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Kleinian groups of small Hausdorff dimension
are classical Schottky groups. I

YONG Hou

It has been conjectured that the Hausdorff dimensions of nonclassical Schottky groups
are strictly bounded from below. In this first part of our work on this conjecture, we
prove that there exists a universal positive number A > 0 such that any 2—generated
nonelementary Kleinian group with limit set of Hausdorff dimension < A is a classical
Schottky group.

57M50, 57TMO05; 53C21, 53C20, 37A15

1 Introduction and Main Theorem

Let H3 be hyperbolic 3—space. A subgroup I' of PSL(2,C) = Iso(H?3) is called a
Kleinian group if it is discrete. Let x € H?3. The orbit of x under the action of T is
denoted by I'x. The limit set At of T is defined as A = I'x N dH?3. By definition,
Ag is the smallest closed I'—invariant subset of dH?3. The group I is said to be
elementary if A g contains at most two points, otherwise I" is said to be nonelementary.
Note that elementary Kleinian groups are completely classified. Henceforth when we
say “Kleinian group I'” we will assume that I" is nonelementary. The group I' is
of the second kind if A # 0H?, otherwise it is said to be of the first kind. The set
Qr = dH?3 — Ar is the region of discontinuity, and I" acts properly discontinuously
on Qr.

Let {A, A, ..., Ag, A;{} be a collection of disjoint closed Jordan curves in the Rie-
mann sphere C and let D;, D; be the topological disks bounded by A;, A} respectively.
Suppose we have {)/,-}11‘ C PSL(2,C) such that y;(A;) = A} and y;(D;) N D} = @.
Then the group T' generated by {y1,..., Y&} is a free Kleinian group of rank k, and
I' is called a marked Schottky group with marking {y1,..., yx}. A finitely generated
Kleinian group I" is called a Schottky group if it is a marked Schottky group for some
marking. If there exists a generating set {yy, ..., ¥k} such that all A;, A} can be taken
as circles then it is called a marked classical Schottky group with classical marking
{Y1,...» vk}, and {y1,..., Vi } are called classical generators. A Schottky group I' is
called classical Schottky group if there exists a classical marking for I".
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For a Schottky group I', the manifold H3/I" is homeomorphic to the interior of a
handlebody of genus k. We denote by Ji the set of all rank & Schottky groups, and let
Jk,o be the set of all rank k classical Schottky groups. One simple way to topologize
Jr is to identify it with the space of moduli of a Riemann surface of genus k.

It is known that not all Schottky groups are classical Schottky groups. In fact, the
space of classical Schottky groups is not even dense in the space of Schottky groups by
Marden [5]; also see Doyle [3].

In [3], Peter Doyle proved that there exists a universal upper bound on the Hausdorff
dimension of the limit sets of finitely generated classical Schottky groups. It was
originally Phillips and Sarnak in [7] who proved that there exists a universal upper
bound on the Hausdorff dimension of the limit sets of classical Schottky groups of
dimension greater than 3.

Let ®1 denote the Hausdorff dimension of Ar. The main result is the following.

Theorem 1.1 There exists a universal A > 0 such that any 2—generated nonelementary
Kleinian group T with 1 < A is a classical Schottky group.

Note that our result can be viewed as the converse of the result by Doyle [3] and
Phillips and Sarnak [7]. The proofs of their theorems rely on the crucial fact that
Lo(H"T1/T) =D (n—Dr), for Dr > 1, where Ao (H"T1/T) is the bottom spectrum
of the Laplacian of the hyperbolic manifold H"*!/I". But this identity obviously is
useless in our situation.

We prove Theorem 1.1 by using a result from our paper [4] and selections of generators.
The proof is divided into three main steps.

To lead up to the proof, we first do some preliminary estimates on the locations of the
fixed points of a given set of generators of a Schottky group. These estimates give us a
sufficient control on how the fixed points of a set of generators change in terms of the
Hausdorff dimension of the limit set of the group. The main ingredient of the proofs of
these estimates relies on [4, Theorem 1.1], rewritten in the trace form.

Next we obtain a set of sufficient conditions for any given sequence of Schottky groups
to contain a subsequence of classical Schottky groups in the unit ball in hyperbolic
space. These conditions are stated in the upper-half space hyperbolic model. The idea
is that if the radius of isometric circles of a sequence of generators decreases sufficiently
faster than the reduction of the gaps between any of the fixed points of the sequence of
generators, then this sequence of generators will eventually become classical generators.
We do this first by transforming the generators with the condition that the generator
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with the shortest translation length is transformed into vertical position passing through
the origin with fixed points at north and south poles. And then these generators are
projected into upper-half space.

In the first step of the proof, we consider Schottky subspaces of the Schottky space that
consist of Schottky groups I' for which there exists a generating set St for I with the
set of fixed points of St on the boundary sphere on the unit 3—ball hyperbolic space
that are mutually bounded away from each other by a positive constant.

In this step we prove that Theorem 1.1 holds for these Schottky subspaces. This is
proved via contradiction. Suppose I';, is a sequence of nonclassical Schottky groups in
the subspace with the Hausdorff dimension of Ar, decreasing to 0.

The idea is that we first transform these generators of the generating sets St,, into the
standard form with the generator of St,, of shortest translation length put in vertical
position. If no generator of St, is of bounded translation length when ©r, — 0
then it’s easy to see this will lead to a contradiction. On the other hand, it’s a simple
corollary of [4] that there can exists at most one generator of bounded translation
length per Sy, when ©r, — 0. If such a generator does exists, then we first make
a careful change of generators which will be constructed based on estimates that its
fixed-point set will be “minimally excluded” from isometric spheres of the generator of
bounded translation length. Working with these generating sets we will show that with
appropriate additional transformations and changes, the generators with translation
length that is not bounded will always grow sufficiently fast to lead to disjoint isometric
spheres which are also disjoint from the rest of the isometric spheres of the other
generators.

One of the crucial tools in estimating this growth is the strong form of the inequality
of [4]. We will show that when one of the generators is of bounded translation length
then it will force the needed growth for the rest of the generators. With appropriate
choice of generators this will lead to a classical Schottky group.

In the second step, we prove that on the nonclassical Schottky space there exist universal
lower bounds for ® + Zr; see Section 2 for notation and definitions. Essentially this
means that we cannot simultaneously have arbitrarily small Hausdorff dimension and
minimal gaps of the fixed-point set on the space of nonclassical Schottky groups. This
is proved using generator selection and the results of step one.

In the last step, we prove that when Ot is taken sufficiently small then I" can be
taken as Schottky group. This is based on basic topological arguments and some
well known results on Kleinian groups. We prove (by an easy standard topological
argument) that any finitely generated Kleinian group with limit set of sufficiently small
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Hausdorff dimension is a Schottky group, but Dick Canary pointed out that it’s simpler
in the 2—generated case based on the result of Peter Shalen which assures that any
2—generated Kleinian group is either free or cofinite volume.

The paper is organized as follows: In Section 2, we define and list global notation
which will be used throughout the paper. In Section 3, a strong form of Theorem 1.1
of [4] will be stated for two generators, which we shall use for selecting generators; see
Corollary 3.2. In Section 4, for a given sequence of Schottky groups I';, with bounds on
Zr, (see Section 2), we prove inequalities that will enable us to control fixed points of
a given sequence of generators of I'y in relation to the Hausdorff dimensions ©r, of
T',. These will be used in the selection process. In Section 5, sufficient conditions for a
given pair of generators to be classical generators are established which we will use in
our generator selection process. In Section 6, we will use tools developed in previous
sections to form a generator selection process and prove that Schottky groups with small
®r, and bounds on Zr, are classical Schottky groups. In Section 7, we will prove
the theorem that will remove the bound condition on Zr, . Section 8 completes the
proof of our main theorem by reducing finitely generated Kleinian groups with small
Hausdorff dimensions to Schottky groups via a standard known topological argument.

This paper is dedicated to Ying Zhou.
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2 Notation

Let I' C PSL(2, C) denote a Schottky group generated by (o, ) with o having fixed
points 0, co. Assume that y € ' is a loxodromic element having fixed points # oo.

Write y in matrix form
_fa b
Y=\ca)

with det(y) = 1. We will set the following notation and definitions throughout the rest
of the paper.

Notation 1 e Denote the critical exponent of I' by Dr and the Hausdorff dimen-
sion of Ar by Dr.
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* R, denotes the radius of isometric circles of y.

o ny=—d/c,{ =ajc.

* We will define two different ways to denote the two fixed points of y: {z,, 7, 2y 4}
denotes the two fixed points of y in C with |z, ;| < |z)4| and {z) .2y +}
denotes the two fixed points with z,, 4 given by quadratic formula with subscripts
+ corresponding to £+/tr?(y) —4. Note that we always take the principle
branch for the square roots of complex numbers.

e L, is the axis of y.

e T, is the translation length of y.

o Set Zg:=min{|zg_—zg (|, |1/z5_—1/zg 1 |}.

o Zp :=min{Zg, |zg 1|, |zg,—], |Zﬂ’+|_1, |zg,— -y,

e For € > 0, we say that Z > ¢, if there exists a generating set {(«, 8) of I" such
that Z(a’ﬂ) > €.

¢ Given any two sequences of real numbers {p,, g5}, the notation p, < ¢, means
there exists o > 0 such that 0~ < liminf p, /g, <limsup p,/q, <o .

Notation 2 Let {y,} C PSL(2, C) be a sequence of loxodromic transformations. Let
{pn} be a sequence of complex numbers, and {g,} a sequence of positive real numbers.
We write

|Zyn,:|: _Pn} <dqn

if there exists N such that for every n > N we have at least one of the following holds:

@ |zy,+ — Pnl <qn-

(i) |2y,,— = Pnl <qn.

3 Free group actions

Given a finitely generated nonelementary Kleinian group I', the critical exponent
of I' is the unique positive number Dr such that the Poincaré series of I' given by
> yere” distCx,¥%) jg divergent if s < Dr and convergent if s > Dr. If the Poincaré
series diverges at s = Dr then T is said to be divergent. Bishop—Jones showed that
Dy < Dr for all analytically finite nonelementary Kleinian groups I'. In fact, if I" is
topologically tame (H?/T" homeomorphic to the interior of a compact manifold-with-
boundary) then Dr = ®r. Hence it follows Agol’s [1] proof of tameness conjecture
that Dy = ®r for all finitely generated nonelementary Kleinian groups. The critical
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exponent is a geometrically rigid object in the sense that a decrease in Dr corresponds
to a decrease in geometric complexity.

Next we state the following theorem from [4], which provides the relation between the

group action and the critical exponent.

Theorem 3.1 (Hou [4]) Let I' be a free nonelementary Kleinian group of rank k
with free generating set S, and x € H? then

1 1
> : <.
et 1 +exp(Dr dist(x, yx)) — 2

In particular we have at least k — 1 distinct elements {y;; }1<j<k—1 of S that sat-
isfies dist(x, y;; x) > log(3)/ Dr, and at least one element y;; with dist(x, y;;x) >
log(2k — 1)/ Dr.

The following is a useful corollary of Theorem 3.1, stated here for the case of I" is a
free group of rank 2.

Corollary 3.2 Let S = {yy, y»} be a generating set for a free nonelementary Kleinian
group I'. Let x € H?. Then

eDr dist(x,y1 x) +3
eDF dist(x,y1x) _ 1

1
dist(x, > —1
ist0x, 720 2 - og(

Corollary 3.3 Let S = {y1, y»} be a generating set for a free nonelementary Kleinian
group I'. Let x € H?. Let m be any integer. Then at least one of the elements ' of
S ={y"y2. )/1’”+1y2} satisfies dist(x,y’x) > log3/Dr.

4 Trace, fixed points and Hausdorff dimension

In this section we study the relationships of fixed points of generating sets of a given
sequence of Schottky groups I';, and the Hausdorff dimensions of Ar, .

What we like to do is to find a relationship between the distribution of the fixed points
of one of the generators in terms of the translation length growth of the other generator
and the Hausdorff dimension of its limit set. By having this type of relationship we
will be able to construct a new set of generators from the given generating set with
prescribed distribution of its fixed points. The new set of generators will be a crucial
ingredient in the proof of our theorem.
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Let {T',} be a sequence of rank 2 Schottky groups with D, — 0 generated by «,, B, €
PSL(2, C) in the upper space model H? with

An O
an:(O" A;1), Pou > 1.

_(an by
Set Bn = (Cn dn) .

We assume throughout this section that there exists M > 0 such that 7, < M for
all n. Set D, = Dr,,. Let tr = trace.

First we will state Corollary 3.2 in the trace form.

Proposition 4.1 Suppose there exists A > 0 such that Zg, > A. There exists p > 0
depending on A such that

1/(2D,
|)¥n|ZD" 43 /(2Dp)
|)\n|2D" -1

[tr(Bn)| > p (

for large n.

Proof Let T}, be the translation length of B, and R, = dist(L,,,Lg,). Let x, be a
point on axis of a, which is the nearest point of Ly, to Lg, . By triangle inequality,
T, > dist(xy, Bnxn) — 2Ry . And for sufficiently large T}, we have for some positive
constant ¢ > 0, [tr?(B,)| > ceTn. Now for large n, from Corollary 3.2,

1/Dy,

2 |)\n|2Dn +3 —2dist(Lay, L8 )

|tI‘ (ﬂn)l >c —l)\, |2Dn 1 (e n>~Bn )
. _

Now Zpg, > A implies that dist(Le,, Lg,) < M for some M > 0. Hence the result
follows. O

Remark 4.1.A  Note that without assuming bounds on Zg, we can state above Propo-
sition 4.1 as

1/Dy
n |)\’n|20n _ 1 .

If dist(Lq, . Lg,p,) < € then there exists § > 0 such that

1/(2D,
|)¥n|2D"+3 /(2Dy)
|)‘n|2D” -1

ltr(Bn)| > p (

for large n.
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The next lemma and its corollaries are estimates of convergence rates of fixed points of
the generators of I'; in terms of the Hausdorff dimension of A.

Lemmad4.2 Suppose there exists A >0, M >0 suchthat Z,, g,y > A and Ty, < M
for all n. Let ky, I, be any integers such that Tank,,, Ta,,’n < M . Then there exists a
constant p > 0 such that

Jo

T ZalI;anan T nan ﬂnaizn < |tr(ﬂn)||)\‘ln_kn|
n

Zaﬁzcn ﬂnaln + é‘Olnn.BnC't
for large n.

Remark 4.3 Lemma 4.2 is an estimate of how fast the fixed points converges, it’s
not important to our applications in this paper which fixed point converges to 7, and
which converges to ¢, for a given y € PSL(2,C).

Given a complex number z = ret? wewrite vVz2 =z if —v <20 <7, and vz2 =—z if
260 > 7t or 20 < —m. Then a more precise statement of Lemma 4.2 which dichotomizes
the above inequality for large » would be:

@D 2 (k" Buont) = tr(en” Bucin’)

P
+ |Z & i —
ap" Buo ,—

< —
|tr(Ba) || Fm

Z K 1 - k 1 k 1
an" Buoylt ,+ é“"nn Bnay nanm Bnad

(i) —y/t rz(an”ﬂna )—tr(an”ﬂn )

P
+ ‘Z knﬂn‘xln + nan ﬂnan

In—kn
Itr(ﬁn)ll?»n |
Corollary 4.4 Suppose there exists A > 0, M > 0 such that Z,, g,y > A and

Ta, <M forall n. Let ky, [, be any integers such that Ty, kns Ty, in < M . Then for
any § > 0 there exists € > 0 such that if D, < € then,

Zal,;"ﬂ a Z I‘"ﬂ (xl"

In <8(|Anl*=1).

Z kK 1 Z k k
an" Bnoyt £ é-‘xn”ﬂn'x ”ﬂna T nannﬂ:

The same dichotomy decomposition of the inequality holds as given in Remark 4.3.

Proof Let us assume that 4/ rz(an”ﬂna )= tr(an”ﬁnan”) Also Zg, .8,) = A by

Proposition 4.1 as D, — 0 we have |tr(B,)| — oco. In addition, by Z g, g,) = A, we
have |z g —z_ g, | > A, and also |Z+’ﬂn|_1, |z_,,3n|_1 > A gives |z4 g, —z_g,| =<
|z4.8,| + 12— g,| <2/A. There exists c¢y,c; >0 with ¢; <|zy g, —z_g,|<cy. By

24,8, — 28,1 = |V tr2(Bn) —4/(2cn)|, such we have ¢; <|/tr?(B,) —4/(2cn)| <c3.

Geometry & Topology, Volume 14 (2010)



Kleinian groups of small Hausdorff dimension are classical Schottky groups. 1 481

This implies |tr(8,)| < |cx|, and since tr(B,) = a, +d,, there exists c3, ¢4 > 0 such that
c3 <|(an +dn)/cn| < c4. Since |tr(By)| — oo, implies Rg, — 0, and Zg, g,) = A

gives us that there exists ¢s, cg > 0 such that ¢5 < |a,/cnl|, |dn/cn| < cg, for large n.

Therefore the fixed points z4 g, of B, must — {a,/cuy,—dn/cn}. There exists
¢,c¢’, N > 0 such that that

4n , 2k,
z kn Bna + — a)\,n

(an)\kn-i-ln dy )\—ln kn)+ \/trz((xllfnﬂna ) 4 n)\:ﬁn—i_ln
B 2cnkl" kn cnkf,”_k” '
2@ Buad) — 4 — \Ju2 @ )
N 2cnkl” —hen

Vi @b ) — 4 =y i @ )|

<#
A" tr(Bn)|

If |tr(a,]f” ﬁnaf,”)| < k, for some k > 0, and all # then this is at most

ck'’

—————— forsome «" > 0.
(At tr(Bn)

Otherwise it is at most

|2 o) — 4|
¢ I—k
[An " [tr(Bn)

1

— 1.
V14 2ok o)

Using the Binomial series
(1—4/ u?(afr Bualr)) ™2 = 1 + 2072 @k Bualn) + en,

with €, — 0 at order |tr™ 4(0{,],‘" ,3,,01 )| gives o > 0 such that

co
for large n.
l,—k I
Ik 1R (B ) |t (cen” Buctn)|
Hence in either case we have for some ¢’ > 0 that
Cl
<— forn > N.

ly—ky
[An' " [ltr(Ba)
This gives (i) of the Lemma.
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Now T, kn» Ty, 1n < M implies |)\f{’_k"| < M' for M’ > 0. Hence,

Vi
Cl_n 2kn <

Zyk — < , n>N,c" >0.
wBalt g, |tr(Bn)

By 4cosh(Tg,) = tr?(Bn)| + |tr?(Bn) — 4|, we have

eTon < |t (Bn) (1 + 2/1t(Ba))).

Since [tr(B,)| — oo, there exists a > 0 such that eT82 < altr(8,)|* for sufficiently
large n.

Note that if |tr(a,," ,Bnoz )| — oo then we also have the stronger inequality

n
dn )\an ¢

Z kn -
o Baogl A+ g T (B ltr(ekn Bualm)|

n>N,c"” >0.

Here we can take ¢’ > co/ |k£," _k"| as given in the above binomial inequality.
T
And there exists b > 0 such that e " il < p|tr(ark” Bpor)|2. We therefore need
. —Tg, /2 =T kn g n/2 2
min {,oe nl< pe an’ Bnon } < 8(|An|“—1), forlarge n, and some p > 0.

By |An|? = eTen | we require

max{Tﬂn,Tk,,ﬂ zn}_2log( p/d 1).

Hence it follows there exists p’ > 0 such that if D, < p’ then at least one of
Tg,, T akn g ol satisfies the above inequality. Therefore we have

|z8,,+ —an/cnl < 8(|)\n|2 =1

for Dy, < p. The proof for the other part is same.

—\ 2 (R Buarl') = (e Bl

replaced by z «,, 1, _ and vice versa. a
oy ﬂnan e

The case

is similar with z & i
ann Bﬂ ann a+

Remark 4.5 Based on the proof above, we note that the condition Z 4, g,) > A in
Lemma 4.2 can be replaced with conditions |tr(8,)| — oo and |tr(B,)| < |cn].
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Corollary 4.6 Suppose there exists A > 0, M > 0 such that Z,, g,y > A and
To, <M foralln. Let ky, [, to be any mtegers such that T,y kn, T, 1n <M. Then
there exist constants §, p > 0 such that if |tr(ozn”,3n )| — 00 then

< P
[tr(oy” Bucty) |t (Bn)|

for all Dy, < §. The same dichotomy decomposition of the inequality holds as given in
Remark 4.3.

Z K A 1} Z K
an”ﬂna , £ é‘ €nﬂ " (nﬂna T+ nan ﬂnan

Proof Let us assume that 4/ tr? (ozn”,Bnoz ') = tr(an" ,B,,oe ). Using the inequality in

the proof of Corollary 4.4 and taking o’ > ¢/ |A,,” ”| with ¢ given in the proof of
Corollary 4.4, we have

\/trz(agn IBnO‘ ') — 4‘ !
()] 1=/ w2k ralr)

cﬂ)\‘an <

Z K In | — —11.
o' Bnoy' + Cn

By using the binomial series as in the proof of Corollary 4.4 and taking ¢” > 0 as
o’ >o0'/ |k£," e | where o is the constant given in the proof of Corollary 4.4 we have

O.//

|tr(an"ﬁn M)l (B)|

4n 4 2k,
G

The proof for the other part is same.

The case
— 2 (o Buery’) = te(ef B
18 similar with Zykng oln 4 replaced by Zokng, ol _ and vice versa. O

Lemma 4.7 Suppose there exists A >0, M >0 such that Z o, g,y > A and Ty, < M
for all n. Let ky, [, to be any integers such that Ty, kn» Ty, 1n < M . Then there exists
constants 01,0, > 0 such that

01|tr(annﬂn05 | > 1z 4 —z | o‘2|‘[r(05nnﬂn()5 )|
|tr(Bn)| = P fuoil! T e e = = |tr(Bn)l ’

for all n sufficiently large.

Proof Note that we have

a d

_n)\ikn _ (_ _n)\‘;ZIn)‘ —
Cn Cn
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As in the proof of Lemma 4.2, Z(4, 5,y > A implies ¢ < Vir2(B,) —4/(2¢y) < ¢’ for
some ¢, ¢’ >0 and |tr(B,)| — oo implies |tr(B8,)| < ¢, (ie kcy < |tr(B,)| < k'cp for
some k, k' > 0). Since [A/n~kn| < M’ we have

L L N WO 1 i /]
M'|tr(Bn)| on’ Buoi” e Bnout |tr(Bn)]
By Lemma 4.2 the result follows. |

Although next Lemma is not used in the rest of the paper but we include it here to
demonstrate relations between fixed points and Hausdorff dimensions.

Lemma 4.8 Suppose there exists A > 0, M > 0 such that Z,,, g,y > A and M~ <
Ty, <M foralln. Let ky, [, be any integers such that Ty kns Tyyim <M. Then for
at Ieast one i € {0, 1}, and any integers k},, 1}, with |(kn — k)| + |(In —1})| =i, we
have

o ’ >_ K
“ol et ok Bt | = Dyl (Br)]
for all n sufficiently large.

Proof Since Ty, > M ™! we have A, /& 1. If |tr((xn",8na ") < M then

k n—1 k i ‘ —0
|§ann Bn ann nann Bnann ’
otherwise we have

4 1,1) > A

7 ann Bno

for some A > 0 which implies by Proposition 4.1, |tr(a,,”ﬂnozn”)| — 00. Hence we
have |An§akn Braln ~Nyln g yln | A 0. Since

2
kndlp In =N Kk 1 and kndlg n =ASC K I
nann+ Broyl nannﬂnann é‘Olrtn-i_ Bnou né‘annﬂnann ’
by Lemma 4.2 we get
Z kn+1 li —Z kn+1 I > K.
| ann+ Bnoy ,+ annJr ﬂnann>_|

Then by Lemma 4.7, |tr(oz,,"+1,8noz )| > «'|tr(B,)|. Since |tr(By)| > log 3/D,, we
have |tr(oc,,"+1,8nozn )| > k’log3/D,. Similarly we also have |tr(oz,]f",3,,a,, )| >
k" log 3/ Dy, . The result follows from Lemma 4.7.

We note that the condition Ty, > M ~! is of convenience only not necessary, the lemma
still holds without this condition. |
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Finally in this section we make the following observation based the proof of Lemma 4.2.
Note that if we don’t care about the precise upper bound of fixed points of oz,]f" ,B,,a,l,”
t0 & kng ins7 knga In,then we can relax the conditions in Lemma 4.2 and state as
foll o Bnay an" Bnay

ollows:

Remark 4.2.B Suppose that |zg, | —zg, _| <c and |cnkf,"_k"| — 00. Then

Z K / Z K / — Ik / k In§.
{ a," Bnayt 4’ ancnﬂnann:_} {é‘annﬂnann’nannﬂnann}

5 Sufficient conditions

In this section we will state and prove a set of conditions for a given sequence of
Schottky groups with decreasing Hausdorff dimensions that will be sufficient for the
sequence to contain a subsequence of classical Schottky groups.

Let (B, distg) be the unit ball model of hyperbolic 3—space. Let 7: B — H? be the
stereographic hyperbolic isometry.

Given a loxodromic element «, of PSL(2,C) acting on the unit ball B model of
hyperbolic 3—space, denote by Sy, and Sy-1 , the isometric spheres of Euclidean
radius 7 of or. We set A, (o) as the multiplier of 7« () in the upper space model H3.
For R > 0, set Cg as the circle in C about origin of radius R.

Proposition 5.1 Let « be a loxodromic element of PSL(2,C) acting on B, with
axis passing through the origin and fixed points on north and south poles. Then

7T(Sot,r N aB)’ n(Sa—l,r N 8B) maps to Cl/)wz*(oz) 4 C)»rr*(a) :

Proof Let T, be the translation length of «. The Euclidean radius r is given by
r~! =sinh(Ty/2). In terms of Ar(a)s

. 2|A 2 (@)
Ar,(@)]*—1
Set e = (0,0, 1) as the north pole of dB. Let 64,8,—1 > 0 denote the radius of
7(Sq,r NOB) and 7(Sy-1 , N IB) respectively. Then for x € Sy, N IB, 8y is given
by
2 4r2

) 4
8(¥ = m Where |X _e| -

B |)\n*(a)|2 +1

which implies Sa = A, (@)l-
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Similarly for x € S,-1 , N dB we have

4r? s (o2
82, - where |x—e|2=M
o (I4+72)|x—e/* Ar.(a)|®+1
S 1
which gives 81 = .
|)\n*((x)|
This completes the proof. O

Lemma 5.2 Let (o, Bn) be generators for Schottky groups I', in the upper-half space
model H3 with |tr(B,)| — oo and

An O
an:(o" x;l)’ An| > 1.

Suppose one of the following set of conditions holds:

e There exists A > 1 such that for large n, we have |A,| < A and

Il < Izg, 1l < |28y ul < 1An,
i f{ 1 1 } 0
imin , =
n Lzg,ul = AaDItr(B)] (128,11 = 1An~D)tr(Bn)]

e There exists k > 0 and for large n, we have |A,| > x and

—1
K <|zg, il = |zg,ul <k,

1 1
liminf , =0
i {<|z/;n,u| —0leBal (25,41 —K‘l)ltr(ﬂn)l}

Then there exists a subsequence such that for i large, 7~ (ap,, Bn; )7 are classical
generators for Iy, in the unit ball model B.

Proof Let us suppose there exists a subsequence (o, , By;) that satisfies the first set
of conditions. First assume that for large i, |zg, , —zg, ,[ >8> 0.
i n;.l

Let r;, p; denote the Euclidean radii of the isometric spheres of JT_IOlni a, ! Bun; 7
respectively. Note that 4 cosh(7,-1 Bn, 2) = |tr? (™ By, )|, which implies there exists
¢’ > 0 such that

eTn_l'B”i” > C,|t1'2(7'[_1,8ni7[)|.
Since ,ol._1 = coshdist(o,ﬁn—lﬁnin) Sinh(%Tﬂ—lﬂnin) [2, page 175], we have ,ol._1 >
sinh(%T 71 B, =), so for large i there exists ¢ > 0 such that

15 o VT
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Hence there exists §; > 0 such that p; <§;|tr(Bp;)|™! for large i. Since for z, w € C,

2
—1 o
|7 (z)|—|z+e|2
and 77 z) — 2 w)| = |77 @) 2 w) |2z - w.

This implies for large 7, and x; € C;, | and y; € Clkn,- B

Pi _ 281lxi tellyi el
lm =t ==y T 1Byl |xi — il
Since |An, | < A, there exists §; > 0 such that |x; +e||y; +e| <J,, and
; 2616
lim ——"" )
i |m7lxi—n )71| |tr(,3n,)||xt Vil

Similarly there exists §3 > 0 such that for w; € C\an. ;| and z; € C|kn.|*1
o 1

i Pi 28183
1m
i |7T—1wi_ IZI| |tr(13n,)||wl_zl|

Hence it follows that for large 7, and Proposition 5.1, the isometric spheres Sy 14, 7 . »
;T

S S S are disjoint.

m Vo i P B i P Bt pi

Remark 5.3 Note that if we don’t assume that [A,;| < A then we don’t have bounds
on |x; + e||y; + e|. However, since |x; + e||y; + €| < (|z/3n ul D (|An; | +1) for
Xi € Czg, 15 Vi € Cpp,,| and |x; +ef|y; +e| = (|zp, /| F D (A, |7+ 1) for
X; € C|ani 4 Vi € C”‘ni |-1. Hence we can state the COI]dlthIl as follows:

-1
|Anl™" < lzg,il =128,ul < |Anl.

hm of (28,0l + DUAnl + 1) (2,11 + D(Aal"" + 1) _
(12l = DB (12,11 = el =Dt (B

Next let us assume that |23n = 2By, 1| = 0. Under this assumption we can do a
much stronger estimate of the lower bounds of cosh dist(J, Eﬂ ), distance between
the point j on the vertical j—axis and the axis of fB,, in the H3. Note however that a
weaker lower bounds is sufficient in our case.

Recall that given any two points /1, = (z;,6),h, = (z2,6,) € H3 the hyperbolic

distance is given by

|21 —22* + 161 — 62/
2616,

coshdist(1, hy) = + 1.
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Since |Z/3n,~ o Zﬂni9l| —0and I/A < |leni 1= |Zlgni .| <A we can estimate the quan-
tity cosh dist(/, Lﬂni) by using the above formula for (z¢, ;) € ﬁ"‘ni and (z,0;) €
ﬁﬂn,- . Since for large i we have |z; —z,| > |Z/3n,-,l

bl

101 =621 = |I2p, .11 = 5128, e = 2p,, aD|s 26162 < |2,

|Zﬂni u Zﬂni al *
Hence for large i we have

1
128, 11> + (12, 11 = 3028, 0 — 28, 1))

|Z,Bn,- U | |Zﬁni u Zﬂni 7l|

cosh dist(/, L’ﬁni) >

. _1 ;
Since |1‘\| < |Zﬁni,l| < |Zﬂn,- ul <A and |Zﬁn,-,u — 8, 1| — 0, we have for large i
there exists o > 0 such that

coshdist(j, Lg,.) > I —
! |Zlgn,-au _Z,Bnl-,l|
Alsoby A™! < |Zﬂni,l| = |Z/3n,-,u| < A and |Ay, | < |A], there exists 0’ > 0 such that
|7~ (zp,,, W) |l7 " (28, .1)'| > 0. Since

-1 -1 -1 " —1 /
17 2y =7 2,0l = 1 gy ) N gy D) 28y, 0 = 2B, 0
-1 -1 l
we have |7 2By u =T Zﬁni,[| >0 |Zﬂni’u — Zﬂni,1|,
The equality /01'_1 = coshdist(o, L1, ) sinh(%T x—18,.7) and the above estimates
1 I
imply that for i large, there exists 64 > 0 such that

-1 -1 -1
pi <84l zp, w—m 2, alltr(Bu)”

Hence there exists 85 > 0 such that for x; € C|ZB" L Vi € Clkn,- B
i

-1 -1
R z — z
li pl . 85|T[ ﬂ"i U T Bni :l

<lim
i |m T Ixg -y T |tr(Bn; )| xi — yil

Similarly there exists 8¢ > 0 such that for w; € Clzg, 1 and z; €Cpy -1,
1’ 1

-1 —1
lim /Oi . 56|n Zﬂniyu -7 Zﬂnl'sl| _

<Ilim 0.
b TR - |t (B ) |wi — zi

From these estimates and Proposition 5.1 we have for sufficiently large i, S
Sn—lan—il .r; aredisjoint from Sn—lﬂni S
S and S_

o, i

wpi Sx—1 Bl - Since |tr(By; )| — oo implies

are disjoint when i is large, we have the first part of the

71 By, 7,0 _lﬂn_iln,pi
lemma.
The second part of the lemma can be proved in the same way. O
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Remark 5.4 Note that in the course of the proof we see that if |A,| — 1 then we can
weaken the first set of conditions in the above lemma to

—1
An|™" <lzg,.1l = 128,.ul < |Anl.

{ 128,00 — 2, ul 128,,,1 — 2B, u } —o
(128,,ul = AaDIr(B)] " (12,11 — [Anl D]t (B ’

lim inf
n

6 Schottky subspaces (1)

This section is devoted to proving Theorem 6.1 by utilizing results established in the
previous sections.

For 7 > 0, define Ji(7) :={I" € Jx|Zr > t}. Recall that J; denotes set of all Schottky
groups of rank k.

Theorem 6.1 Let J, be the set of all 2—generated Schottky groups. For each t > 0
there exists a v > 0 such that {I" € J»(7)|Dr < v} C Jk,0-

Proof We prove by contradiction. Assume there exists a sequence {I',} C J2(7)
of nonclassical Schottky groups with D,, — 0. By passing to subsequence, we may
assume Dy — 0 monotonically. Set I'; = (e, Bn) With Z,, gy > 7. We arrange
the generators so that |tr(a,)| < |tr(8,)|. There are two possibilities: (I) There exists a
subsequence such that |tr(ay,; )| — oo, and (II) |tr(e,)| < M, for some M > 0.

Case (I) is trivial. Since both |tr(ay; )|, [tr(By;)| — 00 as n — oo, it follows from
Z(a,.Bn) > T» there must exists N such that (a,,B,) becomes classical Schottky
groups for n > N . A contradiction.

Now we consider Case (IT). We work in upper space model H?. Conjugate (o, Br)
by a Mobius transformation into

An O
an=(0” W), Pon| > 1.

Denote Bn = (a" bn) .

cn dp

Since |tr(a,)| < M implies |A,| < M’ for some M’ > 0, it follows from Proposition
4.1 and D, — 0, we have |tr(8,)| — oo. In addition, by conjugation with Mobius
transformations, we can assume B, have ng, = 1. By replacing 8, with B, if
necessary, we can assume |{g, | < |ng,|.
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Since Z (4, g,) > T, there exists Ay, Ay, Az, Ay >0 suchthat Ay <|zg, ;| <|zg, 4| <
Ay, and Az < |zg, 1 —zg, ul < As. It follows from Lemma 4.2, Ay <|[Cg, | <|ng,| <
Ay, and Az <limy [{g, —ng,| < A4.

For each n, choose integers k; such that
2k, 2
1 <18g, Ay " | <Ayl
We consider the generating set (o, aﬁ” Bn).

By passing to subsequence if necessary, there are three cases that need to be considered
(to simplify the notation, we denote subsequences by the same index notation):

(A) [gg, 2| = 1.

B) 1Zg, " | = |hal? = 0.

(C) Cases (A) and (B) do not occur.

6.1 Case (O)

We use the same notation index for subsequences. Since cases (A) and (B) do not occur,
for large n there exists 1 < |A| < |Ay|, 0 <1 such that |§nk,%k”| — o|A|%. Let ¥, be
the Mobius transformation that fixes {0, oo} defined by ¥ (x) = x/(J/o|A]), x € C.

Then Mwaﬁ”ﬂm/f_l' — 1/(J/o|A]) and |§1/focf§"/3n1/f—l| — /o |A|. By Lemma 4.2, for
n large,

P
iraavt ~Suadrnan |} < gy
Bur—1,+ 1/f(xn Bny—! |U'(,Bn)|

max{‘ Watl;”ﬂn’ﬁ 1L nwan"ﬂm/f 1

Hence there exists o/, p”, p”” > 0 such that

/

1 p
‘Zwaff"ﬂnw*I,Jr Zyakn gy _) > |[Vo|A]— ﬁW‘ — m
1
and — >IO// |«/_|)u|——| |) |t (IB )|
Zwaﬁ”ﬂnw_lﬁ Zlﬂa,’;"ﬂnlﬁ_l, I'(Pn

This implies that there exist A > 0 such that

Z . > A

Waf;"ﬁnlﬂ_

Hence applylng Proposition 4.1 to the generators (Yo, ! 1//05,,”,3,1 ~1Y implies
Itr(wan"ﬁn l)l — 0.
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Set k = /(0 +1)/2|A|. Then for sufficiently large n we have k < |A,|, k™! <

|Zwosz"/3nw—',l| < |Zwa,’f”ﬂnw—‘,u| < k. And obviously,
. 1
lim T =0,
" (K - }ngnﬂnwl,u{)Itr(wan"ﬁnw_l)l
1
lim

=0
(12 qfin g, g1 4| — €71 e Buy )|

Therefore, (Yo, 1, 1/fa,]f” B~ 1) satisfies the second set of conditions of Lemma
5.2, and so by Lemma 5.2, these will be classical generators for large #, a contradiction.

6.2 Case (A)

By passing to a subsequence if necessary, we have two possibilities:
(A1) |An|> =1 is monotonically decreasing to 0.

(Az) There exists A > 1 such that |A,| > |A| for large n.

6.2.1 (A;) Here we either have

(i) limsup, ‘|§‘x1{f”ﬂn| - |)‘”|2H§txﬁ”ﬂn - 1’_1 < 00, Or

i) timinf, |18, 5, | = onl?][Sypn s, = 1|7 = 0.

If oz,lf” Bn satisfies (ii), we conjugate a,]f” Brn with Mobius transformation 1, defined by

VUn(x) =

X

é‘a’/;n Bn

Consider (wna,]f"ﬂnaf,” v, 1)1 and take /, = —1. By factoring out sznﬂ A, % in (i),
Oy

n

timinf 1€, 3072 |11 = 18,0, 1 Al |64 , 22 —22) = 0.

1in}1mf‘|1—|;;,;nﬂnx,2,| = 0.

YR

Since {1 A2=1n kn, 1 and kng o —1.— = ’ _1,—1 we have
é-Ol,lin B, " nannﬂnan ! é‘(Wn‘)lnn Bnay 'y ! n'ﬁnancn Bnay 'y !

-1
— OQ,

)\2

n

.. 2
llmlnf‘ 1—|n k _ ‘ k 1=
n | |nannlgnan ! | 779“11” Bnoy !
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giving
-1

lim sup l| <oo.

n

Ig(wnaﬁ"ﬂnaglw#)_l - M”'z) ‘g(w;za'rf"ﬂnaﬁltlflil)—l -

The generator (wnaﬁ” Buna; 'y )71 satisfies (i). Hence replacing the generators
if necessary we can always assume the generators satisfy (i). And without lost of
generality we will assume that (o, aﬁ” Brn) satisfies (i).

Consider (i).

In this case, we have either
(i) Timsup, [Een s | = hnl?[Epsn s —1|7'>8>0,0r
(i) Timsup, |[§n s [ hnl?||Epns =17 =0.

Consider (i1).

Lemma 6.2 There exists ¢ > 0 such that

. C
dlSt(ﬁan s ’Coe,lf" Bn) < IOg (MT_I) .

Proof We first show that
1
3 — 0.
ltr(Bn)|(|An|* — 1)

From Proposition 4.1 we have

| 2P 1 1/(2Dy)
lim < lim
Bl (a2 —1) ~ P\ (Rn 2D + 3) (jhn |2 — 1)2Dn

and for large n, we have |A,|*P» —1 < |A,|> — 1 which implies that for some p’ > 0,
lim !

|tr(Bn) | (1An]* — 1)

It follows from Lemma 4.2 and Nykng, = 1 that

<1lim p(|An|? = 1)(172Dn)/@Dn) — g,

Catng, = 1| =PI = |z, =2t o] = [Catng, = 1|+ l0EI

Since 1 < |§ak,,3 | < |An|?, we have
n n

z

aff"ﬂn,— _Zaiz(nﬂna'i“ Zaﬁf”ﬂn B 1) /O/

Anl2—1 TP =1 JuBa)l (A2 = 1)
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By the condition (i1 ) we have

_1‘ |§ar§nﬂn_l| 1
= > b
|)‘n|2_1 |)\n|2_|§aﬁ"ﬂn|+|§£¥ylf"/3n|_1 M +1

for some M > 0.

Hence for large n there exists ¥ > 0 such that

z —Z /

AN Bu—  “ah” Bt 1 p
2 > — 5 > K
[Anl?—1 M+1  |o(Bu)|([An]*—1)

For the upper bounds we have

|Za,’f”ﬂ,,,— - Za,’f”ﬂn,+| < 2hal 4 p"ltr(Bu)| "
Note that dist(ﬁan,ﬁaknﬂ ) = inf{dist(hy, ha)|hy € Lq,. h2 € Eak,,ﬂ y. Set hj =
(zj,6;), j = 1,2. Then for an upper bound we can take

1
(z1,61) = (0’ e | & 3l a = |)’

1
(Zz’ 92) - ( (Z knﬂ u ,I:”Bn,l)’ Elzagnﬂng” _Z‘xsnlgnle‘

By Lemma 42, 1=01[u(B)| ™" <2yt /| = |20, | < Aal> +02ltr(Bn) " and
above estimates for |Za§n o~ Zaknp, 1l WE have

coshdist(La,,, £k 8 )

1 2 2
=z z z
7! kB T oz;'i”ﬂn,l| + afi”ﬂn,ll 41

- 1
|Z k"ﬂ u_Z k”ﬂ ll(lz k”ﬂ 1|+_|Z k"ﬁ ,u_za,linﬁn,lb

_ Vel () ™ (Rl = 1) 1 0
K(Anl2 = 1) ’ '

This last inequality implies the Lemma. O

Lemma 6.3 :

hm
" |tr(on” Bu) | (12n|2 — 1)

=0

Proof It follows from Proposition 4.1 and Lemma 6.2 that there exists p > 0 such that

1/(2Dy)
(Anl?Pr 4 3)(|An)? — 1)21’")

|tr(a']§"ﬂn)}zp( |)\n|2D”—1
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hence we have

2D, 1/(2Dy)
lim —— : <lim p’ 2D|)‘”| 21 D .
ltr(an™ Bu)|(|An]? — 1) ([An]Pn 4+ 3)([An]> — 1)%Pn

Since |[An|?P7 —1 < |Ay)?> —1 for large n we have

1

m . <limp”(|An)> = 1)1 —4D,)/(2D,) =0. o
|tr(cy” Br) | (|An]? — 1)

li

For large n by condition (i;), we have §(|A,|>—1) < |An|? — |§al""ﬂ |. Then by Lemma
42, o

X
e gl = e, = ot = St | < (B

for some x > 0 we have

X

> 80l =D =y

2 2
nl™ =12 gl > Vonl™ = Wgpeng, | =

_X
|tr(Bn)

Set €, = (8(|An|?> —1) — x/|tr(Bn)|). Define Mobius transformations by

Yn(x) = (1 + E—”)A,f(x).

zlzaﬁnﬂn9u|

_ €n -1
Then |)L”|_|lelna£f”ﬂn10r7]:“| = |)Ln|_(1+—2|z |)|)\n| |Za’,§"ﬂns”|

k,
an" Bu,u

_ 2 €n -1
= (1l = 2l = 5

€ _ € _
>(6n_?n)|)‘n| 1:Enl)\n| "

Also by Lemma 4.2 and 1, By = 1 we have

X/

“Zotﬁ”ﬂn»l| N 1‘ = m
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This gives
| ]/j Otknﬂn lll |)\n|_1
€n
=1+ 5——)Iz kg IAal™" = 1hal ™
( 2|Za§nﬁnu|)| g Pl ™ =
énlz kn |
Bn,l
= Ikl (|z g | —)
ﬂ l 2|Zall‘fn5nsu|

€ Z k !
> |)»n|_1( "l - X )
Wy, o TP

1 (ltr(ﬂn)|€n|za’l§nﬁml| —X’)

>
AalleBI\ ™ 2zgpng |
S 1 (8|tr(13n)|(|)\n|2_l)lza”;nﬂn’[l_ﬂzaﬁnﬁmﬂ /)
_X .
Rl (B zgpng |
By Lemma 6.3 and the above inequality we have
‘ 1/fnotkn,3n1/f;l,l| — |)‘n|_l >0

Itr(aff"ﬁn”(‘anaf:"ﬂnw;l,l| B M”rl) B

k
|tr(ann,3n)|(|)‘n| - Z«/fna,’i"ﬂnw;‘,u}) o
Hence,
—1
|An|™" < ‘ana,’inﬁn - 1,1| = |ana’,f"ﬂnw;l,u‘ < Al
. 1 1
lim -

n

kn ’ - ky
12y, ot gyt al — P DIE@E B (2105 | = ol Dt )]

The generators (Vuant, ! w,,ozn”ﬂn ¥, 1) satisfy the conditions of Lemma 5.2 for
large n.

Consider (iy).
There exists |,0ak,,71ﬁ | = 1 such that {akrlﬂ Pakn=1p, =T kn—15 = 1. If

11msup|p kn=1g —1| >0,
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then (with the same index notation for subsequence there exists a subsequence) such
that

lin}qinf|§(xﬁ”_13n - ”a,’i"‘lﬂnl > 0.

This implies by Lemma 4.2,

liminf |z x,—1 > 0.
n @n

—Z kn—1
B+ a,” ﬁn=_|

Hence by Proposition 4.1, there exists p > 0 such that for large 7,

1/(2Dy
200 13 /@20
AP Pr =1 |

ltr(@kn=18,)| = p (

In particular, we have |tr(ot,]f"_1 Bn)| = oo. Note

|/0a’/1fn—1‘3n| —1 _

lim =0.

n |An|?—1

This can be seen as follows: since |A,|*> — |§ak,,ﬂ | <|An|?> —1 we have either
n n

Al =18 sen g | Al =18 sen g |
Mﬁ or IZM>6>O
|)\n|2_1 Mnlz_l

Assume that the latter inequality holds. This is equivalent to (i;) and we follow the
same idea used in (i1). Set Mobius transformations ¥, (x) = A;1(1 —e,) "' x, with
en = €(|An]?> = 1)/(2|An|?). Then,

[l =18t gt | = Prnl = A5 (U =€) ™1 g |
= Anl (1 —en) T (IAnl* (1= €n) = [ n g 1).

Since |[An|? — |§aknﬂ | > €(|An|?> — 1) we have

_ _ Anl?=1)
Jn 11 = em) L e (Anl? = 1) — [An2ey) = <Unl" =D
] > [An] (1 =€) (e(|An] ) — |Anl“€n) 2on| (1= &)

Since €, — 0, it follows from last inequality that for large n we have

|)\n | o |é‘1/’n04£z{n Bn¥ri

Anl =18, ng 41l
n Yo" Bn¥n > 6/ > 0.
|An]? =1
And n, kng o1 = A (1 —e,)™! we have
|77 kn —1| _|)\ |_1
Ynen" Pt A € >’ >0.
A2 —1 2|An]? (1 —€n)
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Since |tr(oz,]f” Br)(|An|? = 1)] = oo, it follows that for large 7,

nl ™ <1y, g | S 18y g il < el

. 1 1
m
kn — n
| I By, gt gt | = 2nl ™) T @R BIE, g i~ )

Hence by Lemma 4.2, (Y,anr, !, na,,”,Bn ¥, 1) satisfies Lemma 5.2.
If the former holds then
Al (1 = 8t 5, 22D = en 20 =18 a1, D
= |)‘n|2(|§aﬁl€n—1'3npakn—lﬁn| - |§a111‘n—1'3n |)
= P11 1(Patn-18,1 = )

The last equation implies that

o rn—15 | —1
limM =0,
n |Anl?—1

and |tr(ozn”_1/3n)(|)m|2 —1)] = oo. It follows that for large n,
™ < gt | < g, | < .

. 1 1
lim =0

| e @E ™ Bl (g1, 1 = o) (@™ Bl (1 a1, | — 1An 1)

Hence by Lemma 4.2, (ay, af”_lﬂn) satisfies Lemma 5.2.

Consider the case where p x,-1, — 1.
op Bn

Let ¥, be the Mobius transformations given by

] Zgkn=1g X —Zkn—lpg _Zokn=lg

Vn(x) = : " m—n 2 xeC.

X —Z kp—1
n ap" " Bu.—

1

where A, = 3

Zar]fn_lﬂn s_Zagn_lﬁn + Za,’;"_l Bn,—
Let ¢, be the Mobius transformations defined by

¢n (X) k”ﬂ '/f_
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Then &, o akn gyt gy 18 given by

kn
é‘ k = ! Zo‘flfn_lﬂn’_ O ﬁn(zagn—lﬂn,_) Z“ﬁn_lﬂn,‘i‘
bn¥nan” Buvi ot 1— Zyfen—1
n

kn
Bn,+ Op ﬂn(zaﬁn—lﬁn,_,_) Zokn=1g _

To see this we do a simple computation. Set

~ kn—1 -1 ,—1 2 k -1 ,—1
Oln:‘pnl,l/n()lnn Bn n Pn and lgn:¢n‘ﬁnannﬂn n ¢n .

Write the matrix
B =% b
c
Note that by our choice of ¢, we have ng, = 1,50 éy = —d, and {Bn = Zz,,/—d~n. By
straightforward matrix multiplications we have

a 2

k k
= —Zz% _ Ay — Z kep—1 Anp
n aﬁf" lﬂn,_ n n ann ﬂ)’h_ n n

—kn —kn
+ Zarlfnilﬁn :_Zailinilﬂn a+(Zallqcnilﬂna_)\n Cn + )Ln dn)’

—Z jp—
alﬁ" L8,

z —
~ a,]f" lﬁn,—

o1, ™" cn + A" dn) !

kn kn
_(}Ln anzaﬁnflﬁn,_‘l‘)\n bn)

= — +Z kn—1 Z kn—1
)»nkncn-i-)»nkndn an" " Bus—"an"t T But

B kn —
Z(X}”lcn_lﬂna_(an ﬂn(zaﬁn_lﬁna_) Zail(n_lﬂ”’—‘r)

A S T

§..1
|

k, k
=Z kp—1 Z kp—1 Ana Z kp—1 Anh
ap" " Buy—"ay T By, n+ ap" " Bu, =N n

2 Men e dKndy),

—Z _ Z kn—1
aﬁf" I,Bn,—( an" " Bt

] .
O anz g1, Fh"ba)

z —
Ct;,:n 1 Bn. —z
—kn —kn kn—1

An tentAytdy ®p Bn,—

z —
01;’;" I,Bn,Jr

ol g, o n 4 A" dy) !

kn
Z“l’;n_lﬂn’_(an ﬂn(zall/\l’n_lﬂna+)_za}1’5n_lﬂ _)

An X en + A kn dy)=1

(Zalz(n_lﬂn 7+
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Now by n, =1 we have

Doy + a5 dy 1= 2 ke
_ n

Zall;n_lﬂns‘l‘ Bn,t+
- A kn akng 1=z g,

akn=1pg, _Hn Cn + An n o Bu—
Since ¢ 5, = an/ —dy,, the formula for ¢ i follows from the equations for &, and dy.
Let 5\,1 denote the multiplier of &, .
First, we need to get a estimate of the growth of |tr(/§n)| in terms of |tr(8,)|. Note
that |tr(B,)| = |tr(cs” )

Remark 6.A There exists o, 5’ > 0 such that

o’[tr(Ba)| > [tr(Bn)| > ote(Ba)|(|Anl* = 1) for n large.

In fact we only need the lower bound for |tr(,gn)| .

Proof We have
2
nl2 =1 Vgpmp, | = 1Ral™  [Cong [ =1

— 4

|§0‘£fn.3n_1| |§05111€nﬂn_1| N |§0l;11mﬂn_1|
and by condition (i) we have

1&g, = Al

% b
|§05111(an N 1|
|§aknﬂ - 1|
thus ———— >€>0, for large n.
[Anl?—1

Recall 7 n By = 1, and by Lemma 4.7, more precisely by the second equation in the
proof of Lemma 4.7 and |tr(8,)] =< |cnl,

e B)|

|tr(Bn)|

The upper bound is trivial. O

> 0'|§ak,,5 —Nykn g | > o’e(|An]?>—1), for large n.

Lemma 6.4 Assume that there exists a subsequence such that
%5, 1l
im———=
Jo 12 =1

Then (ap; ,3,, ;) are classical Schottky generators for large j .
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Proof We will show that (&, , Bn ;) satisfies the conditions of Lemma 5.2 with Remark
5.4.

Since by Remark 6.A, o’ |tr(Bn)| > |tr(,§n)| > o|tr(Bn)|(|Ar]?> — 1). In particular
[tr(Br)| — o0, we have

B L 1B —4
lim =lim|l——| =
i g, 1 7 w(Bay)

Since |tr(,3n ;)| = oo the isometric circles of ,an are disjoint for large j. Now
3 and 17z
é‘ﬂnj nﬂn]

are centers of these isometric circles and so by disjointness, the radius of these isometric
circles must be less than

%6, ~ "5, |

for 1 .
7 or large j

In addition, each isometric circle contains one of the fixed points

or zZj3; .
ﬂnja”

ZEnj :l

By our convention z; ANEET; are contained within the isometric circles with centers
I’l U
¢z 3, .,77 By respectlvely Note that 13 Boy = = 1. Hence for large j we have

26,0~ 8B, | 1B, 0= 11 1

, < —.
%5, —11 1%, —1 2

From these bounds we have

. ;=1
lim 5,4 Zﬂ"f’”|~ — lim i, ‘ _
7z, = P DBl — 7 (25, =D+ (1= s D[y

. 1
<lim =0.

’ ()'ﬁﬁ £l =) (Bl
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Similarly we have

|ZEnj >l _Zﬁnj aul

lim : B =
71z, 1= o I~ D)lr(Ba )

= lim |§‘§”f—1}
j \(Izlgnj,ul—lﬁgnjI)+(I§gnj|—1)+(1—Iknjl‘l)Htr(ﬂnj)\
. 1
Ehjm( e ] -2 )wes "
|Xn]| ;'Bn]_l ZBn]_l 2 r nj

Hence by Remark 5.4, (ay;, ,5,1 ;) are classical Schottky generators for sufficiently
large j. a
Lemma 6.5 Assume that there exists M > 0 such that

185, — 11

[Anl?—1
Then there exists N', o > 0 such that

|)~\’n|2Dn _ 1 > O.|tr(/§n)|2Dn/(2Dn—l) fOl‘n > N

Proof Use matrix representations we can write

2 Eln n
ﬁ"z(én )

Note that ng, = 1.So ¢, = —cz,, and we have

Q &n Bn
b = (—cz,, d)

By [¢ 5n| =<1 and our assumption on M , we have

S

13

M(|X§|—1)<\§Bn—l\<M’.

By |tr(,3,,)| — 0o and as in the proof of Lemma 6.4 we have

e e B AL e O
no gy 1 n tr(Bn)
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Since |z ||~ 1]/ tr2 Bn — 4] it follows that for some o,0’ > 0 and

Bt~ ZBu| =

large n,
olw(Bn)l < ldn| < o' lu(Bu)|(Anl* = D7
Let e be the Euler number. If there exists a subsequence such that lim; |¢ B |=e71,
then 1 —e™ ! < |Zﬂ —z5 | <14e7! for large n. Otherwise we let n, > 0 be
integers defined as g '
1 ~ 1
1+ S| =1+ —.
my +1 mpy

From this definition we have limy, |A,|"" = lim, (1 + my, )™ = ¢. Then there exists
N, § > 0 such that for n > N we have

Saym g, — Ngmn g, | = ||§,§nllin|m" +1]
<é(e+1),
>d(e—1).
Hence it follows from Lemma 4.2 that there exists x > 0 such that
K_l < |Z&Z”lngn,+ _Z&Znngn’_| < K.

Therefore by setting m, = 0 for the subsequence with lim; |5 B, | = e !, we can

always assume that for large 7,

—1
K < |z, 2 —Z~ 2 <K.
| (xl"lnnﬂna_'_ a;’{lnﬁn’_|

|\ tr2@n" Bn) — 4|

Since |Z~m 2 —Z-mng = ==
@n " Bn,t &n " Bn |dn)\‘;lnn|
B _ B o' |tr 2
we have o’ |tr(Bn)| < (@l Bn)| < M
(An]*=1)
. —1 B _ B
Since < Nzagm g, e, <

we have dlSt(ﬁan,£~mn B, ) < 8 for some § > 0. By Remark 4.1.A applied to
(Gin, 0" Br) we have

[tr(@y" Bu)| > p (

~ 1/2D,
|)\n|2D"+3 /(2Dpn)
|}~¥n|2D”_l
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and as an upper bound for |tr(c," ,én)| we have

- 1/(2Dy .
a2 3) P
|hn|2Pn — 1 (|)~\n|2Dn_1)1/(2D”)

by 1-1/(2Dy
>p/,(|)\n|2Dn_1) /( )

|tt(Bn)| > po”" " (|hn]® — 1) (

The last inequality implies that

Anl? = 1> [An[2Pn —1 > p"|tr(By) [P/ @ L), O

Proposition 6.6 Assume (i5). Suppose that there exists a M > (0 such that

Then (a,, a*n=1B,) are classical generators for large n.

To prove Proposition 6.6 when lim sup,, |tr(ot,]f"_1 Bn)| < oo we use disjoint nonisomet-

ric circles for oz,’f"_l B based on the following.

Proposition 6.7 Given any loxodromic transformation y with fixed points # 0, co
and multiplier AJZ, , there exists disjoint circles S, ,, Sy, of center o radius r and
center o’ radius r’ respectively such that

2[Ayl

y(interior(so,r)) N interior(so/’r/) = and r + }"/ = |Zy’+ - Z]/,_| |)\' |2 _1 .
y|*—

Note that since |A, | > 1, so by this equality for r +r" we have an upper bound

Ayl +1

rr <z =l
Ay[—1

Proof We conjugate y into Mobius transformation y’ with fixed points {0, co}.
Consider circles S | Ayl 1 So,[a, |- The Mobius transformation ¢ (x) = (x—1)/(x+1)
maps the fixed points of y” which are {0, co} to fixed points {—1, 1} respectively. In
addition it maps 30,|Ay|—1 »So,lx,| 10 Sz SZiJ{ respectively. Here we can use basic
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formulas to determine zy, 2|, ry, | (see page 91 of [6]). Explicitly by [6] we have

—|Ay 72 =1 _ JAyl7h =1

-

o e B PP b
_ 2]
Ayl2 =1
= _|AV|2_1_|)‘V|_1
S TS
_ 20yl
Ay|2 -1
This gives poppl = Ayl
1 1 |)\.y|2—1.

The distance between the centers is

L U
Ay 724+ 1 —A 12 +1

AP+
Ayl2—1

|21 — 2} =

The equality (JA,|? + 1) —2|Ay| = (JAy| — 1)? > 0 implies SZl,rl’Szj,r{ are disjoint.
By conjugating ¢y’¢~! with
w(x) =X + Zy’_l,_ + Z%—

Zy+ — Zy,—

we map the fixed points {—1, 1} to

2Zy’_ 22)’,4‘
Zy’+ - Zy’_ Z}’,"r - ZV,+

Because 1/(x) is a translation (ie Euclidean isometry), the circles are mapped to
Sz.r9 5 Szg,r’ with same radius and preserves the disjointness. Finally conjugating

Yoye~ 1y by O(x) = (zy1 — zy_)/2 maps

2Zy’_ 2Z%+
Zy,_i_ - Zy’_ Z)’,'i‘ - Z}’,‘i‘

to {zy,—, zy,+}, and maps circles to Sz, 5, 'Szg,rg- Note that

Ayl
Ay2—1

V3»V§ = |zy,4+ — Zy,-|
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and preserves the disjointness. Note that y = 0y ¢y’¢p~ 1y ~16~!. Hence the sum of
the radius of the resulting disjointed circles is
2|Ayl

r3 +l’3 |Zy_ Zyd_lml O
14

Proof of Proposition 6.6 First assume that lim sup,, |tr((xk” '8,)] < co. Let Son.rn >
Spy,,r;, be the disjoint circles for oz,, ,B,, given by Proposition 6.7. We will show that

. rn+r
1 ———— =0.
n Al =1
Note that
n 1, 2|Anl
hmT 11m|z kn—lg | = Zykn— | > 5
|An] " " (1Anl2 = 1) (An]2 = 1)

2C
But  CalnTlp b 2 2 ’
" P (A2 = D(Aa]* = 1)

<lim|z_x,—1
n Op

where the second inequality holds since |tr(oz,]f"_1 Bn)| < C for some C > 0.

Since limsup,, |tr(ak» =1 B,)| < 00 and lim sup,, |An)*n~! < 00, we have by Lemma
4.7,

1
|Z kn—1 —Z kn—1 | X -
Op Bns+ oy Bns— |tr(13n)|
By Proposition 4.1,
D, PalPPr 43 dpPn
Anl?Pn =17 A2 =1

|tr(Bn)[*Pn > p

The last inequality follows from |A,|?P" —1 < |A,|?> — 1 for large 7.

By our assumption that
15, — 1l
[Anl? =1

and Lemma 6.5 we have

In+r)
" <1lm(4PD") M [tr(Bn) |~ |tr(B) 2P [tr(By) |2 P/ (172 D)

1' —
o hnl? -

< lirIln(4I0Dn)_ O-ZDn/(l_ZDn)M/ltr(ﬁn)|(Dn(6_4Dn)_1)/(1_2Dn) =0,

where the second inequality holds since |tr(,3n)| < o|tr(Bn)].
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Now the circles S,,,,», contains one of z wln1pg, — Zakn=1p, 4 and S, ,/ contains

Bn,—
the other fixed point, and since 7, kn—1g = =1 and |§ kn—1g | = 1, it follows from
Lemma 4.2, we must have S,,, r, 80/ ., contained in the region between 1/|A,| and

|An| for large n. Hence we have classical generators for large 7.

. . kn;—1 —
Now if there is a subsequence such that |tr(ct,,  Bn;)| = 00, then (o, afoni I,Bn,-)
satisfies conditions of Lemma 5.2. O

6.2.2 (Ay) To prove (Ay) we can follow the steps given in the proof of (A;), and do
the appropriate modifications. Some of the estimates will be simpler because |A,| > A
and so estimates involving (|A,|?> — 1)~! will hold trivially. However to avoid too
much reproduction of the previous proof of (A; ), we give here a alternative short cut
proof of (A, ) instead.

Proof of (A,) Suppose that there is a subsequence (use same index for subsequence)
such that |tr(a5” Bn)| — oo. Then by our assumption of (Az), | kn ﬂnl — 1 and
|An| > A > 1 we have for large 7,

A< g, | = Vg, | <

1 1
lim =0.

7| Jeren” Bi) | (1ngn—1g,1 = A1) Jtr(om” Bi) (1 n g | —An)
nﬁn

By Lemma 4.2, (o, cx,lf” Bn) satisfies the second set of conditions of Lemma 5.2, hence
classical.

Otherwise we have |tr(an”,3n)| < C forsome C > 0. Since |¢ 7 B, |—1 and Nylkng, =
1, by Lemma 4.2 we have |z g, 4| — 1. Now by Remark 4.1.A and |tr(an”,3n)| <C
we must have dist(Lq,, £, kg ) — oo. This implies that |z kng L~ Zykng _|—0.
More precisely we have:

Lemma 6.8 Suppose |z, Bt~ ol p _| =0 and |z kn 8 4| — 1. Then there
exists § > 0 such that

8
dist(ﬁa,1,£a5nﬂ”) <log (|Z - — |) )
an’n ﬂna"’ Otyfn ﬂn T
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Proof By using hyperbolic distance formula, and since |Zakn Bt " Zulknp =0
n ns n n»
and |Za,’§”ﬂn,i| — 1, we have for large n,
coshdist(Ly,, , ﬁa,’f" ﬂn)

2,1 2
|th,'1‘”ﬂn,u| ™ 4(|Zaf§”/3n,u + Zafz‘”ﬂnJD +1

1 1
2zanp, o1+ 220t 5, 0 = Zafr p, t D a0 = 2, 0D

< p for some p > 0. ad

Z K
| Otn(”ﬂn,u annﬂn,l|

Let So,r,,Sy s be the circles given by Proposition 6.7.
Proposition 6.9 If |tr(a,lf” Bn)| < C forsome C >0, then we must have (r,+r,) — 0.

Proof First note that we have showed |tr(oe,lf” Brn)| < C implies

|Za£1€n13n5+ _Zailcnﬂns_| e O and |Za£l€nﬂny:t| — 1

—Z kn
Set 1)”n(x) — an” Bu,+

X —
ann Bn T

Let A 8 be the multiplier of w,,a,lf” Bn¥r, . We have

1/Dy
| A gfen 2Pn 43 —2di
Bn ist(L —1,L kn _1)
) B e
|)\a§nﬁn| n-1
by Remark 4.1.A applied to v, (oz,,,oz,, Bn) ¥y - Since {zy o y—1 4 —— =

{1’ Zallinﬂn,‘*'/z%l;nﬂn,—} we have

Zganyt £l = 1

Z k
a,” Bn,t+

Z Kk
an" Bn,—

1—

|ZWnaan_l,+ _ZWnaan_l’_} = — 0.

By Lemma 6.8 we have for large n,

)
dist(L 1, L knp .. —1) <log ( .
Vnn v b |Z'ﬁnanl[fn_la+ - ZWnaann_ls_|
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This implies that for large 7,

Dy,

A ol |2Dn +3 1/(2Dp)

-1 Bn

|)\a”| > 6 i 2D, _ |Z‘/fn0¢n1/fn_l,+ _Zl/fnanl/fn_l,_l
|)\“ll1mﬂn| 1

|z 1, —z —1 _|
>8_1 A ko 2Dn_|_3 1/(2Dp) Ynn¥n ,+ Ynn¥sn
U ) [hgion g P =1

_ +7r))
8 1 A " 2D, 3 1/(2Dp) (Vn n
> (l ok ﬂn| + ) 2C/|Zak”ﬂ B

The last inequality follows from Proposition 6.7 and |2, o | < C’. The second
inequality in the above calculations follows since |A kng | < C’ and for large n we
have

2Dy, 1/(2Dy) 2Dy, 2
(hgng, P2 = 1) = g, 22 =1 = g, I = 1
Since |Aq,| < M for some M,

2C/M8|Z(Xﬁn,3n,—| 20'MS'

n+r, < - N
" (|)‘a"'1/3n|2D”+3)1/(2D") 41/(2Dy)

Now we can continue and finish the proof for |tr(c,” 8,)| < C. By Proposition 6.9
and |A,| > A > 1 (this is the condition of (A;)) we have

/
I'n+ 1,

— —0.
|Anl? =1

Since the circles S,,,,r, contains one of Zykng s Zakn B, + and S, ,/ contains the
other fixed point, and Nykng, = =1 and |§ kng | — 1 (condition of (Ap)), it follows
from Lemma 4.2, we must have S,,, r, 50/ " contained in the region between 1/|A,|
and |A,| for large n. Hence we have classical generators for large n. This completes
the proof for (Ay). m|

6.3 Case (B)

Set Mobius transformations

Yn(x) = & 1A
and consider the generators V¥, (at,, a1 B, )¢, !. Then

— —2ky
Cppalen=t gyt = 1 A0 Ny g = Gy T
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Since 1 < {nk,z,k" < A2 and |§n)\%k”| —|A2| — 0 (the condition of (B)) we have
[End (1= [ ' A5~ ]) — 0.

Since |A,| < M forsome M >0, we have |771/, kn—1
— _ l_kn _ nn
(V’nanwn 11 1//}1/8” l(xn ‘/fn 1) we haVe

B! | — 1. Hence by considering

Sy prtai oyt = 1 and oy, prig) oy = 1.
We have reduced (B) to (A).

Hence we have completed our proof of Theorem 6.1. O

7 TI' with small Dr is either classical or there exists a univer-
sal lower bound on Z

This section is devoted to proving Theorem 7.1 which will enable us to remove the
constraint on Zr, that was placed in the previous section.

Theorem 7.1 There exists ¢ > 0 such that if ', is a sequence of Schottky groups
with D, — 0, Then for sufficiently large n, either there exists a subsequence I'; that
are classical Schottky groups, or there exists a subsequence I'y; with generating set
(an;, Bn;) such that Z(‘xnjaﬂnj) >c.

Proof We prove by contradiction. Suppose there exists I, a sequence of Schottky
groups such that for every generating set (. B,) of I'y we have Z,, g,y — 0.

For each n, by replacing (a,, B,) with (o, " B,) for sufficiently large m, if
necessary, we can always assume that every [, is generated by generators with
|tr(etn)| < [tr(Bn)| and |tr(Bp)| = log 3/ Dy.

We take the upper space model H?*. By conjugating with Mobius transformations, we
can assume that o, have fixed points 0, co with multiplier A,, and B, with zg, , = 1.
Recall that, as before we denote the two fixed points of B, by zg, ;,zg, ., With
|zg,,1| < 1zg,,u|- When we write B, in matrix form, we assume that |a,| < |dy]|,
otherwise we replace B, with ;1.

By assumption, we have two cases: either (A) zg, ; — 1 or (B) zg, ; — 0. First we
consider Case (A).

7.1 Case (A)

There are two possibilities, (A;) liminf, |A,| = 1 or (A) there exists A > 1 such that
[An| > A.

Geometry & Topology, Volume 14 (2010)



510 Yong Hou

7.1.1 (Ay) Since |tr(B,)| — oo and zg, ; — zg, , = 1 and |A,| > A > 1, we have
1/A <|zg,.1l <1zg,ul <A forlarge n. Hence (&, Bn) satisfies Lemma 5.2 for large 7.

7.1.2 (A;) Taking a subsequence if necessary, we may assume that |A,| is strictly
decreasing to 1. For large enough n, we choose a sequence of positive integers ni,
depends on n such that 1 + 1/(m, + 1) < |Ay| < 1+ 1/my. Letus set &, = ay/cx,

Nn = —dy/cp. Since |tr(B,)| — oo and |v/tr2(B8,) —4/(2cy)| = |Zﬁn’+ —Zﬂn’_l -0
implies |tr(8,)| < ¢y, it follows from Lemma 4.2 and Remark 4.5 that
mp
An " <, e
le(Bn)| — " [tr(Bn)|

for large n. Also by Lemma 4.2 and Remark 4.5, and the assumption that zg, ; —
zg,.u = 1, we have both {,,n, — 1. Hence

2
{Zal'qnnﬂn,:l: - é‘n)\‘nm" ‘ S p

2
|Zgmn g, £ = Ay "+ |zgmn g, £ —1] — 0.

Since by our choice of n1,, we have |[A2™"| — ¢2. It follows that |2 g, 4| = €2
and |zymnpg -| — 1. Therefore, there exists ¢ > 0 such that Z, ,mng > ¢ for
sufficiently large n.

7.2 Case (B)

Here we have either (B ) liminf, |A;| < A for some A > 1, or (By) liminf, |A,| — oc.
We also assume that |, | < |n,| as before.

7.2.1 (B;) We will show that there exists integers k; such that Z > ¢ for

some ¢ > 0.

(an,ai‘{” Bn)

Take subsequence if necessary, we may assume that |A,| < A for large n. Choose
positive integers k, to be the smallest such that e? < |§nk%k”|. Since |A,| < A,
we must have some ¢ > 0 such that e? < |§nk%k”| < 0. We claim that there exists

0 <€ <e? and n > Ng such that e? —€ < |z _k, |, |z kn | <o+ €. To see this,
an" Bu,+ an" Bn,—

we use Remark 4.2.B.

To prove the claim, note that since |zg, — —zg, 4| <1+ € for some € > 0 and large 7,

and also [tr(B,)| — oo, we have |c,| — oo. By Remark 4.2.B we have |zg, ,—n,| — 0,
hence n, — 1.

First we show that |Za,’;” Bt~ Zakn B,.—| 7> 00. Assume otherwise. Let p, be
the center of the circle having z s, Bt and z_ B 38 antipodal points. Since
|§aknﬁ T Tgkn g | <o+ 1+ € for some € > 0 and large n, and

Z“I];n Bn,+ + Zakn Bn,—
2 9

Pn =
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and

Zal Byt T 00— = Saln g, T ofng,
we have |p, —0’| <« for some k¥ >0 and 0/ = o + 1 +¢’. Note that since |p, —0’| <
|pnl+o’| < (@+1+€)/2+0+1+€ wecantake k = 3 (o +1+¢€). Th1s implies that
dist(Ly,,, £ kg, ) < 6 for some § > 0. By Remark 4.1.A we have |tr(an",3,,)| — 00,
and

(i Bn)|

|§‘¥111(n Bn - naﬁn Bn | = |Cn)u;kn |

we get |tr(oc,lf” Bn)| < |cn)»,7k" |. But this implies that |Zaknﬂ 4~ Zaknp, _| < C for
n ns 2
some C > 0, hence a contradiction.

Note that if [Zykn g, 4 — Zgknp,,—| — 0 then

L 1
|Z(xknﬁn’:|:| - _|€O‘knﬂn + naknﬁn| - _|§0£knﬁn + 1|

Since 2(e — 1) < 2|§ kng T+ 1] < 0 for large n, this implies that (62 -1 <
|Zgkn g, 4| < 0 for large n.

Finally if ¢ < z,, e Zakn g, —| < ¢’ for some ¢,c¢ > 0, then by Remark 4.1.A

Bust
we have |tr(cx,,” ,6,,)| — 0o which implies |c,A; "| — 00. Hence by Remark 4.2.B we
have {zaﬁ,, B4 Zatkn Bt = {Ca’/:n PRLN ﬂn} which implies the claim.

With the claim true, there are two possibilities: (B ) liminf |Z kng L T Zykng _|—0,
or (BY) liminf, |z okn g, 1+ " Zakng _|>0. For (B”) we have Z< knﬂ ) > € for
some ¢ > 0 and large n.

Suppose (B') holds. By passing to subsequence if necessary, we take
|Zatl1m Bn,+ N Zallqcnﬁn,_| —0.
If |An| — 1 then we choose positive integers m, as defined in Case (A;). Then

< nt2my 4 . — .
e é‘n}\.n <e and K1 < |Z I\n+mnﬁ , z l\n+mnﬁ , | < Ko

for some 0 < k1,k;. By Remark 4.1.A we have |tr(ozn"+m”ﬂ,,)| — oo. Hence by
Remark 4.2.B we have

. — .
{ZO!;\," +mn B+’ Zafln-i-mn ﬂn:_} {€a§n+mn B’ naitln +mn Bnn }
This implies that €2 < |z s, -mn | <e* and |z_kp+mn | — 1. Hence there exists
077 ﬂn ,:i: 0573 an:F

¢ > 0 such that Z<an alkntmng > ¢ for large n.
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If |An| > ¢ > 0 then we take m, = 1. Then
81 <l|zgkn+1g | —Zgntig | <8

for some 0 < 81, 85. And it follows from Remark 4.1.A and Remark 4.2.B we have

that Z( akntigy > ¢ for large n.

7.2.2 (B,) By taking a subsequence of «j, we may assume that |A,| is strictly
increasing. Choose a sequence of largest integers k, > 0 such that |§nk,%k"| <1.
If limsup |§nk,2,k"| = 1 but limsup |§n)»,%k" — 1] # 0, then there is a subsequence
(oznj,a,’f]'?j Bn;) of (ozn,oc,]f” Bn) such that liminf; Z(anj ,af;;?f Bu;) > 0.

If lim sup ;nk,z,k" =1, then let (ay,, oz,’f;%‘ Bn;) be the subsequence of (o, cx,]f” Brn) with
limy; &, A2Kn = 1.

If lim sup |tr(a " Bn;)| = 00, then by passing to a subsequence if necessary, for large i,

k"z Bn; will have disjoint isometric circles. Note |tr(B,,)| — oo, zg,,u = 1 and
Zﬂn.’[ — 0,50 |zg, +—z28, —|<1+ey, for €, — 0 (ie |Z'3n +—28,.,—|<c,forc>0),
we have lcn; | — 0. By Remark 4.2. B, lim; min{|n,, — 2By, i~ |r;,,l. —zg, +|} = 0.
Since é'wif{‘i Bn; = 1 = ngk i B, and |tr(oek"z Bn;)| — oo we have l

|t1‘(Ot IBn )|

—kn.
Calps B, e o | = ——o= =0 and [y, | = 0.
oy |

}\/trz(aﬁyiﬂm)—ﬂ

T — 0.
k.
2|An; " Cn; |

Also |Zaknl Buy ot — Zakmi By —

Hence by Remark 4.2.B, there exists a ¥ > 0 such that for large i we have

—1
Kk - < |Za,"{;‘i Bn; = |Zak”z Bn; u| <K.

And since |Ap,;| — 0o, we are able to choose Mobius transformations ; such that
Wi (ani,aﬁlfli ,Bn,-)l/fi_l satisfies Lemma 5.2.

If lim sup |tr(ak”i Bn;)| < oo, then let ¢; be Mobius transformations such that the maps
¢,a i B, P; ~1 have fixed points 0, oo, and the fixed point Z i 7! u Of ap; is 1.1t
follows that z,, el e 1. Since [tr(¢);otn; ¢; ¢ | — oo, hence we have reduced this
case to Case (A), ‘which we already con51dered

If lim sup |§nk,2, "| < 1, then we have two possibilities: (B/,) lim inf|§,,k,2,k”+2| =1,

or (BY) liminf |g A2 2| > 1,
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Consider Case SB ). Let (o, , & ﬂnl) be a subsequence of (an,an” Bn) such that
hm, [En; An | — 1 If sup; |tr(ak" +1,8n )| < oo, then we conjugate oy, , o ,Bn,
to ,3, ¢101n, 1@ = ¢ ozk"z ‘Hﬁnl ._ with @; have fixed points 0, co and /3, have

zz , =1 Slnce sup, |A | < o0, it follows that, if = 1 then (&;, ,3,) falls under
Case (A), and if z, N e 0 then {&;, ,B,) falls under Case (B1). Otherwise there exists
€>0 suchthate<|zﬂ ;| <1—¢, hence Z( gy > ¢ for some ¢ > 0.

kn; . .
On the other hand, if sup; |tr(ay, " i Bn;)| = oo, then for large i since the radius of
isometric circles is

Zaknl+lﬂn u —Z knl+lﬂn
R kn[+1ﬂ = d l
" |tr(an,‘ l :811,)|
and the distance between the centers of these isometric circles is
B Itr(an, ﬂn,)l
¢ kn,+1ﬂ - kn,+1ﬁ | = — T
n; n; Cn)\n,' i
\/trz(an, ,Bn,) 4
and by z knl—i-l -z knl-i-l = . —
ﬂn, ﬂn, ch')\n‘ nj
1 1
we have
‘@ Knj+1, =1 kn;+1 ) tr(ak"i Bu:)
. O‘"i ﬂni an[ 5n,~ . ni ni 5 k”i +1
lim 9‘{ = lim > Oltr(ay, ' Bu;)l
i kn: +1 i
g i, Jurei g, —a
for some § > 0. Hence
k +1 kn; +1 > 29‘{ ki +1
Colni g, Mgl ity

kn: L . . .
for large i . This implies oy, ! Bn,; have disjointed isometric circles for large i. By
Lemma 4.2 and 2By u = 1 we have Ny, = 1. And since

]7 knl"!‘anl T’ﬁniv

we have that

T] kn +1 —>1.

Bn;
Note that if

lnf é’ k,, +1 — 1,

" —1‘>0 and |§ k,,l+1

ﬂn,-
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K, +1
then by |tr(ay,'  PBn;)| — 00 we have

1— an+1 ) 1 an+1 -0
‘ "Byl Bn; " Bnyou '
lnf‘z kn +1 —z kn +1 > 0.
,Bnl- U i ﬂn,
Hence for large i there exits € > 0 such that
l—e< anl+1 < Z kn;+1 <1+e,
ﬂn, ani Bn,‘s”

therefore we must have
ian( kn;+1 )>O.

i Qn; yan, ﬂni

It follows we can assume that

é‘ kn +1 — 1.

Bu;

Then we have

kn; +1 k L+ — 0.
‘g it T Mot
tr(ay,. .
Hence —‘ ( n’_k /il’) — 0.
Cnhn; "
Since |tr(anl ,Bn,)| — 00,
kn;+1
Ve -4
z knl+lﬂnl,u z knl+lﬂnl - —kn-—l .

2ep;An; "

Therefore the distance between the centers of these isometric circles decreases to 0
and the radius
R l\n +1 — 0.
Bn;
. . 2 . . . . k"i +1
Since inf; |Ay;|“ > ¢ > 1, we have for large i that the isometric circles of oy, ' By,
are disjoint and lies between ¢~! and c. In particular,

1

c < ‘Z knl—i-l <c,

‘ ‘Z kn,-i-l

Bn; ol

and (o, , ozn, ,B,, ) satisfies Lemma 5.2.

ﬂn, U

Now cons1der Case (BY). Flrst we define a new sequence of (&, ,B,,) as follows: Con-
sider (an,an”ﬂn) If |tr(an”ﬂn)| > |tr(ay)]|, then set &, = an,ﬁn = B,. Otherwise,
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let ¢, be the Mobius map so that qbna,]f” Bnd, ! have fixed points 0, oo, and Onn®, !
have Zgpanditu = 1 Set ap1 = Gnan" Budy L, But = Pnond;, ' . We define integer
kn,1 with respect to (.1, B,,1) the same way as we defined k&, before.

Now if |tr(a ' Bu.1)| = |tr(ay,1)| then we set ,gn = Bn.1 and @, = oy, ;. Otherwise,
we repeat thlS construction to get a sequence ((n,m, fn,m). By construction for a
each n, either there exists a m such that [tr(cty/" Bum)| = |tr(ctn,m)| or we have
|tr(o¢n"%1’",3n m)| < |tr(an m)| for all m. Assume the latter holds, since oy m+1 =
Onmn'm Bn m¢>n m We have [tr(a, m41)| < [tr(op,m)| for all m. If limy, |tr(aym)| =
0 then take m, to be the first integer m with |tr(as,m)| < 1/n. If limy, |tr(cts,m)| > 0
then take m, to be the first integer m with [tr(cy ;41)| > [tr(ctn,m)| — 1/n. If the
former holds, we set m, to be the first integer m with |tr(c,'s" Bu,m)| = [tr(ctn,m)]|.
Hence there exists a mj such that either |~tr((x,,:1mn” Bumy)| > Itr(otn,m,)| —1/n, or
|tr(ctn,m, )| < 1/n. We define &, = oty.m,. Bn = Bn,m,, -

Now consider (&, ,3,1). If liminf, |tr(@,)| < oo, we choose a subsequence with
|tr(dtp; )| < ¢ for all large i and some ¢ > 0. Let p; be a sequence of least positive
integers such that |tr(a ,3n1)| > 1/Dyp, . We conjugate oz,,l ,Bn, by Y; that fixes 0, 0o
and z Vil Bn, v = 1 Set @&; = W,anlw ﬂ, = &,ﬁ’ Bn: V] By construction,
if zg, l —'0 thén (a,,,B,) satisfies (By), and if zz, ; — 1 then (oe,,ﬂ,) satisfies (A).
Otherwise there exists € > 0 such that € <|zg, ;| < 1—€ which implies that Z @B > €
for some ¢ > 0. Hence in either case, we are done.

On the other hand, suppose liminf, |tr(&;,)| = oco. Since |tr(;§n)| > |tr(&p)| then it’s
sufficient to assume that {(@,, B,) satisfies Case (B’z’), otherwise we are done. We
deﬁne kn = kn My -

Set v, —oz,, ﬂn,,u,, = @p. Since |tr(Bn)| = |tr(@,)| and |Z =25, 4 | <146, with
8 — 0 (this follows from z; 0= =1,zz ™ B 0), it follows from Le;nma 4.2 with Re-
mark 4.5 and |tr(o¢,]f” e B mn)| > |tr(an mn)| 1/n which implies lim,, tc(n)|/ | An| >
€ for € > 0, we have |r]vn —1| <~5|k |2 , for some § > 0. Since 7y, ., = N, A2
Nitwvn = Moy » We have [0y, 0, —A;%| = |nVn)\’;2 — A2 <8An,|™* and [Ny, — 1] =
1M, — 1] < 8|An, |2, for large n

‘We have two cases to consider:

kn
" 2 S
n |X |-2
2k,,l
- Nnhng = 12
2) im l)\ = <o for some subsequence n;.
1
nj
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Proof assuming (2) Since |¢,, A, k"’ | > |An, |72 and (2) holds, and &, 5‘%1 Cv; s
we have for large 7,
1 <|Cuvi| < (o +1).
Since we also have
= 81A521 < Impugwi | < 1481357

and |)~‘ni| — 00 it follows that there exists > 1 such that 1 —«x =1 < |1, v; | [uiv; | <
1 +« for large i. By Lemma 4.2 with Remark 4.5 and |tr(v;)| > €|A,, | for large i we
have for some pp, pp > 0 that

—1 To—1 Y-
-« _Pl|)\ni| <|Z,u,~v,-,l|’|z,u,,-v,-,u|<1+K+/02|)"n,-|

Hence there exists «’ > 1 such that k™1 < |z, 1| < |zpv;u] <&’

If |tr(uivi)| — oo, then (u;, p;v;) satisfies the second set of conditions of Lemma
5.2, hence is classical.

If lim sup |tr(14; v;)| < oo, then define Mobius transformations v; such that v; p; v; !
have fixed points 0, co and z ! 1, =11z l“p—ll—>00rzw v 11
then ¥ (i, i v,)wi_ satisfies (A) or (By). Otherw1se we have for some € > 0 such
tha't € <|zy, py—14l <1—¢, whlch’1mphes that Z, (i i)y > € for some ¢ > 0.
This completes our proof of (BY) with (2). O

Proof assuming (1) By (1), there exists 0 < p, — oo with p, < |)\ | such that
|§‘nk2k"| — |k |72 > pn|k |72. Let x, be Mobius transformations defined by x,(x) =
(An/ J/Pn)x . We will show that x,(fn, vu)x, ' satisfies Remark 5.3 of Lemma 5.2.

Since |1y, — 1| < 8/|An|* we have

Aal 8 <In _l|<|in|+ 8
Von Al pn KU En Von  |kal/Pn

By the condition of (B,) we have |E,,)~Lik"| < 1. This gives,

\//On_'_ 1 <t < |)~‘n|
|)\'n| |)\n| /—pn XnVnXn /pn

By Lemma 4.2 with Remark 4.5, |z,, + §Vn| < oltr(vy)| 72 and |z, 5 — My, | <

o|tr(v,)|~2 for some o > 0. Since |tr(vn)| > e|k | for large n we have
|ZXnVnX;lai_anVnX;l| <73 ’ |ZXnVanTla:F_§XnVnX;71| <77 ’
6|}\n|\/,0n €|Anl/Pn
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H | | < o TR B
ence z it ol / A J/ ’
XnVnXn U / Pn |)\'n| Pn €|)\n| Pn

N Pn 8 _ g

|z

1 |> = ~ ¥ )
Xovndn SRl Al SPn €Al /Pn

We have |A,|7! < |ZXnVnX;1al| < |ZXnan;1’u| < |An| for large n.

By above estimates for fixed points of x,vnx, ', and |tr(vy)| > e|):n| we have
(2l + DRl D) Vil /P + hnl/ /P + hn| + 8

Ol =17y 1 a) elinl2 (1= 1/ o — 8/ (nl? ym) — 0/ (elin /)

3 L 1/l + /Pu/Vhnl +8'/n/ Von?
€/Prn(L=1/0n =8/ (1Aul?/Pn) — 0/ (€|hn|? \/Pn))

and by p, < |An| we have some §” > 1 such that

8//
S e /n (L =1/ on—8] (> 5m) — 0/ (€l > /)

— 0.

For the other part of the conditions of Remark 5.3 we have:

If |z —1 ;| <M then,

XnVnXn

(|2 Xnann1,|+1)(lk '+ 1)
len) (12,0, 51 01 — An 1)
(M + D)(|ha|"1+ 1)
EIX (/) 1hnl = 8/ (An] /) — 0/ (€lAn] /Pn) — 1/|Anl)

M’ - M’ 0
— U.
e(\/pn—S/\/pn—a/(e\/,on)—1) € /Pn
Otherwise we have |zX V! ,| — o0 and

(|Z nl)n)(nl ll + 1)(|)\‘ | ! + 1) < 5//

— >0 forsome §’ > 0.
|tr(vn)|(|ZXnan;1J| - |)\’n| 1) E|)\’n|

Geometry & Topology, Volume 14 (2010)



518 Yong Hou

Hence xn(in, vn)x, ! satisfies

_1 Ing
Anl ™ <1zt 1l = ot < 12nls

r {<|anunx,:l,ul + DAl 1) Uz, + DA + 1)}
m - , _
L e O (7o ey O R e G [ it e PV

the conditions of Remark 5.3. O

Hence we have completed proof Theorem 7.1. m|

8 Proof of Main Theorem

Theorem 8.1 There exists € > 0 such that every 2—generated Schottky group I" with
Dr < € is a classical Schottky group.

Proof This follows from Theorem 6.1 and Theorem 7.1. O

Proof of Theorem 1.1 Let I'' be a nonelementary finitely generated Kleinian group.
Selberg’s lemma implies IV contains a torsion-free subgroup I'” of finite index, in
particular ® s = Dpr.

Note that if I'” is geometrically infinite with Qr~ # @& then Dr» = 2, this implies
D~ = 2 for geometrically infinite groups. So we can assume I'” is geometrically
finite when Dp» < 2.

If T” contains parabolic of rank /p~ then Dp» > Ip#/2. Hence, for sufficiently small
Hausdorff dimension Dy, we can assume '’ is convex-cocompact of second kind.

It follows from Ahlfors’ finiteness theorem, that Qp~ /T consists of finite number of
compact Riemann surfaces. Let S be a component of Qp~/T”. If S is incompressible
then 71(S) is a surface subgroup of I'”. Since 1 = Dy, (sy < Drv, if Drrjl, we
may assume S is compressible. So we can decompose I'” along the compression
disk. After repeating the decomposition process finitely many times we are left with
topological balls, ie H3/T'” is a handle body. This implies I'” is a finitely generated
free purely loxodromic Kleinian group of second kind, ie ' is a Schottky group.

By assuming the limit set have sufficiently small Hausdorff dimension we have reduced
the general case to the case of Schottky groups. Now it follows from Marden’s
rigidity theorem, all Schottky groups of the same rank are quasiconformally equivalent.
Therefore we have from Theorem 8.1, there exists A > 0 such that all nonelementary
finitely generated Kleinian I with D/ < A contains a classical Schottky group of
finite index. It follows that we have a strict lower bound on the Hausdorff dimension
of all nonclassical Schottky group. O
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