��; f �V / WD H�C�.��; f �V /D lim
�!˛

H�.��; f �V˛/.

Also note that the category of cosimplicial G –representations is opposite to the category
s 2FD Rep.G/ of [37, Section 1.5].

Lemma 2.42 Given a cofibrant simplicial groupoid �� and a cosimplicial O.�
R;Mal
� /–

comodule V , the canonical map

H�.�R;Mal
� ;V /!H�.��;V /

(induced by the morphism W ��!W .�
R;Mal
� /) is an isomorphism.
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Proof By Lemma 2.30 and its analogue for sAGpd, we have convergent spectral
sequences

Hi.�;H j .V // H) HiCj .��;V /

Hi.G;Hj .V // H) HiCj .G;V /:

For ind-finite-dimensional �0G –representations U , the maps Hi.G;U /! Hi.��;U /

are isomorphisms by Lemma 2.41, so the maps Hi.G;Hj .V //! Hi.��;Hj .V // are
isomorphisms, making the morphism of spectral sequences an isomorphism.

Theorem 2.43 Take a fibration f W .X;x/! .Y;y/ (of pointed connected topological
spaces) with connected fibres, and set F WD f �1.y/. Take a Zariski-dense representa-
tion �W �1.X;x/!R.k/ to a reductive pro-algebraic group R, let K be the closure of
�.�1.F;x//, and set T WDR=K . If the monodromy action of �1.Y;y/ on H�.F;V /
factors through $1.Y;y/

T;Mal for all K–representations V , then G.F;x/K ;Mal is the
homotopy fibre of G.X;x/R;Mal!G.Y;y/T;Mal .

Proof This is [34, Theorem 3.10], which uses Lemma 2.42 to show that

H�.G.F;x/K ;Mal;O.K//

and cohomology H�.F ;O.K// of the homotopy fibre F are both

H�.G.X;x/;O.R/˝O.T /O.G.Y;y/T;Mal//Š Hj .F;O.K//:

2.5 Equivalent formulations

Fix a reductive pro-algebraic groupoid R.

2.5.1 Lie algebras

Definition 2.44 Recall that a Lie coalgebra C is said to be conilpotent if the iterated
cobracket �nW C ! C˝n is 0 for sufficiently large n. A Lie coalgebra C is ind-
conilpotent if it is a filtered direct limit (or, equivalently, a nested union) of conilpotent
Lie coalgebras.

Definition 2.45 Recall from [37, Definition 5.8] that for any k –algebra A, we define
yNA.R/ to be opposite to the category of R–representations in ind-conilpotent Lie

coalgebras over A, and denote the contravariant equivalence by C 7! C_ .

Note that there is a continuous functor yNk.R/! yNA.R/ given by C_ 7! .C ˝k A/_ .
We denote this by g 7! g y̋A.
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Remark 2.46 Observe that g 2 yNA.R/ can be regarded as an object of the category
AffA.R/ of R–representations in affine A–schemes, by regarding it as the functor

g.B/ WD HomA;R.g
_;B/;

for B 2 AlgA.R/ WD A#Alg.R/. In fact, g.B/ is then a Lie algebra over B , so
the Campbell–Baker–Hausdorff formula defines a group structure on g.B/, and the
resulting group is denoted by exp.g/.B/. Thus exp.g/ is an R–representation in affine
group schemes over A (ie a group object of AffA.R/).

Definition 2.47 Write s yNA.R/ for the category of simplicial objects in yNA.R/. A
weak equivalence in s yNA.R/ is a map which gives isomorphisms on cohomology
groups of the duals (which are just A–modules). We denote by Ho.s yNA.R// the
localisation of s yNA.R/ at weak equivalences.

For k DA, we will usually drop the subscript, so yN .R/ WD yNk.R/, and so on.

Definition 2.48 Define E.R/ to be the full subcategory of AGpd#R consisting of
those morphisms �W G!R of pro-algebraic groupoids which are pro-unipotent exten-
sions. Similarly, define sE.R/ to consist of the pro-unipotent extensions in sAGpd#R,
and Ho.sE.R/�/ to be full subcategory of Ho.Ob R#sAGpd/ on objects sE.R/.

Definition 2.49 Given a pro-algebraic groupoid R, define the category sPA.R/ to
have the same objects as s yNA.R/, with morphisms given by

HomsP.R/.g; h/D exp.
Y

x2Ob R

�0h.x//�
exp.hR

0
/ HomHo.s yN .R//.g; h/;

where hR
0

(the Lie subalgebra of R–invariants in h0 ) acts by conjugation on the
set of homomorphisms. Composition of morphisms is given by .u; f / ı .v;g/ D

.u ıf .v/; f ıg/.

The following is a key comparison result, which will be used in Proposition 2.76 and
Theorem 3.30 as a step towards reformulating Malcev homotopy types in terms of
Godement resolutions.

Proposition 2.50 For any reductive pro-algebraic groupoid R, the categories
Ho.sE.R/�/ and sP.R/ are equivalent.

Proof This is part of [37, Theorem 4.41], adapting [37, Proposition 3.15] to the
unpointed case. The proof just exploits the Levi decomposition of Proposition 2.13.
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Explicitly, the functor maps g 2 sP.R/ to the simplicial pro-algebraic group given in
level n by RË exp.gn/. Given a morphism

.u; f / 2 exp.
Y

x2Ob R

�0h.x//�
exp.hR/ HomHo.sN .R//.g; h/;

lift u to zu 2
Q

x2Ob R exp.h0.x//, and construct the morphism

adzu ı.RË exp.f //W RË exp.g/!RË exp.h/

in sE.R/, where for a 2 .RË exp.h//.x;y/, we set adzu.a/D zu.x/ � a � zu.y/�1 .

Definition 2.51 We can now define the multipointed Malcev homotopy type of X rela-
tive to � to be the image of G.X; �/Mal in Ho.sE. zR/�/, or equivalently RuG.X; �/Mal

in sP. zR/. Define the unpointed Malcev homotopy type of X relative to � to be the
image of G.X; �/Mal in Ho.sE. zR//.

Since zR!R is an equivalence of groupoids, there is an equivalence Ho.sE.R//!
Ho.sE. zR//, so may discard some basepoints to give an object of sP.R/ (or equivalently
of Ho.sE.R/�/) whenever � is surjective on objects.

2.5.2 Chain Lie algebras

Definition 2.52 Let dg yNA be opposite to the category of nonnegatively graded ind-
conilpotent cochain Lie coalgebras over A. Define dg yNA.R/ to be the category
of R–representations in dg yNA . For k D A, we will usually drop the subscript, so
dg yN .R/ WD dg yNk.R/, and so on.

The following is [37, Lemma 5.9]:

Lemma 2.53 There is a closed model structure on dg yNA.R/ in which a morphism
f W g! h is

(1) a fibration whenever the underlying map f _W h_! g_ of cochain complexes
over A is injective in strictly positive degrees;

(2) a weak equivalence whenever the maps Hi.f _/W Hi.h_/! Hi.g_/ are isomor-
phisms for all i .

Remark 2.54 It follows from the construction in [37, Lemma 5.9] that for cofibrant
objects g 2 dg yN .R/ (taking A to be a field), g_ is freely cogenerated as a graded Lie
coalgebra. Thus g_Œ�1� is a positively graded strong homotopy commutative algebra
without unit (in the sense of [26, Lectures 8 and 15]), and a choice of cogenerators
on g_ is the same as a positively graded E1 (also known as C1 ) algebra – this is an
aspect of Koszul duality.
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Definition 2.55 We say that a morphism f W g! h in dg yN .R/ is free if there exists
a (pro-finite-dimensional) sub–R–representation V � h such that h is the free pro-
nilpotent graded Lie algebra over g on generators V .

Proposition 2.56 (Minimal models) For every object g of dg yN .R/, there exists a
free chain Lie algebra m with d D 0 on the abelianisation m=Œm;m�, unique up to
nonunique isomorphism, together with a weak equivalence m! g.

Proof [37, Proposition 4.7].

The significance of this result is that, together with Proposition 2.50, it allows us to
reformulate Malcev homotopy types in terms of extra structure on cohomology groups,
since .m=Œm;m�/n is dual to HnC1.g; k/.

Definition 2.57 Let dgP.R/ be the category with the same objects as dg yNA.R/,
and morphisms given by

HomdgP.R/.g; h/D exp
� Y

x2Ob R

H0h.x/

�
�

exp.hR
0
/ HomHo.dg yNA.R//

.g; h/;

where hR
0

(the Lie subalgebra of R–invariants in h0 ) acts by conjugation on the
set of homomorphisms. Composition of morphisms is given by .u; f / ı .v;g/ D

.u ıf .v/; f ıg/.

Proposition 2.58 There is a normalisation functor N W s yNA.R/! dg yNA.R/ such
that

Hi.N g/Š �i.g/;

giving equivalences Ho.s yNA.R//' Ho.dg yNA.R//, and sPA.R/' dgPA.R/.

Proof This is essentially [37, Propositions 4.12 and 5.11], adapted as in [34, Theo-
rem 3.28].

2.5.3 Cosimplicial algebras

Definition 2.59 Let c Alg.R/ be the category of R–representations in cosimplicial
k –algebras.
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Proposition 2.60 There is a simplicial model category structure on c Alg.R/, in which
a map f W A! B is

(1) a weak equivalence if Hi.f /W Hi.A/! Hi.B/ is an isomorphism in Rep.R/
for all i ;

(2) a fibration if f i.x/W Ai.x/!Bi.x/ is a surjection for all x 2 Ob.R/ and all i .

Proof This is [37, Proposition 3.26], adapting [49, Section 2.1].

Definition 2.61 Let c Alg.R/� be the category of R–representations in cosimplicial
k –algebras, equipped with an augmentation to

Q
x2Ob R O.R/.x;�/. This inherits

a model structure from c Alg.R/. Denote the opposite category by s Aff.R/� D`
x2Ob R R.x;�/#s Aff.R/, where the coproduct is taken in the category of affine

schemes.

Definition 2.62 Given representations V;W 2 Rep.R/, define

V ˝R W WD HomRep.R/.k;V ˝W /:

Definition 2.63 Given A2 c Alg.R/ and g2 s yN .R/, define the Maurer–Cartan space
MC.A;G/ to consist of sets f!ngn�0 , with !n 2 exp.AnC1 y̋Rgn/, such that

@i!n D

(
@iC1!n�1 i > 0;

.@1!n�1/ � .@
0!n�1/

�1 i D 0;

�i!n D �
iC1!nC1;

�0!n D 1;

where exp.AnC1 y̋Rgn/ is the group with underlying set the Lie algebra AnC1 y̋ gn�1 ,
with multiplication given by the Campbell–Baker–Hausdorff formula.

Definition 2.64 Given A 2 c Alg.R/ and g 2 s yN .R/, define the gauge group
Gg.A; g/�

Q
n exp.An y̋Rgn/ to consist of those g satisfying

@ign D @
ign�1 8i > 0;

�ign D �
ignC1 8i:

This has an action on MC.A; g/ given by

.g �!/n D .@0gnC1/ �!n � .@
0g�1

n /:
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Definition 2.65 Let c Alg.R/0� be the full subcategory of c Alg.R/� whose objects
satisfy H0.A/Š k . Let Ho.c Alg.R/0�/ be the full subcategory of Ho.c Alg.R/0�/
with objects in c Alg.R/0� . Let s Aff.R/0� be the category opposite to c Alg.R/0� ,
and Ho.s Aff.R/0�/ opposite to Ho.c Alg.R/0�/.

Definition 2.66 Given a topological space X , and a sheaf F on X , define

Cn.X;F/ WD
Y

f W j�nj!X

�.j�n
j; f �1F/:

Together, these form a cosimplicial complex C�.X;F/.

2.5.4 Cochain algebras

Definition 2.67 Define DGAlg.R/ to be the category of R–representations in non-
negatively graded cochain k –algebras, and let dg Aff.R/ be the opposite category.

Lemma 2.68 There is a closed model structure on DGAlg.R/ in which a morphism
f W A! B is

(1) a weak equivalence if Hi.f /W Hi.A/! Hi.B/ is an isomorphism in Rep.R/
for all i ;

(2) a fibration if f i W Ai! Bi is a surjection for all i ;

(3) a cofibration if it has LLP with respect to all trivial fibrations.

Proof This is standard (see eg [23, Proposition 4.1]).

Definition 2.69 Define DGAlg.R/� to be the category of R–representations in non-
negatively graded cochain k –algebras, equipped with an augmentation toQ

x2Ob R O.R/.x;�/. This inherits a model structure from DGAlg.R/. Define
dg Aff.R/� to be the category opposite to DGAlg.R/� .

Let DGAlg.R/0� be the full subcategory of DGAlg.R/� whose objects A satisfy
H0.A/D k . Let Ho.DGAlg.R/�/0 be the full subcategory of Ho.DGAlg.R/�/ on
the objects of DGAlg.R/0 . Let dg Aff.R/0� and Ho.dg Aff.R/�/0 be the opposite
categories to DGAlg.R/0� and Ho.DGAlg.R/�/0 , respectively.

Proposition 2.70 There is a denormalisation functor DW DGAlg.R/ ! c Alg.R/
such that

Hi.DA/Š Hi.A/:

This is a right Quillen equivalence, with left adjoint D� , so gives an equivalence
Ho.c Alg.R//' Ho.DGAlg.R//.

Proof This is [37, Proposition 4.27].
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Definition 2.71 Given a cochain algebra A 2 DGAlg.R/, and a chain Lie algebra
g 2 dg yN .R/, define the Maurer–Cartan space by

MC.A; g/ WD
�
! 2

M
n

AnC1 y̋Rgn j d!C
1
2
Œ!; !�D 0

�
:

Definition 2.72 Given A2DGAlg.R/ and g2dg yN.R/, we define the gauge group by

Gg.A; g/ WD exp
�Y

n

An y̋Rgn

�
:

Define a gauge action of Gg.A; g/ on MC.A; g/ by

g.!/ WD g �! �g�1
� .dg/ �g�1:

Definition 2.73 Recall that the Thom–Sullivan (or Thom–Whitney) functor Th from
cosimplicial algebras to DG algebras is defined as follows. Let �.j�nj/ be the DG
algebra of rational polynomial forms on the n–simplex, so

�.j�n
j/DQŒt0; : : : ; tn; dt0; : : : ; dtn�

.�
1�

X
i

ti ;
X

i

dti

�
;

where ti is of degree 0. The usual face and degeneracy maps for simplices yield
@i W �.j�

nj/!�.j�n�1j/ and �i W �.j�
nj/!�.j�n�1j/, giving a simplicial complex

of DGAs. Given a cosimplicial algebra A, we then set

Th.A/ WD
�

a 2
Y

n

An
˝�.j�n

j/ W @i
Aan D @ianC1; �

j
A

an D �j an�1 8i; j

�
:

The following is a major comparison result, which will be used in Theorem 3.30 as
the main step towards reformulating Malcev homotopy types in terms of Godement
resolutions.

Theorem 2.74 We have the following commutative diagram of equivalences of cate-
gories:

Ho.dg Aff.R/�/0
Spec D //

xG
��

Ho.s Aff.R/�/0
Spec Th
oo

xG
��

dgP.R/

SW

OO

sP.R/;

SW

OO

N
oo
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with the pair

Ho.dg Aff.R/�/0
xG //

dgP.R/
SW

oo ;

characterised by the property that

HomHo.dg Aff.R/�/.Spec A; SW g/D HomdgP.R/. xG.A/; g/

DMC.A; g/�Gg.A;g/
Y

x2Ob R

exp.H0g.x//:

Proof This is [34, Theorem 3.28], which adapts [37, Corollary 4.41] to the pointed
case. The vertical equivalences come from [37, Proposition 3.48], while the horizontal
equivalences are from [37, Theorems 4.39] and Theorem 4.44 or, for a shorter and
more conceptual proof, [39, Theorem 6.23]. The results of [15, 4.1] imply that D and
Th are homotopy inverses.

Definition 2.75 Recall that O.R/ has the natural structure of an R�R–representation.
Since every R–representation has an associated semisimple local system on jBR.k/j,
we will also write O.R/ for the R–representation in semisimple local systems on
jBR.k/j corresponding to the R�R–representation O.R/. We then define the R–
representation O.R/ in semisimple local systems on X by O.R/ WD ��1O.R/.

Proposition 2.76 Under the equivalences of Theorem 2.74, the relative Malcev homo-
topy type G.X /�;Mal of a topological space X corresponds to

C�.X;O.R// 2 c Alg.R/;

equipped with its augmentation to
Q

x2X C�.x;O.R//Š
Q

x2X O.R/.x;�/.

Proof This is essentially the same as [37, Theorem 3.55] (which considers the un-
pointed case).

Corollary 2.77 Pro-algebraic homotopy types are equivalent to the schematic homo-
topy types of [49], in the sense that the full subcategory of the homotopy category
Ho.sPr/ on objects X sch is equivalent to the full subcategory of Ho.sAGpd/ on ob-
jects G.X /alg . Under this equivalence, X sch is represented by the simplicial scheme
SW G.X /alg , and pro-algebraic homotopy groups are isomorphic to schematic homotopy
groups.

Proof [37, Corollary 3.57].
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Definition 2.78 Given a manifold X , denote the sheaf of real n–forms on X by An .
Given a real sheaf F on X , write

An.X;F/ WD �.X;F˝R An/:

Proposition 2.79 The real Malcev homotopy type of a manifold X relative to
�W �fX ! R.R/ is given in DGAlg.R/ by the de Rham complex A�.X;O.R//;
equipped with its augmentation to

Q
x2X A�.x;O.R//Š

Q
x2X O.R/.x;�/.

Proof [37, Proposition 4.50].

3 Pro–Q` –algebraic homotopy types

The purpose if this section is to transfer the framework of Section 2 to an `–adic setting,
replacing topological spaces with pro-finite spaces (and hence étale homotopy types of
algebraic varieties).

Fix a prime `. Although all results here will be stated for the local field Q` , they hold
for any of its algebraic extensions.

3.1 Algebraisation of locally pro-finite groupoids

Definition 3.1 Given a pro-groupoid � with Ob.�/ a discrete set (in the sense of
Remark 1.10), we define the pro-algebraic completion �alg to be the pro–Q`–algebraic
groupoid pro-representing the functor

AGpd! Set

H 7! HomTopGpd.�;H.Q`//;

where TopGpd denotes the category of topological groupoids, and H.Q`/ is endowed
with the topology induced from Q` . Note that this exists by the Special Adjoint Functor
Theorem [28, Theorem V.8.2], with the algebraic groups GLn providing the data for
the solution set condition (by Tannakian duality). Given a set of primes L, define the
L–algebraic completion �L;alg to be .�^L/alg . If P is the set of all primes, we simply
write y�alg WD �P;alg .

Remarks 3.2 Since representations with finite monodromy are algebraic there is a
canonical retraction �L;alg! �^L of pro-algebraic groupoids.

The motivating example for this definition is when � D � Ket
f
.X /, the étale fundamental

groupoid of an algebraic variety.
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The following definition is a slight generalisation of [38, Definition 2.1], and extends
Definition 2.20 to pro-groupoids:

Definition 3.3 Given a pro-groupoid � with Ob.�/ discrete, a reductive pro-algebraic
groupoid R over Q` , and a Zariski-dense (ie essentially surjective on objects and
Zariski-dense on morphisms) continuous map

�W �^L !R.Q`/;

where the latter is given the `–adic topology, we define the relative Malcev completion
�L;�;Mal (or �L;R;Mal ) to be the universal diagram

�^L
g
�! �L;�;Mal.Q`/

f
�! zR.Q`/;

where zR is the groupoid equivalent to R on objects Ob� (as in Definition 2.20),
with f W �L;�;Mal! zR a pro-unipotent extension of pro–Q`–algebraic groupoids, g a
continuous map of topological groupoids, and their composition equal to � .

To see that this universal object exists, we note that this description determines the linear
representations of �L;�;Mal (as described in Remarks 3.4). Since these form a multifi-
bred tensor category, Tannakian duality [37, Remark 2.6] then gives a construction of
�L;�;Mal .

Remarks 3.4 By considering groupoid homomorphisms �^L !
`

n GLn.Q`/, ob-
serve that finite-dimensional linear representations of �L;alg are just continuous Q`–
representations of �^L .

Finite-dimensional representations of �L;�;Mal are only those continuous Q`–represen-
tations whose semisimplifications are R–representations. Moreover, if we let R be the
reductive quotient �L;red of �L;alg , then �L;alg D �L;R;Mal .

Definition 3.5 Given an n–dimensional Q`–vector space V , a lattice ƒ in V is a
rank n Z`–submodule ƒ� V .

Lemma 3.6 If � is a pro-finite group, V an n–dimensional Q`–vector space, and
�W � ! GL.V / a continuous representation (where the latter is given the `–adic
topology) then there exists a lattice ƒ� V such that � factors through GL.ƒ/.

Proof Since � is pro-finite, it is compact, and hence �.�/�GL.V / must be compact.
[46, LG 4, Appendix 1, Theorems 1 and 2] show that every compact subgroup of
GL.V / is contained in a maximal compact subgroup, and that the maximal compact
subgroups are of the form GL.ƒ/. Explicitly, we choose a lattice ƒ0 � V , then set
ƒD

P

2� �.
 /ƒ0 (with compactness ensuring the sum is finite).
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Remark 3.7 In particular, when � D � Ket
f
.X /, this means that finite-dimensional

representations of �alg are smooth Q`–sheaves on X , while finite-dimensional repre-
sentations of � red are semisimple Q`–sheaves. The Zariski-dense map �W �!R.Q`/

identifies R–representations with a full tensor subcategory of semisimple Q`–sheaves,
and ��;Mal –representations are Artinian extensions of these semisimple sheaves.

Proposition 3.8 Given a locally pro-finite groupoid � with discrete objects (as in
Remark 1.10), and a Zariski-dense continuous map

�W �^L !G.Q`/

to a pro–Q`–algebraic groupoid, there is a canonical model GZ` for G over Z` for
which � factors through a Zariski-dense map

�Z` W �
^L !GZ`.Z`/:

Proof Assume that � is an isomorphism on objects (replacing G by an equivalent
groupoid). Let C be the category of continuous � –representations in finite free Z`–
modules. For each x 2 Ob� , this gives a fibre functor !x from C to finite free
Z`–modules.

If we let D be the category of �–representations in finite-dimensional Q`–vector
spaces, with the fibre functors also denoted by !x , then the category of G –represen-
tations is equivalent to a full subcategory D.G/ of D , since � is Zariski-dense. By
Tannakian duality (as in [37, Section 2.1]), there are isomorphisms

G.x;y/.A/Š Iso˝.!xjD.G/; !y jD.G//.A/;

where Iso˝ is the set of natural isomorphisms of tensor functors.

Now, by Lemma 3.6, the functor ˝Q`W C!D is essentially surjective. Let C.G/ be
the full subcategory of C whose objects are those ƒ for which ƒ˝Q` is isomorphic
to an object of D.G/; these are � –lattices in G –representations. Define

GZ`.x;y/.A/ WD Iso˝.!xjC.G/; !y jC.G//.A/;

observing that this is an affine scheme (since it preserves all limits), with GZ`˝Q`DG .

Equivalently, we could set O.GZ`/�O.G/ to be ffLf .�.
 // 2 Z` 8
 2 �g.

Definition 3.9 Given a finite-dimensional nilpotent Lie algebra u over Q` , equipped
with the continuous action of a pro-finite group � (respecting the Lie algebra structure),
we say that a lattice ƒ� u is admissible if it satisfies the following:
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(1) ƒ is a � –subrepresentation.

(2) ƒ is closed under all the monomials in the Campbell–Baker–Hausdorff formula

log.ea
� eb/D

X
n>0

.�1/n�1

n

X
riCsi>0
1�i�n

.
Pn

iD1.ri C si//
�1

r1!s1! � � � rn!sn!
Œar1bs1ar2bs2 : : : arnbsn �;

where

Œar1bs1 � � � arnbsn �D Œ

r1‚ …„ ƒ
a; Œa; : : : Œa; Œ

s1‚ …„ ƒ
b; Œb; : : : Œb; : : : Œ

rn‚ …„ ƒ
a; Œa; : : : Œa; Œ

sn‚ …„ ƒ
b; Œb; : : : b�� : : :��;

understood to be 0 if sn > 1 or if sn D 0 and rn > 1.

Lemma 3.10 If ƒ� u is an admissible lattice and u 2N , then the image of ƒ under
the exponential map

expW u! exp.u/

is a pro-finite subgroup.

Proof We may regard exp.u/ as being the set u, with multiplication given by the
Campbell–Baker–Hausdorff formula (which has only finitely many terms in this case,
since u is nilpotent). Since ƒ is closed under all the operations in the formula, it is
closed under multiplication. As exp is a homeomorphism, exp.ƒ/ is compact and thus
pro-finite.

3.2 Pro–Q` –algebraic homotopy types

We now proceed as in Section 2.2, extending to a simplicial framework in order to
study the loop groupoid (and hence the whole homotopy type), rather than just the
fundamental groupoid.

Definition 3.11 Given a pro-simplicial groupoid G with Ob.G/ a discrete set, we
define the pro-algebraic completion GL;alg 2 sAGpd to represent the functor

sAGpd! Set

H 7! HomsTopGpd.G
^L ;H.Q`//;

where TopGpd denotes the category of topological groupoids. Note that Lemma 1.17
implies that we can compute this levelwise by .GL;alg/n D .Gn/

L;alg .

Remark 3.12 It is natural to ask whether G 7!GL;alg is left Quillen for any suitable
model structure on pro–L simplicial groupoids. This cannot be the case, since the
functor is not even a left adjoint, essentially because Q` is not pro-finite.
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Definition 3.13 Given a pro-simplicial groupoid G with Ob.G/ discrete, a reductive
pro-algebraic groupoid R over Q` , and a Zariski-dense continuous map

�W �0.G/
^L !R.Q`/;

where the latter is given the `–adic topology, we define the relative Malcev completion
GL;�;Mal 2 sE.R/� sAGpd#R by .GL;�;Mal/n WD .Gn/

L;�ıan;Mal , for anW Gn!�0G

the canonical map.

Note that �0.G
L;�;Mal/D �0.G/

L;�;Mal .

Lemma 3.14 If the continuous action of a pro-finite group � on u� 2 sNQ` is
semisimple, then u is the union of its � –equivariant simplicial admissible sublattices.

Proof Since the action of � is semisimple, we may take a complement V� � u�
of Œu�; u�� as a simplicial � –representation. Given a lattice M � V , let g.M / � u

denote the Z`–submodule generated by M and the operations in the Campbell–Baker–
Hausdorff formula. Since u is nilpotent, it follows that g.M / is a finitely generated
Z`–module, and hence a lattice in u. By semisimplicity and Lemma 3.6, there exists a
� –equivariant lattice ƒ� � V� . The lattices `�nƒ� � V� are also then � –equivariant
for n� 0, so the lattices g.`�nƒ�/� u� are all admissible.

It only remains to show that
S

g.`�nƒ/! u is a surjective map of Lie algebras. This
follows since

S
`�nƒ! u=Œu; u� is surjective.

Lemma 3.15 Given a compact topological space K and a finite-dimensional nilpotent
Q`–Lie algebra u, the map

Homcts.K;Z`/˝Z` u! Homcts.K; u/

is an isomorphism.

Proof First observe that the map is clearly injective, since u is a flat Z`–module.
For surjectivity, note that the image of f W K! u must be contained in an admissible
sublattice ƒ� u (by compactness and Lemma 3.14). Now,

Homcts.K; ƒ/Š Homcts.K;Z`/˝Z` ƒ;

since ƒ is a finite free Z`–module.

Definition 3.16 Given a continuous representation V of b�fX in Q`–vector spaces,
recall the standard definition that

H�.X;V / WD H�.X; ƒ/˝Z` Q`;
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for any �fX –equivariant Z`–lattice ƒ � V as in Lemma 3.6, and H�.X; ƒ/ as in
Definition 1.23.

Remark 3.17 If X is discrete, note that this is not in general the same as cohomology
Hn.X;V ı/ of the discrete �fX –representation V ı underlying V . However, both
will coincide if Hn.G; ƒ

_/ has finite rank, by the Universal Coefficient Theorem and
Lemma 1.25.

Example 3.18 If X is a locally Noetherian simplicial scheme, we may consider the
étale topological type XKet 2 pro.S/, as defined in [10, Definition 4.4]. Since .XKet/0 is
the set of geometric points of X0 , we may then apply the constructions of this section.
For a finite local system M on X , we have

H�.XKet;M /Š H�
Ket.X;M /;

by [10, Proposition 5.9]. For an inverse system M D fMig of local systems, we have

H�.XKet;M /D H�.lim
 �

i

C�
Ket.X;Mi//D H�

Ket.X; .M //;

where C�
Ket is a variant of the Godement resolution and H�

Ket.X; .M // is Jannsen’s
continuous étale cohomology [20]. If the groups H�

Ket.X;Mi/ satisfy the Mittag-Leffler
condition (in particular, if they are finite), then

H�.XKet;M /Š lim
 �

i

H�
Ket.X;Mi/:

[10, Theorem 7.3] shows that XKet 2
yS whenever the schemes Xn are connected and

geometrically unibranched. It seems that this result can be extended to simplicial
schemes (or even simplicial algebraic spaces) for which the homotopy groups � Ket

m.Xn/

satisfy the �� -Kan condition [11, Section IV.4], provided the simplicial set �.X /� ,
given by �.X /n WD�.Xn/, the set of connected components of Xn , has finite homotopy
groups.

Proposition 3.19 Take X 2 pro.S/ with X0 discrete, and a Zariski-dense continuous
map

�W �f .X /
^L !R.Q`/;

for ` 2 L, with Ob R D Ob�f .X /. Then G.X /L;�;Mal is cofibrant (for the model
structure of Lemma 2.16), the map G.X /L

0;�;Mal!G.X /L;�;Mal is an isomorphism
for all L�L0 , and

H�.G.X /L;�;Mal;V /Š H�.X; ��V /:
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Proof Let ��R.Q`/ be the image of � . Write fX˛g˛2I for the inverse system X .
For u 2 sN .R/,

HomsTopGpd.G.X /
^L ; exp.u/ÌR/R D HomsTopGpd.G.X /

^L ; exp.u/Ì�/�:

Since u 2 sN .R/, the normalisation N u is bounded in degrees � n, say. This
implies that uD cosknC1 u, the .nC1/–coskeleton, or equivalently that any simplicial
morphism Y ! u is determined by the maps Yi! ui for i � nC 1.

So any morphism f W G.X /^L!exp.u/Ì� is determined by the maps fi W G.X /
^L

i !

exp.ui/Ì� for i � nC 1. Now, by Lemma 3.14, exp.u/Ì� is the union over all
admissible �–equivariant sublattices ƒ � u of exp.ƒ/ Ì�. Since each G.X /

^L

i

is compact, its image in exp.ui/ Ì� must be contained in exp.ƒi/ Ì� for some
admissible ƒ� u. By choosing ƒ large enough that this holds for all i � nC 1, we
see that

HomsTopGpd.G.X /
^L ; exp.u/ÌR/R

D lim
�!

ƒ�u admissible

HomsTopGpd.G.X /
^L ; exp.ƒ/Ì�/�

D lim
�!

ƒ�u admissible

Homs pro.GpdL/.G.X /
^L ; exp.ƒ/Ì�/�;

because pro.GpdL/ is a full subcategory of TopGpd. Here, exp.ƒ/Ì�2 pro.sGpdL/

denotes the pro-object f.exp.ƒ/= exp.`mƒ//Ì�gm . From now on, we will abuse nota-
tion by writing exp.ƒ=`nƒ/ or even exp.ƒ=`n/ for the finite group exp.ƒ/= exp.`nƒ/.

Now, since ƒD cosknC1ƒ, any morphism f W H ! exp.ƒ=`mƒ/Ì� is determined
by the maps fi for i � nC1. As exp.ƒ=`mƒ/ is levelwise finite, and filtered colimits
commute with finite limits, this means that

Homs pro.GpdL/.G.X /
^L ; exp.ƒ/Ì�/� D Hompro.sGpdL/.G.X /

^L ; exp.ƒ/Ì�/�:

Hence HomsTopGpd.G.X /
^L ; exp.u/ÌR/R

D lim
�!

ƒ�u admissible

Hompro.sGpdL/.G.X /; exp.ƒ/Ì�/�:

Under the adjunction G a SW , this becomes

lim
�!

ƒ�u admissible

Hompro.S/.X; SW .exp.ƒ/Ì�// SW�:

This expression is independent of L, so we have shown G.X /L
0;�;Mal!G.X /L;�;Mal

is an isomorphism for all L�L0 .
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For pW u! v an acyclic small extension with kernel I in sN .R/, and an admissible
lattice ƒ0<u, consider the map ƒ0!p.ƒ0/. This is surjective, and H�.ƒ0\I/˝Q`D

0, since .ƒ0\ I/˝Q` Š I . As H�.I/D 0, we may choose a �–equivariant lattice
ƒ0\I <M < I such that H�.M=`M /D 0. Let ƒ WDƒ0CM , noting that this is an
admissible lattice (p being small), with the maps ƒ=`n! p.ƒ/=`n all acyclic.

In order to show that G.X /L;�;Mal is cofibrant, take an arbitrary map f W G.X /^L !

exp.v/Ì� over � ; this must factor through exp.p.ƒ0// for some admissible lattice
ƒ0 < u, and we may replace ƒ by ƒ0 as above. It therefore suffices to show that the
corresponding map

f W X ! SW .exp.p.ƒ//Ì�/
in pro.S/ lifts to SW .exp.ƒ/Ì�/. For each n 2N , we have a map

fnW X˛.n/! SW .exp.p.ƒ/=`n/Ì�/;

and these are compatible with the structural morphisms.

We now prove existence of the lift by induction on n. Assume we have gnW X˛.n/!
SW .exp.ƒ= ln/Ì�/, such that p ıgn D fn . This gives a map

.fnC1;gn/W X˛.n/! SW .exp..p.ƒ/=`nC1/�p.ƒ/=`n .ƒ=`n//Ì�/:

However, ƒ=`nC1! .p.ƒ/=`nC1/�p.ƒ/=`n .ƒ=`n/ is an acyclic small extension, so

SW .exp.ƒ=`nC1/Ì�/! SW .exp..p.ƒ/=`nC1/�p.ƒ/=`n .ƒ=`n//Ì�/

is a trivial fibration, so we can construct a lift gnC1W X˛.nC1/!
SW .exp.ƒ=`nC1/Ì�/.

This completes the proof that G.X /L;�;Mal is cofibrant.

Finally, if V is an R–representation then HnC1.G.X /L;�;Mal;V / is the coequaliser
of the diagram

HomsAGpd#R.G.X /
L;�;Mal; .N�1V Œ�n�/�

1

/

//// HomsAGpd#R.G.X /
L;�;Mal;N�1V Œ�n�/:

For a �–equivariant lattice ƒ� V , this is the direct limit over m of

Hompro.S#SW R/.X;
SW ..N�1`�mƒŒ�n�/�

1 ÌR//

//// Hompro.S#SW R/.X;
SW .N�1`�mƒŒ�n�ÌR//:

Hence

HnC1.G.X /L;�;Mal;V /Š lim
�!
m

HnC1.X; l�mƒ/DHnC1.X; ƒ/˝Q` DHnC1.X;V /;

as required.
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Definition 3.20 Given X and � as above, define the relative Malcev homotopy type

X �;Mal
WDG.X /P;�;Mal;

where P is the set of all primes, noting that this is isomorphic to G.X /L;�;Mal for all
L 3 `, by Proposition 3.19 and Proposition 2.39.

Define X L;alg
WDG.X /L;alg:

Remark 3.21 Note that if X 2 S , this definition of Malcev completion differs
slightly from the Malcev homotopy type X �;Mal of Definition 2.51, which is given by
G.X /�;Mal . However, the following lemma rectifies the situation.

Lemma 3.22 For X 2 S and �W �f .X /^L !R.Q`/ Zariski-dense and continuous,
there is a canonical map

G.X /�;Mal
!G.X /L;�;Mal

I

this is a quasi-isomorphism whenever the groups Hn.X;V / are finite-dimensional for
all finite-dimensional R–representations V .

Proof Existence of the map is immediate. To see that it gives a quasi-isomorphism,
Proposition 2.39 shows that we need only look at cohomology groups. Given an
R–representation V corresponding to a local system V over Q` on X , the map on
cohomology groups is

H�.X^L ;V /! H�.X;V /I

this is an isomorphism by Remark 3.17.

Definition 3.23 Define pro-algebraic (or schematic) and relative homotopy groups by
$n.X

^L/ WD �n�1.G.X /
L;alg/ and $n.X

�;Mal/ WD �n�1.G.X /
P;�;Mal/.

Define pro-algebraic (or schematic) and relative fundamental groupoids by

$f .X
^L/ WD �f .X /

L;alg and $f .X
�;Mal/ WD b�fX �;Mal:

Define $f . yX /;$n. yX / by the convention that yX DX^P , for P the set of all primes.

Note that Lemma 3.6 implies that for a locally Noetherian scheme X , finite-dimensional
$f .X

^L

Ket /–representations correspond to smooth Q`–sheaves on X .

The following now follow immediately from Proposition 2.39
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Corollary 3.24 A map f W X ! Y in pro.S/, with X0;Y0 discrete, induces an
isomorphism

f L;alg
W X L;alg

! Y L;alg

of homotopy types if and only if the following conditions hold:

(1) f � induces an equivalence between the categories of finite-dimensional semisim-
ple continuous Q`–representations of .�fX /^L and .�f Y /^L .

(2) For all finite-dimensional semisimple continuous Q`–representations V of �f Y ,
the maps

f �W H�.Y;V /! H�.X; f �V /

are isomorphisms.

Corollary 3.25 Take a map f W X ! Y in pro.S/, with X0;Y0 discrete, and with a
Zariski-dense morphism �W .�f Y /^L !R.Q`/ such that � ıf W .�fX /^L !R.Q`/

is also Zariski-dense. Then f induces an isomorphism

f R;Mal
W X R;Mal

! Y R;Mal

of homotopy types if and only if for all R–representations V , the maps

f �W H�.Y; ��V /! H�.X; f ���V /

are isomorphisms.

3.3 Equivariant cochains

Proposition 2.79 showed how the schematic homotopy type of a manifold can be
recovered from the de Rham complex with local system coefficients. We will now
establish an analogue for algebraic varieties, involving an étale Godement resolution
with coefficients in smooth Q`–sheaves.

Lemma 3.26 If ƒ is a � –representation in pro-simplicial groups such that ƒÌ� 2
pro.sGpd/, then

Hom�;pro.S/. zX ; SWƒ/Š Hompro.S/#B�.X; SW .ƒÌ�//;

for zX as in Definition 1.20.

Proof The calculation is essentially the same as for [37, Lemma 3.53].
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Definition 3.27 Given an ind-finite rank Z`–local system (ie a filtered direct system
in the category of finite rank Z`–local systems) V D fV˛g˛ , define

C�.X;V / WD lim
�!
˛

C�.X;V˛/;

where the right-hand side is given in Definition 1.21.

Definition 3.28 Given a pro-algebraic groupoid G over Z` , define O.G/ to be the
G �G –representation given by global sections of the structure sheaf of G , equipped
with its left and right G –actions.

Given a representation �W �fX ! G.Z`/, let O.G/ be the G–representation in
(ind-finite rank) Z`–local systems on X given by pulling O.G/ back along its right
G –action.

Definition 3.29 Given X;L; �;R as in Proposition 3.19, let RZ` be the Z`–model
for R constructed in Proposition 3.8, and set

C�.X;O.R// WD C�.X;O.RZ`//˝Z` Q`:

Theorem 3.30 For X;L; �;R as in Proposition 3.19, the relative Malcev homotopy
type

G.X /L;�;Mal
2 sAGpd#R

corresponds under the equivalences of Proposition 2.50 and Theorem 2.74 to the R–
representation

C�.X;O.R//

in cosimplicial k –algebras, equipped with its natural augmentation toY
x2X0

C�.x;O.R//D
Y

x2Ob R

O.R/.x;�/:

Proof We need to show that, for u 2 sN .R/,

HomsAGpd#R.G.X /
L;�;Mal; exp.u/ÌR/

Š Homs Aff.R/.Spec C�.X;O.R//; SW .exp.u///:

Adapting the proof of Proposition 3.19, we know that

HomsAGpd#R.G.X /
L;�;Mal; exp.u/ÌR/

Š lim
�!
ƒ

Hompro.S/.X; SW .exp.ƒ/ÌRZ`.Z`///BRZ`
.Z`/;
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where the limit is taken over ƒ� u admissible. By Lemma 3.26,

Hompro.S/.X; SW .exp.ƒ/ÌRZ`.Z`///BRZ`
.Z`/ŠHomRZ`

.Z`/;pro.S/. zX ; SW exp.ƒ//:

If we regard exp.ƒ/ as the Z`–valued points of the group scheme exp.ƒ/.A/ WD
exp.ƒ˝A/, then this is an affine space, so

Hompro.S/. zX ; SW exp.ƒ//Š Homs AffZ`
.Spec C�. zX ;Z`/; SW exp.ƒ//:

Since ƒŠƒ˝R
Z`

O.RZ`/, we then have

HomRZ`
.Z`/;pro.S/. zX ; SW exp.ƒ//

Š Homs Aff.RZ`
/.Spec C�.X;O.RZ`//;

SW exp.ƒ//:

The map

lim
�!
ƒ

Homs Aff.RZ`
/.Spec C�.X;O.RZ`//;

SW exp.ƒ//

! lim
�!
ƒ

Homs Aff.RZ`
/.Spec C�.X;O.RZ`//˝Q`; SW exp.ƒ//

is clearly injective. However, since there exists an admissible lattice ƒ0 with l�nƒ�ƒ0 ,
the map must also be surjective. Finally, note that

Homs Aff.RZ`
/.Spec C�.X;O.RZ`//˝Q`; SW exp.ƒ//

D Homs Aff.R/.Spec C�.X;O.R//; SW exp.ƒ˝Q`//;

as required.

Remarks 3.31 We could use Proposition 2.70 to replace C�.X;O.R// with a DG alge-
bra, giving a more reassuring analogue of the de Rham algebra used in Proposition 2.79
to govern relative Malcev homotopy types of manifolds. This is the approach taken
by Olsson [33], and when RD 1, it corresponds to Deligne’s Q`–homotopy type [5,
Section V]. However, in the sequel we will work systematically with cosimplicial rather
than DG objects – both approaches being equivalent, the transfer can add unnecessary
complication.

Note that if we take a scheme X , then Proposition 2.76 adapts to show that C�.XKet;V /
is a Godement resolution for the continuous étale cohomology of V . Under the
comparison of Corollary 2.77, this shows that for an algebraic variety X , 2G.XKet/

alg

agrees with the `–adic homotopy type discussed in [49, Section 3.5.3].
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Given any morphism �W $f .cXKet/
red ! R to a reductive group, there is a forgetful

functor �]W s yN .R/! s yN .$f .cXKet/
red/. If we write L�] for the derived left adjoint

and � is surjective, then

Ru.2G.XKet/
�;Mal/D L�]Ru.2G.XKet/

alg/:

Note that for C a Tannakian subcategory (see Definition 2.6) of FD Rep.$f .cXKet/
red/,

with corresponding groupoid G , the homotopy type XCKet of [33, 1.5] is equivalent to
L�]Ru.1G.X /alg/, for �W $f .cXKet/

red!G .

3.4 Completing fibrations

Observe that the definitions and results of Section 2.4 extend naturally to pro-groupoids
and pro-spaces; we will make use of this extension without further comment.

Theorem 3.32 Take a pro-fibration f W .X;x/ ! .Y;y/ of connected objects in
pro.S/ with connected fibres, and set F WD f �1.y/. Take a Zariski-dense repre-
sentation �W �1.X;x/! R.Q`/ to a reductive pro-algebraic group R, let K be the
Zariski closure of �.�1.F;x//, and set T WD R=K . If the monodromy action of
�1.Y;y/ on H�.F;V / factors through $1.Y;y/

T;Mal for all K–representations V ,
then G.F;x/K ;Mal is the homotopy fibre of G.X;x/R;Mal!G.Y;y/T;Mal .

In particular, there is a long exact sequence

� � � !$n.F;x/
K ;Mal

!$n.X;x/
R;Mal

!$n.Y;y/
T;Mal

!$n�1.F;x/
K ;Mal

!

� � � !$1.F;x/
K ;Mal

!$1.X;x/
R;Mal

!$1.Y;y/
T;Mal

! 1:

Proof We adapt the proof of Theorem 2.43.

First observe that �.�1.F;x// is normal in �1.X;x/, so K is normal in R, and T is
therefore a reductive pro-algebraic group, so .Y;y/T;Mal is well-defined. Next, observe
that since K is normal in R, Ru.K/ is also normal in R, and is therefore 1, ensuring
that K is reductive, so .F;x/K ;Mal is also well-defined.

Consider the complex O.R/˝O.T /O.G.Y;y/
T;Mal/ of G.X;x/R;Mal –representations,

regarded as a cosimplicial G.X;x/–representation. Since G.F;x/! ker.G.X;x/!
G.Y;y// is a weak equivalence, the Hochschild–Serre spectral sequence for f (see
Proposition 2.36) with coefficients in this complex is

E
i;j
2
D Hi.G.Y;y/;Hj .F;O.R//˝O.T /O.G.Y;y/T;Mal//

H) HiCj .G.X;x/;O.R/˝O.T /O.G.Y;y/T;Mal//:
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Regarding O.R/ as a K–representation, H�.F;O.R// is a $1.Y;y/
T;Mal –represen-

tation by hypothesis. Hence H�.F;O.R//˝O.T / O.G.Y;y/T;Mal/ is a cosimplicial
G.Y;y/T;Mal –representation, so

Hi.G.Y;y/;Hj .F;O.R//˝O.T /O.G.Y;y/T;Mal//

ŠHi.G.Y;y/T;Mal;Hj .F;O.R//˝O.T /O.G.Y;y/T;Mal//;

by Lemma 2.42.

Now, H�.F;O.R//˝O.T / O.G.Y;y/T;Mal/ is a fibrant cosimplicial G.Y;y/T;Mal –
representation, so

Hi.G.Y;y/T;Mal;Hj .F;O.R//˝O.T /O.G.Y;y/T;Mal//

Š Hi�.G.Y;y/T;Mal;Hj .F;O.R//˝O.T /O.G.Y;y/T;Mal//

D

(
Hj .F;O.R//˝O.T / k D Hj .F;O.K// i D 0;

0 i ¤ 0;

so Hj .G.X;x/;O.R/˝O.T /O.G.Y;y/T;Mal//Š Hj .F;O.K//:

Now, let F be the homotopy fibre of G.X;x/R;Mal!G.Y;y/T;Mal (which is just the
kernel as this map is surjective), noting that there is a natural map G.F;x/K ;Mal! F .
Lemma 2.42 implies that

Hj .G.X;x/;O.R/˝O.T /O.G.Y;y/T;Mal//

DHj .G.X;x/R;Mal;O.R/˝O.T /O.G.Y;y/T;Mal//;

and [37, Theorem 1.51] gives a Hochschild–Serre spectral sequence

Hi.G.Y;y/T;Mal;Hj .F ;O.R//˝O.T /O.G.Y;y/T;Mal//

H) HiCj .G.X;x/R;Mal;O.R/˝O.T /O.G.Y;y/T;Mal//:

The reasoning above adapts to show that this spectral sequence also collapses, yielding

Hj .F ;O.K//DHj .G.X;x/;O.R/˝O.T /O.G.Y;y/T;Mal//:

We have therefore shown that the map G.F;x/K ;Mal! F gives an isomorphism

H�.F ;O.K//! H�.G.F;x/K ;Mal;O.K//;

and hence isomorphisms H�.F ;V / ! H�.G.F;x/K ;Mal;V / for all K–represen-
tations V . Since this is a morphism of simplicial pro-unipotent extensions of K ,
[37, Corollary 1.55] implies that G.F;x/K ;Mal! F is a weak equivalence.
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Examples 3.33 Note that we can apply this theorem to fKetW XKet ! YKet whenever
f W X ! Y is geometric fibration in the sense of [10, Definition 11.4]. This includes
smooth projective morphisms, as well as smooth quasiprojective morphisms where
the divisor is transverse to f . The fibre of fKet over y will then be equivalent to
.f �1fyg/Ket .

Another source of examples comes from nerves of pro-finite groups. Any surjection
gW �!� of pro-finite groups gives a pro-fibration B�! B�, with fibre B.ker g/.

Of course, even if f W X ! Y is not a pro-fibration, we can take a fibrant replacement.
This will have connected fibres if and only if �1.X;x/! �1.Y;y/ is surjective, and
the theorem then describes the homotopy fibre of f .

3.5 Comparison with Artin–Mazur homotopy groups

Lemma 3.34 Let f W X ! Y be a morphism in pro.S/ı for which the map

�n.f /W �n.X /! �n.Y /

is a pro-isomorphism for n � N and a pro-surjection for n D N C 1, and take a
continuous Zariski-dense morphism �W �f Y !R.Q`/. Then the map

$n.f /W $n.X; � ıf /
Mal
!$n.Y; �/

Mal

is an isomorphism for n�N and a surjection for nDN C 1.

Proof The proof of Lemma 2.22 carries over to this generality.

Definition 3.35 By analogy with Definition 2.23, say that a locally pro-discrete
groupoid � is n–good with respect to a continuous Zariski-dense representation
�W � ! R.Q`/ to a reductive pro-algebraic groupoid if for all finite-dimensional
��;Mal –representations V , the map

Hi.��;Mal;V /! Hi.�;V /

is an isomorphism for all i � n and an inclusion for i D nC 1. Say that � is good
with respect to � if it is n–good for all n.

If � is (n–)good relative to � red , then we say that � is algebraically (n–)good.

Lemma 3.36 A pro-groupoid � is N –good with respect to � if and only if for any
finite-dimensional ��;Mal –representation V , and ˛ 2 Hn.�;V / for n � N , there
exists an injection f W V ! W˛ of finite-dimensional ��;Mal –representations, with
f .˛/D 0 2 Hn.�;W˛/.

Proof This is a special case of the results of [41, Section 1.2.3], which adapt directly
from groups to groupoids.
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Lemma 3.37 Let � be a locally finitely presented .L;N /–good groupoid and let
�W �^L !R.Q`/ be a Zariski-dense representation, with ` 2L. Then � is N –good
relative to �W �!R.Q`/ if and only if �^L is N –good relative to � .

Proof Take a finite-dimensional R–representation V . By Lemma 3.22, .B�/�;Mal '

.B�/L;�;Mal . Since � is L–good, Proposition 1.36 gives that �n..B�/
^L/D 0 for

all 1 < n � N . Applying Lemma 3.34 to the morphism .B�/^L ! B.�^L/, the
observations above show that

$n.B�/
�;Mal

!$n.B.�
^L//L;�;Mal

is an isomorphism for n�N and a surjection for nDN C 1.

Now, [41, Section 1.2.3] shows that a pro-group G is N –good relative to � if and
only if $n.BG/L;�;Mal D 0 for 1< n�N , and the same proof adapts to groupoids.
Thus � is N –good relative to � if and only if �^L is so.

Examples 3.38 A pro-finite group � is good with respect to a representation �W �^L!

R whenever any of the following holds:

(1) � is finite, or �^L Š�^L , for � a finitely generated free discrete group.

(2) �^L Š�^L , for � a finitely generated nilpotent discrete group.

(3) �^L Š�^L , for � the fundamental group of a compact Riemann surface. In
particular, this applies if � is the fundamental group of a smooth projective
curve C=k , for k a separably closed field whose characteristic is not in L.

(4) If 1! F ! � ! …! 1 is an exact sequence of groups, with F finite and
F^L! �^L injective, assume that …^L is good relative to R=�.F /, where
denotes Zariski closure. Then � is good relative to � .

Proof Combine Lemma 3.37 with Examples 1.28 and [37, Examples 3.20].

Remark 3.39 For an example of an important pro-finite group which is not good
with respect to a representation, note that Spg.Z`/ is not good with respect to the
natural map �W Spg.Z`/! Spg.Q`/ for g� 2. In fact, $2..B Spg.Z`//

�;Mal/ŠGa .
This issue arises in [14], considering the pro-finite mapping class group �g acting
on a genus g curve. The action on cohomology gives a map �W �g ! Spg.Z`/
with kernel Tg , the Torelli subgroup, and the map T

1;Mal
g ! ker.��;Mal

g ! Spg/ has
kernel Ga . Theorem 3.32 allows us to interpret this copy of Ga as the image of the
connecting homomorphism $2..B Spg.Z`//

�;Mal/! T
1;Mal
g .
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Theorem 3.40 Let L be a set of primes containing `, and take X 2 pro.S/ı with fun-
damental groupoid �fX D � , equipped with a continuous Zariski-dense representation
�W �^L !R.Q`/ to a reductive pro-algebraic groupoid. If

(1) �n.X
^L ;�/˝yZ Q` is finite-dimensional for all 1< n�N , and

(2) the �^L –representation �n.X
^L ;�/˝yZ Q` is an extension of R–represen-

tations (ie a �L;�;Mal –representation) for all 1< n�N ,

then for each x 2X there is an exact sequence

$NC1.X
L;�;Mal;x/ // $NC1..B�/

L;�;Mal/

rr
// �N .X

^L ;x/˝yZ Q`
// $N .X

L;�;Mal;x/ // $N ..B�/
L;�;Mal/ // : : :

: : : // �2.X
^L ;x/˝yZ Q`

// $2.X
L;�;Mal;x/ // $2..B�/

L;�;Mal/ // 0:

In particular, if in addition �^L is .NC1/–good (resp. N –good) with respect to � ,
then the canonical map

�n.X
^L ;�/˝yZ Q`!$n.X

L;�;Mal/

is an isomorphism for all n�N (resp. an isomorphism for all n<N and a surjection
for nDN ).

Proof Without loss of generality, we may assume that X is connected, choose a
point x 2 X , and replace R with the group R.x;x/. Let . zX ;x/ be the universal
cover of .X;x/, and note that we have a homotopy fibration sequence . zX ;x/ !
.X;x/! B�1.X;x/, which means that we can apply Theorem 3.32 (after taking a
fibrant replacement for .X;x/! B�1.X;x/). This immediately gives the long exact
sequence

� � � !$n. zX ;x/!$n.X;x/
R;Mal

!$n.B�1.X;x//
R;Mal

!$n�1. zX ;x/
K ;Mal

! � � � !$2. zX ;x/!$2.X;x/
R;Mal

!$2.B�1.X;x//
R;Mal

! 0:

It therefore suffices to show that

�n. zX
^L ;x/˝yZ Q`!$n. zX

L;alg;x/

is an isomorphism for n�N .
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We may assume that zX D f zX˛g˛ is an inverse system of fibrant simplicial sets, and
then form the tower f zX .n/gn by setting zX .n/ D f zX˛.n/g˛ , where f zX˛.n/gn the
Moore–Postnikov tower of zX˛ .

Note that if zX .N / satisfies the theorem, then we can apply Lemma 3.34 to the morphism
zX ! zX .N /, so zX will also satisfy the theorem. We now prove by induction on n that
zX .n/ satisfies the theorem for n�N .

For n D 1, zX .1/ is contractible, making the long exact sequence automatic. Now,
assume that zX .n� 1/ satisfies the inductive hypothesis, and consider the pro-fibration
zX .n/! zX .n� 1/, with fibre E.n/ over x . Properties of the Postnikov tower give

that �i
zX .n/D �i

zX for all i � n, with E.n/ being a K.�nX; n/–space.

The long exact sequence of Theorem 3.32 gives $i.E.n/
alg/Š$i. zX .n/

L;�;Mal/ for
i � n, and exact sequences

$i.E.n/
alg/!$i. zX .n/

L;alg/! �i. zX
^L/˝yZ Q`!$i�1.E.n/

alg/:

Since E.n/ is a K.�nX; n/–space, the problem thus reduces to establishing the the-
orem for the case when X is a K.�; n/ space (for n � 2), and R D 1. Unlike [37,
Theorem 1.58], we cannot now immediately appeal to the Curtis convergence theorem
to show that for any pro-discrete abelian group � and n� 2, the map

G.K.�; n//L;alg
!N�1.y� ˝yZ Q`Œ1� n�/

is a weak equivalence of simplicial unipotent groups.

Instead, observe that we may replace � by � ỳ, so assume that � is a pro–` group.
Since � ˝Z` Q` is finite-dimensional, we may write � D � yl , for � an abelian group
of finite rank. On cohomology, we have maps

(|) H�.N�1.� ˝Z` Q`Œ1� n�/;Q`/! H�.K.�; n/;Q`/! H�.K.�; n/;Q`/:

By [44, Theorem I.3.4], the Lie algebra � ˝Z Q`Œ1� n� is the Q`–homotopy type
of K.�; n/. Since � ˝Z` Q` D � ˝Z Q` , the composite is an isomorphism in (|),
while the second map is an isomorphism by Lemma 1.35. Thus the first map is also an
isomorphism, as required.

For the final part, we just note that [41, Section 1.2.3] shows that � is N –good relative
to � if and only if $n..B�/

L;�;Mal/D 0 for 1< n�N .

3.6 Comparison of homotopy types for complex varieties

Let X� be a simplicial scheme of finite type over C . To this we may associate the étale
homotopy type XKet 2 pro.S/ (as in Example 3.18). There is also an analytic homotopy
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type Xan WD diag Sing.X�.C// 2 S , where diag is the diagonal functor on bisimplicial
sets. We now compare the corresponding schematic homotopy types.

Lemma 3.41 If G is a pro-algebraic group over Q` , and �W �f .Xan/ ! G.Q`/

a representation with compact image (for the `–adic topology on G.Q`/), then �
factorises canonically through 2�f .XKet/, giving a continuous representation

�W 2�f .XKet/!G.Q`/:

Proof It follows from [10, Theorem 8.4] that

2�f .XKet/ Š
2�f .Xan/:

Since G.Q`/ is totally disconnected, any compact subgroup is pro-finite, completing
the proof.

Now, given a reductive pro-algebraic groupoid R, and �W �f .XC/! R.Q`/ with
compact Zariski-dense image, we may compare the relative Malcev homotopy type
X
�;Mal
an of [37, Definition 3.16] with the relative Malcev homotopy type X�;Mal

Ket of
Definition 3.20, since both are objects of Ho.sE.R//.

Theorem 3.42 For X; � as above, there is a canonical isomorphism

X �;Mal
an ŠX�;Mal

Ket :

Proof We adapt [10, Theorem 8.4], which constructs a new homotopy type Xs:Ket , and
gives morphisms

XKet Xs:Ket!Xan

in pro.S/ı , inducing weak equivalences on pro-finite completions. By Lemma 3.22,
X
�;Mal
an is quasi-isomorphic to bXan

�;Mal . By Lemma 1.37, the mapscXKet 
bXs:Ket !

bXan

are weak equivalences in yS . Lemma 3.34 then implies that the mapscXKet
�;Mal

 bXs:Ket
�;Mal

!bXan
�;Mal

are quasi-isomorphisms, as required.

Remarks 3.43 In particular, this shows that there is an action of the Galois group
Gal.C=K/ on the relative Malcev homotopy groups $n.X

�;Mal
an / whenever X is

defined over a number field K and � is Galois-equivariant. The question of when this
action is continuous will be addressed in Section 5.
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It seems possible that the conditions of Theorem 2.25 might be satisfied in some cases
where those of Theorem 3.40 do not hold, giving $n.X

�;Mal
an /Š �n.Xan/˝Z Q` , but

no such examples are known to the author.

4 Relative and filtered homotopy types

The aims of this section are twofold. Firstly, we adapt some of the framework of
pro-algebraic homotopy types to work over a base ring, rather than a base field. This
is motivated by the need in Section 7.2 to phrase the étale-crystalline comparison
over variants of Fontaine’s ring Bcris of p–adic periods, rather than just over Qp .
Secondly, Section 4.3 develops techniques for transferring filtrations systematically
from cochains to homotopy types. These will be used in Sections 6 and 7 to determine
the structure of homotopy types of quasiprojective varieties. This is possible because
the Gysin filtration on homotopy groups (unlike that on cohomology) is not determined
by weights of Frobenius, so imposes further restrictions.

4.1 Actions on pro-algebraic homotopy types

Fix a Q`–algebra A, and a reductive pro-algebraic groupoid R over Q` .

Definition 4.1 Define c AlgA.R/ (resp. DGAlgA.R/) to be the comma category
A#c Alg.R/ (resp. A#DGAlg.R/), with model structure induced by Proposition 2.60
(resp. Lemma 2.68). Denote the opposite category by s AffA.R/ (resp. dg AffA.R/).
Likewise, define

c AlgA.R/� WD c AlgA.R/#
Y

x2Ob R

A˝O.R/.x;�/;

DGAlgA.R/� WDDGAlgA.R/#
Y

x2Ob R

A˝O.R/.x;�/;

and so on.

Observe that the Quillen equivalence of Proposition 2.70 induces Quillen equivalences
between dg AffA.R/� and s AffA.R/� , so gives the following equivalence of cate-
gories:

Ho.dg AffA.R/�/

Spec D //
Ho.s AffA.R/�/:

R.Spec D�/

oo

Although we do not have a precise analogue of Theorem 2.74 for Ho.dg AffA.R/�/0 ,
we have the following:
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Lemma 4.2 Given X 2 dg Aff.R/0� and g 2 dg yN .R/,

HomHo.dg AffA.R/�/.X ˝A; SW g˝A/

Š HomHo.dg yNA.R//
. xG.X / y̋A; g y̋A/�exp.gR

0
y̋A/

Y
x2Ob R

exp.H0g.x/ y̋A/:

Proof The proof of [37, Proposition 3.48] adapts to this context.

4.2 Homotopy actions

Definition 4.3 Given g2 s yPR , define a group-valued functor AutR.g/ on the category
of Q`–algebras by setting

AutR.g/.A/ WD AutsPA.R/.g y̋A/:

Given G 2 sE.R/, define RAut.G/ WD AutR.Ru.G//, noting that

RAut.G/.Q`/Š AutHo.sE.R//�.G/:

For G 2 sAGpd, set RAut.G/ WD AutGred.Ru.G//.

Lemma 4.4 If G 2 sE.R/ is such that Hi.G;V / is finite-dimensional for all i and
all finite-dimensional irreducible R–representations V , then the group-valued functor

RAut.G/

is represented by a pro-algebraic group over Q` . The map

RAut.G/!
Y

x2Ob R

Y
i

AutR.Hi.G;O.R/.x;�///

of pro-algebraic groups has pro-unipotent kernel.

Proof This is a consequence of [37, Theorem 5.13], which proves the corresponding
statement for the group ROut.G/ WD RAut.G/=

Q
x2Ob G Ru.G/.x/: Since the groupQ

x2Ob G Ru.G/.x/ is pro-unipotent pro-algebraic, the result follows.

Definition 4.5 Given a pro-algebraic groupoid G , we may extend the automorphism
group Aut.G/ to a group presheaf over Q` , by setting

Aut.G/.A/ WD AutA.G �Spec Q` Spec A/:
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Lemma 4.6 For G 2 sE.R/, there is a group presheaf Auth.G/ over Q` , with the
properties that Auth.G/.Q`/ is the group of automorphisms of G in Ho.Ob G#sAGpd/,
and that there is an exact sequence

1! RAut.G/! Auth.G/
˛
�! Aut.R/! 1;

where Aut.R/ is given the algebraic structure of Definition 4.5.

If Hi.G;V / is finite-dimensional for all i and all finite-dimensional irreducible R–
representations V , then ˛ is fibred in affine schemes.

Proof Let R D Gred , take Y 2 Ho.dg Aff.R/�/ corresponding to G under the
equivalence of Theorem 2.74 and define

Auth.G/.A/ WD f.f; �/ W f 2 Aut.R/.A/; � 2 IsoHo.dg AffA.R/�/.Y ˝A; f ]Y ˝A/g:

We may now take a minimal model m for xG.Y / 2 dg yN .R/, and observe that
Lemma 4.2 then gives

HomHo.dg AffA.R/�/.Y ˝A; f ]Y ˝A/

Š HomHo.dg AffA.R/�/.Y ˝A; f ] SW m˝A/

Š HomHo.dg yNA.R/�/
. xG.Y / y̋A;m y̋A/�exp.mR

0
y̋A/

Y
x2Ob R

exp.H0m.x/ y̋A/

Š HomHo.dg yNA.R//
.m y̋A;m y̋A/�exp.mR

0
y̋A/

Y
x2Ob R

exp.H0m.x/ y̋A/:

The proof that ˛ is fibred in affine schemes is now essentially the same as Lemma 4.4,
which deals with the fibre over 1 2 Aut.R/.

Definition 4.7 Given a pro-discrete group � , we say a morphism �!Auth.G/.Q`/

is algebraic if it factors through a morphism �alg!Auth.G/ of presheaves of groups.

Corollary 4.8 If Hi.G;V / is finite-dimensional for all i and all finite-dimensional
irreducible R–representations V , then a morphism � ! Auth.G/.Q`/ is algebraic
whenever �! Aut.Gred/ is so.

Proof We have �alg! Aut.Gred/, so � W �! .�alg �Aut.Gred/ Auth.G//.Q`/. Since
Auth.G/!Aut.Gred/ is fibred in affine schemes, the group on the right is pro-algebraic,
so � factors through �alg , as required.
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If R D Gred , observe that there is canonical action of Auth.G/ on the direct sumL
x2Ob R H�.G;O.R/.x;�//. In fact, we have a homomorphism

ˇW Auth.G/! Aut.R/�Aut
� M

x2Ob R

H�.G;O.R/.x;�//
�

of presheaves of groups.

Lemma 4.9 If Hi.G;V / is finite-dimensional for all i and all finite-dimensional
irreducible R–representations V , then the kernel of ˇ is a pro-unipotent pro-algebraic
group.

Proof The kernel of ˇ is just the kernel of

RAut.G/!
Y

x2Ob R

Y
i

AutR Hi.G;O.R/.x;�//;

which is pro-unipotent by Lemma 4.4.

4.3 Filtered homotopy types

4.3.1 Commutative algebras

Definition 4.10 Given a Q`–algebra A and a reductive pro-algebraic groupoid R

over Q` , define FDGAlgA.R/ (resp. Fc AlgA.R/) to consist of R–representations B

in nonnegatively graded cochain (resp. cosimplicial) algebras over A, equipped with
an increasing exhaustive filtration J0B � J1B � � � � of B as a DG (resp. cosimplicial)
.R;A/–module, with the property that .JmB/ � .JnB/ � JmCnB . Morphisms are
required to respect the filtration, and we assume that 1 2 J0B .

Fc Alg.R/� WD Fc Alg.R/#
Y

x2Ob R

O.R/.x;�/;Write

FDGAlg.R/� WD FDGAlg.R/#
Y

x2Ob R

O.R/.x;�/;

where O.R/.x;�/D J0O.R/.x;�/.

Given .B;J / 2FDGAlgA.R/ or Fc AlgA.R/, there is a spectral sequence JE�;�� .B/

associated to the filtration J , with

JEa;b
1
.B/D HaCb.GrJ

�a B/:
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Definition 4.11 We regard JE�;�
1
.B/ as an object of FDGAlgA.R/, with

Jm.JE�;�
1
.B//n D

M
r�m

JE�r;nCr
1

.B/;

noting that d.Jm.E1/
n/� Jm�1.E1/

nC1 .

Definition 4.12 A map f W B! C is a fibration if the maps Jnf W JnB! JnC are
all surjective. A map f is a weak equivalence if the maps JE�;�

1
.f /W JE�;�

1
.B/!

JE�;�
1
.C / are all isomorphisms.

Lemma 4.13 There are cofibrantly generated model structures on the categories
Fc ModA.R/ and FDG ModA.R/, with the classes of fibrations and weak equiva-
lences above.

Proof First, normalisation gives an equivalence Fc ModA.R/! FDG ModA.R/ of
categories, preserving and reflecting fibrations and weak equivalences. It thus suffices
only to consider FDG ModA.R/

Let Sn;m denote the cochain complex consisting of A concentrated in degree n,
with JmSn;m D Sn;m and Jm�1Sn;m D 0. Let Dn;m denote the cochain complex
consisting of A concentrated in degrees n; n� 1 with differential dn�1 the identity,
JmDn;m DDn;m and Jm�1Dn;m D 0. By convention, D0;m D 0. Note that there are
natural maps Sn;m!Dn;m .

For a set fV g of representatives of irreducible R–representations in Q`–vector spaces,
define I to be the set of morphisms A˝ Sn;m ˝ V ! A˝Dn;m ˝ V , for n � 0.
Define J to be the set of morphisms 0!A˝Dn;m˝V , for n� 0.

HomFDG ModA.R/.A˝Sn;m˝V;M /D HomR.V;JmZnM /Now

HomFDG ModA.R/.A˝Dn;m˝V;M /D HomR.V;JmM n�1/;

so a map f W M !N in FDG ModA.R/ is then I –injective when

JmM n�1 f;d
��! JmN n�1

�d;JmZnN;f ZnM

is surjective, for all m; n, and J –injective when

JmM n�1 f
�! JmN n�1

is surjective for all n. Thus I –injectives are trivial fibrations, and J –injectives are
fibrations.
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Since Sn;mDDnC1;m=SnC1;m , the map 0!Dn;m is a composition 0!Sn;m!Dn;m

of pushouts of maps in I , so maps in J are all I –cofibrations. Since maps in J are
all weak equivalences, we have satisfied the conditions of [18, Theorem 2.1.19,] giving
the model structure claimed.

Lemma 4.14 In the category FDG Mod.R/D FDG ModQ`.R/, all objects V are
cofibrant.

Proof Given V 2FDG ModQ`.R/, it will suffice to show that J0V is cofibrant, and
that all the maps Jm�1V ! JmV are cofibrations, since V D lim

�!
JmV . To do this,

we will show that these maps are transfinite compositions of pushouts of generating
cofibrations.

Now, since all R–representations are semisimple, we may choose decompositions
grJ

m V n D M n ˚N n ˚ dN n�1 , with dM n D 0. By semisimplicity, we may also
lift the R–modules M i ;N i to �M i ; zN i � JmV . Now d �M � Jm�1V , so the map
Jm�1V ! JmV is a pushout of

L
n.SnC1;m ˝

�M n/ !
L

n.DnC1;m ˝
�M n/ ˚L

n.DnC1;m ˝
zN n/, and hence a cofibration. Since this argument also applies to

0! J0V , we deduce that V is cofibrant.

Proposition 4.15 There is a cofibrantly generated model structure on FDGAlgA.R/

(resp. Fc AlgA.R/), for which a morphism is a fibration or weak equivalence whenever
the underlying morphism in FDG ModA.R/ (resp. Fc ModA.R/) is so (in the model
structure of Lemma 4.13).

Proof The forgetful functor FDGAlgA.R/!FDG ModA.R/ (resp. Fc AlgA.R/!

Fc ModA.R/) preserves filtered colimits and has a left adjoint, the free algebra functor.
Since the free algebra functor maps trivial generating cofibrations to weak equivalences,
we may apply [16, Theorem 11.3.2], which gives the required cofibrantly generated
model structure. The generating cofibrations and trivial cofibrations are given by
the images under the free algebra functor of the generating cofibrations and trivial
cofibrations in FDG ModA.R/ (resp. Fc ModA.R/).

4.3.2 Lie algebras

Definition 4.16 Define F yNA.R/ to be opposite to the category F yNA.R/
opp of R–

representations in ind-conilpotent (see Definition 2.44) Lie coalgebras C over A,
equipped with an exhaustive increasing filtration J0C � J1C � � � � , of C as an
.R;A/–module, with the property that r.Jr C /�

P
mCnDr .JmC /˝ .JnC /, for r

the cobracket. Morphisms are required to respect the filtration.
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Similarly, Fdg yNA.R/ is opposite to the category of R–representations in nonnega-
tively filtered ind-conilpotent N0 –graded cochain Lie coalgebras over A. Fs yNA.R/

is the category of simplicial objects in F yNA.R/. When ADQ` , we will usually drop
the subscript A.

Proposition 4.17 There is a closed model structure on Fdg yNA.R/ (resp. Fs yNA.R/),
in which a morphism f W g! h is a fibration or a weak equivalence whenever the
underlying map f _W h_!g_ in FDG ModA.R/ (resp. Fc ModA.R/) is a cofibration
or a weak equivalence.

Proof The proof of [37, Lemma 5.9] carries over to this context.

4.3.3 Equivalences

Definition 4.18 Define Fc Alg.R/00� (respectively, FDGAlg.R/00� ) to be the full
subcategory of Fc AlgA.R/� (respectively, FDGAlgA.R/� ) consisting of objects B

with B0DQ` . Let Fc Alg.R/0� (respectively, FDGAlg.R/0� ) be the full subcate-
gory consisting of objects weakly equivalent to objects of Fc Alg.R/00� (respectively,
FDGAlg.R/00� ). Define Ho.Fc Alg.R/�/0 (respectively, Ho.FDGAlg.R/�/0 ) to
be the full subcategory of Ho.Fc Alg.R/�/ (respectively, Ho.FDGAlg.R/�/) on
objects Fc Alg.R/0� (respectively, FDGAlg.R/0� ). Denote the opposite category to
Fc Alg.R/00� by Fs Aff.R/00� , etc.

Definition 4.19 Given g 2 Fs yN .R/, we define SW g 2 Fs Aff.R/ by

. SW g/.B/ WD SW .exp.HomF Mod.R/.g
_; .B//// 2 S

for B 2 AlgA.R/. Here, SW is the classifying space functor of Definition 1.6, and exp
denotes exponentiation of a pro-nilpotent Lie algebra to give a pro-unipotent group.

Observe that this functor is continuous, and denote its left adjoint by GW Fs Aff.R/!
Fs yN .R/.

Definition 4.20 Define functors

Fdg Aff.R/
G //

Fdg yN .R/
SW

?oo

as follows. For g 2 Fdg yN .R/, the Lie bracket gives a linear map
V2 g! g. Write

� for the dual �W g_!
V2 g_ , which respects the filtration. This is equivalent to a

map �W g_Œ�1�! Symm2.g_Œ�1�/, and we define

O. SW g/ WD Symm.g_Œ�1�/
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to be the graded polynomial ring on generators g_Œ�1�, with a derivation defined on
generators by D WD d C�. The Jacobi identities ensure that D2 D 0.

We define G by writing �BŒ1� for the brutal truncation (in nonnegative degrees) of
BŒ1�, and setting

G.B/_ D CoLie.�BŒ1�/;

the free filtered graded Lie coalgebra over Q` , with differential similarly defined on
cogenerators by D WD d C�, � here being the product on B . Note also that G.B/ is
cofibrant for all B .

Definition 4.21 Define the category FsP.R/ (resp. FdgP.R/) to have the fibrant
objects of Fs yN .R/ (resp. Fdg yN .R/), with morphisms given by

HomFsP.R/.g; h/D HomHo.Fs yN .R//.g; h/�
exp.hR

0
/
Y

x2Ob R

exp.�0h.x//;

HomFdgP.R/.g; h/D HomHo.Fdg yN .R//.g; h/�
exp.hR

0
/
Y

x2Ob R

exp.H0h.x//;

where hR
0

is the Lie algebra HomMod.R/.h
_
0
;Q`/D HomF Mod.R/.h

_
0
;Q`/, acting by

conjugation on the set of homomorphisms.

Theorem 4.22 There is the following commutative diagram of equivalences of cate-
gories:

Ho.Fdg Aff.R/�/0
Spec D //

xG
��

Ho.Fs Aff.R/�/0

xG
��

Spec Th
oo

FdgP.R/

SW

OO

FsP.R/;

SW

OO

N
oo

where N denotes normalisation, D is denormalisation, and Th is the functor of Thom–
Sullivan cochains.

Proof The proof of Theorem 2.74 transfers to this context, making use of Lemma 4.14,
which implies that everything in the image of SW is fibrant, as are all objects of
Fdg yN .R/ and Fs yN .R/. On objects, the functor xG is defined by choosing, for any
X 2 Ho.Fs Aff.R/�/0 (resp. X 2 Ho.Fdg Aff.R/�/0 ) a weakly equivalent object
X 0 2 Fs Aff.R/00 (resp. X 0 2 Fdg Aff.R/00 ), and setting

xG.X / WDG.X 0/;

for the functor G from Definition 4.20.
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Although we do not have a precise analogue of this result for Ho.Fdg AffA.R// for
general A, we do have the following:

Lemma 4.23 Given X 2 Ho.Fdg Aff.R/�/0 and g 2 Fdg yN .R/,

HomHo.Fdg AffA.R/�/.X ˝A; SW g˝A/

Š HomHo.Fdg yNA.R//
. xG.X / y̋A; g y̋A/�exp.gR

0
y̋A/

Y
x2Ob R

exp.H0g.x//:

Proof The proof of [37, Proposition 3.48] adapts to this context.

Definition 4.24 We say a filtered cochain algebra .B;J / 2 FDGAlgA.R/ is quasi-
formal if it is weakly equivalent in FDGAlgA.R/ to JE�;�

1
.B/ (as in Definition 4.11).

We say that a filtered homotopy type is quasiformal if its associated cochain algebra
is so.

4.3.4 Minimal models Let FDG Rep.R/ D FDG ModQ`.R/ be the category of
nonnegatively graded filtered complexes of R–representations.

Definition 4.25 We say that M 2 FDG Rep.R/ is minimal if d.JmM /� Jm�1M

for all m.

Lemma 4.26 For any V 2 FDG Rep.R/, there exists a quasi-isomorphic filtered
subobject M ,! V , with M minimal.

Proof We prove this by induction on the filtration. Assume that we have constructed
a filtered quasi-isomorphism Jmf W JmM ,! JmV (for mD�1, this is trivial). Pick
a basis v˛ for H�.grJ

mC1
V /, and lift v˛ to v0˛ 2 JmC1V . Thus dv0˛ 2 JmV , and

Œdv0˛ � D 0 2 H�.JmV =JmM / D 0. This means that dv0˛ 2 JmM C dJmV . Choose
u˛ 2 JmV such that dv0˛ � du˛ 2 JmM , and set zv˛ WD v0˛ �u˛ .

Now, Œzv˛ �D v˛ 2 H�.grJ
mC1

V /, so define

JmC1M WD JmM ˚hzv˛i˛I

this has the properties that dJmC1M � JmM and H�.grJ
mC1

M / Š H�.grJ
mC1

V /,
as required.

Definition 4.27 We say that a cofibrant object m2Fdg yN .R/ (resp. Fs yN .R/) is min-
imal if .m=Œm;m�/_ (resp. N.m=Œm;m�/_ ) is minimal in the sense of Definition 4.25.

Proposition 4.28 (Minimal models) Every weak equivalence class in Fdg yN .R/
(resp. s yN .R/) has a minimal element m, unique up to nonunique isomorphism.

Proof The proof of [37, Proposition 1.16] adapts to this context, using Lemma 4.26
instead of the corresponding result for DG Rep.R/.
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4.3.5 Homotopy automorphisms

Definition 4.29 Given u 2 Fs yN .R/, let G D exp.u/ Ì R, and define the group
presheaf of filtered automorphisms by

AuthJ .G/.A/ WD f.f; �/ W f 2 Aut.R/.A/; � 2 IsoFsPA.R/.u y̋A; f ]u y̋A/g:

Define RAutJ .G/ WD ker.AuthJ .G/! Aut.R//.

Definition 4.30 Given V 2 Rep.R/ and g 2 Fs yN .R/, define the spectral sequence
JE�;�� .RË exp.g/;V / to be the cohomology spectral sequence of the filtered complex

O. SW g/˝R V;

for J0V D V . Thus JEa;b
1
.RË exp.g/;V /D HaCb.GrJ

�a O. SW g/˝R V /.

Lemma 4.31 Assume that G is as above, and let m2Fs yN .R/ be a minimal model for
Ru.G/. If Hi.G;V / is finite-dimensional for all i and all finite-dimensional irreducible
R–representations V , then the group presheaves

Aut
Fs yN .R/.m/�

Y
x2Ob R

exp.�0m.x//
˛
�! RAutJ .G/

ˇ
�!

Y
a;b

AutR.JEa;b
1
.G;O.R///

are all pro-algebraic groups, the maps ˛ and ˇ both have pro-unipotent kernels, and ˇ
is surjective.

Proof The proof of [37, Theorem 5.13] carries over.

4.3.6 Examples

Definition 4.32 Given B� 2DGAlgA.R/, we define the good truncation �� on B by

.�mB/n WD

8̂<̂
:

Bn n<m;

Zm.B/ nDm;

0 n>m:

Observe that .B�; �/ 2 FDGAlgA.R/.

Definition 4.33 Given a bicosimplicial algebra B�;� 2 cc AlgA.R/, we define the
associated filtered cosimplicial algebra .� 00

0
B � � 00

1
B � � � � / 2 Fc AlgA.R/ by

.� 00mB/n D .D�m Th Bn;�/n;

for D;Th as in Proposition 2.70. Observe that there is a canonical quasi-isomorphism
diag B�;�! � 001B� , where diag denotes the diagonal of a bicosimplicial complex.
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In practice, the only filtered homotopy types which we will encounter come from
morphisms of spaces:

Definition 4.34 Given an algebraic variety X and an ind-constructible `–adic sheaf V
on X , recall (eg from [36, Definition 2.3]) that there is a natural cosimplicial complex

C�
Ket.V /

of `–adic sheaves on V , with the property that �.X;C�
Ket.V //D C�

Ket.X;V /, the Gode-
ment resolution (as in Example 3.18). This construction respects tensor products.

Lemma 4.35 To any morphism j W Y !X of algebraic varieties, and any Q`–sheaf S

of algebras on Y as in Definition 4.34, there is associated a canonical filtered homotopy
type C�

Ket.j ;S/ 2 Ho.Fc AlgQ`/, with the property that JE�;�� C�
Ket.j ;S/ is the Leray

spectral sequence

JEa;b
1

C�
Ket.j ;S/D H2aCb.X;R�aj�S/ H) HaCb.Y;S/:

The associated unfiltered homotopy type is canonically weakly equivalent to C�
Ket.Y;S/:

Proof We have a Q`–sheaf j�C
�

Ket.S/ of cosimplicial algebras on X , and hence a
bicosimplicial algebra

C�
Ket.X; j�C

�

Ket.S//:

Now, set

JnC�
Ket.j ;S/D �

00
n C�
Ket.X; j�C

�

Ket.S//D diag C�
Ket.X;D�n Th j�C

�

Ket.S//;

as in Definition 4.33, with C�
Ket.X; j�C

�

Ket.S//! J1C�
Ket.j ;S/ a quasi-isomorphism.

Finally, observe that there is a quasi-isomorphism

C�
Ket.Y;S/D �.X; j�C

�

Ket.S//! diag C�
Ket.X; j�C

�

Ket.S//;

and that gr�n j�C
�

Ket.S/ is quasi-isomorphic to Rnj�S.

Remark 4.36 There is a similar statement for filtrations on homotopy types coming
from morphisms of topological spaces, using Čech resolutions instead of Godement
resolutions.

Since the construction above is functorial, for any point y 2 Y , we have a morphism
C�
Ket.j ;S/! C�

Ket.idy ;Sy/, where idy is the identity map idy W y! y . Now,

JnC�
Ket.idy ;Sy/D diag C�

Ket.y;D�n Th Sy/:

Since Sy has constant simplicial structure, Th Sy D Sy , so JnC�
Ket.idy ;Sy/D Sy for

all n� 0.
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Definition 4.37 Given a morphism j W Y ! X of algebraic varieties and a Zariski-
dense continuous map

�W 2� Ket
f
.Y /!R.Q`/

we define the filtered homotopy type .Y �;Mal; j / to correspond to C�
Ket.j ;O.R// 2

Fc Alg.R/� , where the augmentation map is the canonical morphism

C�
Ket.j ;O.R//!

Y
y2Y

C�
Ket.idy ;O.R//D

Y
y2Y

O.R/.y;�/:

5 Algebraic Galois actions

5.1 Weight decompositions

By a weight decomposition, we will mean an algebraic action of the group Gm . A
weight decomposition on a vector space V is equivalent to a decomposition V DL

n2Z WnV , given by � 2Gm acting as �n on WnV .

Fix a prime p , which need not differ from `. Let Zalg be the pro-algebraic group
over Q` parametrising Z–representations. Since Z is commutative, Zalg is commuta-
tive, so Zalg DZred�Ru.Zalg/, where Zred is its reductive quotient. For any unipotent
algebraic group U , this means that Hom.Ru.Zalg/;U /Š Hom.Z;U.Q`//D U.Q`/,
so Ru.Zalg/DGa . Combining these observations gives Zalg DGa �Zred .

Likewise, let yZalg be the pro-algebraic group over Q` parametrising continuous yZ–
representations. Since continuous yZ–representations form a full subcategory of Z–
representations, yZalg is a quotient of Zalg . The reasoning above adapts to show that
yZalg DGa �

yZred .

Definition 5.1 Given n 2 Z and a power q of p , recall that an element ˛ 2Q` is
said to be pure of weight n if it is algebraic and for every embedding �W Q` ,!C the
element �.˛/ has complex absolute value qn=2 .

Let Mq be the quotient of yZred whose representations � correspond to semisimple
yZ–representations for which the eigenvalues of �.1/ are all of integer weight with
respect to q . Such representations are called mixed.

Observe that every Mq –representation decomposes into “pure” representations, in
which all eigenvalues have the same weight. There is thus a canonical map Gm!Mq

given by � 2Gm acting as �n on a pure representation of weight n.
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Definition 5.2 Define Pq to be the quotient of Mq whose representations are pure of
weight 0, so Pq DMq=Gm .

Definition 5.3 Given n 2 Z, an embedding �W Q`! C and a power q of p , recall
that an element ˛ 2Q` is said to be �–pure of weight n if j�.˛/j D qn=2 .

Let M�;q be the quotient of Zred whose representations � correspond to semisimple
Z–representations for which the eigenvalues of �.1/ are all of integer �–weight. Note
that Mq is a quotient of M�;q .

Observe that there is a canonical map Gm!M�;q given by � 2Gm acting as �n on
an �–pure representation of weight n, and that this induces the map Gm!Mq above.

Definition 5.4 Define P�;q to be the quotient of M�;q whose representations are pure
of �–weight 0, so P�;q DM�;q=Gm .

Definition 5.5 Given a pro-algebraic group G , let G0 be the connected component of
the identity; if yG is the maximal pro-finite quotient of G (parametrising representations
with finite monodromy), then G0 D ker.G! yG/.

Lemma 5.6 If � is a pro-discrete group, then we may make the identification

�alg;0
D lim
 �
�

�alg;

where � runs over �C � open of finite index.

Therefore the category of finite-dimensional �alg;0 –representations is the direct limit
lim
�!�

FD Rep.�/ (over � as above) of the categories of finite-dimensional �–represen-
tations.

Proof This is essentially [29, Proposition 2], which deals with the case when � is
discrete, and refers to lim

�!�
FD Rep.�/ as the category of virtual � –representations.

First note that b�alg D y� , where the pro-finite completion y� of � is characterised by
the property that Hompro.Gp/.�;F /Š Hompro.Gp/.y�;F / for all finite groups F . Thus
y� D � whenever � is pro-finite.

The exact sequence �! � ! �=�! 1 gives an exact sequence .�/alg ˛
! �alg!

�=�! 1. It suffices to show that ˛ is injective. This follows from the observation
that every finite-dimensional �–representation V embeds into a finite-dimensional
� –representation Ind�� V .
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Thus if F is a generator for Z, then representations of Zalg;0 are sums of F r –
representations, with morphisms commuting locally with sufficiently high powers
of F .

Observe that we have commutative diagrams

yZ
r

����! yZ??y ??y
Mqr ����! Mq:

Any yZ–representation with finite monodromy is pure of weight 0, giving a map
Pp !

yZ: Also note that Mqr D ker.Mq ! Z=rZ/. Combining these observations
gives:

Lemma 5.7 We have

M 0
p D lim
 �

Mpr ; P0
p D lim
 �

Ppr :

Writing M 0 WDM 0
p and P0 WD P0

p , there are quotient maps yZred;0�M 0� P0 .
There are similar results for M 0

� WDM 0
�;p , P0

� WD P0
�;p .

Definition 5.8 We say that a representation of Zalg;0 is mixed (resp. pure of weight 0,
resp. �–mixed with integral weights, resp. �–pure) if the action of Zred;0CZalg;0 factors
through M 0 (resp. P0 , resp. M 0

� , resp. P0
� ).

Lemma 5.9 Observe that the canonical maps Gm ! Mq are compatible, giving
Gm !M 0 , with trivial image in P0 . Similarly, we have Gm !M 0

� , with trivial
image in P0

� .

5.1.1 Slope decompositions

Definition 5.10 Define the pro-algebraic group eGm to be the inverse limit of the étale
universal covering system of Gm . This is the inverse system fGr gr2N with Gr DGm

and morphisms Œs�W Gsr !Gr , for s 2N .

Lemma 5.11 The category of eGm –representations is canonically equivalent to the
category of Q–graded vector spaces.
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Proof A representation of Gm is equivalent to a Z–grading. Given a finite-dimensional
vector space V with a Q–grading V D

L
V� , let d be the lowest common multiple

of the denominators of the set f� 2 Q W V� ¤ 0g. Then V D
L

n2Z Vn=d , giving a
Gm –action on V . If we regard this copy of Gm as Gd , this defines a eGm –action.

Now, for any pro-algebraic group G , arbitrary G –representations are nested unions of
finite-dimensional G –subrepresentations. Likewise, every Q–graded vector space can
be expressed as a nested union of finite-dimensional Q–graded vector subspaces, so
the two categories are equivalent.

Now assume that p D `.

Definition 5.12 Given a power q of p , normalise the p–adic valuation v on xQp by
v.q/D 1. Define the slope of ˛ 2 xQp to be v.˛/ 2Q.

Lemma 5.13 There is a canonical morphism eGm!Zred , corresponding to the functor
sending a Z–representation V to a slope decomposition

L
V� .

Proof Let F be the canonical generator for Z. Given a finite-dimensional semisimple
Z–representation V , we may decompose V ˝Qp

xQp into F –eigenspaces, and hence
take a decomposition by slopes of the eigenvalues. Since conjugates in xQp have the
same slope, this descends to a slope decomposition V D

L
�2Q V� , as required.

5.2 Potentially unramified actions

Fix a prime p¤`, and take a local field K , with finite residue field k of characteristic p .
Let G WD Gal. xK=K/alg , the pro-algebraic completion of Gal. xK=K/ over Q` .

Definition 5.14 A finite-dimensional continuous Q`–representation of Gal. xK=K/
is potentially unramified if there exists a finite extension K0=K for which the action
of Gal. xK=K0/ is unramified. Say that an arbitrary Q`–representation of Gal. xK=K/
is potentially unramified if it is a sum of finite-dimensional potentially unramified
representations.

These form a neutral Tannakian category (see Definition 2.7); let Gpnr be the corre-
sponding pro-algebraic group. Since Rep.Gpnr/ is a Tannakian subcategory of Rep.G/,
Gpnr is a quotient of G .

Lemma 5.15 We can write Gpnr D Gal.xk=k/alg �Gal.xk=k/ Gal. xK=K/, so Gpnr;0 D

Gal.xk=k/alg;0 Š yZalg;0 .
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Proof A representation G ! GL.V / (for V finite-dimensional) is potentially un-
ramified if it annihilates ker.Gal. xK=K0/ ! Gal.xk=k 0// for some finite Galois ex-
tension K0=K . In other words, it annihilates ker.Gal. xK=K/! Gal.xk=k/�Gal.k0=k/

Gal.K0=K//, so is an algebraic representation of Gal.xk=k/alg �Gal.k0=k/ Gal.K0=K/.
Thus the category of finite-dimensional Gpnr –representations is given by

FD Rep.Gpnr/D lim
�!
K 0

FD Rep.Gal.xk=k/alg
�Gal.k0=k/ Gal.K0=K//

D FD Rep.lim
 �
K 0

Gal.xk=k/alg
�Gal.k0=k/ Gal.K0=K//

D FD Rep.Gal.xk=k/alg
�Gal.xk=k/

Gal. xK=K//;

as required.

The final statement is an immediate consequence of Lemma 5.6.

Definition 5.16 We say that a representation of Gpnr is mixed (resp. pure of weight 0)
if the resulting action of Zalg;0� yZalg;0 is so.

5.3 Potentially crystalline actions

Now let `D p , and take a local field K , with finite residue field k of order q D pf .
Let G WD Gal. xK=K/alg , the pro-algebraic completion of Gal. xK=K/ over Qp . Let
W WD W .k/, with fraction field K0 , and let � denote the unique lift of arithmetic
Frobenius ˆ 2 Gal.xk=Fp/ to � 2 Gal.Knr

0
=Qp/, for Knr

0
the maximal unramified

extension of K0 . Note that the geometric Frobenius of the previous section is FDˆ�f .

Definition 5.17 Say that a finite-dimensional continuous Gal. xK=K/–representation
over Qp is potentially crystalline if there exists a finite extension K0=K for which
the action of Gal. xK=K0/ is crystalline. Say that an arbitrary Qp –representation of
Gal. xK=K/ is potentially crystalline if it is a sum of finite-dimensional potentially
crystalline representations. Note that since unramified representations are automatically
crystalline, all potentially unramified representations are potentially crystalline.

These form a neutral Tannakian category (see Definition 2.7); let Gpcris be the cor-
responding pro-algebraic group. Since Rep.Gpcris/ is a full subcategory of Rep.G/
closed under subobjects, Gpcris is a quotient of G .

Definition 5.18 In [9, Section 4], Fontaine defined a ring Bcris WDBcris.V / of periods
over Qp , equipped with a Hodge filtration and actions of Gal. xK=K/ and Frobenius,
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and used it to characterise crystalline representations (adapted in Proposition 5.20
below).

In [33, 6.8], Olsson defined a localisation zBcris.V / of Bcris.V / as follows. Fix a
sequence �m of elements of xV with �0 D p and �p

mC1
D �m for all m � 0. Define

�p�n to be the sequence .�nCm/m�0 , and let ıp�n be the associated Teichmüller lifting.
Set

zBcris.V / WD Bcris.V /Œı
�1
p�n �n�0;

noting that .ıp�n�1/p D ıp�n .

Definition 5.19 Given a finite-dimensional Gal. xK=K/–representation U , set

Dcris;K.U / WD .U ˝Qp
Bcris/

Gal. xK=K /;

Dpcris.U / WD lim
�!

Dcris;K0.U /;

zDcris;K.U / WD .U ˝Qp
zBcris/

Gal. xK=K /;

zDpcris.U / WD lim
�!
zDcris;K0.U /;

for K0 ranging over all finite extensions of K . For an arbitrary algebraic Gal. xK=K/–
representation U , set

Dpcris.U / WD lim
�!

Dpcris.U˛/;

for U˛ running over all finite-dimensional subrepresentations, and similarly for zDpcris .

Observe that Spec Bcris is an affine G–scheme over Spec Qp , and that the coarse
quotient .Spec Bcris/=G0 is Spec Knr

0
.

Proposition 5.20 An action of G on an affine Qp –scheme Y factors through Gpcris if
and only if there exists an affine Knr

0
–scheme Z , with

Y �Qp
Spec zBcris ŠZ �K nr

0
Spec zBcris

a G0 –equivariant map (for trivial G0 –action on Z ).

In that case, we necessarily have OZ DDpcris.OY /D zDpcris.OY /.

Proof If we replace potentially crystalline with crystalline, and Knr
0

with K0 , then
this is just [33, Theorem D.3]. Taking the direct limit over finite extensions of K gives
the first expression.

Taking G0 –invariants gives OZ D
zDpcris.OY /, but then [33, Remark D.10] shows that

for potentially crystalline representations U , zDpcris.U /DDpcris.U /.

Geometry & Topology, Volume 15 (2011)



578 Jonathan P Pridham

5.3.1 Frobenius actions Although we do not have a canonical map Zalg;0! Gpcris ,
there is something nearly as strong:

Lemma 5.21 There is a canonical morphism

Zalg;0
˝Qp

B�cris! Gpcris
˝Qp

B�cris

of affine group schemes over the � –invariant subring B�cris of Bcris .

Proof Given U 2 FD Rep.Gpcris/, U is crystalline over K0 for some finite extension
K0=K with residue field k 0 . If jk 0=kjD r and qDpf , then �f r is a K0

0
–linear endo-

morphism of Dcris;K0.U /. This extends uniquely to give a Knr
0

–linear automorphism Fr

of Dpcris.U / (note that Fr ¤ �
f r , the latter being � –semilinear).

Now, observe that Dpcris.U / is a sum of finite-dimensional Fr –representations over Qp ,
since Dcris;K0.U / is finite-dimensional over K0 , and hence over Qp . This gives us a
� –equivariant Qp –linear action of Z0;alg on Dpcris.U /, and hence a � –equivariant
B�cris –linear action on Dpcris.U /˝K nr

0
BcrisDU˝Qp

Bcris . We now take the �–invariant
subspace, giving a Z0;alg˝Qp

B�cris –action on U ˝Qp
B�cris .

If we took a larger extension K00=K with residue field k 00 , then we would have
jk 00=kj D s with r js . The corresponding Knr

0
–linear automorphism Fs of Dpcris.U /

is given by Fs D F
s=r
r , so gives rise to the same Z0;alg –action on Dpcris.U /. This

ensures that the action is functorial in U .

Given U;V 2 FD Rep.Gpcris/, we have Dpcris.U ˝Qp
V /DDpcris.U /˝K nr

0
Dpcris.V /,

compatible with � . Choosing K0 so that U;V are both crystalline over K0 , we see that
Dpcris.U ˝Qp

V / is isomorphic to Dpcris.U /˝K nr
0

Dpcris.V / as an Fr –representation.

Hence the Z0;alg ˝Qp
B�cris –representation .U ˝Qp

V /˝Qp
B�cris is isomorphic to

.U ˝Qp
B�cris/˝B�cris

.V ˝Qp
B�cris/.

For a Qp –algebra A, Tannakian duality says that giving an element g 2 Gpcris.A/ is
equivalent to giving A–linear automorphisms gU of U ˝A for all Gpcris –represen-
tations U , functorial and compatible with tensor products and duals. Therefore the
Z0;alg˝Qp

B�cris –actions on the representations U˝Qp
B�cris give group homomorphisms

Z0;alg.C /! Gpcris.C /, functorial in B�cris –algebras C , as required.

Definition 5.22 We say that a potentially crystalline representation U is mixed (resp.
pure, resp. �–mixed with integral weights, resp. �–pure) if the action of Zalg;0˝B�cris
on U ˝B�cris factors through Mq (resp. Pq , resp. M�;q , resp. P�;q ). This is equivalent
to saying that the action of Z on Dpcris.U / is mixed (resp. pure, resp. �–mixed with
integral weights, resp. �–pure).
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We have the following analogue of a slope decomposition:

Lemma 5.23 There is a canonical morphism eGm ! Gpcris˝Qp
B�cris of affine group

schemes over B�cris , for eGm as in Definition 5.10.

Proof Combine Lemma 5.13 with Lemma 5.21.

6 Varieties over finite fields

Fix a variety Xk over a finite field k , of order q prime to `. Let X WD Xk ˝k
xk ,

for xk the algebraic closure of k . There is a Galois action on X , and hence on the
pro-simplicial set XKet , and on its algebraisation G.XKet/

alg . The purpose of this section
is to describe this action as far as possible.

6.1 Algebraising the Weil groupoid

The morphism X ! Xk gives a map of groupoids ˛W � Ket
f

X ! � Ket
f
.Xk/. Similarly,

there is a map � Ket
f

Xk!� Ket
f
.Spec k/DGal.xk=k/Š yZ. Denote the canonical generator

of Gal.xk=k/ by F , the geometric Frobenius automorphism.

In constructing fundamental groupoids and étale homotopy types, we may use the same
set of geometric points for both Xk and X , so assume that ˛ is an isomorphism on
objects. We then have

� Ket
f .X /D �

Ket
f .Xk/�yZ 0:

Definition 6.1 Define the Weil groupoid Wf .Xk/ by

Wf .Xk/ WD �
Ket
f .Xk/�yZ Z;

noting that this is a pro-groupoid with discrete objects.

For any scheme Y , note that finite-dimensional representations of $ Ket
f
.Y / WD$f .cYKet/

correspond to smooth Q`–sheaves on Y . We now introduce natural quotients of this
groupoid.

Definition 6.2 Define W$ Ket
f
.X / to be the image of the map $ Ket

f
.X /!Wf .Xk/

alg ,
so Wf .Xk/

alg D W$ Ket
f
.X /ËZalg .

Define Gal$ Ket
f
.X / to be the image of the map $ Ket

f
.X /!$ Ket

f
.Xk/, so $ Ket

f
.Xk/ D

Gal$ Ket
f
.X /Ë yZalg . Note Gal$ Ket

f
.X / is a Frobenius-equivariant quotient of W$ Ket

f
.X / (it

is in fact the quotient on which yZ acts continuously).
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In [38], W$1.X; xx/ was defined to be the universal object classifying continuous
W .Xk ;x/–equivariant homomorphisms �1.X; xx/!G.Q`/ to algebraic groups. In the
terminology of [38, Definition 1.3], W$1.X; xx/ is the maximal quotient of $1.X; xx/

on which Frobenius acts algebraically.

Note that these definitions are consistent by [38, Lemma 1.14], which proceeds by
establishing an action of Zalg on W$1.X; xx/ generated by Frobenius, then showing
that the map Zalg ËW$1.X; xx/!W .Xk ;x/

alg is an isomorphism.

It also implies that linear representations of W$ Ket
f
.X / correspond to smooth Q`–

sheaves on X arising as subsheaves of Weil sheaves, while linear representations of
Gal$ Ket

f
.X / correspond to smooth Q`–sheaves on X arising as subsheaves of pullbacks

of smooth Q`–sheaves on Xk .

Lemma 6.3 The canonical action of F on W$ Ket
f
.X / factors through a morphism

Zalg
! Aut.W$ Ket

f .X //

of group presheaves, for Zalg as in Section 5.1.

Proof Write G D W$ Ket
f
.X /;H D Wf .Xk/

alg , and observe that the orbits of F in
Ob G D Ob H are finite, giving a map

yZ! Aut.Ob H /:

Since yZ is pro-finite, we may regard it as the pro-algebraic group Zalg=Zalg;0 .

Now, consider the group scheme

N WD
a

f 2Aut.Ob.H //

Y
x2Ob.H /

H.x; f x/;

with multiplication given by

.f; fhxg/ � .f
0; fh0xg/D .f �f

0; fhf 0x � hxg/:

There is a morphism N ! Aut.Ob.H // fibred in affine schemes. Thus

yZ�Aut.Ob.H //N

is an affine scheme.

Now, F gives a collection of paths F.x/ 2Wf .Xk/.x;Fx/, and thus a map

Z! .yZ�Aut.Ob.H //N /.Q`/:
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Since the latter is an affine group scheme, this extends to a map Zalg! yZ�Aut.Ob.H //N .
Finally, observe that the conjugation action of H on G gives a map

N ! Aut.G/:

Theorem 6.4 If Xk=k is normal, then the action of Zred on W$ Ket
f
.X /red factors

through Pq (see Definition 5.2), that is, the Frobenius representation O.W$ Ket
f
.X /red/

is a sum of finite-dimensional Galois representations, pure of weight 0.

Moreover W$ Ket
f
.X /red D Gal$ Ket

f
.X /red , so the Zred action factors through its quo-

tient yZred .

Proof Since ZalgDZred�Ga (Section 5.1), this amounts to showing that the Frobenius
action factors through Pq �Ga . We adapt the proof of [38, Theorem 1.11] (to which
we refer the reader for details).

Let T be the set of all isomorphism classes of irreducible representations V of
W$ Ket

f
.X /red over Q` . Since W$ Ket

f
.X /red is reductive, there is an isomorphism of

W$ Ket
f
.X /red �W$ Ket

f
.X /red –representations given on objects .x;y/ by

O.W$ Ket
f .X /

red.x;y//˝Q` Q` Š

M
V 2T

Hom.Vx;Vy/:

Suppose V is the smooth sheaf on X corresponding to the representation V . ThenL
V 2T Hom.Vx;Vy/ corresponds to the smooth sheafM

V 2T

pr�1
1 V_˝ pr�1

2 V

on X �X .

Now, V 2 T is an irreducible representation of $ Ket
f
.X /red which is a subrepresen-

tation of some Wf .Xk/–representation. This is the same as underlying a Wf .Xk0/–
representation for some finite extension k 0=k , so V underlies a smooth Weil sheaf
on Xk0 .

From Lafforgue’s Theorem ([5, Conjecture 1.2.10], proved in [27, Theorem VII.6 and
Corollary VII.8]), every irreducible smooth Weil sheaf over Q` is of the form

V Š P ˝Q`
.b/;

for some mixed sheaf P on Xk0 . By [5, Theorem 3.4.1 (ii)], every irreducible smooth
�–mixed Weil sheaf is �–pure. Thus the mixed sheaf P is �–pure for all �, and hence
pure.

Thus pr�1
1 V_˝ pr�1

2 V Š pr�1
1 P_˝ pr�1

2 P;

which is a smooth sheaf on Xk0 �Xk0 , pure of weight 0.
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Hence O.W$ Ket
f
.X /red/˝Q` Q` , and hence O.W$ Ket

f
.X /red/, is a pure Galois represen-

tation of weight 0. Thus the action of Zalg factors through Pq �Ga , and the discrete
Galois action on $ Ket

f
.X /red descends to a continuous action on W$ Ket

f
.X /red , so

W$ Ket
f .X /

red
D

Gal$ Ket
f .X /

red:

6.2 Weight decompositions

Now assume that X is either smooth or proper and normal.

Definition 6.5 Define a weight decomposition on a multipointed homotopy type G 2

Ho.sE.R/�/ to be a morphism

Gm! RAut.G/

of pro-algebraic groups.

Compare this with [37, Definition 5.15], which considers weight decompositions on
unpointed homotopy types, corresponding to outer automorphisms.

Proposition 6.6 If we let R be any Frobenius-equivariant quotient of W$ Ket
f
.X /red ,

then the Galois action on
X R;Mal
Ket

is mixed, giving a canonical weight decomposition. Furthermore, the Frobenius action
extends canonically to a continuous algebraic Gal.xk=k/–action.

Proof By Theorem 6.4, the Galois action on R factors through the quotient Pq �Ga

of Zalg . By Corollary 4.8, the Gal.xk=k/ action on X R;Mal
Ket is thus algebraic. Since

R is a Pq �Ga –representation, the Weil sheaf
L

x2Ob R O.R/.x/ is an arithmetic
sheaf of weight 0. Deligne’s Weil II theorems [5, Corollaries 3.3.4–3.3.6] then imply
that

L
x2X H�.X;O.R/.x// is a mixed Gal.xk=k/ representation (ie a representation

of Mq �Ga ). By Lemma 4.9, we may therefore conclude that the action of Zred on
X R;Mal
Ket factors through Mq , giving

Mq! Auth.X R;Mal
Ket /:

Finally, use the map Gm ! Mq (given after Definition 5.1) to define the weight
decomposition. Since R is pure of weight zero, the Gm –action on R is trivial, giving

Gm! Auth.X R;Mal
Ket /;

as required.
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Corollary 6.7 The Galois actions are mixed on the duals $n.X
R;Mal
Ket ;x/_ of the

homotopy groups for n � 2, and on the structure sheaves O.$f .X
R;Mal
Ket //.x;y/. In

particular, these objects have canonical weight decompositions.

Proof This is just the observation that there are canonical maps Auth.X R;Mal
Ket /!

Aut.$n.X
R;Mal
Ket ;x// and Auth.X R;Mal

Ket / ! Aut.O.$f .X R;Mal
Ket //.x;y// of group-

valued presheaves, so Proposition 6.6 gives algebraic actions of Mq �Ga (and hence
Gm ) on the homotopy groups and fundamental groupoid.

Remark 6.8 We have shown that $n.X
R;Mal
Ket / is a mixed � Ket

f
.Xk/–representation.

In particular, this means that $n.X
R;Mal
Ket ; xx/ is a mixed bhFxi–representation, so has a

canonical weight decomposition.

Remark 6.9 If the hypotheses of Theorem 3.40 hold and � Ket
1
.X;x/ is N –good relative

to R, then Corollary 6.7 implies that the Galois actions on the � Ket
n .X;x/˝yZ Q` are

mixed for n�N .

Alternatively, if it should happen that the Galois action on Hn.� Ket
1
.X;x/;V / is mixed

for all R–representations V underlying pure � Ket
1
.Xk ;x/–representations and all n�N ,

then Lemma 4.9 (combined with the Adams spectral sequence of [37, Proposition 4.37])
implies that the Galois actions on $n.B�1.X;x//

R;Mal is mixed for n�N . Provided
the first two hypotheses of Theorem 3.40 hold, the exact sequence of that theorem
would then imply that the Galois actions on � Ket

n .X;x/˝yZ Q` are also mixed.

6.3 Formality

Now assume that X is smooth and proper. Deligne’s Weil II theorems then imply thatL
x2X Hn.X;O.R/.x// is pure of weight n.

Theorem 6.10 For R as in Proposition 6.6, the Malcev homotopy type X R;Mal
Ket 2

sE.R/ is formal, in the sense that it corresponds (under the equivalences of Proposition
2.50 and Theorem 2.74) to the R–representation

H�
Ket.X;O.R//

in cochain algebras, equipped with the unique augmentation map Q`DH0.X;O.R//!Q
x2Ob R O.R/.x;�/. This isomorphism is Galois equivariant.

Proof We need to construct an isomorphism � W N Ru.X
�;Mal
Ket /ŠGH�

Ket.X;O.R// in
dgP.R/ (for G as in Definition 4.20), such that

ad� W Auth.X�;Mal
Ket /! Auth.G Spec DH�

Ket.X;O.R//ÌR/

satisfies ad� F D F .
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As in Section 4.3.4, take a minimal model m for N Ru.X
�;Mal
Ket / 2 dg yN .R/. This has

the property that mn=Œm;m�n Š HnC1.X;O.R//_ .

From the proof of Lemma 4.4, we know thatY
x2Ob R

exp.H0m.x//�Aut
dg yNA.R/

.m y̋A/! RAut.X �;Mal
Ket /.A/

is a pro-unipotent extension of pro-algebraic groups.

Likewise, the maps

Aut.RË exp.m//� Auth.X�;Mal
Ket /

!
˚
.f; ˛/ W f 2 Aut.R/; ˛ 2 IsoDGAlg.R/.H

�

Ket.X;O.R//; f
]H�
Ket.X;O.R///

	
both have pro-unipotent kernels.

So we may lift the map yZalg! Auth.X�;Mal
Ket / to give yZalg! Aut.RË exp.m//. This

gives a lift of the weight decomposition Gm!RAut.X�;Mal
Ket / to Gm!Aut.RËexp.m//.

Since m is of strictly negative weights, we may adapt [38, Corollary 1.21] by observing
that O.RË exp.m//=O.R/ is of strictly positive weights, and that the weight 0 part
W0O.RË exp.m// is just O(R), so we have a yZalg –equivariant decomposition

O.RË exp.m//DO.R/˚WCO.RË exp.m//:

This amounts to giving a yZalg –equivariant section of RËexp.m/!R, or equivalently
a yZalg –equivariant Levi decomposition, so we may assume that the yZalg action on
RË exp.m/ consists of actions on R and on m.

Let Vn WDW�n�1mn , for W as in Section 5.1; since cohomology is pure, we deduce
that Vn ! HnC1.X;O.R//_ is an isomorphism, and that m is freely generated as
a Lie algebra by the spaces Vn . The differential d on m is then determined by
d W Vn! mn�1 , and weight considerations show that the only nonzero contribution
is Vn!

Q
aCbDn�1ŒVa;Vb �. This is isomorphic to d W m=Œm;m�! Œm;m�=Œm; Œm;m��,

so must be dual to the cup product.

Therefore, the choice of lift yZalg! Aut.RË exp.m// has determined an isomorphism
RË exp.m/Š RË exp.GH�

Ket.X;O.R///, and this is automatically compatible with
the Galois action yZalg! Auth.RË exp.m//.

Corollary 6.11 If we let R be any Frobenius-equivariant quotient of W$ Ket
f
.X /red ,

then the relative Malcev homotopy groups $ Ket
n .X

R;Mal;x/ can be described in terms
of cohomology as

$ Ket
n .X

R;Mal;x/Š Hn�1.GH�.X;O.R///;
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for G as in Definition 4.20. This description is Galois-equivariant. If the conditions of
Theorem 3.40 hold (including goodness), then this also calculates � Ket

n .X;x/˝yZ Q` as
a Galois representation.

6.4 Quasiformality

Let j W X ,! xX be an open immersion of varieties over xk , such that locally for the
étale topology, the pair .X; xX / is isomorphic to .Am �

Q
i.A

ci �f0g/;Ad /, for some
d DmC

P
ci . Note that this is satisfied when xX �X is a normal crossings divisor

(corresponding to the case ci D 1 for all i ). It also includes all geometric fibrations
over xk in the sense of [10, Definition 11.4].

Definition 6.12 For X; xX as above, let T D xX�X , and let D be the closed subscheme
of T of codimension 1 in xX . Note that � Ket

f
.X /! � Ket

f
. xX �D/ is an isomorphism,

and define � t
f
.X / WD � t

f
. xX �D/ to be the tame fundamental groupoid (as in [12,

XIII.2.1.3]).

Define � t
f
.Xk/ similarly, with the tame Weil groupoid W t

f
.Xk/ given by

W t
f .Xk/ WD �

t
f .Xk/�yZ Z:

Let $ t
f
.X / WD� t

f
.X /alg , and define W$ t

f
.X / to be the image of $ t

f
.X /!W t

f
.Xk/

alg .

Given a local system V on X , observe that the direct image i�V of V under the
inclusion i W X ,! xX �D is also a local system. We say that V is tamely ramified
along the divisor if i�V is tamely ramified along D in the sense of [12, Definition
XIII.2.1.1].

Lemma 6.13 Take j as above. If V is a pure smooth Weil sheaf on Y of weight zero,
tamely ramified along the divisor, then R�j�V is pure of weight 2� (in the sense of
[25, Lemma-Definition II.12.7]).

Proof This is a consequence of the following statements:

(1) R�j�V is pointwise pure of weight 2� .

(2) the canonical map .R�j�V /_! RHom xX .R
�j�V ;Q`/ is an isomorphism.

If 0! V 0! V ! V 00! 0 is an exact sequence, with the statements holding for V
and V 00 , then observe that they also hold for V , since the long exact sequence must
degenerate.

The statements are local on xX . Étale-locally, the pair .X; xX / is isomorphic to
.U;U 0/D .Am�

Q
i.A

ci �f0g/;Ad /, for d DmC
P

ci . We may then reduce to the
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case when V is irreducible on U , and so V D Vm�
N

i Vi , for Vi irreducible on
Aci �f0g. By the Künneth formula, we now need only consider the pair .Ac�f0g;Ac/.

If V is constant, then the statements follow from the cohomological purity theorem
[30, VI.5.1]. Since the scheme Ac�f0g is simply connected for c > 1, this leaves only
the case c D 1. [25, Lemma I.9.1] shows that j�V is pure, and local calculations give
Rij�V D 0 for i > 0 (since V is tamely ramified, and is nonconstant irreducible).

Proposition 6.14 Assume that j W Xk ,! xXk is a morphism over k , with j ˝ xk as in
Lemma 6.13, for xXk proper. If V is a pure smooth Weil sheaf on X of weight zero,
tamely ramified along the divisor, then Hi. xX ;R�j�V / is pure of weight i C 2� , for
j W X ! xX the compactification map.

Proof By [5, Corollary 3.3.4], we know that Hi. xX ;R�j�V / is mixed of weights
� i C 2� , since R�j�V is pure of weight 2� . Now, Poincaré duality [25, Corollary
II.7.3] implies that

Hi. xX ;R�j�V /_ Š H2d�i. xX ; .R�j�V /_/.2d/;

which is mixed of weight � �i � 2� , using the isomorphism

.R�j�V /_ Š RHom xX .R
�j�V ;Q`/

of Lemma 6.13.

Corollary 6.15 For X as above, and �W $ Ket
f

X ! R any Frobenius-equivariant
quotient of W$ t

f
.X /red , the filtered homotopy type .X �;Mal; j / of Definition 4.37

is quasiformal (in the sense of Definition 4.24). The formality quasi-isomorphism is
equivariant with respect to the Galois action.

Proof This is largely the same as Theorem 6.10. Use the equivalences of Theorem 4.22
to take a filtered minimal model .m;J / 2 Fs yN .R/ for .X �;Mal; j /. The increasing
filtration J� on m_ gives a decreasing filtration J� on m, with J rmn the annihilator
of Jr�1.m

_/. Note that ŒJ am;J bm�� J aCbm and J 0mDm.

If we write AutJ .RËexp.m// for the group of filtered automorphisms of RËexp.m/,
then similarly to Lemma 4.31, the maps

AutJ .RË exp.m//� AuthJ .X
�;Mal
Ket /!˚

.f; ˛/ Wf 2Aut.R/; ˛2 IsoFDGAlg.R/.H
�

Ket.
xX ;R�j�O.R//; f ]H�Ket.

xX ;R�j�O.R///
	

both have pro-unipotent kernels.
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We may therefore lift the Galois action yZalg!AuthJ .X
�;Mal
Ket / to a filtered automorphism

of RË exp.m/. This gives a lift of the weight decomposition Gm! RAutJ .X�;Mal
Ket /,

a unique Galois-equivariant Levi decomposition of RË exp.m/, and a weight decom-
position Gm! AutJ .m/.

Now, .mab
n /
_ Š

L
aCbDnC1 Ha. xX ;Rbj�O.R// DW EnC1 , on which Jr is the sub-

space of weights �nCrC1. Thus J r .mab
n / is the subspace of weights ��.nCrC1/.

Let �rm be the lower central series on m, so �1m D m and �rC1m D Œm; �rm�.
The weight restrictions on mab show that J r .grs

�
m/n D J r .Lies.m

ab//n , which is of
weights � �.nC r C s/. This implies that J r .�sm/n is of weights � �.nC r C s/.

We now make a canonical choice of generators by setting

W�.nCrC1/Vn WDW�.nCrC1/J
rmn:

Set V WD
Q

i WiV ; the weight conditions above show that this has no intersec-
tion with �sm for s > 1, so the composition V ! m ! mab is injective. Since
W�.nCrC1/.m

ab/n DW�.nCrC1/J
r .mab/n , the composition is also surjective, so V

is a space of generators for m.

The structure of m is now determined by the differentials d W Vn! mn�1 . As mD

Lie.V /D V �
V2

V ��3m, weight and filtration considerations show that we must
have the projection d W Vn! .�3m/n�1 being 0. The nonzero contributions to d are
Vn! Vn�1 , which is dual to d1 on E , and Vn!

Q
aCbDn�1ŒVa;Vb �, which must be

dual to the cup product. Thus mD G.E/, and so RË exp.m/DRË exp.G.E//, as
required.

Corollary 6.16 For X and R as above, we can describe the relative Malcev homotopy
groups $ Ket

n .X
R;Mal;x/ explicitly in terms of the Leray spectral sequence as

Hn�1.G.JE�;�
1
//;

JEa;b
1
D H2aCb. xX ;R�aj�O.

W$ Ket
f .X /

L;red//for

as in Definition 4.11, and G as in Definition 4.20. If the conditions of Theorem 3.40
hold (including goodness), then this also calculates � Ket

n .X;x/ ˝yZ Q` as a Galois
representation.
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7 Varieties over local fields

7.1 Potentially good reduction, ` ¤ p

Let V 0 be a complete discrete valuation ring, with residue field k 0 (finite, of charac-
teristic p ¤ `), and fraction field K0 (of characteristic 0). Let xk; xK be the algebraic
closures of k;K0 respectively, and xV the algebraic closure of V 0 in xK .

Let XV 0 D
xXV 0 �TV 0 be a geometric fibration over V 0 (in the sense of [10, Definition

11.4]). Assume that we have a subfield K � K0 and a scheme XK=K such that
XK ˝K K0 ŠXV 0˝V 0K

0 . We wish to study the Gal. xK=K/–action on the homotopy
type X xK ;Ket .

Recall from [12, Theorem X.2.1] that the map � Ket
f
. xXk0/! � Ket

f
. xXV 0/ is an equivalence.

By ibid. Section XIII.2.10, this generalises to an equivalence � t
f
.Xk0/! � t

f
.XV 0/.

Meanwhile, ibid. Corollary XIII.2.8 implies that the map � t
f
.X xK /! � t

f
.X xV / is an

epimorphism, and ibid. Corollary XIII.2.9 shows � Ket
f
.X xK /

^L ! � Ket
f
.X xV /

^L is an
equivalence, where L is any set of prime numbers excluding p .

Proposition 7.1 If V is an `–adic local system on X xV , tamely ramified along the
divisor (ie coming from a representation of � t

f
.X xV /), then the maps

i�� W H�.X xV ;V /! H�.X xK ; i
�
�V /

i�s W H�.X xV ;V /! H�.Xxk ; i
�
s V /

are isomorphisms.

Proof In [10, Theorem 11.5], this is proved for � Ket
f
.X xV /

^L –representations, for
p … L. The same proof carries over to � t

f
.X xV /–representations, since the pro–L

hypothesis is only used to restrict the monodromy around the divisor.

Definition 7.2 Since � Ket
1
.Spec V 0/ Š Gal.xk=k 0/, we may define W$ t

f
.X xV / anal-

ogously to Definition 6.2 as the maximal quotient of $ t
f
.X xV / WD � t

f
.X xV /

alg on
which the Frobenius action is algebraic. Define pnr$ t

f
.X xK / to be the image of

$ t
f
.X xK / !

W$ t
f
.X xV /, noting that this is a quotient of $ t

f
.X xK / on which the

Gal. xK=K/–action is potentially unramified.

Note that these definitions are independent of the choice of extension V 0=V , in the
sense that a finite extension V 00=V 0 would give the same construction.

Geometry & Topology, Volume 15 (2011)



Galois actions on homotopy groups of algebraic varieties 589

Theorem 7.3 Let R be any Frobenius-equivariant reductive quotient of pnr$ t
f
.X xK /.

Then the Gal. xK=K/–action on the homotopy type

X
R;Mal
xK ;Ket

is algebraic, potentially unramified (as in Section 5.2) and mixed (Definition 5.16),
giving a canonical Galois-equivariant weight decomposition. It is also quasiformal,
corresponding to the E2 –termM

a;b

Ha. xX xK ;R
bj�O.R// 2 FDGAlg.R/;

of the Leray spectral sequence for the immersion j W X ! xX . The formality quasi-
isomorphism is equivariant with respect to the Gal. xK=K/–action.

Proof We know that the homotopy type is given by

C�
Ket.X xK ;O.R// 2 c Alg.R/:

From the definition of pnr$ t
f
.X xK /, we know that O.R/ is the pullback of a local

system on X xV , so i��O.R/ is a local system and i�� i��O.R/DO.R/.

The equivalences of Proposition 7.1 now give quasi-isomorphisms

C�
Ket.X xK ;O.R//D C�

Ket.X xK ; i
�
� i��O.R//

 C�
Ket.X xV ; i��O.R//! C�

Ket.Xxk ; i
�
s i��O.R//;

compatible with the basepoint augmentation maps.

We may assume that K �K0 is a Galois extension, then observe that the equivalences
above imply that action of Gal. xK=K0/ is unramified, so the Gal. xK=K/alg action
factors through Gal. xK=K/�Gal.xk=k0/ Gal.xk=k 0/alg . In fact, Proposition 6.6 implies
that the action factors through Gal. xK=K/ �Gal.xk=k0/ Mq0 , where q0 D jk 0j, so the
morphism Gm!M 0

q0 D ker.Mq0 ! Gal.xk=k 0// provides the weight decomposition.
This is compatible with the Galois action since Mq0 is commutative (being a quotient
of Zalg ), so Gm lies in the centre of Gal. xK=K/�Gal.xk=k0/Mq0 .

We may now adapt Corollary 6.15 to see that this is quasiformal, noting that all of the
quasi-isomorphisms above extend naturally to the filtered algebras of Corollary 6.15.

Corollary 7.4 Let X and R be as above. Then the homotopy groups $ Ket
n .X xK / are

potentially unramified and mixed as Galois representations, giving them a canonical
weight decomposition. They may also be recovered from the Leray spectral sequence,
as in Corollary 6.16.
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Corollary 7.5 If L is a set of primes including `, and

(1) � Ket
f
.X /^L is .NC1/–good relative to pnr$ t

f
.X
^L

xK
/,

(2) � Ket
n .X

^L/˝yZ Q` is finite-dimensional for all 1< n�N , and

(3) the action of ker.� Ket
f
.X xK /

^L ! � t
f
.X xV /

^L/ on � Ket
n .X

^L

xK
/˝yZ Q` is unipotent

for all 1< n�N ,

then the Galois action on � Ket
n .X

^L

xK
/˝yZ Q` is potentially unramified and mixed, giving

it a canonical weight decomposition. It may also be recovered from the Leray spectral
sequence.

Proof Substitute RD� t
f
.X xV /

L;red into Corollaries 7.4 and 6.16 and Theorem 3.40.

Note that if L does not contain p , then the third condition of the Corollary is vacuous.

7.2 Potentially good reduction, ` D p

7.2.1 Convergent isocrystals Let X; xX ;V 0;K;K0; k 0 etc. be as in the previous
section, but with ` D p . Let W 0 D W .k 0/, the ring of Witt vectors over k 0 , and
K0

0
the fraction field of W 0 ; let W nr WDW .xk/, with Knr

0
its fraction field. Choose a

homomorphism � W K0!K0 extending the natural action of the Frobenius operator
� on W .k 0/�K0 . Assume moreover that TV 0 DDV 0 , a normal crossings divisor, or
more generally that DV 0 corresponds to a log structure.

Definition 7.6 Let MFr. xXV 0 ;DV 0 /=K
0 be the category of filtered convergent F –isocrys-

tals on . xXV 0 ;DV 0/, as in [50, Section 1] (or [33, 6.9] when K0 is unramified, noting
that the construction extends to ramified rings, as mentioned at the end of [33, 1.14]).

Roughly speaking, an object of MFr. xXV 0 ;DV 0 /=K
0 consists of an F –isocrystal .E; �E/

on . xXk ;Dk/=W , together with a filtration Fili E of E satisfying Griffiths transver-
sality with respect to rE , where .E;rE/ is the module with logarithmic connection
on . xXK 0 ;DK 0/ obtained by base change from the evaluation of E on the p–adic
completion of . xXV 0 ;DV 0/.

7.2.2 Crystalline étale sheaves We now introduce crystalline étale sheaves, as in
Faltings [8, V(f)] or Andreatta and Iovita [1].
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Definition 7.7 We define the category of associations on . xXV 0 ;DV 0/ to consist of
triples .V ; �;E/, where

(1) V is a smooth Qp –sheaf on XK 0 ,

(2) E 2MFr
. xXV 0 ;DV 0 /

.ˆ/,

(3) � is an association isomorphism [33, Section 6.13], ie a collection of isomor-
phisms

�U W V ˝Qp
Bcris. yU /!E.Bcris. yU //

for U ! XV 0 étale, compatible with the filtrations and semilinear Frobenius
automorphisms, and with morphisms over X , so that � becomes an isomorphism
of étale presheaves. Here, Bcris. yU / is formed by applying Fontaine’s construction
to the p–adic completion yU of U .

A morphism f W .V ; �;E/! .V 0; �0;E0/ in the category of associations consists of
a morphism f KetW V ! V 0 and a morphism f crisW E ! E0 such that f cris ı � D

�0 ıf KetW V ˝Qp
Bcris. yU /!E0.Bcris. yU // for all U .

The following lemma is a counterpart to [8, Lemma 5.5], which gives the corresponding
statements for the forgetful functor from associations to MFr

.XV 0 ;DV 0 /
.

Proposition 7.8 The forgetful functor .V ; �;E/ 7!V from the category of associations
to the category of smooth Qp –sheaves on XK 0 is full and faithful. Its essential image
is stable under extensions and subquotients.

Proof Given associations .V ; �;E/, .V 0; �0;E0/, note .V_˝V ; .�_/�1˝�0;E_˝E0/

is another association. Giving a morphism f KetW V ! V 0 amounts to giving an element
of H0.XK ;V

_˝V 0/, or equivalently a Galois-invariant element of H0.X xK ;V
_˝V 0/.

By [8, 5.6], the map

.�_/�1
˝ �0W H�.X xK ;V

_
˝V 0/˝Qp

Bcris! H�cris.Xk=W;E_˝E0/˝K 00 Bcris

is an isomorphism. Taking Galois-invariant and Frobenius-invariant elements in Fil0 ,
this gives an isomorphism

.�_/�1
˝ �0W H0.X xK ;V

_
˝V 0/Gal. xK=K 0/

! Fil0 H0
cris.Xk=W;E_˝E0/� ;

so there is a unique Frobenius-equivariant morphism f crisW E! E0 preserving the
Hodge filtration such that the diagrams

V ˝Qp
Bcris. yU /

� //

f Ket˝Qp Bcris ��

E.Bcris. yU //

f cris.Bcris. yU //
��

V 0˝Qp
Bcris. yU /

�0 // E0.Bcris. yU //
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commute. This shows that the forgetful functor is full and faithful.

To see that the essential image is stable under extensions, observe that extensions
of V by V 0 are parametrised by elements a of H1.XK 0 ;V

_ ˝ V 0/. The isomor-
phisms above then show that ..�_/�1˝ �0/.a/ is a Frobenius-equivariant element of
Fil0 H1

cris.Xk=W;E_˝E0/, so gives a unique extension of .V ; �;E/ by .V 0; �0;E0/
in the category of associations.

Finally, note that the subquotient of an extension is an extension of subquotients, so it
suffices to show that the essential image contains subquotients of semisimple objects.
Since such a subquotient V 0 of V is isomorphic to a direct summand, we have an
idempotent endomorphism � of V with ker� ŠV 0 . Since the forgetful functor is full,
� lifts to an idempotent endomorphism z� of .V ; �;E/, so V 0 underlies ker z� .

Definition 7.9 Say that a smooth Qp –sheaf V on XK 0 is crystalline if it lies in the
essential image of the forgetful functor from the category of associations.

Proposition 7.10 The fibre functors .V ; �;E/ 7!Vxx make the category of associations
into a multifibred Tannakian category. The corresponding pro-algebraic groupoid
$ Ket
f
.XK 0/

cris is a quotient of $ Ket
f
.XK 0/. Moreover, $ Ket

f
.XK 0/

cris is the Malcev com-
pletion of � Ket

f
.XK 0/ with respect to the reductive quotient $ Ket

f
.XK 0/

cris;red .

Proof Associations form a Qp –linear rigid abelian tensor category, with .V ; �;E/˝
.V 0; �0;E0/D .V ˝Qp

V 0; �˝ �0;E˝OXk ;cris E0/ and .V ; �;E/_ D .V_; .��1/_;E_/.

By Proposition 7.8, associations are equivalent to the Tannakian subcategory of crys-
talline étale sheaves in Rep.$ Ket

f
.XK 0//. Thus the forgetful functor from associations

to smooth Qp –sheaves corresponds to a surjection $ Ket
f
.XK 0/!$ Ket

f
.XK 0/

cris of pro-
algebraic groupoids (with the same object set).

For �W � Ket
f
.XK 0/ ! $ Ket

f
.XK 0/

cris;red , representations of $ Ket
f
.XK 0/

�;Mal are smooth
Qp –sheaves on XK 0 which are Artinian extensions of semisimple crystalline étale
sheaves. By Proposition 7.8, this is equivalent to the category Rep.$ Ket

f
.XK 0/

cris/ of
associations.

Definition 7.11 Say that a smooth Qp –sheaf V on XK is potentially crystalline if
V jXK 00

is crystalline for some finite extension K0 �K00 .

7.2.3 Equivariant pro-algebraic fundamental groups

Definition 7.12 Define cris;K0$ Ket
f
.X xK / to be the image of $ Ket

f
.X xK /!$ Ket

f
.XK 0/

cris .
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Note that we can also characterise cris;K0$ Ket
f
.X xK / as

ker.$ Ket
f .XK 0/

cris
! Gal. xK=K0/cris

D$ Ket
f .Spec K0/cris/;

using the right-exactness of pro-algebraic completion. Thus

$ Ket
f .XK 0/

cris
D

cris;K0$ Ket
f .X xK /ÌGal. xK=K0/cris;

so representations of cris;K0$ Ket
f
.X xK / correspond to smooth Qp –sheaves on X xK arising

as subsheaves of pullbacks of crystalline étale Qp –sheaves on XK 0 .

Definition 7.13 Define

pcris$ Ket
f .X xK / WD lim

 �
K 00

cris;K00$ Ket
f .X xK /;

where the limit is taken over all finite Galois extensions K0 �K00 .

Finite-dimensional representations of pcris$ Ket
f
.X xK / thus correspond to smooth Qp –

sheaves on X xK arising as subsheaves of pullbacks of potentially crystalline smooth
Qp –sheaves on XK .

Since G D lim
 �K 00

.Gal. xK=K00/cris �Gal. xK=K 00/ Gal. xK=K//, this gives an isomorphism

lim
 �
K 00

.Gal. xK=K/�Gal. xK=K 00/$
Ket
f .XK 00/

cris/Š pcris$ Ket
f .X xK /ÌG

pcris;

so the Galois action on pcris$ Ket
f
.X xK / is algebraic and potentially crystalline.

Lemma 7.14 The map $ Ket
f
.X xK /�

pnr$f . xX xK / factors through pcris$ Ket
f
.X xK /.

Proof Since

Gal. xK=K/pnr Ë pnr$f . xX xK /D lim
 �
K 00

Gal. xK=K/�Gal.xk=k00/
$f . xXk00/;

it suffices to show that the map $f .XK 00/!$f . xXk00/ factors through $ Ket
f
.XK 00/

cris .
By looking at representations, this is equivalent to saying that every smooth Qp –sheaf
on xXk00 pulls back to give a crystalline étale sheaf on XV 00 . This now follows from
[21, 4.1.1], which shows that smooth Qp –sheaves on xXk00 correspond to unit-root
F –lattices on XV 00 .

Definition 7.15 Any field extension K0!K00 gives a pullback functor

MFr. xXV 0 ;DV 0 /=K
0 !MFr. xXV 00 ;DV 00 /=K

00 ;
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and we set
MFr. xX xV ;D xV /= xK WD lim

�!
K 00

MFr. xXV 00 ;DV 00 /=K
00 ;

where K00 ranges over all finite field extensions K0 �K00 .

Representations of Gal. xK=K/pcris;0 Ë pcris$ Ket
f
.X xK / are just representations of

lim
 �
K 00

$ Ket
f .XK 00/

cris;

so the category of finite-dimensional representations is

lim
�!
K 00

FD Rep.$ Ket
f .XK 00/

cris/:

Definition 7.16 Making use of the forgetful functor from associations to filtered
convergent F –isocrystals, the observation above gives us a Qp –linear functor

DX
pcrisW FD Rep.Gal. xK=K/pcris;0 Ë pcris$ Ket

f .X xK //!MFr. xX xV ;D xV /= xK :

Say that an object of MFr. xX xV ;D xV /= xK is potentially admissible if it lies in the essential
image of DX

pcris .

Note that D
Spec K
pcris DDpcris .

Definition 7.17 Given a G0 –equivariant affine scheme Y over Qp , define the affine
scheme Dpcris.Y / over Knr

0
by

Dpcris.Y /D Spec DpcrisO.Y /:

Observe that O.Y / is therefore an ind-object of (ie a sum of objects in) the category
MFr.Spec xV ;∅/= xK .

Proposition 7.18 The category of finite-dimensional Dpcris.
pcris$ Ket

f
.X xK //–represen-

tations in potentially admissible objects of MFr.Spec xV ;∅/= xK is equivalent to the category
of finite-dimensional Gpcris;0 Ë pcris$ Ket

f
.X xK /–representations, which in turn is equiva-

lent to the category of potentially admissible objects of MFr. xX xV ;D xV /= xK .

For any point x 2 X xV .
xK/, the associated fibre functor from Dpcris.

pcris$ Ket
f
.X xK //–

representations to MFr.Spec xV ;∅/= xK corresponds under this equivalence to the pullback

x�W MFr. xX xV ;D xV /= xK !MFr.Spec xV ;∅/= xK :
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Proof A Dpcris.
pcris$ Ket

f
.X xK //–representation V in potentially admissible objects of

MFr.Spec xV ;∅/= xK consists of potentially admissible objects V .x/ 2MFr.Spec xV ;∅/= xK for
all x 2 Ob.pcris$ Ket

f
.X xK //, together with coassociative morphisms

V .y/! V .x/˝DpcrisO.
pcris$ Ket

f .X xK /.x;y//

in MFr.Spec xV ;∅/= xK .

Since Dpcris gives an equivalence between Gpcris;0 –representations and potentially
admissible objects of MFr.Spec xV ;∅/= xK , the description above shows that it defines the
required equivalence from Gpcris;0 Ë pcris$ Ket

f
.X xK /–representations.

Now, Gpcris;0 Ë pcris$ Ket
f
.X xK /Š lim

 �K 00
$ Ket
f
. xXK 00/

cris , so we may apply the functor DX
pcris

from Definition 7.16, mapping to potentially admissible objects in MFr. xX xV ;D xV /= xK . By
[8, Lemma 5.5], this functor is full and faithful, so gives us the second equivalence
required.

Definition 7.19 Define

Isoc.. xXxk ;Dxk/=K
nr
0 / WD lim

�!
K 00

Isoc.. xXk00 ;Dk00/=K
00/

to be the category of isocrystals on lim
 �K 00

. xXk00 ;Dk00/=K
00 , where the limit is taken

over finite extensions K0 �K00 .

Proposition 7.20 The category of finite-dimensional Dpcris.
pcris$ Ket

f
.X xK //–represen-

tations over Knr
0

is equivalent to a full subcategory of Isoc.. xXxk ;Dxk/=K
nr
0
/. This

subcategory is the smallest full abelian subcategory containing the potentially admissible
objects of MFr. xX xV ;D xV /= xK .

Proof Write G WD pcris$ Ket
f
.X xK /, and let O.G/ be the universal G–representation

in smooth Qp –sheaves on X xK , as defined in Definition 2.75. Following through the
proof of Proposition 7.18, the functor from Dpcris.G/–representations in potentially
admissible objects of MFr.Spec xV ;∅/= xK to MFr. xX xV ;D xV /= xK is given by

F.A/ WDA˝Dpcris.G/DX
pcrisO.G/;

while its inverse is

F�.A/ WD lim
�!
K 00

H0
cris..

xXk00 ;Dk00/;A˝DX
pcrisO.G//:
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The same formulae define left exact functors F;F� between the category of finite-
dimensional Dpcris.G/–representations and Isoc.. xXxk ;Dxk/=K

nr
0
/. For any point x 2

X. xK/,

F.A/x DA˝Dpcris.G/Dpcris.O.G/x/DA˝Dpcris.G/Dpcris.O.G/.x;�//DA.x/;

so F is exact.

For any Dpcris.G/–representation A,

F�F.A/DA˝Dpcris.G/ lim
�!
K 00

H0
cris..

xXk00 ;Dk00/;D
X
pcrisO.G/˝DX

pcrisO.G//

DA˝Dpcris.G/DpcrisO.G/

DA:

Moreover, F� is right adjoint to F , since a morphism A ! F�.A
0/ is equivalent

to a G–equivariant morphism A˝OX ;cris!A0˝DX
pcrisO.G/ of isocrystals, which

is equivalent to a G–equivariant DX
pcrisO.G/–linear morphism A˝DX

pcrisO.G/!
A0˝DX

pcrisO.G/, which (taking G –invariants) is just a morphism F.A/!A0 . These
two statements combine to show that F is full and faithful.

Since F is exact, its essential image is an abelian subcategory. Proposition 7.18 ensures
that it contains all potentially admissible objects of MFr. xX xV ;D xV /= xK , so we need only
show that anything in the image of F is in the abelian subcategory generated by these
potentially admissible objects.

Given any Dpcris.G/–representation A, there exists a canonical embedding A ,!

A ˝ Dpcris.O.G//, which is a sum of objects of MFr.Spec xV ;∅/= xK . Thus for some
finite-dimensional subobject U , we have an embedding A ,! U . Replacing A with
U=A, we get an embedding U=A ,! U 0 , so AD ker.U ! U 0/, and hence F.A/D

ker.F.U /! F.U 0//. Since F.U / and F.U 0/ are potentially admissible objects of
MFr. xX xV ;D xV /= xK , this completes the proof.

7.2.4 Crystalline homotopy types Fix a Galois-equivariant quotient R of
pcris$ Ket

f
.X xK /

red , or rather of its full subgroupoid on objects X. xK/.

Definition 7.21 Let F!C�cris.F/ be a choice of functor from isocrystals to cosimpli-
cial sheaves on the log-crystalline site, with the property that C�cris.F/ is a resolution
of F, compatible with tensor products, and acyclic for log-crystalline cohomology.
Examples of such a functor are given in [35, page 17], or by denormalising the
construction DR of [33, 4.29.2]. In both cases, the resolution is given by first choosing
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a resolution which is acyclic for the derived functor between crystalline and Zariski
sites (such as denormalisation of the de Rham complex), then taking a Čech resolution.

Define C�cris.Y;F/ WD �.Y;C
�
cris.F//;

observing that this construction will also be compatible with tensor products.

Definition 7.22 Define the relative crystalline homotopy type X Dpcris.R/;Mal
xk;cris

over
DpcrisR to be the pro-algebraic homotopy type in Ho.sE.DpcrisR/�/ (over Knr

0
) corre-

sponding under Theorem 2.74 to the Dpcris.R/–representation

C�cris..
xXxk ;Dxk/;D

X
pcrisO.R//

in cosimplicial Knr
0

–algebras, equipped with its natural augmentations to

DpcrisO.R/.x;�/D C�cris.Spec Knr
0 ;x

�DX
pcrisO.R//

coming from elements x 2X. xV /:

Lemma 7.23 There is a canonical equivalence between representations of

$f .Xxk=K
nr
0 /

Dpcris.R/;Mal
cris

and a full subcategory of Isoc.. xXxk ;Dxk/=K
nr
0
/. Objects of this category are Artinian

extensions of those isocrystals corresponding under Proposition 7.20 to Dpcris.R/–
representations.

Proof This is [32, Theorem 2.28]. An alternative approach would be to note that the
proof of [35, Theorem 2.9] carries over to nonnilpotent torsors.

Definition 7.24 For a topos T , if C�T .S/ is a canonical cosimplicial T –resolution of
a sheaf S of algebras on X , with C�T .X;S/ WD �.X;C

�
T .S//, then for any morphism

f W X ! Y we have a bicosimplicial algebra C�T .Y; f�C
�
T .S//, and we define

C�T .f;S/ WD �
00C�T .Y; f�C

�
T .S// 2 Fc Alg;

defined as in Definition 4.33.

Definition 7.25 If we write j for the embedding X ,! xX , define the filtered relative
crystalline homotopy type .Xxk;cris; jxk;cris/

Dpcris.R/;Mal over DpcrisR to be the filtered
pro-algebraic homotopy type in Ho.sE.DpcrisR/�/ (over Knr

0
) corresponding under

Theorem 4.22 to the filtered Dpcris.R/–representation

C�cris.jxk;cris;D
X
pcrisO.R//
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in cosimplicial Knr
0

–algebras, equipped with its natural augmentations to

DpcrisO.R/.x;�/D C�cris.Spec Knr
0 ;x

�DX
pcrisO.R//

coming from elements x 2X. xV /.

7.2.5 Comparison of homotopy types From now on, let B WD Bcris.V / and zB WD
zBcris.V /, from Definition 5.18.

Proposition 7.26 For any Galois-equivariant quotient R of pcris$ Ket
f
.X xK /

red , there is
a chain of .�;G0/–equivariant quasi-isomorphisms

X R;Mal
xK ;Ket

˝Qp
zB �X DpcrisR;Mal

xk;cris
˝K nr

0

zB

in s Aff zB.R/� .

Proof This amounts to establishing a chain of quasi-isomorphisms

C�
Ket.X xK ;O.R//˝Qp

zB � C�cris.Xxk=K
nr
0 ;D

X
pcrisO.R//˝K nr

0

zB

in c Alg zB.R/�

In the notation of [33, 4.29, 5.21], C�cris.Xk=K
nr
0
;DX

pcrisO.R// and C�
Ket.X xK ;O.R// are

quasi-isomorphic to the denormalisations of R�cris.D
X
pcrisO.R// and GC.O.R/;X. xK//,

since denormalisation and Thom–Sullivan are quasi-inverse up to homotopy (as in
Remarks 3.31).

Since the affine group schemes R=Qp and Dpcris.R/=K
nr
0

are associated by an iso-
morphism

B˝Qp
O.R/Š B˝K nr

0
DpcrisO.R/;

the required result is then ibid. 6.15.1, combined with the observation in ibid. Proposition
6.19 that pullback preserves associations, thus ensuring that these associations are
compatible with the augmentation maps coming from basepoints.

The proof of ibid. 6.15.1 proceeds by adapting the isomorphisms on cohomology groups
from [8, 5.6] to quasi-isomorphisms of DG algebras. Since the latter proves that the
cohomological isomorphisms respect cup products, an alternative approach would be
to extend the isomorphisms to quasi-isomorphisms of the minimal E1–algebras they
underlie. Remark 2.54 would then imply that the corresponding objects in dg yN .R/
are weakly equivalent.
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Remark 7.27 When L is a crystalline étale sheaf on XK and R is the Zariski
closure of the image of � Ket

1
.X xK ; xx/! GL.Lxx/ with nilpotent monodromy around

each component of the divisor, then Proposition 7.26 is effectively [33, Theorem
1.7] (replacing “crystalline” with “potentially crystalline” throughout). The nilpotent
hypothesis was needed for Tannakian considerations, which in our case are obviated
by Proposition 7.8.

Theorem 7.28 Given a Galois-equivariant quotient R of pcris$ Ket
f
.X xK /, the Galois

action on X RMal
xK ;Ket

is algebraic and potentially crystalline.

Proof In the notation of Section 5.3, we need to show that the map G!Auth.X R;Mal
xK ;Ket

/

factors through Gpcris . Apply Proposition 5.20 to Proposition 7.26, taking

Y D Auth.X R;Mal
xK ;Ket

/�Aut.R/ Gpcris;0

with the G0 action on Y given by left multiplication.

Now, note that Dpcris.Gpcris;0 �R/ D Dpcris.Gpcris;0/ �R, giving a Knr
0

–linear map
f W Dpcris.Gpcris;0/�R!DpcrisR. In fact,

Dpcris.Gpcris;0/D Spec Bker.G0!Gpcris;0/;

so this map just comes from the isomorphism .DpcrisO.R//˝K nr
0

B ŠO.R/˝Qp
B .

We now define Z over DpcrisGpcris;0 to be the affine scheme given by

Z.A/D IsoHo.dg AffA.R/�/.X
R;Mal
xK ;Ket

˝Qp
A; f ].X DpcrisR;Mal

cris ˝K nr
0

A//;

for DpcrisO.Gpcris;0/–algebras A.

Since Gpcris;0 is potentially crystalline, we have an isomorphism ˛W Gpcris;0�Spec zB!
.DpcrisGpcris;0/�Spec K nr

0
Spec zB , so the scheme Z �Spec K nr

0
Spec zB can be regarded as

a scheme over Gpcris;0 �Spec zB

The G0 –equivariant isomorphism of Proposition 7.26 then gives a G0 –equivariant
isomorphism

Z.A/Š IsoHo.dg AffA.R/�/.X
R;Mal
xK ;Ket

˝Qp
A; ˛]X R;Mal

xK ;Ket
˝Qp

A/;

for any DpcrisO.Gpcris;0/˝K nr
0

zB–algebra A, but the right-hand side is just Y .A/,
giving a G0 –equivariant isomorphism

Z �K nr
0

Spec zBcris Š Y �Qp
Spec zBcris;

as required.
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Corollary 7.29 For x;y 2X. xK/, the G0 –actions on

$n.X
R;Mal
xK ;Ket

;x/ and $f .X
R;Mal
xK ;Ket

/.x;y/

are potentially crystalline.

Proof This is just the observation that the map

Aut.X xK ;Ket/! Aut.$n.X
R;Mal
xK ;Ket

;x//.Qp/

factors through Auth.X R;Mal
xK ;Ket

/.

Note that if we set R D 1 and look at the fundamental group, this recovers the
comparison theorem of [48; 51] between pro-unipotent étale and crystalline fundamental
groups.

In fact, we may extend Proposition 7.26 to a filtered version:

Proposition 7.30 For any Galois-equivariant quotient R of pcris$ Ket
f
.X xK /

red and for
j W X ! xX , there is a chain of canonical .�;G0/–equivariant quasi-isomorphisms

.X xK ;Ket; j xK ;Ket/
R;Mal

˝Qp
zB � .Xxk;cris; jxk;cris/

Dpcris.R/;Mal
˝K nr

0

zB

in Fs Aff zB.R/� .

Proof The proof of Proposition 7.26 adapts.

Lacking a suitable p–adic analogue of Lafforgue’s Theorem (although [24, Theorem
6.3.4] might provide a viable replacement in some cases), we now impose a purity
hypothesis.

Assumption 7.31 Assume that DX
pcrisO.R/ is an ind-object in the category of �–pure

overconvergent F –isocrystals. Like Definition 6.2, this is equivalent to saying that for
every R–representation V , the corresponding sheaf V on X xK can be embedded in the
pullback of a crystalline étale sheaf U on XK 00 , associated to an �–pure overconvergent
F –isocrystal on . xXk00 ;Dk00/=K

00 , for some finite extension K0 �K00 . Also note that
this implies that the Frobenius action on DpcrisO.R/ is �–pure.

Example 7.32 To see how the hypotheses of Assumption 7.31 arise naturally, assume
that f W YK !XK is a geometric fibration (in the sense of [10, Definition 11.4], for
instance any smooth proper morphism) with connected components, for Y of potentially
good reduction. Let G.xx;xz/ be the Zariski closure of the map

� Ket
f .X xK /.xx;xz/!

Y
n

Iso..Rnf Ket
xK ;�

Qp/xx; .Rnf Ket
xK ;�

Qp/xz/;
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so G is a pro-algebraic groupoid on objects X. xK/, and then set RDGred . By [8],

Rnf Ket
xK ;�

Qp is associated to Rnf cris
xk;�

OYxk ;cris;

which by [24, Theorem 6.6.2] is �–pure (or if f is not proper, globally �–mixed). Thus
the semisimplifications of the G –representations

xx 7! .Rnf Ket
xK ;�

Qp/xx

are direct sums of �–pure representations. Since these generate the Tannakian category
of R–representations, the hypotheses are satisfied.

For xx 2X. xK/, we may write F WD Y �f;X ;xx Spec xK , and Theorem 3.32 then shows
that the homotopy fibre of

.Y Ket
xK
/R;Mal

! .X Ket
xK
/R;Mal

over xx is .F Ket
xK
/1;Mal .

Example 7.33 A more comprehensive example would be to let G.xx;xz/ be the Zariski
closure of the map

� Ket
f .X xK /.xx;xz/!

Y
n;f

Iso..Rnf Ket
xK ;�

Qp/xx; .Rnf Ket
xK ;�

Qp/xz/;

where f ranges over all geometric fibrations of potentially good reduction with con-
nected components, and then to set R WDGred . The resulting homotopy type .X Ket

xK
/R;Mal

would be very close to possible conceptions of a pro-algebraic motivic homotopy type.

Theorem 7.34 Given a Galois-equivariant quotient R of pcris$ Ket
f
.X xK / satisfying

Assumption 7.31, the Galois action on X R;Mal
xK ;Ket

is �–mixed in the sense of Definition 5.22,
giving a canonical weight decomposition on X R;Mal

xK ;Ket
˝B� .

Proof This is essentially the same as Proposition 6.6. Frobenius gives a canonical
element of Auth.X DpcrisR;Mal

cris /. We first show that this is �–mixed of integral weights.
By Lemma 4.9, we need only consider the Frobenius action on cohomology

H�cris..
xXxk ;Dxk/;D

X
pcrisO.R//:

The Leray spectral sequence gives

H2aCb
cris . xXxk ;R

�a
crisj�D

X
pcrisO.R// H) HaCb

cris ..
xXxk ;Dxk/;D

X
pcrisO.R//:
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If we write D.n/ for the normalisation of the n–fold intersection of the local components
of D , and inW D

.n/ ! xX for the embedding, then as in [4, 3.2.4.1], there is an
isomorphism

H2aCb
cris . xXxk ;R

�a
crisj�D

X
pcrisO.R//Š H2aCb

cris .D
.�a/
xk

; i�n j�D
X
pcrisO.R/.a//;

since j�D
X
pcrisO.R/ is associated to a locally constant sheaf on X .

Now, [24, Theorem 6.6.2] combined with Poincaré duality proves that

H2aCb
cris .D

.�a/
xk

; i�n j�D
X
pcrisO.R/.a//

is �–pure of weight b . Thus Lemma 4.9 implies that the Frobenius element of
Auth.X DpcrisR;Mal

cris / is �–mixed of integral weights.

We need to show that the composite morphism

Zalg;0
! Gpcris

˝Qp
B� ! Auth.X R;Mal

xK ;Ket
/˝Qp

B�

factors through M 0
� . By Proposition 7.26,

Auth.X R;Mal
xK ;Ket

/˝Qp
zB� Š Auth.X DpcrisR;Mal

cris /˝K nr
0

zB� ;

so the map
Zalg;0

! Gpcris
˝Qp

B� ! Auth.X R;Mal
xK ;Ket

/˝Qp
zB�

factors through M 0
� . Since B� � zB� , this completes the proof.

Theorem 7.35 For R as in Theorem 7.34, the filtered homotopy type

.X xK ;Ket; j xK ;Ket/
R;Mal

˝B�

is quasiformal, corresponding to the E2 –term

JEa;b
1
.X R;Mal
xK ;Ket

/˝B� D
M
a;b

H2aCb. xX xK ;R
�bj�O.R//˝B� 2 FDGAlgB� .R/;

of the Leray spectral sequence for the immersion j W X ! xX , and the formality
isomorphism is equivariant with respect to the Galois action.

The filtered homotopy type .X xK ;Ket; j xK ;Ket/
R;Mal is also quasiformal, but the formality

isomorphism is not in general Galois-equivariant or canonical.

Proof Since the Galois action is �–mixed in the sense of Definition 5.22, there
is a Galois-equivariant weight decomposition Gm ! RAutJ .X R;Mal

xK ;Ket
˝B� /, using

Lemma 5.21 and the observation after Definition 5.3. The argument of Corollary 6.15
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now adapts to show that X R;Mal
xK ;Ket

˝ B� is quasiformal, with the formality quasi-
isomorphism equivariant under the Galois action, proving the first part.

In particular this implies that

RAutJ .X R;Mal
xK ;Ket

/.B� /! Aut.JE�;�
1
.X

R;Mal
xK

//.B� /

is a pro-unipotent extension. Thus the corresponding morphism of pro-algebraic
groups is surjective, which allows to lift the weight decomposition on E�;�

1
.X R;Mal
xK

/

noncanonically to X xK ;Ket . This decomposition is not necessarily compatible with the
canonical decomposition on X R;Mal

xK ;Ket
˝B� . The argument of Corollary 6.15 adapted

to this decomposition now shows that X R;Mal
xK ;Ket

is quasiformal.

Corollary 7.36 For X and R as above, we can describe the homotopy groups
$ Ket

n .X
R;Mal
xK

;x/�Spec Qp
Spec B� explicitly in terms of the Leray spectral sequence as

$ Ket
n .X

R;Mal
xK

;x/_˝Qp
B� D Hn�1.G.JE�;�

1
.X R;Mal
xK ;Ket

//_/˝Qp
B� ;

for G as in Definition 4.20. Of course, if the conditions of Theorem 3.40 hold (including
goodness), then this also calculates � Ket

n .X xK ;x/˝yZ B� as a Galois representation.

Remarks 7.37 (1) In the case when X is projective and R is a quotient of
Gal$f .Xxk/, this is essentially the main formality result of [32, Section 4], which
has since been extended to the general projective case in [33, Theorem 7.22],
although Frobenius-equivariance is not made explicit there. The proofs also
differ in that they work with minimal algebras, rather than minimal Lie algebras.

(2) Although at first sight Theorem 7.35 is weaker than Theorem 7.3, it is more
satisfactory in one important respect. Theorem 7.3 effectively shows that relative
Malcev `–adic homotopy types carry no more information than cohomology,
whereas to recover a relative Malcev p–adic homotopy type from Theorem 7.35,
we still need to identify

.X xK ;Ket; j xK ;Ket/
R;Mal

� .X xK ;Ket; j xK ;Ket/
R;Mal

˝B� :

This must be done by describing the Hodge filtration on .X DpcrisR;Mal
cris ; jxk;cris/,

which is not determined by cohomology (since it is not Frobenius-equivariant).
Thus the Hodge filtration is the only really new structure on the relative Malcev
homotopy type. This phenomenon is similar to the formality results for mixed
Hodge structures in [34, Section 2].
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