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Topological properties of Hilbert schemes
of almost-complex four-manifolds IT

JULIEN GRIVAUX

In this article, we study the rational cohomology rings of Voisin’s Hilbert schemes X 7]
associated with a symplectic compact four-manifold X . We prove that these rings
can be universally constructed from H*(X, Q) and ¢;(X), and that Ruan’s crepant
resolution conjecture holds if ¢; (X) is a torsion class. Next, we prove that for any
almost-complex compact four-manifold X , the complex cobordism class of X
depends only on the complex cobordism class of X .

32Q060; 14C05, 14135

1 Introduction

The Hilbert schemes of points X" of a smooth projective complex surface X are
moduli spaces for finite subschemes of length #» on X . By a result of Fogarty [16], the
varieties X"l are smooth crepant resolutions of the n—fold symmetric powers X ()
of X, so that they present a strong geometric interest. Hilbert schemes of points
have been intensively studied in the past twenty years, and this has led to important
developments in algebraic and differential geometry as well as in theoretical physics
(see Iarrobino [24] and Gottsche [19] for an overview).

Among these various studies, we will recall here what concerns the cohomology rings
H*(X"] Q) of Hilbert schemes.

The first step towards the understanding of the vector spaces H™* (X ("] Q) was achieved
by Gottsche [17] with the computation of the generating series for the Betti numbers
bi(X ["]) in terms of the Betti numbers of the surface X'. Then Wafa and Witten
pointed out that the infinite-dimensional vector space H = @, -, H*(X ("] Q) was
(by Gottsche’s formula) an abstract highest-weight representation of the Heisenberg
superalgebra modeled on H*(X, Q). Such a construction was geometrically realized
independently by Nakajima [34] and by Grojnowski [23], using correspondences given
by incidence varieties. The additive structure of the cohomology rings of Hilbert
schemes of points was thus given a precise geometric description.
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Then Lehn obtained in [25] a decisive result in the study of the multiplicative structure.
He computed explicitly, when E is an algebraic vector bundle on X and the E []
are the associated tautological bundles on the X!, the cup product by ch(E™) on
H*(X™] ), and described in this way the subring of H generated by the Chern
classes of all the tautological bundles. This study was completed by Li, Qin and
Wang [29], who constructed virtual tautological Chern characters G(«,n) attached
to each cohomology class o on X', and computed the cup product by each G(«, n)
on H. The classes G(«, n) extend the Chern characters of the tautological bundles in
the following way: if « is the Chern character of an algebraic vector bundle E, then
G (a, n) is the Chern character of E ["], Besides, it is shown in [29] that the components
(Gi(a,n))o<i<n of the classes G(«, n) generate the ring H*(X™ Q) when « runs
through a basis of H*(X, Q). Using these generators, the authors obtained in [30]
a universal description of H*(X[", Q) from the ring H*(X, Q) and the first Chern
class of X in H*(X,Q).

This study led to interesting consequences in the particular case where X is a K3—
surface. Indeed, at the same time, Chen and Ruan [9] developed the theory of orbifold
cohomology and hinted at the existence of strong relations between the orbifold coho-
mology ring of an orbifold and the cohomology ring of a crepant resolution: this is
known as the cohomological crepant resolution conjecture (see Ruan [38]). If X is a
K3-surface, the Hilbert schemes X "] are hyperkéhler by a result of Beauville [4] and in
this case the cohomological crepant resolution conjecture predicts that for every positive
integer 7, the ring H* (X, C) and the orbifold cohomology ring H (X ") C) of
the n—fold symmetric product of X are isomorphic (see Adem, Leida and Ruan [1,
Conjecture 4.24]). The above recalled description of the cohomology ring of Hilbert
schemes made it possible to prove this prediction (see [27]) by putting together results
of Lehn and Sorger [27] for the Hilbert schemes part with the computations performed
independently by Fantechi and Gottsche [15] and Uribe [42] for the orbifold part.

If we leave the algebraic setting and consider abstract compact complex surfaces instead
of projective ones, Hilbert schemes of points still exist (they are usually called Douady
schemes). If X is a compact Kéhler surface, it can be deformed to a projective surface,
so that the general description given for the cohomology rings of X ["] when X is
projective remains valid. In the general case of possibly non-Kéhler compact complex
surfaces, Gottsche’s formula has been proved by de Cataldo and Migliorini [7], but
the study of the multiplicative structure cannot be performed as in the projective case.
Indeed, Lehn [25] uses in an essential way the fact that the cohomological cycle classes
of smooth algebraic curves on a smooth projective surface X span H'>1(X). This
property fails for abstract complex compact surfaces.
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In a still more general context, Voisin defined in [43] Hilbert schemes X (1] associated
with any almost-complex four-manifold (X, J): for every positive integer n, X" is
a stably almost-complex differentiable manifold of real dimension 4n. These almost-
complex Hilbert schemes are symplectic if X is symplectic (see Voisin [44]), and are
still crepant resolutions of the n—fold symmetric products of X . This construction sheds
a new light on the results we have mentioned about the cohomology rings of Hilbert
schemes: indeed, Voisin’s results imply that, for any projective surface X and any
positive integer #, the underlying differentiable manifold of X [] depends only on the
underlying differentiable manifold of X and on the deformation class of the complex
structure of X in the space of almost-complex structures. This explains why the ring
H*(X,Q) depends only on almost-complex invariants of X. On the other hand, it
is worth noticing that orbifold cohomology is naturally defined for almost-complex
orbifolds, which includes n—fold symmetric products of any almost-complex manifold.

Our paper is the second part of a program, the aim of which is the study of Voisin’s
almost-complex Hilbert schemes. The first part [21] has been devoted to the additive
structure of their cohomology rings: Gottsche’s formula has been proved and Nakajima
operators have been constructed. The first main concern here is the study of the ring
structure of the almost-complex Hilbert schemes. We prove the analog of Li, Qin and
Wang’s result quoted above under a symplectic hypothesis:

Theorem 1.1 If (X, J) is a symplectic four-manifold, the rings H* (X", Q) can be
constructed by universal formulae from the ring H*(X, Q) and the first Chern class
of X in H*(X,Q).

This theorem is proved in Section 5.3. Let us have a glimpse at the strategy of the proof.
The techniques developed in [21] allow us to adapt in the almost-complex case the
quasitotality of the proof of Lehn’s main formula [25, Theorem 3.10], except for the
very argument which has already been pointed out for non algebraic complex surfaces:
if (X, J) is an almost-complex compact four-manifold, the homology classes of smooth
J —holomorphic curves in X do not span H,(X, Q) in general. To overcome this
difficulty, we use the symplectic assumption: if X is symplectic and if J is an adapted
almost-complex structure, Donaldson’s theorem on symplectic divisors [11] makes it
possible to span H, (X, Q) by pseudoholomorphic curves for small perturbations of
the almost-complex structure J .

The second important problem in the proof of Theorem 1.1, which occurs only if
the first Betti number of X is nonzero, is to construct virtual tautological characters
for almost-complex Hilbert schemes. Indeed, in the classical situation, if X is a
projective surface, and if Y}, is the incidence locus in X ("] x X, the virtual tautological
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Chern character G(a,n) is equal to pry,[ch(Oy,) . pr; (e . td(X))]. The problem in
the almost-complex setting lies in the term ch(Qy, ). Unlike in the case of vector
bundles, there is no tractable analog of coherent analytic sheaves on almost-complex
Hilbert schemes: the differentiable structure of X" is pretty hard to deal with; the
topological structure of X! (as a C%—manifold) would do better, but sheaves of
continuous functions are generally ill-behaved. To explain the means used to cope
with this problem, we have to recall the basics of the construction of X ("] when X
is an almost-complex four-manifold: it relies on the choice of a relative integrable
complex structure J!, which is essentially a smooth family J,geic of integrable complex
structures parameterized by X () such that for each x in X @, J,rf; is an integrable
complex structure in a neighbourhood Wy of the points of x. If W}e’f] is the disjoint
union of the Hilbert-Douady schemes ngn], where each W, is endowed with the
integrable structure J,f;, then X[ is a subset of Wr[e’f] Our main idea is to replace
X by Wr[gl’], the latter having a much better structure: it is a differentiable orbifold
fibred in smooth analytic sets over X ™) We develop in a systematic way a theory
for these spaces, which we call relative analytic spaces, and for a particular class of
sheaves on them, the relatively coherent sheaves. These sheaves are locally an extension
of classical coherent analytical sheaves by C*° parameters. If T is a differentiable
orbifold chosen as parameter space and if F is a coherent analytic sheaf on an analytic
set Z, then it is possible to define a sheaf C*° (T, F) of smooth sections of F with
parameters in 7" as follows: if F is the sheaf Oz, then C*° (T, Oz) is the subsheaf
of pry, CZ,  consisting of smooth functions holomorphic in the first variables, and
for an arbitrary F, the sheaf C°°(T, F) is equal to F ®0p, C°(T,Oz). Besides,
this construction can be sheafified in the space of parameters: if V is a differentiable
orbifold, there exists a sheaf F on Z x V such that for all open subsets U and T of Z
and V respectively, I'(U x T, f) is equal to T'(U,C*°(T, F)). In our construction,
Z x V is a local model for a relative analytic space and F is a local model for a
relatively coherent sheaf on Z x V. A relative analytic space is obtained by gluing
together a family of such local models and so is a relatively coherent sheaf.

The formalism of relative analytic spaces and relatively coherent sheaves allows us to
use tools of algebraic and analytic geometry in the almost-complex setting. It does not
only solve our present problem, but will be essential in the last section of the paper
(Section 6). We give an independent exposition of this formalism, as it may be useful
in other situations.

As soon as Lehn’s formula is obtained and virtual Chern characters are constructed, The-
orem 1.1 follows from formal combinatorial arguments. We also prove (in Section 5.3)
that Ruan’s cohomological crepant resolution conjecture is valid for Hilbert schemes
of symplectic compact four-manifolds with torsion first Chern class:
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Theorem 1.2 Let (X, w) be a symplectic compact four-manitold with vanishing first
Chern class in H*(X, Q). Then, for every positive integer n, the rings H*(X™, C)
and H}\ (X () C) are isomorphic.

Our second object in this paper is the description of the complex cobordism classes of
almost-complex Hilbert schemes. We obtain:

Theorem 1.3 Let (X, J) be an almost-complex compact four-manifold. For any
positive integer n, the complex cobordism class of X [] given by its stable almost-
complex structure depends only on the complex cobordism class of X .

This theorem is proved in Section 6. Our interest in this problem goes back to Voisin’s
original motivation for constructing Hilbert schemes in the almost-complex setting: it
is the computation of the cobordism classes of Hilbert schemes of points for projective
surfaces, achieved by Ellingsrud, Gottsche and Lehn in [14]. The authors proved
that these classes can be universally computed from the cobordism classes of the
surface X itself. Their result shows that Hilbert schemes of points for projective
surfaces can be interpreted as modifications at the level of complex cobordism. Voisin’s
idea was that this modification of the complex cobordism could be lifted at the level
of almost-complex manifolds. Although she actually constructed Hilbert schemes for
almost-complex four-manifolds, it is not at all clear that they actually lift the classical
Hilbert schemes at the cobordism level. Our theorem means that it is indeed the case.
The proof relies heavily on the use of relatively coherent sheaves to adapt the argument
of [14] in the almost-complex setting.

Let us now describe the organization of the paper.

Two distinct aims are pursued in Section 2. The first one is to define relative analytic
spaces, which occur in particular in Voisin’s construction of almost-complex Hilbert
schemes. The second one is to recall this construction as well as related results. This
section, which is mainly expository, will be used throughout the paper. In Section 2.1,
we recall classical results about Hilbert schemes of points. In Section 2.2, we introduce
relative and differentiable analytic spaces. This section consists mostly of definitions.
The link between relative analytic spaces and relative integrable structures originally
used by Voisin [43] is given by Proposition 2.12. We also state a general existence
result for relative integrable structures (Proposition 2.13), which is proved in Section 7.
In Section 2.3, we recall the construction of almost-complex Hilbert schemes only as
topological spaces. For the construction of their differentiable structures, we refer the
reader to Voisin’s papers [44, Section 2] for an outline and [43, Section 3] for a detailed
exposition. Then we state the main results of [43; 44; 21] about almost-complex
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and symplectic Hilbert schemes. In Section 2.4, we recall briefly the construction
of incidence varieties carried out in [21, Section 4], mainly to fix the notation. The
compatibility conditions (A) and (B) introduced in Section 2.4 will appear several times
in Section 3.5, Section 5.2 and Section 6.

In Section 3, we present the general theory of relatively coherent sheaves on the relative
analytic spaces introduced in Section 2.2. This formalism is rather heavy and will be
used in Section 5.2 to construct virtual tautological Chern characters and in Section 6
to compute the complex cobordism class of almost-complex Hilbert schemes. The
reader interested only in the description of the cohomology ring of X! when X
is a symplectic compact four-manifold with vanishing first Betti number may skip
this section except for Definition 3.1, and go directly to Section 4. In Section 3.1,
we define relatively coherent sheaves as well as related operations: pullback, internal
Hom, tensor product, and the corresponding derived operations. In Section 3.2, we
define relative analytic subspaces and prove in Proposition 3.11 that their structure
sheaves are relatively coherent. The proof relies on deep properties concerning ideals
of differentiable functions. We also prove in Proposition 3.13 that relatively coherent
sheaves are stable under pushforward by finite maps. The aim of Section 3.3 is to
generalize the formalism of analytic K—theory of Borel and Serre [5] for relative
analytic spaces. Suitable morphisms are introduced in Definition 3.14, so that the
relatively coherent sheaves on a relative analytic space X become an abelian category.
The associated Grothendieck group is by definition the relative analytic K—theory of X.
Then the operations defined in Section 3.2 and Section 3.3 induce operations in relative
K-theory. Various formulae relating these operations are grouped in Proposition 3.16;
they will be frequently used in Section 3.5, Section 5.2 and Section 6. The aim
of Section 3.4 is to construct a map from relative analytic K—theory to topological
K—theory with complex coefficients. In the case of usual analytic K-theory, such
a map can be obtained via global real analytic locally free resolutions of coherent
analytic sheaves (see Atiyah and Hirzebruch [2, Proposition 2.6]). It is also possible
to use differentiable resolutions instead of real analytic ones, as explained in Atiyah
and Hirzebruch [3, Section 6]; this is the method we adopt in the case of relatively
coherent sheaves. The important point is that, although differentiable coherent sheaves
as introduced in [3, Definition 6.1] are defined by a global condition, it turns out that
they can be characterized by a local condition: it is the object of Proposition 3.17. This
allows us to prove that any relatively coherent sheaf F on a relative analytic space X
admits a finite locally free resolution over C2° in a neighbourhood of every compact
subset of X (Proposition 3.19), and then to associate with F a well defined element in
topological K-theory, called the topological class of . Next, we prove two important
results about this class, namely the functoriality by pullback (Proposition 3.20) and
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the homotopy invariance (Proposition 3.21). In Section 3.5 we apply the formalism
of Sections 3.1-3.4 and associate with any almost-complex compact four-manifold X
various incidence sheaves on relative analytic spaces built from X via suitable relative
integrable complex structures. This defines the geometric setting which will be used
independently in Section 5.2 and Section 6. The last result of the section (Proposition
3.27), which is the analog of Ellingsrud, Gottsche and Lehn [14, Lemma 1.1] in a
relative setting, will be used only in the proof of Proposition 6.8.

The object of Section 4 is to carry out for symplectic four-manifolds Lehn’s computation
of the boundary operator [25, Theorem 3.10]. In Section 4.1 we adapt the first part of
Lehn’s argument to the almost-complex case as we did for the Nakajima relations in [21].
This yields half of Lehn’s formula (Theorem 4.2). In Section 4.2, we use Donaldson’s
theorem on symplectic divisors [11] to establish a general result (Proposition 4.6)
concerning pseudoholomorphic curves on symplectic four-manifolds. This result allows
us to obtain in Section 4.3 the other half of Lehn’s formula when X is symplectic: this
is the object of Theorem 4.7.

In Section 5, we deal with the cohomology rings of Hilbert schemes of points for
symplectic compact four-manifolds. In Section 5.1, we prove an induction relation for
the Chern characters of the tautological vector bundles constructed in [21] (Lemma
5.1). In Section 5.2, we construct virtual Chern characters satisfying the same induction
relation (Proposition 5.2). As we already mentioned, we use the machinery of relatively
coherent sheaves, and especially Section 3.5. Note that Section 5.2 can be skipped
if the first Betti number of X vanishes. In Section 5.3, we state and prove our main
results about the cohomology rings of symplectic Hilbert schemes which are Theorems
5.6,5.7 and 5.9.

Finally, Section 6 is entirely devoted to the computation of the cobordism class of
Hilbert schemes of an almost-complex compact four-manifold (Theorem 6.1). We
combine the strategy of [14, Section 1-3] with the use of the relative incidence sheaves
of Section 3.5. In Sections 6.1, 6.2 and 6.3 respectively, we extend to the relative setting
the results of [14, Propositions 2.2, 2.3 and 3.1]. This is the object of Propositions 6.4,
6.5 and 6.8.
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2 Almost-complex Hilbert schemes and relative analytic
spaces

2.1 Hilbert schemes, incidence varieties and tautological bundles

Let X be a smooth complex manifold, Oy be its sheaf of holomorphic functions and
n be a positive integer.

Definition 2.1 The Hilbert-Douady scheme X ™ of n—points in X is the set of zero-
dimensional subschemes of length 7 in X, ie the set of ideal sheaves J of Ox such
that ¢ xy dim¢c Op/J)p is equal to n.

Let G, be the symmetric group on n symbols and let X := X”/&,, denote the
n—fold symmetric product of X .

Definition 2.2 The Hilbert—Chow morphism T': X"l — X s defined by the
formula I'(§)=3_,c x Ip(§) p, where /(&) is the length of & at p.

Some basic properties of Hilbert schemes of points are:
o Xx[MMiga complex analytic space and I" is a bimeromorphic map.
e If X is compact, sois X[
e The fibers of I' are projective, and irreducible if dim X' = 2 by Briangon [6].
e If X is a complex curve, then I" is an isomorphism and X [] is smooth.

e If X isacomplex surface, then X [] is smooth of dimension 2n and is irreducible
if X is connected by Fogarty [16].

For a thorough study of Hilbert schemes of points, we refer the reader to Gottsche [18]
and Nakajima [34].
In this section, we only consider the case dim X = 2. The Hilbert schemes correspon-

ding to different values of n are related through the incidence varieties:

Definition 2.3 For all positive integers 7 and # such that m > n, the incidence variety
Xlmnl s the set of couples (£, ') in X x X1™] such that & is a subscheme of & .

The incidence varieties X" "] are analytic subvarieties of X! x X" The case
m = n + 1 appears as particularly interesting in the theory:

o X[t ig smooth and irreducible by Cheah [8], Tikhomirov [41] and unpub-
lished work of Ellingsrud.
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o If Y, is the incidence locus, defined as
(2-1) Y, = {(£,x) in X X such that x € supp(§)},

then xt1l.nl ~ P(Jn) by Danila [10, Proposition 3.3]. As a consequence,
Xlnti.n] g isomorphic to the schematic blowup of Y; in X "] x X. The
exceptional divisor associated with this blowup is

(2-2) D={(E£&)in Xx[r+1m1 guch that supp(§) = supp(&")}.

These properties show that the incidence variety X [n+1.n] jg closely related to the
incidence locus Y. The latter satisfies the following properties:

e The morphism pr|y,: ¥, — X[ is flat and finite.

e The ideal sheaf Jy, admits a global locally free resolution of length 2 on
X x X by Danila [10, Lemma 3.2].

o If ¢: XIntlml s xlnl gng y: xlnt1.nl s xIn+1] gre the natural morphisms
induced by the projections, if p: X [n+1.n] o X is the residual map defined by
the formula p(€, &) = supp(£/£'), if j = (id, p): Xn+Lrl s xlrtlnl o x
and if £ = Oym+1.,1(—D), then there exists a natural exact sequence on the
product Xty x (14, Section 1]

(2-3) 0 — jxL£ — (Y,id)* OYn—H — (¢,id)* Oy, — 0.

The variety X [r+1.7] can be constructed explicitly via a global locally free
resolution

0—>A—>B—=Jy, —0

of Jy, : if P(B) is the projective bundle of B (using Grothendieck’s convention
for projective bundles), if 7: P(B) — X ["] x X is the associated projection
and if s is the section of w*A*(1) given by the morphism 7* A—n*B— Op(1),
then s is transverse to the zero section and its vanishing locus is isomorphic
to X[n+1,n]‘

We end this section with tautological bundles. Let pr; and pr, be the projections from
X[l 5 X on the first and second factors.

Definition 2.4 Let £ be a holomorphic vector bundle on X and n be a positive
integer. The rautological vector bundle E (] is a holomorphic vector bundle on X []
defined by the formula E" = pri4(Oy, .pr5 E).
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If E is a holomorphic vector bundle on X and 7 is a positive integer, the tautological
vector bundles E! and E+1] are related through an exact sequence on X[7+1.7]
(see [25, page 193)):

(2—4) O—>P*E®£—>-W*E[n+l]—>¢*E[n] 0.

2.2 Relative spaces and relative integrable complex structures

The geometric structure underlying the construction of the almost-complex Hilbert
scheme of Voisin [43] is that of relative integrable structure, or in an almost equivalent
way that of relative analytic space. In this article, this point of view is systematically
expanded in order to study coherent sheaves in relative analytic spaces, which is done
in Section 3.

Throughout this section, B and B’ denote compact differentiable effective orbifolds
(see Satake [39] and Adem, Leida and Ruan [1, Section 1.1]). Recall that a map
f: B—= B’ is smooth if for any b in B there exist two orbifold charts (Vp, Gy,
Up) and (V). Grepy» Urp)) near b and f(b), a group morphism A: Gp —= Grp)
and a smooth A—equivariant map from V}, to V() inducing f on Up.

Definition 2.5 Let X be a separated topological space and 7: X — B be a continu-
ous surjective map.

(i) A relative chart (resp. relative holomorphic chart) on X is given by a homeomor-
phism ¢: U —=Y x V such that |y = pr, o ¢, where U is an open subset
of X, V is an open subset of B and Y is a differentiable manifold (resp. Y is a
smooth analytic space).

() Let ¢: U —=Y xV and ¥: U' —= Y’ x V' be two relative charts (resp. rela-
tive holomorphic charts) and let (y, v) — (¥ (»,v), v) be the associated transi-
tion function ¥ o ¢~ !: ¢(UNU’') — (U NU’). The charts ¢ and ¥ are
compatible if y is smooth (resp. y is smooth and for all v in pr,(¢(U NU"))
the function y — y(y,v) is holomorphic).

(iii) A relative atlas (resp. relative holomorphic atlas) on X is a collection of com-
patible relative charts (resp. relative holomorphic charts) on X whose domains
cover X.

(iv) A relative atlas (resp. relative holomorphic atlas) A on X is maximal if every
relative chart (resp. relative holomorphic chart) on X compatible with all the
charts of 4 belongs to A.

(v) If A is a relative atlas (resp. relative holomorphic atlas) on X, the saturated
atlas of A is the smallest maximal atlas containing A.
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To be able to define and study relatively coherent sheaves in Section 3, we introduce
the notion of complete relative holomorphic atlas (cf Remark 3.3 (iii)).

Definition 2.6 Let X be a separated topological space and let 7: X — B be a
continuous surjective map.

(i) If ¢: U —=Y x V is arelative holomorphic chart, if Y’ (resp. V') is an open
subset of Y (resp. V) and if U’ = ¢~ (Y’ x V'), then ¢|y: U —Y' x V'
is a relative holomorphic chart called the restriction of ¢ to U’.

(ii) A relative holomorphic atlas .4 on X is complete if

e for all relative holomorphic chart ¢ in .A, all the restrictions of ¢ are in A.

e for all finite family {qﬁi: U —=Y; x V,-}l <i<r of relative holomorphic
charts in A such that the open sets U; are pairwise disjoint, then the relative
holomorphic chart [[;_; ¢:: [[Ui —= [ (Yi x V;) isin A.

(iii) If A is a relative holomorphic atlas on X, the completed atlas of A is the
smallest complete relative holomorphic atlas containing A.

(iv) If A and A’ are two relative holomorphic atlases on X, we say A refines A’
if for any relative holomorphic chart ¢: U —=Y x V in A’ and any x in U,
there exists a neighbourhood Uy of x in U such that ¢|y, isin A.

(v) Two relative holomorphic atlases A and A’ are equivalent if A refines A" and
A’ refines A.

We define now relative differentiable spaces and relative analytic spaces.

Definition 2.7 (i) A relative differentiable space (resp. relative analytic space)
over B is the data of a separated topological space X endowed with a continuous
surjective map w: X — B and with a maximal relative atlas (resp. an equivalent
class of complete relative holomorphic atlas) over B.

(i) If X is a separated topological space, if w: X — B is a continuous surjective
map and if A is a maximal relative atlas (resp. a complete relative holomorphic
atlas) on X, we denote by (X, .A) the associated relative differentiable space
(resp. relative analytic space).

Remark 2.8 (i) If (X, A) is a relative differentiable space (resp. relative analytic
space) over B, the fibers (Xp)pep defined by X := w1 (b) are differentiable
(resp. complex) manifolds, but they do not form in general a fibration over B,
since the projection map 7 is not assumed to be proper.
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(i) The connected components of a relative differentiable space (resp. relative ana-
lytic space) (X, .A) are still relative differentiable spaces (resp. relative analytic
spaces). If X is connected, the dimension (resp. complex dimension) of Xp is
independent of b. We call it the relative real dimension (resp. relative complex
dimension) of X.

(iii) If (X,.A) is a relative differentiable space over B, then X is a differentiable
orbifold and the projection w: X — B is smooth.

Let us introduce some natural operations on relative analytic spaces.

Definition 2.9 (i) (Base change) Let (X,.4) be a relative differentiable space
(resp. relative analytic space) over B and u: B’ — B be a smooth map. If A =
{pi: Ui —=Yi x Vi}ier . if A ={¢; xpidp: Ui xp B'—=Y; xu~ ' (V;)}jer and if
u*(A) is the saturated (resp. completed) atlas of A’, then (Xxpg B’, u*(A)) is a relative
differentiable space (resp. relative analytic space) over B’.

(ii) (Fiber product) Let (X,.A) and (X', A") be two relative differentiable spaces
(resp. relative analytic spaces) over the same base B. Suppose ¢: U —= Z x V and
¢': U'—= Z' x V are two relative charts (resp. relative holomorphic charts) over
the same open set V. Then ¢ xg¢': U xgU’' —= (Z x Z') x V is a relative chart
(resp. relative holomorphic chart) on X xg X’. If A" is the relative atlas (resp. relative
holomorphic atlas) on X xg X’ consisting of such charts ¢ xp ¢’ and if A xg A’
is the saturated (resp. completed) atlas of A", then (X xp X', A xp A’) is a relative
differentiable space (resp. relative analytic space).

(iii) (Relative tangent bundle) Let (X,.A) be a relative differentiable space (resp.
relative analytic space) over B, where A = {¢;: Ui —=Y; x V;};er. We define a set
T™X by T™'X =]]pcp T Xp, and a relative differentiable (resp. relative holomorphic)
atlas A” on T™X% by A" = {d™'¢;: T™U; —> TY; x Vi}icr, where d™'¢; is the
relative differential of ¢;. If T™A is the saturated (resp. completed) atlas of A’, then
(T %, T™4) is a relative differentiable space (resp. relative analytic space) called
the relative tangent bundle of X. As a topological space, T™ X is a topological vector
bundle over X.

Relative analytic spaces are introduced by Voisin [43] by means of relative integrable
structures:

Definition 2.10 Let X be a relative differentiable space over B. A relative integrable

complex structure J™ on X is a continuous section of End (7™!X) satisfying the
following conditions:
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o If ¢: U—>Y x V is any relative chart of X, themap J™: Y xV —TY is
smooth.

rel.

e Forevery b in B, the map J;®: Xp —=End (T'X}) defines an integrable com-
plex structure on X .

The next proposition allows us to construct local holomorphic trivializations for relative
integrable complex structures.

Proposition 2.11 Let (X, A) be a relative differentiable space over B and J™ be a
relative integrable complex structure on X. For every x in X, there exist a neighbour-
hood Uy of x and a relative chart ¢: Uy —= W x V in A such that:

o W is an open subset of CV, where 2N is the relative real dimension of the
connected component of x in X.

o If Jg is the standard complex structure on CV and if b is any point in V , then
¢p: (Ux N Xp, JIH) — (W, Jg)
is a biholomorphism.

Proof Let U. x be a neighbourhood of x, 5: U « —>Y x V be a relative chart, and
put é(x) = (yg. vo). The relative integrable complex structure J™ defines a smooth
family (Jy)yep of integrable complex structures on Y . By the Newlander—Nirenberg
theorem with parameters, there exist a neighbourhood U, x Uy, of (3¢, vo) and
smooth complex-valued functions z!,...,z" on Uy, x Uy, such that for every v
in Uy,, (z1,...,z]) are holomorphic coordinates on (Uy,, J,) (see [44, page 271]).

If Uy = ¢~ 1(Uy, x Uy,), we define ¢ on Uy by ¢ = ((z',....2M) 0 ¢, 7). a

Proposition 2.11 enables us to relate relative complex structures and relative analytic
spaces.

Proposition 2.12 Let (X, .A) be a relative differentiable space over B. There is a
natural bijection between relative integrable complex structures on X and maximal
relative holomorphic atlases contained in A.

Proof If X is endowed with a structure of relative analytic space over B, Proposition
2.11 allows us to construct a relative holomorphic atlas on X and then the corresponding
saturated atlas. Conversely, if {¢;: U —= Z; X V; }icy is a relative holomorphic atlas
on X, the complex structures of the Z;’s define a relative integrable complex structure
on X. i

As a corollary, if X is a relative analytic space over B, there exists a canonical relative
integrable complex structure on the underlying relative differentiable space.
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Relative integrable structures are introduced in [43] to deal with problems in almost-
complex geometry. Let us give some general results about relative integrable complex
structures associated with an almost-complex manifold.

Let (X, J) be an almost-complex compact manifold and B be a compact connected
differentiable orbifold. Recall that B carries a stratification with finitely many strata.
If Z is aclosed subset of X x B, we say that Z is an incidence set if the following
conditions are satisfied:

e The map pr,|z: Z — B is surjective and finite.

e For each stratum B) of B, if Z; = pr;1 (By) N Z, then Z, is a submanifold
of X x B, and the map pr, |z,: Z; — B) is a covering map.

Let us introduce now some notation. Let g be a Riemannian metric on X, ¢ be a
positive integer and Z be an incidence set of X x B.

e If W is neighbourhood of Z in X x B (considered as a relative differentiable
space over B), Bg, (W) will denote the set of relative integrable complex
structures J™ on W such that ||J"™ — Jllco g w <e.

e We put By o = lim Bg,e(W).

—W,ZCW
Proposition 2.13 Let B be a compact differentiable orbifold, (X, J) be an almost-
complex compact manifold and Z be an incidence set in X x B. If g is a Riemannian
metric on X , there exists a positive real number & such that for any positive ¢ smaller
than gg, Bg, ¢ is nonempty and weakly contractible in the following sense: for every
nonnegative integer p and every pair of smooth families (J5\)sesp and (J} 1 l)sesp in
Bg, ¢ parameterized by the sphere S?, there exists a smooth fam11y (J5° s)(,, 5)€[0,1]xS?
parameterized by [0, 1] x S? joining (J§ rel) and (J{% rel

This result is implicit in [44], although not stated in this degree of generality (see [44,
Proposition 4]). We provide a proof in Section 7.

2.3 Construction of the almost-complex Hilbert scheme

First of all, we define relative Hilbert schemes.

Definition 2.14 TLet (X, A) be a relative analytic space over B of relative complex
dimension two and J™ be the associated relatlve integrable complex structure. For any
positive integer n, we define a set %Ll] by %rel =[Ipen %E) 1 where %[ "] is the Hilbert
scheme of n—points of X; endowed with the integrable complex structure J,gel. If

A={¢i: Ui—>YixViliesr and A ={o!" vl —yllsvy,

irel” l rel
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and if Al is the completed atlas of A’, then (f{[n] A"y is a relative analytic space
called the relative Hilbert scheme of X.

Let us now recall the definition of Voisin’s almost-complex Hilbert schemes. Let (X, J)
be an almost-complex compact manifold of dimension four, g be a Riemannian metric
on X, n be a positive integer and Z, be the incidence set in X x X ™ defined by

(2-5) Zn = {(p:x) in X x X™ such that p € x}.

We use the notation introduced at the end of Section 2.2. Let ¢ be any positive real
number smaller than the bound & of Proposition 2.13. Then By, . is nonempty.

Definition 2.15 Let W be a small neighbourhood of Z, in X x X and J™ be a
relative integrable complex structure in Bg, o(W). The topological Hilbert scheme X yﬂ]
is the subset of the relative Hilbert scheme Wr[g] defined by

x =

= {(é; X)in Wrgf] such that x = FE(S)},
where T: Wi — W is the Hilbert-Chow morphism associated with the inte-

grable complex structure J&!

Remark 2.16 (i) The topological Hilbert scheme X 5",11

of Jrel along Z,, ie of the image of Jrlin Bg,s.

depends only on the germ

(i) If W is a small neighbourhood of Z,, let {J[!},¢ B(0,r)cRd be a smooth famlly
in Bg, ¢(W). This family defines a relative integrable complex structure J Jrel o
the relative analytic space W =W xxm (X % B(0,r)). Then there exists a
natural relative topological Hilbert scheme over B(0,r) whose fibers are the

(X _[]ﬂ«l)teB(O r)»> namely,

XU LT e Boy) = (& x, 1) in W such that x = Ty ,(§)},

where 'y ;: Wén] — ch(n) is the Hilbert—-Chow morphism associated with
the complex structure J. lrfilt.
To obtain a differentiable structure on X }L , Voisin uses relative integrable structures
in a contractible subset B’ of By  satisfying some additional geometric conditions
(see [43, page 711]). The main results she obtains are:

Theorem 2.17 [43, Theorem 5, Theorem 6, Theorem 3; 44, Theorem 3] Let (X, J)

be an almost-complex compact four-manifold, J™ be a relative integrable structure
in B’ and n be a positive integer. Then
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)] X%l has a natural differentiable structure. Furthermore, if J'™ is another
relative integrable structure in BB’, there is a diffeomorphism between X ") and

Jrel
X 5",]@ which is uniquely defined up to isotopy.

(ii) There is a canonical Hilbert—Chow map I': X 5’21 — X satisfying the fol-
lowing property: for any x in X and any integrable complex structure in a
neighbourhood Uy of supp(x), I'"1(x) is homeomorphic to the fiber at x of

the usual Hilbert—-Chow morphism from Ul[cn] to Ué").

i) x7
complex cobordism class of X F,’ill
(iv) If X is symplectic and J is compatible with the symplectic structure, X n]

Jrel
also symplectic.

can be endowed with a stable almost-complex structure, and the associated
depends only on the deformation class of J .

For arbitrary relative integrable structures, this theorem has the following topological
form:

Theorem 2.18 [21, Proposition 3.4, Proposition 3.10, Remark 3.5]

(i) Let J™ be a relative integrable complex structure in Bg,e. Then X 5’21 is a

topological manifold of real dimension 4n .

(ii) If W is a neighbourhood of Z, in X x X" and if {J['},cp(.r)cra is
a smooth path in Bg (W), then the associated relative topological Hilbert
scheme (X {J rel} e B(0,r)) over B(0,r) is a topological fibration (cf Remark
2.16 (ii)).

(iii)) For any x in X ™) and any integrable structure J in a neighbourhood Uy of
supp(x), the Hilbert—-Chow morphism I': X %l —X® js locally homeomor-
phic over a neighbourhood of supp(x) to the classical Hilbert—Chow morphism

from Ué"] to Uén).

We can compare almost-complex Hilbert schemes corresponding to different relative in-
tegrable complex structures. Let g and g’ be two Riemannian metrics on X', &o and &,
be the bounds given by Proposition 2.13, ¢ and ¢’ be positive real numbers smaller
than & and & respectively and J rel * j'*l be relative integrable complex structures
in By, ¢ and By, . Then there exists a positive real number ¢” smaller than ¢ such
that By ¢~ is included in Bg/ . Since, by Proposition 2.13, B ¢, Bg/, ¢ and Bg, ¢~
are nonempty, connected and simply connected, X %l and X B'frel are homeomorphic
by Theorem 2.18 (ii); and this homeomorphism is canonical up to isotopy.

Therefore, for every positive integer n, there exists a canonical ring H™* (X (], Q) (resp.
K (X)) such that for every relative integrable complex structure J™ in Bg, ¢, the
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Q) (resp. the ring K (X"

ring H* (X[”] el

Jrel»
(resp. to K(X1)).

)) is canonically isomorphic to H* (X", Q)

Theorem 2.18 (iii) implies that Gottsche’s classical formula for the Betti numbers of
Hilbert schemes of points also holds in the almost-complex case (see [22, Theorem 3.9]).

2.4 Incidence varieties and Nakajima operators

If m and n are two positive integers, let
(2-6) Luxm = {(p; X, y)in X x X % X guch that pPEX UZ}'

Relative integrable structures in a neighbourhood of Zyx, are denoted by J< .

Definition 2.19 (i) If J {elnxm and Jﬁ‘:’lnxm are two relative integrable structures
in neighbourhoods W1 and W, of Z,xm, then the product Hilbert scheme
(X Inlx[m], Jren ) is defined by

xXm> 2 nxm

AP T e T ) = (€ 82 3. 2) in W o Wyl

such that I'y x,(§) = x and T, -(§") :Z}-

(i) If m>n andif Jnﬂ(m —n) 1s arelative integrable structure in a neighbourhood W
of Z,x(m—n)» the incidence variety (Xxlm.nl Jrel(m n)) 1s defined by

XU T ) = {(E €3 x, p) in W oy W
such that £ C £, F;c,z(é) = x and Fac,g(g ) :EUI}'

As it is the case for topological Hilbert schemes, the product Hilbert schemes and
the incidence varieties are canonically defined up to homeomorphisms isotopic to the
identity if the relative integrable structures used to define them are chosen close enough
to J in C %—norm.

From now on, we fix a Riemannian metric g on X and assume that all relative integrable
structures are sufficiently close to J in C°-norm.

Let J,?)l(m —n)s In el Jrel and J  be relative integrable structures in neighbourhoods
w, W', W” and W of Zyx(m—n)> Zn, Zm and Zyxm , respectively. We consider

the following compatibility conditions of relative analytic spaces:

(A) For every (x,y) in X0 5 xm=m Wi W, y and Je nx(m—n), x, y|W/ =
J;dx sie W xxym (X x xm=m)y) C W, where the base change map is the
first projection. If this condition holds, there is a natural morphism A from
(X[m,n] Jrel(m n)) to (X[n] Jrel)
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(B) For every (x,y) in X® x x(m=m) WGy =Wx,y and Ji&on—n), x, y =
J,r,flx Uy ie W Xy um (X x Xm=m)) = W where the base change map is
(x,y) — x U y. If this condition holds, there is a canonical morphism v from

(X[m n) Jrel(m_ n)) to (X[m] Jrel)

(C) For every (x,y) 1n X x xm—n) Wx xuy = Wy, y and Jrel nx(m—n),x,y =
J,T;lm x,xUy’ i€ w X x () x (m) (X(") X X(m M) = W, where the base change
mapis (x, y)+— (x,x U y) If this condition holds, there is a natural embedding

of (Xlm.nl " yrel % (m—n)) into the product Hilbert scheme (X [alxm] grel gl ).

Each of these conditions can be satisfied for a suitable choice of relative integrable
complex structures (this is obvious for conditions (B) and (C); for condition (A),
it is necessary to use the gluing method developed in Section 7). Unfortunately,
conditions (A) and (B) cannot hold at the same time, unless X carries an integrable
complex structure. Indeed, if n = 1 and m = 2, assume that we are given three relative
integrable complex structures J{<,, Ji° and J5' such that (J1¢, Ji,) satisfies (A)
and (J5, Ji ) satisfies (B). Then, for all x and y in X,

rel __ grel __ grel
Jl,x|W}£ nwy — Jlxl,x,y|W,é nwy — J2,{x,y}|W,é nwy
=Jrel | , ,:Jrel | , ,
1X17y7x WXHWV 17y me%
so that Jj rel defines a global integrable complex structure on X .

If J,, rel x(m—n) 1s arelative integrable complex structure in a neighbourhood of Zj,x (s —n)»

let us fix four relative integrable complex structures JI¢', J{f‘lnx(m_n), Jrel and

J;e’lnx(m_n) in respective neighbourhoods of Zy, Z,x(m-n), Zm and Z,xn—n) such
that (J1!, Jil ) satisfies the compatibility condition (A) and (J¢!, J5l )

1,nx(m—n) 2,nx(m—n)
satisfies the compatibility condition (B). For i = 1, 2, there is a homeomorphism be-

tween (X771 g e m—n) and (X [, n] - J i (m—m)) Which is canonical up to 1sotopy

In this way, we get two continuous maps from (xlm.nl g ,rjl( (m—n)) 0 (X rel) and
( yﬂ) Their homotopy classes are canonical and are st111 denoted by A and V.

The incidence varieties X "] are locally homeomorphic to the integrable model U:"]
where U is an open set of C?2; this allows us to put a stratification on each X lm.n] I
this way, the X [m.n] are stratified topological spaces locally homeomorphic to analytic
spaces endowed with their natural stratifications, and so each of them has a fundamental
homology class.

The construction of representations of the Heisenberg superalgebra H(H* (X, Q)) of
H*(X,Q) into H = @,y H*(X ("] Q) via correspondence actions of incidence
varieties done by Nakajima [34] and Grojnowski [23] also holds in the almost-complex
setting:
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Theorem 2.20 [21, Definition 4.3, Theorem 4.5] If (X, J) is an almost-complex
compact four-manifold, Nakajima operators {qi(a), ieZ,aec H*(X, Q)} can be
constructed. They depend only on the deformation class of J and satisty the Heisenberg
commutation relations:

Vi, jeZ, Yo, pe H (X.Q). [3:(@).q(B)]=1i8it;0( /X oB ) id

Furthermore, these operators induce an irreducible representation of H(H* (X, Q))
in H with highest weight vector 1.

Finally, we introduce relative incidence varieties, which are essential in Sections 4.1,
5.2,6.2 and 6.3.

Definition 2.21 If m, n are two positive integers with m > n, if W is a neighbourhood
of Zyx(m—n) and if J,;";l(m_n) is a relative integrable complex structure on W', Wr[g“’]
is the subset of WM x y 5 ym—m WM defined by

rel rel

WM = {6 €1 x. p) in W xon,xonm Wi such that § € €.
If {¢;: U —= Q; x V; }ier is amaximal relative holomorphic atlas on W, then for all i
in I we have (¢l["] Xy, ¢>l[m]) [(Ul.['r'e];1 Xy, Ul.['r'g) N wlmnl] = ng’"] x V;. Therefore,

for m = n + 1, the relative incidence varieties Wrgl””] are relative analytic spaces.

3 Coherent sheaves on relative analytic spaces

In this part, the letters B and B’ always denote compact differentiable effective
orbifolds.

3.1 Operations on relatively coherent sheaves

We start by defining relative holomorphic functions.

Definition 3.1 Let (X, .A) be a relative analytic space over B. A continuous complex-
valued function f defined on an open subset Q2 of X is relatively holomorphic if
for any x in € and for any relative holomorphic chart ¢: U —=Z x V of A ina
neighbourhood of x, the function f o¢~! is smooth and holomorphic in the variables
of Z in a neighbourhood of ¢(x).

The sheaf (’)5?1 of relatively holomorphic functions on X is a sheaf of rings on X.
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Definition 3.2 Let (X, .A) be a relative analytic space over B. A sheaf F of (’);gl—
modules is relatively coherent if there exists a relative holomorphic atlas A equivalent
to A such that for any relative holomorphic chart ¢: U —= Z x V in A, there exists
a coherent analytic sheaf F on Z such that F|y and ¢~ (pr e Qprloz ngV)

are isomorphic as sheaves of O;le—modules

An equivalent definition of relatively coherent sheaves can be stated using gluing
conditions: if 4 = {¢pi: Uy —= Z; x Vi}ies and if ¢;j := ¢; o¢>j_1 are the associated
transition functions, a relatively coherent sheaf on X is given by a family of coherent
sheaves {F;};cs on the smooth analytic sets {Z itier and a family of isomorphisms
of sheaves of OF él( ”)—modules between ¢ (F Rpry 102 Z xV,)|¢t w;;] and
(]:J ®pi 0z, OZ xV; )g; (Ui;) satisfying the usual cocycle condition.

Remark 3.3 (i) Let F be a relatively coherent sheaf on X given by a family of
sheaves {F;}ier. Then, for any b in B, if J is the set of the indices i in /
such that b belongs to V;, the sheaves {Fities on {Z; xblicy patch together
into a coherent analytic sheaf on Xj, which we denote by Fj.

(i) If (X, .A) is a relative analytic space and if £ is a locally-free sheaf of (’)ggl—
modules, then & is relatively coherent. In particular 77X is relatively coherent
on X.

(iii) If (X, .A) is a maximal relative analytic space, it is not difficult to prove that any
relatively coherent sheaf on X is in fact locally Ox—free. This fact justifies the
use of nonmaximal atlases.

Let us now introduce a class of morphisms between relative analytic spaces that is
well-adapted to relatively coherent sheaves.

Definition 3.4 (i) Let (X,.4) and (X', A") be two relative analytic spaces over
B and let f: X — X’ be a continuous map over B. Two relative holomor-
phic charts ¢: U —>=ZxV and ¢: U'—=Z'xV in A and A’ are f-
compatible if f(U) C U’ and if there exists a holomorphic map g: Z — Z’
such that the following diagram commutes:

U flu U’
T
ZxV — 7' xV
(g,id)
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(ii) Let (X, .A) and (X', A’) be two relative analytic spaces over B and let f: X —X’
be a continuous map over B. We say that f is a morphism when there exists a
relative atlas A equivalent to A such that for any relative holomorphic chart ¢
in A, there exists a relative holomorphic chart ¢’ in A’ such that and ¢ and ¢’
are f—compatible.

(iii) Let (X,.A) and (X', A") be two relative analytic spaces over B and B’ and
f: X —= X’ be a continuous map. We say that f is a weak morphism if there
exist a smooth orbifold map u: B— B’ and a morphism f: X —= X’ xp' B
such that f is obtained by composing f~ with the base change map from X’ x g’ B
to X’ induced by u.

If /: X— X' is a weak morphism, then the sheaf f _lOrel is a subsheaf of (’)rel.
Therefore we get a pullback functor f*: Mod(Orel) — Mod((’)rel) given by the
formula f*F = fT1F Q- o o,

To prove that many usual operations on Mod((’)geel) induce operations on relatively
coherent sheaves, we use a flatness lemma:

Lemma 3.5 Let W be an open subset of R, G be a finite group of diffeomorphisms
of W and Z be a smooth analytic set. If V.= W /G, then Oﬁle is flat over prl_l(’)z.

Proof Let 6: W — V be the projection and M be a sheaf of prl_1 Oz -modules.
Then

(8,id) " (M ®prto, O p) = (6,id) ' M @pto, (O p)©
~[(8.id) "M ®p10, OF 1.

Since the functor F — FC from MOdG(O? w) to Mod[(OerXw)G] is exact, it
suffices to prove that (’)rzelxw is smooth over pr_l(’) z.Letk =[(n+1)/2]. Then
W x R¥ can be seen as an open subset W in C(”"'k)/z By [31, Theorem 2 bis]
Orel i is flatover O, 5, and O, 5 is flat over pr; 10z . Therefore Orel <7 18
ﬂat over pr; 1Oz If ¢: Z x W —=Z x W is the projection, then ¢ lngW is a

direct factor of OreIXW in Mod(pr 1 02), so that OIEIXW is flat over pr} 10z, O

We obtain as a consequence:

Proposition 3.6 (i) Let (X, A) be a relative analytic space over B and F, G
be relatively coherent sheaves on X. Then for every nonnegative integer k,
7-0}’](%351 (F,G) and Extlg)§1 (F,G) are relatively coherent on X.
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(i) Let f: X —=X' be a weak morphism between two relative analytic spaces
(X, A) and (X', A'), and G be a relatively coherent sheaf on X'. Then for every
nonnegative integer k , Tor’}—l o (f7'g, (’)5?1) is relatively coherent on X.

(iii) Let (X, A) be a relative analytic space over B, F be a relatively coherent
sheaf on X and u: B'—= B be a smooth map. If ii: X xg B’ —= X is the

, - k ~ 1 -
associated base change morphism, then Torﬁ—logl (u ' F, O?XE p/) vanishes

for every positive integer k .

Proof (i) Since two equivalent relative holomorphic atlases always admit a common
equivalent refinement, there exists a complete relative holomorphic atlas .4 on X
equivalent to A such that for every relative holomorphic chart ¢: U —= Z x V in A,

Flu=¢™ (o7 F®p10, OFyy) and Glu =¢~ (pr7'G @pito, OFy)
where F and C7 are coherent analytic sheaves on Z. Then
(Foop Dl ~ ¢~ (pr; (F®0, G) Qprrto, 0% y)
and Homoe (F, G|y ~ ! (prl_1 Homo , (F,G) Rprrl0y (’)rZele).

Since OrZele is flat over prl_l(’) 7, for any nonnegative integer k, we obtain by
derivation

Tort (F, Qv ~ ¢~ (Torg, (F.G) @prto, OFp)

and Extlys (F.G)lu = ¢~ (Ext6,(F.G) @10, OFyp).
(i) We can take refinements A and A of A and A’ such that for any relative
holomorphic chart ¢: U —= Z x V in A, there exists a relative holomorphic chart
¢ U'—=Z'xV"in A, aholomorphic map g: Z —Z’, asmooth map u: V —V’
and a coherent analytic sheaf G on Z’ such that f(U) CU’, ¢'o fogp™ ! = (g, u)
and G|yr ~ ¢/_1(prl_lg ®pr 104 OrZel/xV/). Thus
(S71G® 108 Oy

= ¢_1 ((g’ u)_l[pr1_1<j®prfl(’)z/ Orgl’xV’]®(g,u)—1Or§/xV, Orglxy)

~ ¢~ (pr7 ' (€79 ®g-10,, Oz) @pito, O ),
so that for any nonnegative integer &, Lemma 3.5 yields

Torl}—l(?;',(f_lg’ 0566]) ~¢! (prl_1 TO’J;“OZ/ (g7'G.02) Qprloz O?XV)'

(iii)) We can assume that X = Z x B, F = prl_l]?®prl—1@Z (’)ﬁle and u = (id, u),
where Z is a smooth analytic space and F is a coherent analytic sheaf on Z. Let
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(z,b’) be an element of Z x B’, put b = u(b’), and let Eo be a free resolution
of F,. By Lemma 3.5, E, ®o, (’)re1 is a free resolution of F, . Therefore, the
germ of T0r~—1om @ 'F, (’)g( B,) at (z,b’) is the k—th cohomology group of
(Ee ®0, (’)relb) ®orel O elb, The latter complex being isomorphic to Ee ®¢p. O™

z, b/ 2
the result is again a consequence of Lemma 3.5. a

Remark 3.7 Let F and G be two relatively coherent sheaves on a relative analytic
space X over B. Then for every b in B and for every nonnegative integer k, we
have Tor*(F,G)p = Torlf%h (Fp.Gp) and Extk(F,G)p = Ext]éxh (Fp.Gp). A similar
result holds for the Tor sheaves appearing in (ii).

3.2 Relative analytic subspaces and direct image
The definition of a relative analytic subspace runs as follows:

Definition 3.8 Let (X, .A) be arelative analytic space over B and 3 be a closed subset
of X. We say that 3 is a relative analytic subspace (resp. smooth relative analytic
subspace) of X if there exists a relative holomorphic atlas A equivalent to A such that
for any holomorphic chart ¢: U —= Z x V in A with UN3 # @, there exists a closed
(resp. closed and smooth) analytic subspace Z’ of Z satisfying ¢(U N3) =Z' x V.

For instance, the relative incidence varieties W[m "] introduced in Definition 2.21 are
relative analytic subspaces of W[l] Xx (n) x X (m—n) Wr[el 1 they are smooth if m =n+1.
We will study other examples in Section 3.5.

Remark 3.9 If 3 is a smooth relative analytic subspace of a relative analytic space
(X, A), then 3 is also a relative analytic space: a complete relative holomorphic atlas
on 3 is obtained by taking the restrictions to 3 of the charts of A.

The forthcoming proposition is needed to associate relatively coherent sheaves with
relative analytic subspaces:

Proposition 3.10 Let n and k be positive integers, 2 and W be open subsets of C"
and R¥ respectively, and T' be a reduced analytic subset of 2. Assume that the ideal
sheaf of T is globally generated by holomorphic functions f1,..., fz on Q.

e If g: QxW —C is arelatively holomorphic function on Q x W such that
glrxw = 0, then for any (zy, wg) in Q x W, there exist relatively holomor-
phic funcnons ®1,...,¢4 in a neighbourhood Uy, 4, of (zo,wo) such that

g = Zz_l ¢i fi on UZ(),wo

e Furthermore, if G is a finite group of diffeomorphisms of W fixing wq and if g
is G —invariant, then the functions ¢; can be chosen G —invariant too.
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Proof Let (zo, wp) in 2 x W . For any z in Q, let gy, (z) be the formal Taylor expan-
sion of the function w— g(z, w) at wo. Writing gu, (2) = Xy =1 (2) (w—wg)!,
the hypotheses made on g imply that the functions «; are holomorphic on €2 and vanish
on T'. Therefore for every multiindex I of length k, there exist holomorphic functions
or1,...,04 in a Stein nelghbourhood U;, of zo such that ay = Zl yori fi on Ug,.

Hence we get Guwy =0, (ZIII _rari (w—wo))fi in O(Uzy)[w—wo]. If S; (resp.
f, ,zo ) denotes the formal expansion of z Z| 1=k ¢ ari(z) (w—we)! (resp. f;)at zg
in Cllz — zo, w — wo] (resp. in C[[z —zo])) and if g, wo denotes the formal Taylor
expansion of g at (zo, wg) in C[lz—z, w —wo], then gz, u, = Zl_l S; f, zo- Thus
for any (zo, wo) in LXW, gz w, is divisible by fl,ZO, e, fAd,ZO in Cllz—zo, w—wo].
Since the f;’s are analytic, it follows from [32, Theorem 1.1°, page 82] that there
exist ¢q,...,¢z in C>°(2) such that g = Z;-jzl ¢i fi. It remains to prove that the
functions f; can be chosen relatively holomorphic in a neighbourhood of any point
in QxW.

If (2o, wo) is an element of Q x W and if r is an integer such that 0 <r <n, let us
consider the property (P, ):

There exist a neighbourhood Uy, 4, of (2o, wo) in x W and smooth
functions ¢q, ..., ¢4 on Uy, v, such that:

d
o g=2i—1%ifi on Uzu,.
e Ifr>1,1<i<dand1=<j=<r,then d¢;/0z; = 0.

Pr)

We have seen that (P) is true. Fix r such that 0 < r <n — 1, and assume that
(P,) holds. We consider a presentation OF — (’);"0 (]T)ZO —>0 of the ideal
sheaf of T' at zo, where the first map is given by a matrix M in My , ((’)ZO) and the
second one by (fi,..., f4). If O™ denotes the sheaf of smooth functions on Q x W
holomorphic in the first r variables, then (’)ﬁ61 is flat over prl_1 Ogq (this is proved

exactly as in Lemma 3.5). Thus we get an exact sequence

M (fla'"afd)

(3-1) (O wo ohd (OF) 20,00

Pick ¢1....,¢4 1n (O, wo such that g = Zl_l @i fi. Since g is relatively
holomorphlc Zl_l d¢;i/0z,+1 fi = 0. By the exactness of (3-1), there exists an
element (¢j)1<j<4 in (OF)Z, w, such that for every i with 1 <i <d, 3¢;/3Z, 4 =

Z i1 Mijp;j. Now the map 9/0z,11: ((’) D zo.wo —= (O z0.w, 1s surjective, so
that there are functlons (¥j)1<j<q in (O )20 wo such thatfor 1 < j <q, 0yj/0Z,41 =

@j. If bi = Z]_l ijy; then Zl_l bi fi= Zl_l ¢; fi = g ina small neighbour-
hood of the pomt (20, wo) and 3¢; /0Z, 41 = 3¢y /0Zp 41 — Zl_l M;jdyj/0z, 41 =0,
so that d), is in (OF +1) zo0,wo - This proves that (P, ) holds. By a finite induction,
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we obtain that (P, ) holds. This means that ¢, ..., ¢, are relatively holomorphic in a
neighbourhood of (zg, wy).

To prove the last statement, it suffices to replace for each i the function ¢; by the
G —invariant function ¢; defined by ¢;(z, w) = |G|7! Y ,cq ¢i(z, u . w). a

Proposition 3.11 Let X be a relative analytic space over B and 3 be a relative
analytic subspace of X. If J3 rel js the ideal sheaf of 3 in Orel consisting of the relative
holomorphic functions Vamshmg on 3 and if OF' = (9“’1 /T3 7l is the structure sheaf of
3, then J rel and Orel are relatively coherent on X.

Proof Since the result is local, we can assume that X = Z x V and that 3= 2" xV,
where V is a differentiable orbifold, Z is a smooth analytic space and Z’ is an analytic
subset of Z. If Jz is the ideal sheaf of Z’ in Z, then J3* = pri! Tz . (’)5?] by
Proposition 3.10. By Lemma 3.5, (95?1 is flat over pr_1 Oz, so the equality pr_ Tz .

Orel =pr; VT2 ® ol O Orel holds. This implies J3 rel js relatively coherent. Using
again that (95?1 is ﬂat over pry ~1 Oz, we obtain that Ogel = pr_1 Oz ® “1o, Orxel,
and thus the sheaf Orel is relatively coherent too. O

Let us make an important remark:

Remark 3.12 Let Z be any reduced analytic set and V' be a differentiable orbifold.
Then it is possible to define a sheaf O%le of relative holomorphic functions on Z x V
(which is a subsheaf of C ng) as follows: since we can argue locally, we assume that
there exists an open set U in some C” such that Z is a reduced analytic subset of U .
Then we define OrZele as the structure sheaf of Z x V in U x V. Using Proposition
3.11, it is easy to prove that the definition in independent of U . This makes it possible
to construct singular relative analytic spaces, although we will not go any further in
this direction.

Following the strategy of [20, Chapter 1, Section 3], we prove:

Proposition 3.13 Let f: X — X' be a morphism between two relative analytic
spaces (X, A) and (X', A’), 3 be a relative analytic subspace of X such that f is finite
on 3 and F be arelatively coherent sheaf on X supported in 3. Then f.F is relatively
coherent on X' .

Proof For any point x’ in X', let ¢': U’ —= Z’ x V be a relative holomorphic chart
of A’ in a neighbourhood U’ of x’. Since f is finite on 3, there exists a relative
holomorphic chart ¢: U —> Z x V in a neighbourhood of f~1(x’)N3 such ¢ and ¢’
are f—adapted. Up to a refinement of 4, we can assume that:
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e ¢(U)CU and o~ (U)N3CU.

o ¢'ofop! =(g,id), where g: Z —= Z’ is holomorphic.

e ¢(UN3)=Y xV,where Y is areduced analytic subset of Z.
e The function g|y: Y — Z’ is finite.

e The sheaf F|y is isomorphic to ¢_1(pr1_1]?®prl—loz O;le), where F is a
coherent analytic sheaf on Z supported in Y.

Let us prove that the natural morphism

(3-2) prl_l(g*]?) ®pr1_1(92/ OrZel/XVé (gv ld)* (pr?l'f@Prl_lOZ OrZele)

rel

is an isomorphism. The function g being finite on ¥ and Orel y (resp. OF, ;) being
flat over pr} ~10, (resp. pry 1® /), both members of (3-2) deﬁne exact functors from
Cohy(Z2) to Mod((’)?,xV). Let Jy be the ideal sheaf of Y. Since g is proper, we
can assume, after shrinking Z’ if necessary, that j}v F vanishes for N large enough.
Using the exact sequences

— Ty NF— F — I FITy T F —0,

we see that it is sufficient to prove that (3-2) is an isomorphism when F is an
Oy -module. Under this assumption, for any z’ in g(Y), we can take local Oy —
presentations of F in a neighbourhood of the finite set g~!(z') N Y. Thus it is enough
to prove that (3-2) is an isomorphism when F = Oy . If & = g|y, this amounts to
show that the natural morphism from /,QOy Q!0 OrZel/ﬂ, to (h, id)« O?XV is an
isomorphism. Since the problem is local, we can assume that there exist two positive
integers m and n and an open subset Q of C™ such that Z’ is openin C”, Y is a
closed analytic subset of € x Z’ and / is the restriction to Y of the projection from
CMmxC"to C".

We deal at first with the case m = 1. If (w, z’) denotes the coordinates on C x C”,
then for any z’ in A(Y), (h«QOy). is free over O, : a basis is given by the functions
l,w,..., wd, where d is the degree of & (see [20, I, Section 2]). Since the general
Weierstrass division theorem remains valid for relative holomorphic functions, for any v
in V, the module ((%,id)« O;?le)Z/,v is also free over (’)2";1’ , With basis 1,w, ..., w? .

This yields the required isomorphism.

To conclude, we argue by induction on m. Let us write Q = Q" x Q’, where Q"
and Q' are open in C and C™~! respectively, and let p: Q x Z/ — Q' x Z’ and
q: Q' x Z' —= Z' be the natural projections. Then there exists an analytic hypersur—
face S in  x Z’ containing Y such that p is finite on S. If Y = p(Y), then Y is
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rel

an analytic subset of €’ x Z’ and ¢ is finite on Y. By Proposition 3.11, OYxV is,
as a sheaf of (’)(éxz,)xV —modules, isomorphic to prI_IOy Rprr! O 77 O(i?xZ/)xV'
Therefore the result in the case m = 1 yields the isomorphism

rel

P*OY ®pr1_1(99/xz/ I;élz/xz/)xV g (p, ld)* OYXV'

Besides, we get another isomorphism by induction, namely

q*(p*OY) ®pr1_1(’)z/ OEI/XV = (qv 1d)* (p*OY ®pr1_1(99/><z/ O?E]Z’XZ’)XV)'

Putting these two isomorphisms together, we get the result. a

3.3 Relative analytic K —theory

We are now going to introduce morphisms of relatively coherent sheaves. A natural idea
would be to consider relatively coherent sheaves on a relative analytic space (X, .4) as
a full subcategory of the abelian category Mod(Orxd) of sheaves of (95?1 —modules on X.
Unfortunately, the resulting category would be nonabelian. Indeed, if X = Z x B is
trivial, if F is relatively coherent on X and if x is a smooth cut-off function in B,
the multiplication by y defines an endomorphism of F over (’)ggl whose kernel is
far from being relatively coherent in general. Now, if A is given by the family of
relative holomorphic charts {¢;: U; —= Z; x V;};er, another natural definition is to
glue together the abelian categories (Coh(Z;));ey of coherent analytic sheaves on Z;.
This is what we do.

Definition 3.14 (i) A strict morphism between to relatively coherent sheaves F
and G on a relative analytic space (X, .4) is a morphism u in Hom@;? (F, g)
satisfying the following condition: there exists a relative holomorphlc atlas A
equivalent to A such that for every relative holomorphic chart ¢: U —ZxV
in A, there exist two coherent analytic sheaves F and G on Z as well as a
morphism v in Homop , (F.G) such that Fly ~ ¢~ (pr va Qpiyl0z (’)rele)
Glu ~ ¢~ (pr G Qprloz ngV) and the following diagram commutes up
to isomorphism:

Flu 2 Glu

s

¢~ (7' F ®prr10, OF 1) ¢ees ¢~ (pr7'G ®pirto, 0% y)

(ii) If X isarelative analytic space and 3 is a closed subspace of X, we call Coh™ (¥)
(resp. Cohgel (X)) the subcategory of Mod((’)ggl) whose objects are relatively
coherent sheaves on X (resp. relatively coherent sheaves on X supported in 3)
and whose morphisms are strict morphisms.
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If X is a relative analytic space and 3 is a closed subset of X, the categories Coh™ (X)
and Cohgel(%) are abelian subcategories of Mod((’)ggl) by Lemma 3.5.

In the sequel, the Grothendieck group of an abelian category C is denoted by K(C).

Definition 3.15 Let X be a relative analytic space and 3 be a closed subset of X. The
relative analytic K—theory of X (resp. relative analytic K-theory of X with support
in 3) is defined by K™ (X) = K(Coh™ (X)) (resp. K§'(X) = K(Coh§'(X))).

As for coherent sheaves, we can define usual operations on relative analytic K-theory.
These definitions rely on Proposition 3.6 and Proposition 3.13.

e (Product) If X is a relative analytic space and 3 is a closed subset of X, a
product from K™ (¥) ®7 K™ (X¥) (resp. K*(¥) ®z ngl (X)) to K™(X) (resp.
K5!(%)) is defined by

F.g=>) (-DF Tor’(gg(f, ).

k>0

¢ (Dual morphism) Let X be a relative analytic space and 3 be a closed subset
of X. The dual morphism F+— FV from K™ (X) to K™(¥) (resp. from
ngl(.’{) to ngl(%)) is given by

FY=> (-1F 5xt’gg§. (F, 0.
k>0

e (Pullback morphism) Let f: X — X' be a weak morphism between relative
analytic spaces and 3’ be a closed subset of X’. The pullback morphism
(vesp. the pullback morphism with support) f': K'(X') — K™!(X) (resp.
S KSNX) — Kf;l_1 (3 (X)) is defined by

1'g=>" -1k Tor’}—lozl/ (f7'g, 0%.
k>0

e (Gysin morphism) Let f: X —= X’ be a morphism between two relative
analytic spaces and 3 be a relative analytic subset of X such that /" is finite on
3. The Gysin morphism fi from ngl(.’{) to K™ (%¥’) is induced by the exact
functor f: Cohgel(%) — Coh(X).

We now list all the properties we need concerning the operations introduced above.
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Proposition 3.16 (i) (Product structure) If X is a relative analytic space and if

(i)

(iii)

@iv)

(v)

3 is a closed subspace of X, then K™ (X) is a unitary ring and ngl(%) is a
module over K™ (X). Besides, if F and G are relatively coherent sheaves on %
and if G is supported in 3, then

FY.G=Y (1) &xthu(F.G) in KF(X).

i=0

(Functoriality) The pullback morphism (resp. Gysin morphism) in relative
K—theory is contravariant (resp. covariant) with respect to weak morphisms
(resp. with respect to morphisms). Besides, the pullback and the dual morphism
commute.

(Projection formula) Let f: X — X’ be a morphism between two relative
analytic spaces and 3 be a relative analytic subspace of X such that f is finite on
3. If F is arelatively coherent sheaf on X supported in 3 and G is a relatively
coherent sheaf on X', then fx(F. f'G) = fxF .G in K*\(X').

(Base change I) Let f: X —= X’ be a morphism between two relative analytic
spaces over B, A be a relative analytic space over B and 3’ be a relative analytic
subspace of X’ xg A such that the projection q: X' xg A —= X' is finite on 3.
If fao = f xpgida, we consider the cartesian diagram:

%XBA /a }:/XBA
v |o
X X/

If3= fA_l (3), then 3 is a relative analytic subspace of X xg A and p is finite
on 3. Besides, the pullback and Gysin morphisms

pxi K§'(XxpA) — K™(X), g« K§'(X' xpA) — K™(X),
K (X)) — K(X) Sa: KX xp A) —= K¥(Xxp A)

are related through the formula f'q« = ps f i.

(Base change II) Let A be a relative analytic space over B, f: X —=X' be
a morphism between two relative analytic spaces over B and assume that X’
is a smooth relative analytic subspace of A. If fao = f xpida, consider the
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cartesian diagram

%MXXBA

fj lfA

¥ —— = X'xgA
(id, i)

Then the pullback and Gysin morphisms
(d,i)s: K*(X) — K;g,l(ﬁi’ xg A), (id,iof)s: K*(X) —>K§€°1(3€ xp A),
KR — K(X), far KX xp A) — K (X xp A)

are related through the formula fA (id, i)« = (id,i o f)*f!.

(vi) (Base change III) Let (X, .A) be a relative analytic space over B, 3 be a closed
subset of X, u: B— B’ be a smooth map and u: X xg B'— X be the
associated base change morphism. Then the pullback functor &i* from Coh™ (%)

to Coh™ (X x g B') (resp. from Cohgel(%) to Cohrgl,1 3) (X xp B’))is exact, and

u=u*.

Proof (i) If 7, G and H are relatively coherent sheaves on X, there is a spectral
sequence (canonical from E5) such that

E? = Torly (Torya (F.G). H).  EL® = Grp Torht?(F.G. H)

and £ 2p "4 vanishes on each component of X except for finitely many couples (p,q).
Furthermore, by Proposition 3.6 (i), the sheaves E 2p *4 are relatively coherent on X and
the morphisms d2p 4 are strict. Thus, for all » > 2, the sheaves E,”*? are relatively
coherent and the morphisms d *? are strict, so that

Z (_1)17+11E2p’q — Z(—l)n TOI‘?Drel(]:, g, H)

p,q=0 n>0

in K™!(X). This yields the associativity of the product. The proofs of the remaining
properties in (i) and of (ii) are essentially similar, using spectral sequences associated
with the composition of two functors.

The proofs of (iii), (iv) and (v) are performed in the same way. We detail the proof
of (iv).

(iv) For x in X, we take two relative holomorphic charts ¢: U —= Z x V and
¢': U’ —= Z' xV in neighbourhoods of x and f(x) such that ¢ and ¢’ are f—
compatible. Let us write ¢’ o f o ¢! = (g,id), where g: Z —= Z’ is holomorphic.
If §;,...,8n are elements of A such that ¢~ '(f(x))N3 = Ufil(f(x),(?,-), we
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choose a relative holomorphic chart y: Us, — Y x V in a neighbourhood of
the &;’s. The local form of the diagram of (iv) is then:

ZXYXVM—Z’XYXV
pPriz pri3
ZxV - Z'xV

(g,id)

Furthermore, we can assume that (¢’ xy ¥)[(U’ x Us,..... sn) NX]= 3%V, where 3
is an analytic subset of Z’' x Y and pry is finite on 3. Then for any coherent analytic
sheaf G on Z’ x Y supported in 3, we use Proposition 3.13 and we get

rel

(g,id)*[pry3.(pry, G Oy 07107 5y x1)]
~ (g,id)* (pri4 G ®pr1 0, Oy
~ g*(pr14 9) ®pilo, Oy
~ prl*[(g, id)* g_] QpTloz OrZele
~ pry34[pri; (g, 1d)* g_®prl_21 0rry OFxysr]
~ prya[(g.id. i) * (17 G ® 1 0, OFwysp)]-
Taking the derivative with respect to G and using Lemma 3.5, we obtain the result.

(vi) This is an immediate consequence of Proposition 3.6 (iii). a

3.4 Topological K —theory for relatively coherent sheaves

In Section 3.3, we have constructed a theory for relative coherent sheaves as well as
associated operations. It remains to obtain cohomological information about these
objects. To do so, we construct global resolutions by complex vector bundles for
relatively coherent sheaves. We start with a general result:

Proposition 3.17 Let Y be a differentiable orbifold.

(i) Locally free sheaves of Cy°—modules are projective elements in the category
Mod(C3?). In particular, if 0 —= F — G — H—0 is an exact sequence
of sheaves of C3°—modules on Y and if H is locally free, then this sequence
globally splits.

(ii) If H is sheaf of C3° —modules admitting a finite free resolution in a neighbour-
hood of any point of Y, then ‘H admits a finite locally free resolution in a
neighbourhood of any compact subset of Y .
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(iii) Two finite locally free resolutions of a sheaf of C3° —modules are subresolutions
of a third one.

(iv) Let 0 —= F —= G —=H —= 0 be an exact sequence of sheaves of Cy°—mod-
ules such that G and H admit finite locally free resolutions on Y. Then
F admits a finite locally free resolution on Y and we can find three such
resolutions Fo, Ge and He of F, G and ‘H related by an exact sequence

00— F¢—Ge— He —0.

Proof (i) Let P, Q, H be sheaves of C3°—modules such that Q is a quotient of P
and H is locally free, and let = be in Homcee (H, Q). It is possible to lift & locally
to a morphism from H to P, and then globally using a partition of unity on Y .

(i) Let K be a compact subset of Y. We choose a finite covering (U;);<;j<4 of K
and open sets (V;);<;j<g such that for 1 <i <d, U; is relatively compact in V; and
‘H admits a finite free resolution on V;. For each i, we multiply this resolution by a
smooth cut-off function equal to 1 on U; and supported in V;. We obtain in this way
a complex of sheaves

0—>(C}°,°)niN_> ...... . (C]o/o)n“ i H 0

on Y, which is exactin U;. If E = EB;{:I(C%’)”“ and if 7 = @?:1 i E—H
is the sum of the 7;’s, then the morphism 7 is surjective in a neighbourhood of K.
For 1 <i <d,let N; and N denote the kernels of 7; and 7 respectively. We have
an exact sequence

By (i), Ny, is isomorphic to N;|y, @ (Cg‘;)zj#i i1, Furthermore N;|y, admits a
finite free resolution of length N — 1. Thus N admits a finite free resolution of length
at most N — 1 in a neighbourhood of every point in K and we can start the argument
again. After at most N steps, we obtain a locally free kernel.

(iii) Let H be a sheaf of C§°-modules and (E;)o<;i<n and (Fj)o<i<n be two finite
locally free resolutions of H on Y. Let us construct by induction a finite locally
free resolution Go of H on Y such that £, and F, are subresolutions of Go. We
put Gy = Ey & Fy, the map from G to H being obtained by adding the two maps
from E( and from Fy to H. If k is a positive integer smaller than or equal to N —1,
assume that we have constructed (G;)o<;<x as well as injections Es—— G, and
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Fo——— G, in degrees at most k. Then in the two diagrams

0 — Ey Gy 0r —= 0 0—> F, Gy R —0
Lo oo
0— Ex—1 — Gg—1 — Qk—1 —0 0— Fx—1 — Gg—1 = Rg—1 =0

| ’ J ’ | J

0 Ey Gy Qo 0 0 Fy Gy Ry 0
0 H H 0 0 H H 0
0 0 0 0
all the lines and the columns are exact and Qy, ..., O, Ro, ..., Ry are locally free by

induction. Let N = ker(Ek—>-Ek 1), Nk_ ker(Fk—>Fk 1), Nk =ker(Gr—>Gr_1),
Q r = ker(Qp— 0 _1) and Rk = ker(Ry— Ry _1). By breaking the exact sequences
of the two last columns into short exact sequences, we obtain that Q i and Rk are
locally free. The two sequences

0— Ny —=N/—= 0 —=0 and 0—= N —= N/ — R —=0

are exact. By (i), N/~ Ny & O ~ N, ® Rk, and we can define Gy, by the
formula G411 = (Egx4+1® Q) & (Fr+1 D Rp)-

If kK = N, we end the resolution G, by putting Gy = N 1/\//

(v) If (6,-)05,51\/ and (Hj)o<i<n are locally free resolutions of G and H, let us
construct by induction locally free resolutions Fe and Ge of F and G such that G, is
a quotient of G, together with an exact sequence 0 —> Fo —> Go —> He —> 0.

Since H (resp Go) is a projective object by (i), we can lift the map from Hy to H
(resp. from GO to H) to amap m (resp. 7 ) from Hy to G (resp. from GO to Hy). If
Go=Ho® GO, there is a natural surjective map from Gq to G obtained by adding
and the map from Gy to G. Besides, (id, 7): G, —= H,, is surjective, we denote its
kernel by Fj.

If k is a positive integer smaller than or equal to N, assume that we have constructed
(Fi)o<i<k and (G;)o<i<k, an exact sequence 0 —> Fo —> Go¢ —> He —> 0 and a
surjective morphism from G to Ge in degrees at most k. Let Ny = ker(Fy — Fy_1),
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N, =ker(Gy —Gy—1), N;' =ker(Hy— Hj_;) and Ny =ker(Gy —Gg_;). We
have an exact sequence 0 —= Ny —= Ny —= N;/—=0. If R, = ker(Ge — Ga)
and Sy = ker(Ry - Ry 1) the sequence 0 — Sk — N — Nk — 0 is exact,
so that N ; o~ Sk@Nk by (i). As above, we lift the map from Hk+1 to N}/ " (resp. from
Sk ® ék+1 to N}/) to a map my (resp. 7y ) from Hyiq to Ny (resp. from Sk ® Gy
to Hy41). If Gr41 = Hi41 © Sk ® Gy 1, there is a natural surjection from Gy 4
to N, Ié obtained by adding m; and the map from S & 6k+1 to N, ,é Then we define
Fi41 by Fry1 =ker(7g, id).

Ifk=N, FNy1=Nn41 and Gy = NJ/V+1’ so that F, and G, are locally free

resolutions of F and G. O

We apply now this result in our context. If (X, .4) is a relative analytic space, then
X 1is also a differentiable orbifold, and (’);gl is a subsheaf of Cgo. Therefore, we can
associate with every relatively coherent analytic sheaf F on X the sheaf F*° defined
by F® =F ®or C%°, which is a sheaf of C°—modules. This sheaf admits a finite
free resolution in a neighbourhood of any point of X, thanks to the lemma:

Lemma 3.18 Let U be an open subset of R”, G be a finite group of diffeomorphisms
of U and Z be a smooth analytic set. If W = U /G, then C% y;, is flat over pr 105.

Proof Asin Lemma 3.5, it suffices to prove that O?X y is flat over prl_1 Oz. IftY is
a real-analytic manifold, let C} be the sheaf of real-analytic functions on Y. Then,
C% isflatover Oz, CS . is ﬂat over pr_lcg and C%, ., is flat over CS_ ., by [31,
Theorem 2]. O

The Grothendieck group of the category of complex topological vector bundles on a
topological space Y will be called K(Y). Besides, the class in K(Y) of a complex
vector bundle £ on Y will be denoted by [E]. Then Proposition 3.17 and Lemma
3.18 yield:

Proposition 3.19 If (X, A) is a relative analytic space and if F is a relatively coherent
sheaf on X, then the sheaf F°° admits a finite locally free resolution in a neighbourhood
of any compact subset of X. Besides, if il is a relatively compact open subset of X and
(Ei)o<i<n is alocally free resolution of F°° on i, then the element Zf\io(—l)i[Ei]
of K™(8l) is independent of Eo and depends only on the class of F in K™ (X).

In conclusion, we can associate with each relatively coherent sheaf F on X a topological
class [F *°]in lim_ K(Lf), where il runs through all the relatively compact open subsets
of X. Furthermore, if 3 is a closed subset of X and F is supported in 3, then the
topological class of F lies naturally in l(iLnil Kgnz(W).
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We are going to prove two fundamental properties of the topological class, namely the
functoriality by pullback and the homotopy invariance. We start with the first one.

Proposition 3.20 Let f be a weak morphism between two relative analytic spaces X
and X', 3 be a relative analytic subspace of X' and F be a relatively coherent sheaf on
X’ supported in 3. Then the pullback morphism

S lim Kynz (W) — lim Kyn p-103)(4)
srCccx! Hccx

maps [F] to [( /' F)°°].

Proof We can assume that 7°° admits a global locally free resolution on X’. Let
(E;i)o<i<n be such aresolution. Then for every nonnegative integer & , the cohomology
sheaf of f*E, in degree k is

Torjlﬁ—lc;?(f_l]:oo, )
which is isomorphic to

Torf—logl/(f_lf, Orxel)oo
by Lemma 3.5 and Lemma 3.18. We define the sheaves N} and Z; by the expressions
Ny =ker(f*Ex— f*E_1) and Z), = Im(f* Eg 41— f* Ex). Then we have exact
sequences

(3-3) 0— Ny — f*Ey —TI_1 —0,
(3-4) 0 —=Tp — Ny —= Tor’;_lcg?(f—lfw,cgo) )
If 4 is relatively compact in X, then the sheaves
i —1 oo poo
Torf—1cé>€</>(f .F , Cx )

admit, by Proposition 3.19, a global locally free resolution on 4. Since Ny = Ej, the
repeated use of Proposition 3.17 (iv) with the exact sequences (3-3) and (3-4) shows
that the sheaves N; and Z; admit global locally free resolutions on i, and that the
following identities hold in K p—1(3)(H):

[f*Ex] = Nkl +[Tk—1] and  [Ng]=[Zx] + [Torlf‘—lc;?(f_lfoo,ca%o)]-

As a consequence, Zfio(—l)i[f*Ei] = Zf\;o(—l)" [Tor}—lc;: (f71F®,C)]. This
yields the result. a

We can now come to the homotopy invariance of the topological class:
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Proposition 3.21 Let ) be a relative analytic space over B x [0, 1], R be a relative
analytic subspace of ) and F be a relatively coherent sheaf on ) supported in ‘R.
Assume that the pair ((R, g)) is topologically trivial over [0, 1] (ie for any ¢y in [0, 1], if
X =9, and 3 = Ry, , then there exists a homeomorphism between ) and X x [0, 1]
over B x [0, 1] mapping R to 3 x[0, 1]). Forevery t in [0, 1], let i;: ); —= %) be the
natural inclusion. Then, via the homeomorphism between 2); and X, the topological
class [(if F)*°] in l(iLnuccx K n3 () is independent of t .

Proof Let 4 be an open relatively compact subset of X, ¢: X x[0,1] —9) be a
homeomorphism trivializing the pair (2R,%)) and let &' = (44 x [0, 1]). Then & is
open and relatively compact in ). We take a locally free resolution (E;)g<j<ny of
F*° on 4. By the homotopy invariance property for topological K-theory, the class
Zl o(— Di[i } F>®] in Kyn3(4) is independent of 7. By Proposition 3.16 (vi) and
Proposition 3.20, i E, is a locally free resolution of i F°° in Y. This yields the
desired result. |

3.5 Relative incidence sheaves

Let (X, J) be an almost-complex compact four-manifold and » be a fixed positive
integer. If W, W’ and W are small neighbourhoods of the incidence loci Z,x1, Z,
and Z,1 introduced in (2-5) and (2-6), let J&<!,, Jiel and JI°l | be relative integrable
complex structures on W, W’ and W” respectively. To simplify the notation, we put

Xl = x U, bt =y,
X[n+1,n] X‘[;:gei-ll ] X[n]x[l] _ (X[n]x[l] Jnre)l , Jrell)

Definition 3.22 The four relative incidence sets ), Vyn+1., @,, and @,Hl are de-
fined by:

{5, w;x) in wln Xy W' such that w € supp(£)},

rel

2),,+1 {6 w; y) in wrint1l Xym+1 W such that w € supp(§)}.

rel

{¢&.w;x, p)in W, 1] Xy y W such that w € supp(§)}.

QJ,,+ {(&,w;x, p) in WET x4 6o x W such that w € supp(£)}.

The relative incidence sets 2),,, D1, Q:)n and an+1 are relative analytic subspaces
of ng” Xyxm W, Wil <y W Wi e x Woand W xy i, W

rel rel rel

respectively. For instance, if {¢,-: U —Q; xV; }l. eI where V; and 2; are open
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subsets of X ™ and C? respectively, is a maximal relative atlas on W', the associated
atlas on W;[erll] Xym W' is the completed atlas of

{¢1[n] Xy, i U,-[n] xy; Ui ;an] X Qi x Viliep-

For any i in I, let Y, ; be the incidence locus in Q[ ] x §2; defined by (2-1). Then
we have (¢[ ]XV ¢l)[(U[n]XV Ui)NYul = Yn,lXVz

Definition 3.23 (i) The relative exceptional divisor Dy is the subset of Wrgf“’”]
defined by

Dt = {(€. & x. p) in W1 such that supp(€) = supp(¢')}.

(ii) The relative residual morphism p: W/r[e’f"'l’”] — W is defined by

p(E. & x, p)= (supp(£/&'):x, p.)
(iii) The relative diagonal A is the subset of W Xy m yy W defined by

Al = {(wl, wy X, p)in W Xy xy W such that wy = wz}.

The set D, is a relative analytic subspace of W[”Jrl 1] of relative codimension one,
and the fibers Dyel, x, p Of Dy over X ) X are the usual exceptional divisors

W["Jrl " defined by (2-2). The ideal sheaf J}, rel g locally free of rank one on
W[”"'1 ”] , so that J° Do, is a complex line bundle on W[”"'1 nl

Let us give a list of notation which are extensively used in the sequel of this section as
well as in Section 5.2 and Section 6.

Notation 3.24 Notation related to sheaves is as follows:

e The relatively coherent sheaves

rel rel
O O@ +1’

n+1
onW[l W, W ey W W s W W oW

rel

rel rel rel rel rel rel
(’)an, Oy, (esp. Ty Ty, j Jinnﬂ)

defined by Proposition 3.11 are denoted by O,,, O+ 1, (5,, and 6n+1 (resp.
Ins In+1, In and Tpy1).

e The ideal sheaf J rel is denoted by L.

 The relatively coherent sheaf (’)rel on W xymyyx W is denoted by O .
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Notation for cohomology classes is given as follows:

e The restriction to X +1:71 of the first Chern class of £ in H2(X["+1.71 Q)
is denoted by /.

e If 0 <i <2n+2, we define aclass u; , in H* (X" x X, Q) by the formula
Hi,n = Ci([o,?o])b([n]x[u.

For morphisms, we use the following notation:

¢ The natural morphisms from WrE:’f‘H’”] to Wr[e’l‘] and Wr[e’1‘+1] are denoted by ¢
and v respectively.

e The natural projections from

"n / n+1 17
Wr[el]xX(”)W’ Wre[l ]Xx<n+nW7 W s e x W,

WET Y sy oy W WETE M i W
/] nn+1] +1 +1,
to Wrel ’ Wrel ’ r[e’]l]’ I/Vrgll ]’ VVr[e’% n]’ resp.

are denoted by p, ¢, p, g, P, resp.
e The morphism p: Wr[g"’l’”] — W has already been defined in Definition
3.23 (ii).
e The morphism &: WIHLnl o~ wlnl s, ) W is defined by & = (¢, ).
e The morphism j: Witlnl o wlrttnl o) W is defined by j = (id, p).
e If f: X—= X' is a morphism of relative analytic spaces over X ™ % X, we
define fy by

fW=fXX(n)XXidWZ %XX(n)X)(W—>x/XX(n)XX w.

The relative incidence sheaves O,,, Oy41, 5,, and 6n+1 are related if the relative
integrable complex structures J°!, JI¢l, and JI, satisfy some compatibility condi-
tions.

o If the compatibility condition (A) of Section 2.4 is satisfied in the case m =n+1,
let k: W;‘[;l'] Xy (X x X)— Wre'l’] be the associated injection. Letting r
denote the base change morphism from W;Z’ I'x xm (X [l % X) to W;EI’], then
r*Op = k*O, and r*J, = k*7,.

¢ If the condition (B) of Section 2.4 is satisfied, a weak morphism s from Wr[g“]
to W//[n+1]

rel can be obtained by composing the isomorphism

Wit =yt t s (X9 x X)

with the base change morphism from Wit Xyt (X x X) to W;g[l”H].

rel

Then s*Oy41 = Opyq and s* Tyi1 = Tt -
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The sheaves O, and (5,,_,_1 fit into an important exact sequence:

Proposition 3.25 Let X be the relative analytic space Wrg{-" Ll s vy W.

(i) There is a natural exact sequence on X :
0—= jul —= Y3 Opg1 —= ¢}y O, — 0.

11 e relatively conerent sheaves Jx an %) A are 1somo. 1C On .
(ii) The relatively coh h Jj«L and p*L ® 5, O isomorphic on X

(iii)) The three sheaves

Torh—1 o (0 Oa, OF),  Tory—1 ou (V! Ont1, OF)
and TO”';;VI Orel (¢I;/1 6}1 ) Orxel

vanish for any positive integer i .

Proof Using Proposition 3.6, the proposition is an immediate consequence of the
analogous results in the integrable case. For instance, the exact sequence of (i) is
obtained via relative holomorphic charts on W using the exact sequence (2-3). a

We now turn to the computation of the classes ;5.

Lemma 3.26 For every positive integer i, the classes i , are independent of the
relative integrable complex structure J. ,f;ll .
Proof Let J{f‘nxl and J lrflnxl be two relative integrable complex structures on a
neighbourhood W of Z,x such that [|J§, ., — Jllco g, w and 11 — o g w
are strictly smaller than the bound gy given in Proposition 2.13. Then there exist a
neighbourhood U of Z,x; included in W as well as a relative integrable complex
structure J<; on U x [0, 1] (considered as a relative differentiable space over the base
X @ 5 X x[0,1]) such that J3%; |uxoy = i1 lu and St luxqry = I % lu- If
X = (U x[0,1],J5,), let us introduce the incidence set

Q:)n = {(g, w; X, p,t)in xlr] X xmx x [0, 1] X such that w € suppé}.

Then QA) n 1S a relative analytic subset of xl % XM xxx[o,1] X- Furthermore, for any ¢
in [0, 1], if i;: %[t”] Xy x xx{ty Xt —> xln Xxmxxx[0,1] X 18 the natural injection,
then i *OX' is the incidence sheaf O, on UM 554,y U, where U is endowed with
the relative"integrable complex structure j,g‘;ll |Ux{s}- Since the relative product Hilbert
scheme (X [x0], .7,;%) is a topological fibration over [0, 1], the required result is a
direct consequence of Proposition 3.21. a
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We compute now the cohomology classes ;i n. Let p: X [+1.n] o X be the restric-
tion of pr; o p to X+1L.71 If ) is the canonical homotopy class in [X*+1.71 . x|
introduced in Section 2.4, we define ¢ in [X[*t1.71: X"l » X1 by 0 = (A, p).

Proposition 3.27 If 1 <i <2n+2, pi.n = (=1) 0x(l').

Proof Let us assume that (W, Ji<,) and (W', J[) satisfy the compatibility condi-
tion (A) of Section 2.4 for m = n + 1. Then xIXU = xlnl « X' 1n this proof, we
denote the two relative analytic spaces Wr[e’fﬂ’”] and I/Vr[?’f] Xymyxx W by X and X’
respectively. The homotopy class of the restriction of 5: X — X' to X [r+1.7] §g o,

Let {¢;: Ui —= Q; x Vi }ier, where ; and V; are open subsets of CZand X x x
respectively, be a maximal relative holomorphic atlas on W . If y; = ¢l[”+1’"], if
Y = ¢l[”] Xy, ¢;i and if O; = y Xy, Uj, then the family

i,rel

(g gl Qb (resp. {yi: 0r == QM x @ x Vi Yier)

i,rel

is a relative holomor[phic atlas on X (resp. X’). For any i in I, let Y, ; be the
incidence locus in Qin] x ; defined by (2-2), and let 0 — A;— BB; be a locally
free resolution of length two of the ideal sheaf Jy, ; (see Section 2.1). By the very
construction of global smooth resolutions for relatively coherent sheaves (Proposition
3.19), we can assume, after shrinking W if necessary, that there exists a locally
free resolution 0 —= A— B of length 2 of jnoo on X’ such that for any i in 7,
0— y; LA — B is a subresolution of 0 — A|g,—> B|o, , where by a
slight abuse of notation, we write A>° instead of

—1 o]
;A ®p! C
Pry A Dpry OQE”]in SZEn]XQ,‘XVi

and Bl.°° instead of

—1 e'e}
r; B Qp—1 C .
Pry 21 Gpry OQE"]in QX xV;

Let P () be the projective bundle of B (using Grothendieck’s convention), /C be the uni-
versal quotient line bundle on P(B), n: P(B) — Wr[g] Xymxy W be the projection
and s be the section of 7*A* ® K obtained via the morphism 7* A4 — 7*B — K.

Lemma 3.28 (i) The vanishing locus Z(s) of s is canonically isomorphic to X.

(ii) After changing base from X x X to X" x X , the section s is transverse to
the zero section.

(iii) If j is the embedding of X into P(B), then j*IKC ~ L.
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Proof (i) By Proposition 3.17 (i), we can split the injection of )/l._lA;?O in Alg;.
If Alp, ~ yi_l (A$° @ R;) is such a splitting, it induces another splitting B|p; =~
yl._l (Bf° @ R;). The resolution 0 — Alg,— B, is therefore isomorphic to

Ny
00—y ' (AP B R;) — ¥ {(B® @& R:),

—1ayg.
where N; = ()/,- OMl 1(21) )

For any point p in anﬂ’n] x V;, we have an obvious bijection between the two sets

{uin (B, ® R;|p)" such that u vanishes on (A7 & R;|,)}

ilp ilp
and {u in (Bffp)* such that « vanishes on A}’Tp}.

If we consider the embedding of P ()/l._1 B°) in P(B|o,) given by the splitting of B|o; ,
this means that Z(s) N7~ 1(0;) lies in IP’()/I._IBI.OO). Furthermore, it is easy to see
that the embedding of Z(s) N 7~ 1(0;) in ]P’()/i_lB;?o) is independent of the split-
ting. If 7: P(B;) — QE"] x 2; 1is the projection of the projective bundle of B5;, if
§ is the section of 7*.4% (1) given by the morphism 7*A; — 7*B; — Opz,)(1)
and if §;: }P’(yl._lBl?’o) — P(B%°) is the natural isomorphism induced by y;, then
Zs)Na~ 1 (0;) = 87 1(Z(5)xV;). The zero locus Z(5') being canonically isomorphic
to l."+1’ "l we get a commutative diagram

P(y;7'BX) TN) P(B°)

J

plrttnl = 7GxV

i,rel

1

Thus Z(s) N7~ (0;) ~ u" i,

i,rel

(i) Let p bein (an] x §2;) x Vi. We choose a neighbourhood U, x V), of p such that
Aj;, B; and R; are trivial on U, U, and U, x V), of respective ranks r, r +1 and m.
Let g be a point in 7~ 1(p) N (Z(5) x V;). We can find an affine hyperplane H,;
in C"™! which does not contain zero and an hyperplane H, in C™ such that the
open subset (Hy x Hy x Up) x V,, of P(B?° @ R;) contains q. The restriction of s
to H; x {0} x U, is a holomorphic map from H; x U, to (C")* corresponding
to the section §, and s: (H; X Hy x Up) x V), — (C" @ C™)* can be expressed as
s(uy,uz, z;v)(a, B) = 5(uy, z)(a) + u2(B). After changing base from X ™ x X to
X" x X, the variable v lies in the preimage of V; in X" x X, which is smooth. Since
§ is transverse to the zero section, the result ensues.
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W[n+1,n]

el as the composed of the following morphisms:

(iii)) We write j on

+1,n] _ ~
Wl e @l x ) X Vi P(BY) x Vi = P(BF) = P(Bo,)
Since the restriction of Op,)(1) to SZE"] x §2; is the ideal sheaf of the exceptional
divisor in an] x Q;, the sheaves j*K and £ are isomorphic on Wl.[f;rl’n . Itis
then a routine verification to check that these isomorphisms patch together into a global
isomorphism between j*K and L. O

We now finish the proof of Proposition 3.27. Let r: P (B) Xym yx (X" x X) — P (B)
be the natural base change map. Point (ii) of Lemma 3.28 imply that Z(r*s) is Poincaré
dual to the top Chern class of r*(n*A* ® K). Since the pullback morphism r* is
injective in cohomology with rational coefficients, Z(s) is Poincaré dual to the top
Chern class of 7*A* ® K in Hg,15(P(B), Q). Besides, if ¢ is the first Chern class
of K in H*(P(B),Q), point (iii) of Lemma 3.28 imply that / = j*&|ym+1.m. As &
is proper, we get for 1 <7 <2n 4 2:

ox(j*e") = mi ju(j*e') = ma ((X]. &)

r
= 1 (cr (T*A* QK) .5i) = Z (A% ry g TR
k=0
r . .
=Y (A" 5;k (B*) = ci(A* = B*) = (=) ci(F;°) = (=)' ci (O).
k=0
Let u (resp. v) denote the embedding of X [n+1,n] (resp. X (% X)in X (resp. in X7).
Since 0x0* =id and ox0* =id, we get
Vo (*E') = 040 %0 T (¥ ') = 05u*T¥ 01 (j *e) = 0w j e = 041",

so that 04/! = (—1)iv*Ci(6,?°) = (—1)i Hi,n- .

4 The boundary operator

4.1 Lehn’s formula in the almost-complex case

Let (X, J) be an almost-complex compact four-manifold, and W', W be respective
neighbourhoods of Z,, and Z,«; endowed with relative integrable complex struc-
tures Ji°' and JIS, . If £ is the invertible sheaf defined in Notation 3.24, let F be the
restriction of £ to X["*1:71 By the homotopy invariance of topological K—theory,
the class of F in K(X"+1.7) is independent of J'<, and its first Chern class is /.

nxl1-
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If {¢;: Ui —= Z; x V; }ier is a maximal relative holomorphic atlas on W, the tauto-

logical sheaves
—1 nlnl
pry O ZIn! ®pri 0 z[m Oztnlxy

patch together into a locally free sheaf Tr[enl] on Wr[e’l’] The restriction T of Tr[enl] to
X[ satisfies the properties (see [21, Proposition 5.3, Lemma 5.4, Proposition 5.5]):

(i) The class of T in K(X™]) is independent of Jre

(i) The cohomology class —2c1(T[”]) in HZ(X[”],Q) is Poincaré dual to the
fundamental homology class of X!, where

ax = {(¢:x) in X such that there exists p in x with length, (§) > 2}

is the so-called boundary of X1,

(iii) If A and v are the homotopy classes introduced in Section 2.4 in the case
m=n+1, then v* T+ _ x> Tl = Fin g(xn+1.10),

If m and n are positive integers with m > n, we define a class I Um.n) 0 K (X [, ”])
by the formula /7 lm.m] —  lm) — )% ") Then property (iii) 1mphes that I+ [n+1,n]
and F are equal i 1n K(X[”Jrl nly.

Let us recall Lehn’s definition of the boundary operator [25, Definition 3.8]:

Definition 4.1 Let H = @, H*(X", Q).
(i) The boundary operator 9: H — H is defined by

(@n)nzo0] = (c1 (TP Uatn), -
(ii) If A is an endomorphism of H, the derivative A’ of A is defined by the formula

=[0,A]=00A—Ao00D.

We now state a partial extension of Lehn’s main formula [25, Theorem 3.10] for
almost-complex four-manifolds.

Theorem 4.2 Let (X, J) be an almost-complex compact four-manifold. Then there
exist classes (en)n>0 in H*(X, Q) such that for all integers m, n and for all rational
cohomology classes @ and 8 on X,

5@). 0 () = =11 Q@) + S [ el iz
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Proof Exactly as in [25, Lemma 3.9], we start by proving that correspondences
actions induced by homology classes on incidence varieties are stable under derivation.
We denote by PD the Poincaré duality map between the homology groups and the
cohomology groups of a compact topological manifold.

Lemma 4.3 Let m, n be two positive integers with m > n, u be a rational homology
class on X" and u,: H*(X", Q) — H*(X™] Q) be the correspondence map
given by the formula u(t) = PD™[vs(u N A*7)]. Then (1) =[uNc; (I%n’n])]*.

Proof For every rational cohomology class 7 on X1,
()"t = 1 (T Uyt —uy (e (TM) U 7)
= PD™! (v N A7) N e (T0) — v (u N2 (e (T U 7)) |
=PD~ [ (N [(v*er (0 = 2% (TP UA*] )|
=PD! v, ([u Ne (2™ n A*r)
= [une, (¥, ). O

By this Lemma, the proof of the theorem boils down to computing the commutator of
two correspondences. Lehn’s proof can be adapted exactly as we did in [21] for the
Nakajima relations. This yields (see [22, Section 4.3] for a detailed exposition):

e For all integers m and n such that m + n is nonzero, there exists an excess
multiplicity f,, m in Z such that for all rational cohomology classes « and
on X, the commutation relation [q}, (), 4m(B8)] = In, m Gn+m(cB) holds.

e For every nonnegative integer &, there exists an excess intersection class ey in
H?(X, Q) such that for every integer n and for all rational cohomology classes
o and B on X, the identity [q},(«). g—n(B)] = ([y €jn| @B) idm holds.

The terms pn,,m and ey are the excess contributions. The multiplicity py, can be
computed locally on X', so that Lehn’s proof is valid and gives py, m = —nm. a

Unlike the multiplicities (,,mx, the excess classes ey involve the global geometry
of X. We compute these classes in Section 4.3 under the additional assumption that
X be symplectic.

Corollary 4.4 When « runs through a basis of H* (X, Q), the operators 0 and q1 ()
generate H from the vector 1.

Proof The corollary is a straightforward consequence of the commutation relations
[qll(a),Qm(l)]z_Wl(Im—i-l(Ol), m>0. O
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4.2 Holomorphic curves in symplectic four-manifolds

Until now, we have only considered integrable structures in small open sets of (X, J).
To compute the excess classes e, appearing in Theorem 4.2, we construct pseudoholo-
morphic curves in X for perturbed almost-complex structures. To do so we use the
following theorem of Donaldson, which is a symplectic analog of Kodaira’s embedding
theorem:

Theorem 4.5 [11, Theorem 1] Let (V, w) be a symplectic manifold of dimension 2n
such that  is an integral class and let & be a lift of w in H*(V, Z). For any sufficiently
large positive integer k , the Poincaré dual of kw in Hy,—»(V,Z) is the homology class
of a closed symplectic submanifold of V. More precisely, if J is an almost-complex
structure on V' compatible with w, there is a positive constant C such that for any large
integer k, there exist an almost-complex structure J; on X and a Jj —holomorphic
submanifold Sy of codimension two in V such that k@ is Poincaré dual to Sy and
that || J — J|co< C/Vk.

We apply this theorem to our situation:

Proposition 4.6 Let (X, w) be a symplectic compact four-manifold, J be an adapted
almost-complex structure on X and N be the second Betti number of X. Then
there exist almost-complex structures (J;)1<j<p arbitrary close to J in C°-norm and
two-dimensional submanifolds (C;)1<j<n such that:

(i) Foranyi with 1 <i < N, C; is J;—holomorphic and J; is integrable in a
neighbourhood of C;.

(i) The homology classes of Cy, ..., Cy span Hy(X, Q) over Q.

Proof Let oq,...,an be closed differential two-forms on X such that the w + «; s

are rational symplectlc forms whose cohomology classes span H? (X, Q) Then there
exist almost-complex structures (J,)1<,< ~ on X such that forevery i, Ji ; 1s adapted to
w+o;. Besides, if g is a Riemannian metric on X and if ¢ is a positive real number, we
can assume by choosing the «;’s small enough that ||jz —Jllcog <eforl <i <N.
Let my,...,my be positive integers such that m;(w + o1),...,my(w + apn) are
integral classes. By Theorem 4.5, there exist a positive integer k, a family (J)1<j<ny
of almost-complex structures on X and a family (Cj);<j<y of two-dimensional
submanifolds of X such that for 1 <i <N, C; is J/-holomorphic, ||.J/ —J; lco g <e
and km;[w + «;] is Poincaré dual to [C;]. Thus, for each integer i between 1 and N,
J/ defines an almost-complex structure on C;, which is integrable since C; is two-
dimensional. Furthermore, J; endows the normal bundle N¢,,x with the structure of
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a complex vector bundle over the Riemann surface (C;, J/). By the Koszul-Malgrange
integrability theorem [12, Theorem 2.1.53], there exists a structure of holomorphic line
bundle on N¢,,x . Let U; be a tubular neighbourhood of C; in X', diffeomorphic to
a neighbourhood of the zero section in N¢,, x . Pulling back the integrable complex
structure on N¢,, x by this diffeomorphism, we obtain an integrable complex structure
Jl.’ " on U; whose restriction to C; is equal to ]l.’ . Since we are free to restrict U;, we
can assume that || J}" — J{||co o v, <&, so that |J/' = J|co gy, <3e. If & is small
enough, this implies that there exist a relatively compact neighbourhood V; of C; in
U, as well as a smooth family (J;)o<;<1 of almost-complex structures on V; such that
Jo=Jly;, J1 = J{ly; and for every ¢ in [0, 1], ||/ — J¢[lco g 1, <3e. Let x bea
smooth real-valued function on X supported in V; such that x = 1 in a neighbourhood
of C;. We define an almost-complex structure J; on X by J;(p) = Jy(p)(p). Then
Ji is integrable on V;, C; is J;—holomorphic and ||J; — J||co <3 ¢€. O

4.3 Computation of the excess term in the symplectic case

Our aim in this section is to prove Lehn’s formula in full generality for symplectic
four-manifolds:

Theorem 4.7 Let (X,w) be a symplectic compact four-manifold and J be is an
almost-complex structure compatible with w. If n is a nonnegative integer, the excess
contribution e, of Theorem 4.2 is given by
1
ey = 5 n*(n— ey (X).
This means that for all integers n, m and for all rational cohomology classes « and f
on X,

3@ B = =10 (@)~ " ([ 100 ).

In the integrable case, the statement of the theorem is [25, Proposition 3.15], with slightly
different notation. We start by an outline of Lehn’s original proof [25, Section 3.4], then
we show how to adapt it in the symplectic case. In the sequel, if Z is a triangulable
cycle in a topological manifold Y, we denote by [Z] the cohomological cycle class
of Z.

If X is a smooth projective surface and if C is a smooth algebraic curve on X, a
result of Grojnowski (see Lemma 4.8 below) describes explicitly the class [C™] in
H?"(X™] Q) in terms of the classes qi, ([C]) ... iy ([C]) . 1, where iy, ..., iy are
positive integers of total sum 7.
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Let X, (En] be the set of elements in X1 whose support is a single point. If dC"
denotes the intersection C"1' N 3d X" the term

= / (xI) [aclel
x|nl
can be computed in two different ways:

(i) The integral I is equal to q—,(1) ([4C™]). Since C" and X" intersect generi-
cally transversally, [0C] = [0 x11].[Cl1] = —2 ¢, (T™) .[C"] = —20(C]]). Thus,
I is a linear combination of terms q—,(1) q;, ([C]) ... q;.k ([CD...qix(C]) .1, where
i1,...,iN are positive integers of total sum #. These terms vanish except in two cases:

e N =1,ii =n.Then
d- ()1 == [ en.[C)
* N =2,ii+iy=n.Then q—,(1) qx((CD q,_,(C]D.1 =0 and

- (1) 4 (CD 4r—x ((C]) - 1 = =1k 4k ((C]) 4u— (C]) . 1 = nk(n—k) [C.

1 n
I= ;/Xen.[CH— (2) [C]?.

(i) The cycle C ("] intersects transversally X, (En] in its smooth locus. Besides, the
intersection C"l N X, (E"] is C(E"], which is canonically isomorphic to C. Therefore

This computation gives

= fm“‘o["]] [CP). [ax 1] = deg c[Oxm (0X )] = deg c[Octn (ICT)],

which is —n(n — 1) deg -~ Kx by direct computation.

The excess terms e, lie in the Neron—Severi group of X so that it is enough to show
that for every smooth algebraic curve C,

1
f [e,, —n2(n—1) cl(X)] [C]=0.
X 2
This is proved by comparison of the two expressions obtained for 7.

Proof of Theorem 4.7 If y is a rational cohomology class on X of even degree, we
define the vertex operators (Sy;(y))m>0 acting on H by the formula

> Sm(y) 1" =exp (Z (

m=0 n>0

-1 n—1

dn(y) t”)-
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Since y is of even degree, the operators (q;(y));~o commute in the usual sense,
so that the definition of Sy (y) is unambiguous. The following lemma is due to
Grojnowski [23] in the integrable case; we refer the reader to Nakajima [35, Section 9.3]
for a detailed exposition.

Lemma 4.8 Let J be an almost-complex structure on X in the deformation class
of J, and let C be a J —holomorphic curve on X. Assume that J is integrable
in a neighbourhood of C. Then for any positive integer n, [C] = S,([C]) .1 in
H?2n (X[n]’ Q).

Proof Let V' be a small neighbourhood of C in X such that J is integrable on
V', U be a relatively compact neighbourhood of C in V', m and n be two positive
integers such that m > n and J,rﬁl(m_n)f\l?e a relative integrable complex structure in
a neighbourhood W of Zxm—n). If W =V xU ™ x U (m_”l, let us assume that
W C W, that J,rf)l(m_n)w, = J and that J,ﬁe)l(m_n) is close to J in C%norm. Then
Wr([:'"] N (xlm.nl J,;e)l(m_n)) is exactly the usual incidence variety U [m.nl - where
U is endowed with the integrable complex structure J. We denote by ¢;(«) the
usual Nakajima operators on U, in order to distinguish them from the almost-complex

Nakajima operators on X . Then we have a commutative diagram:

HXUM, Q) H*(X™", Q)
Gm—n(CD am—n([C])
HX(UM, Q) H*(X Q)

Besides ¢, ([C]) .1 lies in H:(U[”], Q) and its image in H*(X", Q) is ¢,(C]). 1.
Since the identity of the lemma holds in H2"(U ("] Q) for the classical Nakajima
operators, we obtain the result. a

If (C, J ) satisfies the hypotheses of Lemma 4.8, Lehn’s computations recalled above
apply verbatim and give

1
/ [en (- l)cl(X)] [C]=0.
X 2
By Proposition 4.6, H?(X, Q) is spanned by cohomology classes of such holomorphic

curves. Since the intersection form of X is nondegenerate on H2(X,Q), we get
en=%n2(n—1)cl(X). a

Geometry & Topology, Volume 15 (2011)



Topological properties of Hilbert schemes of almost-complex four-manifolds 11 309

The derivative of the Nakajima operators can be explicitly expressed using the Virasoro
operators £,(«) defined in [25, Section 3.1]:

Corollary 4.9 If (X, w) is a symplectic compact four-manifold and if J is a compa-
tible almost-complex structure, then for every n in 7.,

(@) = 7 £4(@) — 5 Il = Dan(er (X) ).

For the proof, see [25, page 180].

5 The ring structure of H*(X!"1, Q)

5.1 Geometric tautological Chern characters

Let (X, J) be an almost-complex compact four-manifold, » be a positive integer and
A, v be the homotopy classes in [X[*t1-71: x[n]] and [xn+1.7] . xn+1]] jntroduced
in Section 2.4,

If E is a complex vector bundle on X, it is possible to associate with £ a sequence
of tautological vector bundles (E),-o on X, These tautological bundles are
constructed in [21, Section 5] using relative holomorphic structures on E, and their
classes in complex K—-theory are shown to be independent of these auxiliary structures
[21, Proposition 5.3]. This construction yields tautological morphisms from K(X)
to K(XMy.

If F is the class in K(X"+1-7l) defined at the beginning of Section 4.1, then the
tautological bundles EI™ and E[+1 are related through the identity v* El*+11 =
AV EM 4 0*E @ F in K(X[t1-1) which is a K—theoretical analog of (2-4) (see
[21, Proposition 5.5]). This gives in He"*"(X"+1.7] Q) the relation

v*(ch(EP 1)) = A*(ch(EM)) + p* ch(E) . ch(F).
Lemma 5.1 For every class « in H®*"(X,Q) and every positive integer n, there

exists a unique class G(a, n) in H"*"(X" Q) such that G(a, 1) = o and for every
positive integer n,

v¥*G(a,n+1)—A*G(a,n) = p*a.ch(F).
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Proof The Chern character on X gives an isomorphism between K(X) ®7 Q and
H®*"(X,Q). Therefore, we can define the classes G(a,n) in He"(X" Q) as
follows: if y is the unique class in K(X) ®z Q such that ch(y) = «, then G(x,n) =
ch(y™). Furthermore, G(«, n) is unique since vyv* = (1 + 1) id. a

5.2 Virtual tautological Chern characters

In this section, we extend Lemma 5.1 to odd cohomology classes. We adapt the method
originally developed in the projective case by Li, Qin and Wang in [29, Section 5].

Proposition 5.2 For every class o in H*(X, Q) and every n in N*, there exists a
unique class G (o, n) in H*(X", Q) such that G(«, 1) = « and for every positive
integer n,

v¥*G(a,n+1)—A*G(a,n) = p*a.ch(F).

Remark 5.3 If X is a projective surface, if Y, is the incidence locus in X [ x
and if td(X) is the Todd class of X, then G(a,n) = pri[ch(Oy,).pr; o .pr; td(X)]
(see [29, Lemma 5.8]).

Proof We adopt the notation of Section 3.5, especially those of Notation 3.24.

e The projection from W (W', W”)to X is denoted by ¢ (¢, ¢, resp.).

¢ The projection from

W/(E]] Xxn W W//[n+1] Xy nt) w”. I/VrEal] $yomsx W,

rel
I/Vr[efll-i-l] W[n-l-l,n]

Xymxx W, rel Xymxx W

to w', W', W, W, W, resp.

is denoted by my, my, 73, M4, 75, TESP.

e The first and second projections from W Xy myy W to W are denoted by g
and 7.

Thanks to Proposition 3.19, we can assume that (’) (’);‘_’H , (’);’o and 5;3_1 admit
global smooth locally free resolutions. Let (resp. Un+1> Bn» Ln+1) be the Chern

character of the relative incidence sheaf O, (resp. O, +1, Oy, Opy1) in
Hgn (W/glﬂ Xym W')  (resp. H@ +1(W”[n+l] Xymt+n W),

rel

Hy (Wi xmx W), HE (W s, W)).
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Since p (resp. g, p, q) is finite on ), (resp. Vn+1, @n, f)nJrl), we can define six
cohomology classes as follows:

K(@,n) = pa[ptn . 75 1 (@ . 1d(X))] in H*(WI, Q),

rel
K@ n+1) =a[ptnr1 . 75 0" (@.d(X)] in H*WE, Q).
K(a,n) = Pl .7y 1% (a . td(X))] in H*(W, [S’f],Q)
K@, n+1) = gu[fins1 - 75 t*(@.td(X))] in H*(WETU Q),
G(a,n) = K(a,n)| x in H* (X", Q),

G(a.n+1) = K(o,n + 1)|ym+n in H*(X"H Q).
Then, by Proposition 3.10 (ii),
VrK(@n+1) = ¢*Ke.n) = pul (Wi fins1 = djy fin) - 75 1 (@ .1d(X))]
= px[P¥ ch(L). P}y ch(OX)) . o3y 77 t* (. td(X))].
Since ch([OS]) is supported in Are, for every B in H*(W Xy my x W, Q), we obtain
that ch([OX°]) . 7 B = ch(|OF’]) . w7 B. Using the diagram

Py
W/r[erll—i_l’n] ><X(”)XXVV > Wx(n)xXW

17l 76

W[n+1 n) w

rel

Sl

we get

Y*K(a,n+1)—¢*K(a,n) = ch(L) Py p 3y [ch(OX)) . 7§ * (@ . td(X))]
= ch(£) p*(6x ch([OX]) . t* (o . td(X))).
Lemma54 (i) IfT=tXymwyyt: WymyxW—=XxX andif i: X—=XxX
is the diagonal injection, then ch([OY’]) = ™i, td(X)~ L.
(i) A*G(a.n) = ¢*K(ot.n)|ywm+1.m.
(i) v*G(a.n+1)=y*K(o,n+1)|ym+1.n.

Proof (i) The class [OX’] in K, (Wywm yx W) is the pullback by the map f of the
class [C°° ]in K, (X xX). Besides, the differentiable Grothendieck—Riemann—Roch
theorem for immersions [3, Theorem 3.3] yields ch([C°° D) =i td(X)7L.
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(i) If (W, JrL,) and (W', J, rel) satisfy the compatibility condition (A) of Section 2.4,
then we have A*G (o, n) = ¢* K(a, n)|ym+1.n1. To conclude in the general case, we
argue exactly as in Lemma 3.26.

(iii)) The proof is the same as (ii), replacing condition (A) by condition (B). a

By (i), we get 76« ch([OF]) = 7e« *itd(X) L =1*pry, ix td(X) " =¥ d(X) 7L,

so that ¥ * K (x,n+1)— ¢*K (a,n)=ch(L) p*t*a. By points (ii) and (iii), we obtam
the relation A*G(a,n) —v*G(a,n + 1) = ch(F) . p*«. This finishes the proof of
Proposition 5.2. a

5.3 The ring structure and the crepant resolution conjecture

In this section, X is a symplectic compact four-manifold endowed with a compatible
almost-complex structure.

We introduce operators acting on H = @, .jy H* (X ("], Q) by cup product with the
components of the virtual tautological Chern characters constructed in Section 5.2.

If o is a homogeneous rational cohomology class on X and if 7, n are positive integers,
we denote by G;(a,n) the (Ja| 4+ 2i)—th component of G(a,n) and by &;(«) the
operator on H that acts by cup product with G;(«, n) on H*(X™, Q).

We now state a result, originally proved by Lehn for geometric tautological Chern
characters [25, Theorem 4.2] and generalized by Li, Qin and Wang for virtual ones
[29, Lemma 5.8]. We include a proof for the sake of completeness.

Proposition 5.5 For all homogeneous rational cohomology classes «, B on X and
for any positive integer k, [Sy(«), q1(B)] = (l/k‘)q(k)(oz,B).

Proof Let o, B be homogeneous rational cohomology classes on X and n be a
positive integer. The operator q;(8): H* (X, Q) — H*(x[**t11 Q) is given by
q1(B) .7 = v«(A*1. p*B). Therefore

Gla.n+1).(@1(B). 1) —q1(B) . (G(a.n) . 7)
=vx(A* T v G(a,n+1). p*B) —v4(A* (. G(a,n)) . p* B)
= vi(ch(F) .1 7. p*(ap)) by Proposition 5.2

=3 %v*(cl(F)k AT p* (@p)).
k=0
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On the other hand, since q;(e8) is given on H*(X ™, Q) by the action by correspon-
dence of the Poincaré dual of p*(«f), we have by Lemma 4.3

ai” (@) = [(PD (p* @))),] = [(PD (p* (@p)) N1 (7)), 1“7V
= ... =[PD (p*(@B)) Ner (F)¥],.

This yields the result. a

As explained in [25, Remark 4.5], Proposition 5.5, Theorem 4.7 and Corollary 4.4 yield
a complete description of the operators Gy («).

The forthcoming Theorems 5.6, 5.7 and 5.9 extend to Hilbert schemes of symplectic
manifolds the analogous results for projective surfaces of Li, Qin and Wang [29, Theo-
rem 5.2; 30, Theorem 4.1] and, for Theorem 5.9, of Lehn and Sorger [27, Theorem 1.1]
and Qin and Wang [37, Theorem 5.13]. The first two results are formal consequences of
the various relations between g, («), 0, £,(«) and &; () listed in [30, Theorem 2.1].
Thus, the two following theorems are formal consequences of Theorem 4.7, Corollary
4.9 and Proposition 5.5:

Theorem 5.6 If0 <i < n and if « runs through a fixed basis of H*(X,Q), the
classes G;(«,n) generate the ring H* (X [, Q).

Theorem 5.7 For every integer n, the ring H*(X", Q) can be built by universal
formulae from the ring H*(X, Q) and the first Chern class of X in H*(X, Q).

In the case where b; (X) vanishes, Theorem 5.6 implies that the rings H* (X1, Q)
are generated by the components of the tautological Chern characters ch( £ [”]), where
E runs through all complex vector bundles on X .

We now turn to the study of a particular case of Ruan’s crepant resolution conjecture.
Orbifold cohomology provides a geometrical approach to the rings H* (X (], Q). If
J is an adapted almost-complex structure on X, the symmetric product X is an
almost-complex Gorenstein orbifold. The orbifold cohomology ring H, (X ™) Q) is
Z—graded and depends only on the deformation class of J (see [9; 1; 15]).

After works by Lehn and Sorger [26; 27], Li, Qin and Wang [28; 29; 30], Fantechi
and Gottsche [15] and Uribe [42], Qin and Wang [37, Section 2.6] developed a set of
axioms that characterize H, (X () Q) as a ring. Here is their result, as stated in [1,
Theorem 5.24]:
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Theorem 5.8 Let A be a graded unitary ring, (X, J) be an almost-complex compact
four-manifold and H(H* (X, C)) be the Heisenberg superalgebra of H*(X,C). We
assume that:

(i) The ring A is an irreducible H(H* (X, C))-module and 1 is a highest weight
vector.

(ii) For any o in H*(X, C) and for any nonnegative integer i , there exist classes
Oi(a,n) in A%1F2 such that if ©;(«) is the left multiplication by @, Oi(a, n)
on A and if d = 9(1), then:

e Forall «,  in H*(X, C), for every nonnegative integer k ,

Dk (@), 91 (8)] = ¢ (ap).

o If 8y is the class in H*(X,C)®3 mapped by the Kiinneth isomorphism to
the cycle class of the diagonal in X3, then

Z 107,95,95: (Ox) = —60.
Li+1+13=0

Then the rings A and H}\ (X () C) are isomorphic.

(We use the physicists’ normal ordering convention

: qllqlqu3 = 9m9Ym>9ms» where {llv127l3} = {ml’mva3} and mp =mjp = m3)-

We apply this theorem to prove Ruan’s conjecture for the symmetric products of a
symplectic four-manifold with torsion first Chern class.

Theorem 5.9 Let (X, w) be a symplectic compact four-manitold with vanishing first
Chern class in H*(X, Q). Then, for every positive integer n, Ruan’s crepant conjecture
holds for X | je the rings H*(X",C) and H:rb(X(”), C) are isomorphic.

Proof Let Oy (x,n) = k! Sy (o, n). The first condition of Theorem 5.8 (ii) is exactly
Proposition 5.5. The second condition is a formal consequence of the Nakajima relations
and of the formulae [q),(®), qm(B)] = —nm quym(@B), q), () =n Ly(a). O

6 The cobordism class of X"

In this section, (X, J) is an almost-complex compact four-manifold, and no symplectic
hypotheses are required. The almost-complex Hilbert schemes X (] are endowed with
a stable almost complex structure, hence define almost-complex cobordism classes. By
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classical results of Novikov [36] and Milnor [33], the almost-complex cobordism class
of X[ is completely determined by the Chern numbers

[y Py, ey (XD,
xnl

where P runs through all polynomials P in Q[T7},..., T,,] of weighted degree 4n,
each variable T} having degree 2k. We intend to prove the following result:

Theorem 6.1 The almost-complex cobordism class of X [] depends only on the
almost-complex cobordism class of X .

This means that if P is a weighted polynomial in Q[77, ..., T,,] of degree 4n, there
exists a weighted polynomial P[Ty, T>] of degree 4, depending only on P and n, such
that

/ P[cl(X[”]),...,cz,,(X[”])]:/ Plei(X), e2(X)]-
Xl X

This result has been proved by Ellinsgrud, Géttsche and Lehn [14, Theorem 0.1] when
X is projective. In Sections 6.1, 6.2 and 6.3, we adapt the authors’ original proof in a
relative setting. Throughout this section, we use extensively the notation of Section
3.5, especially Notation 3.24.

6.1 Computation of 7X" in K —theory

Let J<, (resp. JI!, Ji¢l ) be a relative integrable complex structure in a neighbour-
hood W (resp. W/, W) of Z,x1 (resp. Z,, Z,+1). We denote the class of

Trel W[n] (resp Trelw[lrl—l] Trel W/[”] Trel W//[”+1])
° e ’

rel » rel

in Krel(W[n]) (resp. Krel(W[n+1]) Krel(W/[n]) Krel(W//[n-i-l])) by &, (resp. En+1s

rel rel rel
Kns Kn+1)-

Lemma 6.2 The restriction to X (resp. X [n+11) of the topological class of «,
(resp. kp+1) is the class of the complex vector bundle T X [] (resp. TX [’”'1]) in
KXy (resp. K(X"*+11)) given by the stable almost-complex structure on X
(resp. XIn+11),

Proof If J satisfies the conditions (‘6) listed in [43, page 711], then }rll is smooth.
Besides, the construction performed in [43] of the stable almost- complex structure
of X [n]ﬂ shows that 77X and T relW[”]| x'm have the same class in K(X"]). Since
relatlve almost-complex structures satisfying the conditions (6) can be chosen arbitrary

close to J in C%norm, Proposition 2.13 implies, after shrinking W if necessary,
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that J! can be joined by a smooth path {J e t} refo.1] © another relative integrable
structure satisfying the conditions (6). By rlgldlty of the topological K-theory, the
class of 7el[w] e ,]| xt in K(X™") is independent of ¢. The result follows. O

rel °

Remark 6.3 For an arbitrary J'*', by Theorem 2.18 (ii), X rel is only a topological
manifold. Therefore, the advantage of using 7™ Wr[e’f] is that this complex vector
bundle is defined for any relative integrable complex structure J, ,ﬁel.

Proposition 6.4 The following identities hold in Krel(Wr[,l’f]) and Krel(WrE:’f“]) res-
pectively:

Kn = p*(én + 6;,/ _6n . 6;{)1 Knt1 = Q*(én—i—l + 5;,/4_1 - 671—}—1 -6,\1/.4_1)-
Proof Let ¢: U —= Z x V be a relative holomorphic chart on W', p be the first

projection from Z™ x Z to Z["! and ¥, be the incidence locus in Z" x Z defined
by (2-1). Since p is finite on 2),, we obtain by Proposition 3.13:

p* Homorel (jn, 6n)|U
= ¢_1 [prl_l [p* Homoz[n]xz (an ’ OYn)] ®Prrloz[n]XzO§1[n]xZXV]
~ 7' o TZM @ 10,4y, Oy 7] = (T WD

znlxz Y ZMxZxV

These local isomorphisms patch together into a global isomorphism between the two
relative holomorphic bundles ps Hompre (Jn, On) and TWrE:’f] If i is a nonnegative
integer, Proposition 3.6 yields the isomorphism

gth(Qre] (O}‘h Orel)|U
o =1 —1 o i _
~ ¢ (prl gxto lnls (OYn’ OZ[”]XZ) ®pr1 IOZ["]XZ OZ["]XZXV)

Since Y, has codimension 2 in ZMx Z é’xtorel (On, O =0 for i <2 by [13, Propo-
sition 18.4, Theorem 18.7]. Besides, Jn locally admits a free resolution of length 2.
Using Proposition 3.16 (i), we get the following equalities in K rel (W[”] Xxmwxx W):

jnv . On = Hompr (jm On) - gXtOrel (\7]’[7 On) + gxrorel (jm On)
= Homorel (jn . 611) - gxtérel (611 ) 6”)
- Homorcl (jn B 6;1) - 5)62‘?9@ (6;1 ) Orel)
== Homorel (jn, 5;1) - 6’\1/

s0 that pyx Hompw (Ty. Op) = p[(O™ = OY) . O, + OY]. The proof of the second
identity is exactly the same. a
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6.2 Comparison of TX "1 and TX["*+11 yia the incidence variety X ["+1.7]

We use the notation of the previous section. The relative canonical bundle of W is
denoted by K ﬁ,l

Proposition 6.5 The following identity holds in K™ (W1+1.n):

!

Va1 =%+ L+ LY. 5 KyY =5 (O —T™W + KiY)
~L£.5'0) - V. p'K}Y 5Oy,
Proof By Proposition 6.4, ¥/'%y 41 = ¥'Pu(Ont1 + Oy, | —Ony1.0), ). Letus

consider the cartesian diagrams:

Yw
VVrE:lH_l’n] Xxmxx W — I/Vrg]l—i_l] Xxymyxy w

7 I

m/r[g—H,n] v win+1]

rel

1, ow
WEHEM s gy W —— Wil xxm.x W

7| |»

wln+1.n] ¢ winl

rel

Since p (resp. ¢) is finite on @n (resp. @,H_l), Proposition 6.4 and Proposition
3.16 (iv) yield

1/f!’?n+1 = ﬁ*‘/f;/V(én—H + 6;,/4_1 - 6n+1 -5;\1/.4_1)
and 0% = Fudly (Bn+ BY — By . 5.
Thus, we obtain by Proposition 3.25 and Proposition 3.16 (ii):
V' Rusr = ¢+ B[ F'L. DYy On + LY. Bly OF = L. £Y). 5y (0. 0%)
—P'L. P08 4, OY — BLY. B, 0% 4, 6,,]

Note that £. LY = (9{,?}[111+1,n]. Let m: W Xymyxy W — W be the first projection.
Since 7 is injective on A, the diagram

WEHL sy x W —" e W x W
W[n+l,n] P w

rel
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and Propositions 3.16 (iv) and 3.25 (ii) give
U'Rnt1 = 'Rn + L. 0 1:Op + LY P12 Of — 5 74(Op . O)
— Px (L - 91 Oy) = LY Pulpip OX - $iyr Onl.

Now m«Op = O;‘;',l, 7xOY = K{,‘;’}V and Op.O) = (’){ff,l - T;ﬁl + Krv‘;,lv, and if
s I/'V —= W xxymwyx W is the diagonal injection, then ,B!WOX = ,B!W(S*Kr[f,lv =
Jxp’ K;?,lv thanks to Proposition 3.16 (v) and to the diagram:

J

wittn WU )y x W
lﬁ lf’w
w 5 W xxymyx W

By Proposition 3.16 (ii) and (iii), we get
YR = ¢ + L+ LY .0 K — DO — Ti + KieY)
—(Foi)x[L.(Pw o)) OF1=LY (5o j)x (dw o j)' On.

Since po j =id and ¢ o j = &, we obtain the result. o

6.3 Cohomological computations

Lemma 6.6 Ifi is a positive integer, the following identities hold in H* (X "+1.71 Q):

() ci(@'Tn)l yorrm = A*¢; (X)) and ¢;(W'Rng1)| ytnrr.m = v¥e;(XTH1),
(i) i@ On)™®)| ytns1.m = 0* i, n.

(i) ¢;(p* T™W)| ytnt1.m = p*ci(X).

Proof (i) By the homotopy invariance of topological K-theory, the cohomology
class ¢;(¢'%y)| ytn+1.m in H2(X[*+171 Q) is independent of Jrel . Thus, we can
assume that W and W' satisfy the compatibility condition (A) of Section 2.4. It
follows from Lemma 6.2 that ¢;(¢'%,)| yint+1.m=A%ci(kp)| xt1=A%¢; (Xn1y. Using
the compatibility condition (B) instead of (A) we obtain the second identity.

(ii) By Proposition 3.20, [(5'0,)%°] = 5*[D,2°]. This gives the result.
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(iii) Let W = W xxu X, where the base change morphism is given by the diagonal
injection of X in X We consider the diagram:

Wl W W
X[n-i—l,n] i/—l'

Then, ¢;(p* T™'W)| ytnt+1.m = p*ci(T™ W )|x. Since W is a neighbourhood of
Ay in X x X, T™ W|y ~ TX, so that ¢;(T™'W )|y = ci(X). O

For any nonnegative integer k, denote by dj the k—th Chern class of [C°° ] in
H* (X x X,Q). If i:X — X x X is the diagonal injection, the dlfferentlable
Grothendieck—Riemann—Roch theorem for immersions [3, Theorem 3.3] gives do = 1,
di =0, dy = —ix(1), d3 = —ix[c1(X)] and dj = 0 for k > 4. Thus i*dy = 1,
i*di=0,i%dy = —cy(X), i*d3 = —c1(X)¢c3(X) and i *dy, =0 for k > 4.

Proposition 6.7 Let i be a positive integer.

() (id)* i p1 — A id)* i, n = Yo rE 15 (p,id)* d;_g .
(i) v*e;(XHy — 3 *¢; (X)) is a universal polynomial in the classes [, prei(X)
and o j p.

Proof (i) Let Z,x1x1 be the incidence locus in X x (X M x X x X ) defined by
Zuxix1 ={(p: X, q. 1) in X x (X x X x X) such that p exUqUr}

and let J, rellxl be a relative integrable complex structure in a neighbourhood W of
Znx1x1- We can assume that (W, J ) and ( W, J el 1) satlsfy as relative analytic
spaces the compatibility condition W X y )y y (X M x X xX)C W, the base change
map being given by the diagonal injection of X into X x X.

Exactly as in Section 3.5, we can construct relative incidence sheaves O, and (9,,+1 on

Wr[e'f] and V[igf"'l] as well as a relative exceptional divisor Dy in Wrgl’-"l et qu,

WW’ ’OW’ Js P E’ rel and O be the analogs of ¢w, Vw, pw, J, p L, A
and Op . In this context, Proposltlon 3.25 takes the following form:
W[n+1 n]

ol Xxmxxxx W relating O, and

e There is a natural exact sequence on
On+1, namely,

A~ A

~ A A~k ~%
0 — jxL—= Vi Opy1 — ¢35 O — 0.
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A~

~ R ~k A PPN ~ A N
© 55,03 =7505. U5y Ont1 = Vi Opsr and 5 Oy = $33 On.

Arguing as in Section 6.3 and using Proposition 3.20, we get ¢ (ﬁ*E)|X[n+1,n]XX =
prj / and for any nonnegative integer k,
o kl(P% 08Ny = (0. id)*dy.
A~ % ~ .
o (Y OnsD)®N xw+1mxx = (v, i) s, n1
~% A~ .
® ck[(¢lff/ On)oo”X[”“‘]s”]xX = ()"ld)*Uk,n-

This yields the result.

(i1) This is a straightforward consequence of Proposition 6.5 and Lemma 6.6. a

We are now going to perform in our context the induction step of [14]. For any subset 1
of {0,...,m}, we denote by pr; the projection from X+l x X™ to the product of
the factors indexed by 1.

Proposition 6.8 If m is a positive integer, let P be a polynomial in the coho-
mology classes prj ¢ (X [nt1ly, Proy Mi,n+1, Py di, pry ci(X) (1 < k,l <m) on
X[+ X™  Then there exists a polynomial P depending only on P, in the analogous
classes on X" x X™+1 such that

/ r=| B
Xn+1lx xm Xl xm+1

Proof We consider the incidence diagram:

X[n—i—l,n] x xXm

yw\

Xlntll s xm (X % x)x xm

Since (v,id) and (o, id) are generically finite of degrees n + 1 and 1 respectively,
1
/ P (0.id).[(v,i)" P].
Xn+1ly xm n+1 Xl xm+1

Let i be a positive integer. The class (v,id)* pry ¢; (X [2+11) _ (g, id)* pry ci (X (]
is, by Proposition 6.7 (ii), a polynomial in the classes pry/, (0,id)* prj ¢; (X) and

(0.id)* pry; 1), and Proposition 3.27 gives (o, id)« prg 1/ =(-1)7 pry, Mj,n- Thus,
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(0.1d)«(v,id)* prj c; (Xxnt+1ly pry ¢; (X") is a polynomial in the classes pryy My, n
and pry ¢j (X).
By Proposition 6.7 (i), (v,id)* prg;, ii,n+1— (0,id)* prg,kJrl Wi, n is a polynomial in
the classes pry / and (o,id)* pr’lk’ %+1 9j - Applying Proposition 3.27 again, we obtain
that (0, id)«(v,id)* pry, Wi, n+1 —pr;,kJrl Mi,n is a polynomial in the classes pry, 1), n
and pry, d;.
To conclude, we use the relations
(v,id)* pry; di = (0.id)* prlt+1,l+1 d;,
(v,id)* pry ¢;(X) = (0.,id)* pry_ ; i (X). |

We can now finish the proof of Theorem 6.1. We write

/ P(cl(X[”]),...,cz,,(X[”]))=/ P :/ ﬁ2=...=/ P
Xxln Xh—1lx x xIn—21x x2 xn

where P is a universal polynomial in the classes pr,’: ¢i(X) and pr;: / d;. By the
explicit expression of the classes d;, we obtain that . yn P 1s a universal polynomial
in the Chern numbers ¢;(X)? and c,(X). O

7 Appendix: Existence of relative integrable complex struc-
tures

This appendix is devoted to the proof of Proposition 2.13. This proof is carried out in
several steps. We introduce at first some notation and terminology:
e If Y and A are two subsets of X x B and B respectively, we put Y|4 =
Y N (X x A).
e If YV is a subset of X x B, we say that Y is adapted to Z if Y contains
pry '[pry (Y) N Z].
e If W and W' are open subsets of X x B, we write W < W' if W N W' is
nonempty and if W, ) npr, w7 is included in W'l ) A pr,(97) -

Then we have:

Lemma 7.1 Let K be a compact subset of B. Then for any neighbourhood W
of Z|g in X x B, there exists a neighbourhood U of K in B such that W |y is
adapted to Z .

Proof Let 7: Z — B be the restriction of the first projection to Z. Since 7 is finite,
7 is closed. Thus, if U = B\ n[((X x B)\ W) N Z], U is an open neighbourhood
of K in B, and W |y is adapted to Z. o
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We are now going to study in detail some very special open subsets of X x B, which
are essentially tubular neighbourhoods of Z. The construction of these open sets relies
on the (probably well-known) lemma:

Lemma 7.2 Let Y be a differentiable orbifold endowed with its natural stratifica-
tion, S be a stratum of T and K be a compact subset of Y. Then there exist a
neighbourhood U of K in Y and a smooth retraction R: U — U N S.

Proof We start by a local construction. Let x be a point in .S and U, be a neighbour-
hood of x in Y such that U, is isomorphic as an orbifold to V /G, where V is an open
subset of R” and G is a finite group of diffeomorphisms of V. Let 7: V — Uy be
the quotient map and y be an element of 7! (x). We can assume that G is equal to
the stabilizer G, of y. In this case, 7~ 1(S NUy) is exactly the subset of the points
of V fixed by all the elements of G ; we denote it by V7.

Let us construct an embedding of U, into an Euclidean space. By Bochner’s lineariza-
tion theorem, we can assume that the finite group G acts linearly on V. This means that
the action of G is induced by a linear representation of G in GL(n, R) if we choose
» as the origin of R”. Then G also acts on the algebra R[X71,..., X,] of polynomial
functions on R” and the algebra R[X, ..., X,]¢ of G—invariant polynomials is finitely
generated [40, Appendix 4, Proposition 1]. Let ¢4,..., ¢4 be a set of generators and
¢ = (¢1....¢4). The map ¢: R” —=R? induces a smooth map ¢ from R"/G
to R which is easily checked to be injective. Since Uy is open in R” /G, ¢ gives an
embedding of U, in R?.

Let us now prove that the restriction of é to S N Uy is an immersion. Since
|yt VG — S NU, is a diffeomorphism, this is equivalent to show that the re-
striction of ¢ to V¢ is an immersion. Let p be a point in V¢, & be a tangent
vector in T,,VG, and assume that ¢«(h) = 0. If we put ¥; = ¢; — ¢;(p) for
1 <i < d, then every G—invariant polynomial P on R” can be decomposed as
Py +---+ Pyyy; + P(p), where the P;’s are G—invariant. This proves that
P« (h) = 0. Let A be the algebra of polynomial functions on the vector space (R")% .
Then A is a quotient of R[Xy,..., Xy] and G acts trivially on A, so that A4 is a
quotient of R[X;,..., X,]%. Let us choose a linear form u on (R”)? such that, via
the identification between 7, pVG and (R”)%, u(h) is nonzero. If & is a lift of u in
R[Xi, ..., X,], then @4 (h) is nonzero, which is a contradiction.

We can now argue as in the proof of the Whitney embedding theorem in the compact
case: using a partition of unity, we obtain an embedding I" of a neighbourhood U of K
into some Euclidean space RY such that I'|yng is an immersion. Since T'(U N S)
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is a submanifold of R¥, after shrinking U if necessary, we can consider a tubu-
lar neighbourhood € of T'(U N'S) in RN such that T'(U) is included in Q. If
R Q— '(U N S) is the retraction associated with this tubular neighbourhood, we
define R: U — U NS by composing RoT with the inverse of the diffeomorphism
Cluns: UNS —=TUNS). O

Let r be the injectivity radius of X . Since X is compact, r is positive. For any x
in X and ¢ satisfying 0 <& <r, the exponential map expg4(x) at x associated with
the Riemannian metric g is a diffeomorphism between the Euclidean ball of 7, X
of radius ¢ centered at the origin and the geodesic ball Bg(x,¢). The former being
endowed with the integrable complex structure J,, we get a canonical integrable
complex structure on the latter.

Let us fix a stratum B) of B and a compact subset K of B) . We denote by d(A) the
number of sheets of the covering map pr, |z,: Z; — By. If n is a sufficiently small
number in |0, [, there exists a small neighbourhood V), of K in Bj such that for any b
in Vy,if Z|p ={x1,...,X401)}, then the geodesic balls (Bg(x;,n))1<i<d(r) are pair-
wise disjoint in X'. By Lemma 7.2, we can assume that there exist a neighbourhood U,
of K, in B such that Uy N B; = V; and a smooth retraction R: Uy — V;. Then
we put Q =[[pep, ]_[er|RA(b) Bg(x,n). Since  is a neighbourhood of Z|g, ,
Lemma 7.1 shows that €2 is adapted to Z if U, is a sufficiently small neighbourhood
of K, . We call such an open set 2 an n-neighbourhood of Z above Kj . It is easy to
prove that if W' is any neighbourhood of Z |, , then there exists an n—neighbourhood
of Z above K contained in W if 7 is a sufficiently small positive real number.

We now explain how to cover Z in a compatible way by a finite number of 7n-—
neighbourhoods.

Lemma 7.3 Let W be an open subset of X x B adapted to Z, B) be a stratum of B
such that 0B, is contained in pr, (W) and 1o be a positive real number. Then, for every
relatively compact open subset V of pr,(W') containing 0B, , there exist a compact
subset K; of Bj, a positive real number n smaller than ny and a n—neighbourhood 2
of Z above K, suchthat By CV UK) and Q < W|y.

Proof Let U be a relatively compact neighbourhood of 9B in By NV and put
Kj) = B, \ U. Then K; is compactin By and By CVNK,.If K'=(V NBy)\U,
then K’ is a compact subset of Bj included in K; and W is a neighbourhood
of Z|gs. Thus, for n small enough, there exists an n—neighbourhood Q' of Z
above K’ contained in W. We can even assume that Q" = Q|o, where Q is an
n—-neighbourhood of Z above K and O is a small neighbourhood of K’ in B. Since
QloCW, Qlony S Wlony,sothat Q S W|p. o
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Then we get:

Lemma 7.4 For every positive real number no, we can construct a finite covering
(Wi)1<i<n of Z by open subsets of X x B such that:

e For each i, there exists n; in |0, no] such that W; is a disjoint finite union of
n; —neighbourhoods of Z above compact subsets of the strata of B.

e Foreveryi suchthat2<i <N, W; SW;_{U---UW;.

e The integer N is smaller than the number of strata of B.

Proof Let A be the finite set of strata of B and (A;)1<;j<n be the partition of A
defined as follows: A is the set of elements of A corresponding to closed (ie minimal)
strata in B, and the other A;’s are defined inductively for i > 2 by the expression

i—1
A= {k in A\(A;U---UA;_q) such that 0B) C U U Bu}'
J=1 ueA;

For 1 <i < N,weput S; = Uij=1 Uaxea, B The S;’s are closed subsets of B. Let
A1 ={A1,..., Ag}. For n; sufficiently small, we can pick pairwise 1 —neighbourhoods
of Z above the B) s (1 <i < k). We denote their union by W;. Then pr,(W;) is
a neighbourhood of S; in B. Let V be a relatively compact neighbourhood of S
in pry(Wy). If Ay = {p1,.... 1}, we can find by Lemma 7.3 some compact sub-
sets Kq,...,K; of By,,..., By, and ny—neighbourhoods €21, ...,8; of Z above
Kq,..., K; (where 0 <1, <nq)suchthatfor 1 <i </, EM CVUK; and Q2; S Wi|y.
If n, is small enough, we can assume that the €2;’s are pairwise disjoint. If we replace
Wi by Wiy and if we put W, = ]_[f=1 Q;, then pr,(W)) is still a neighbourhood
of S1 in B and pr,(W; U W) is a neighbourhood of S, in B. Besides, W, < Wj.
To construct W3, we add the strata in A3 and so on. a

We now turn to the construction of relative integrable complex structures. If we take
a covering (W;)1<i<ny of Z given by Lemma 7.4, each W; (more generally each
n—neighbourhood of Z above a compact subset of a stratum of B) is endowed with
a canonical relative integrable complex structure, but these various structures do not
match on the intersections W; N W; . This is why it is necessary to use a gluing argument.
We start by some preliminaries.

Let E be any finite-dimensional real vector space of even dimension 2k. If J(E)
is the set of complex structures on £, J(FE) is a homogeneous space isomorphic
to GL(2k,R)/GL(k,C), so it is a submanifold of End(E). We define a subset J
of the vector bundle End(7X) by J =[] ,cx J(TxX). Then J is a differentiable
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manifold and the projection p: J —= X is a smooth fibration. Besides, the almost-
complex structure J of X is a smooth section of this fibration. For ¢ > 0 and x in X,
we put Jo(TxX) = {M in J(TxX) such that |[M — J(x)|, < &} and we define
Je = U yex Je(Tx X). For any & > 0, J, is a neighbourhood of the image of J in J.
Furthermore, since X is compact, there exists &y > 0 such that for every ¢ smaller
than g, J¢ is a smooth fibration whose fiber is diffeomorphic to an Euclidean ball.

Let n be a positive real number strictly smaller than . For x in X and 7 in [0, 1], we
define u;: Bg(x,n) —= Bg(x,1n) by us(x)(p) = expg(x)[l expg(x)_l(p)]. For
any y in Bg(x,n), there is a canonical isomorphism ¢,(x, y) between 7),X and
Ty, (x)(y») X obtained via the differential of exp,(x) from the canonical isomorphism
between Texpg(x)—l(y)(TxX ) and T; expg(x)—l(y)(TxX ). Since X is compact, there
is a positive constant A, depending only on 7 such that lim,_,o Ay = 1, and for
every x in X, every y in Bg(x,7n) and every ¢ in [0, 1], ||¢/(x, y)|l¢ < 4y and
lps(x, ¥)~ 1||g < A4,. If x isin X and ¢ in [0, 1], let J be an almost- complex
structure on Bg(x, tn); if = 0, we take the convention that J is a complex structure
on T X . Then we can define a rescaled almost-complex structure R ,(.7 ) on Bg(x,1n)
by the formula

Yy By(x.n), Vhe Ty X, Ri(D)(0)(h) =, 1)~ (T (e (0)(0) (81 x. 7) (1) ).

Then, for every ¢ in [0, 1] and every almost-complex structures Jo and J; on Bg(x,tn),
we have

IR (J1) — Rt (Jo)ll co,g. By, = An 17, — f0||c<),g,3g(x )

Remark that if J is an almost- complex structure on Bg(x,?n), then R (J ) =us(x)* J
if t >0, and R;(J) = expg(x)«(J(x)) if # = 0. Thus, if # > 0 and J is integrable
orif t =0, then Rt(J) is integrable.

We end with another estimate. For any x in X and any 7 in [0, 1], R;(J)(x) =
J(x). Since X is compact, there exists a positive constant B; depending only on 7
such that lim,_.o B, = 0, and for every x in X and every ¢ in [0, 1], we have

”J_Rt(J)”COg Bg(x,n) = BT?

We are ready to prove the essential gluing lemma:

Lemma 7.5 Let ¢, &' and n be positive real numbers satisfying the conditions n < r,
0<é& <e<gy and 8/A4 + B (A2 + 1) < &, and let W be a n—neighbourhood
of Z above a compact subset K of a stratum B) of B. If J el and Ji rel are two
relative integrable complex structures in Bg (W), then there exists a smooth family
(J'o<s<1 of relative integrable complex structures in Bg, (W) joining J& and Ji'.
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Proof Let Ji® = Ro(J§") and J'® = Ro(J{). Then the families (R;(J&"))o<r<1
and (R;(J fd))o<t<1 are two smooth families of relative integrable complex structures
on W joining J&' and JI° to J§ Jiel and Ji jrel respectively. Besides, for every ¢ in [0, 1]
and i in {0, 1},

IR (JFN) = Tllco, g < IR:(JFD) = Re(D)llco g + IR:(J) = Tllco, g w
<Ale + By

Let = A% g+ By, V=pr,(W)N By and R;: pry(W)—V be the smooth retrac-
tion associated with W . Since ¢ is smaller than ¢, Jz Xy Z |y is a smooth fibration
over Z |y whose fiber is diffeomorphic to an Euclidean ball (hence contractible).

The relative integrable complex structures J Jiel and Ji Je! define two sections J§ and J|
of the fibration Jz xx Z|y ; they are given for (x,v) in Z|p by J/(x,v) = Jrel (x)
Then we can find a smooth family (J})o</<; of sections of Jz xx Z|y jomlng g}
and J{. Each J; defines a relative integrable complex structure J; el on W as follows:
for b in pry (W), let v= Ry (b) and Z|, ={x1,...,x4}. Then W = ]_[f’_1 Bg(xi, 1)
and J/™ is equal to Ro(J;(x;,v)) on Bg(x;,n). Note that Jrel Ji* fori =0,1.
Besides,

177 = Tllco g < I = Ro(Dllco,g. w + 1 Ro(J) = Tllco, g w < A7 E+ By <.

Thus we have found a piecewise smooth family of relative integrable complex structures
in Bg, (W) joining J& and J!. This family can be made smooth by reparametriza-
tion. O

We can now finish the proof of Proposition 2.13. Fix ¢ and & which satisfy the
conditions 0 < &’ < & < gq. If d is the number of strata of B and 7 is a positive
real number, we define a sequence (&;)1<j<q by € = ¢ and, for | <i <d —1,
gip1 = A;‘] gi + By (Af, + 1). Then we can find 1 > 0 such that for every n smaller
than 79, the &;’s are strictly smaller than ¢ for 1 <7 <d and By, is strictly smaller
than &¢’. We pick such an 1o and take a covering (W;)1<j<ny of Z satisfying the
conditions of Lemma 7.3. Each open subset W; is endowed with a relative integrable
complex structure J/® such that || J/* — J|lco g w; < €.

Since W, < Wy, Wi N W, is a finite disjoint union of 1, —neighbourhoods of Z (where
1y < 1n9) above compact subsets of the strata of B. The relative integrable complex
structures J{! and J5! being in By, ¢, (W) N W>), there exists by Lemma 7.5 a smooth
family (JF!);<;<; in Bg, ¢, (W1 N W,) joining Ji and Ji.

Let V' be a relatively compact open subset of pr,(Wj). If V is large enough, the
open sets (Wy|y, W, ..., Wy) still satisfy the conditions of Lemma 7.3. Let x be a
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smooth function from pr,(W; U W) to [1,2] such that x =1 on V and supp(x —2) is
relatively compact in pr,(W;). Then we define a relative integrable complex structure
J in Bg, e, (Wi U W) by the formula .71561 = J)r(e(lb),b for b in V Upr,(W,). The
same argument can be used to glue J™ and J5¢ together, and so on. Finally, we get
a relative integrable complex structure in By ¢, (W), where W' is a neighbourhood
of Z in X x B. Thus Bg, ¢ is nonempty.

We now prove the connectedness of Bg ¢ for 0 < & < gg. Let Ji' and JI' be
two relative integrable structures in Bg (W), where W is a neighbourhood of the
incidence set Z in X x B. We put ¢’ = || J§! — Jlrel||co’ g, w - As we did previously,
we can find 1y > 0 such that for every positive 1 smaller than nq, the ¢;’s are strictly
smaller than ¢ for 1 <i <d + 1. For this n¢, we take a covering (W;)1<;<y of Z
satisfying the conditions of Lemma 7.3 such that each W; is contained in W. Then for
each i, J(ﬁellWi and Jlr61|Wl. are elements of Bg, ¢, (W;), so that, by Lemma 7.5, there
exists a smooth family (J,-r’e})ostsl in Bg, ¢, (W;) joining J&'|p: and Ji|y; . Using
exactly the same methods as before, we can glue the families {(Jir,e;l)ostﬂ}lsis N
together and get a smooth family in B (W) joining J&! to JI¢!, where W isa

neighbourhood of Z in X x B.

g EN+1

The weak contractibility follows from the connectedness of By, ¢ over the bases B xS?.
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