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Kleinian groups of small Hausdorff dimension
are classical Schottky groups. I

YONG HOU

It has been conjectured that the Hausdorff dimensions of nonclassical Schottky groups
are strictly bounded from below. In this first part of our work on this conjecture, we
prove that there exists a universal positive number � > 0 such that any 2–generated
nonelementary Kleinian group with limit set of Hausdorff dimension <� is a classical
Schottky group.

57M50, 57M05; 53C21, 53C20, 37A15

1 Introduction and Main Theorem

Let H3 be hyperbolic 3–space. A subgroup � of PSL.2;C/D Iso.H3/ is called a
Kleinian group if it is discrete. Let x 2H3 . The orbit of x under the action of � is
denoted by �x . The limit set ƒ� of � is defined as ƒ� D �x\ @H3 . By definition,
ƒG is the smallest closed �–invariant subset of @H3 . The group � is said to be
elementary if ƒG contains at most two points, otherwise � is said to be nonelementary.
Note that elementary Kleinian groups are completely classified. Henceforth when we
say “Kleinian group � ” we will assume that � is nonelementary. The group � is
of the second kind if ƒ� 6D @H3 , otherwise it is said to be of the first kind. The set
�� D @H

3�ƒ� is the region of discontinuity, and � acts properly discontinuously
on �� .

Let f�1; �
0
1
; : : : ; �k ; �

0
k
g be a collection of disjoint closed Jordan curves in the Rie-

mann sphere NC and let Di , D0i be the topological disks bounded by �i , �0i respectively.
Suppose we have f
ig

k
1
� PSL.2;C/ such that 
i.�i/D �

0
i and 
i.Di/\D0i D ∅.

Then the group � generated by f
1; : : : ; 
kg is a free Kleinian group of rank k , and
� is called a marked Schottky group with marking f
1; : : : ; 
kg. A finitely generated
Kleinian group � is called a Schottky group if it is a marked Schottky group for some
marking. If there exists a generating set f
1; : : : ; 
kg such that all �i ; �

0
i can be taken

as circles then it is called a marked classical Schottky group with classical marking
f
1; : : : ; 
kg, and f
1; : : : ; 
kg are called classical generators. A Schottky group � is
called classical Schottky group if there exists a classical marking for � .
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For a Schottky group � , the manifold H3=� is homeomorphic to the interior of a
handlebody of genus k . We denote by Jk the set of all rank k Schottky groups, and let
Jk;o be the set of all rank k classical Schottky groups. One simple way to topologize
Jk is to identify it with the space of moduli of a Riemann surface of genus k .

It is known that not all Schottky groups are classical Schottky groups. In fact, the
space of classical Schottky groups is not even dense in the space of Schottky groups by
Marden [5]; also see Doyle [3].

In [3], Peter Doyle proved that there exists a universal upper bound on the Hausdorff
dimension of the limit sets of finitely generated classical Schottky groups. It was
originally Phillips and Sarnak in [7] who proved that there exists a universal upper
bound on the Hausdorff dimension of the limit sets of classical Schottky groups of
dimension greater than 3.

Let D� denote the Hausdorff dimension of ƒ� . The main result is the following.

Theorem 1.1 There exists a universal �> 0 such that any 2–generated nonelementary
Kleinian group � with D� < � is a classical Schottky group.

Note that our result can be viewed as the converse of the result by Doyle [3] and
Phillips and Sarnak [7]. The proofs of their theorems rely on the crucial fact that
�0.H

nC1=�/DD�.n�D�/, for D� �1, where �0.H
nC1=�/ is the bottom spectrum

of the Laplacian of the hyperbolic manifold HnC1=� . But this identity obviously is
useless in our situation.

We prove Theorem 1.1 by using a result from our paper [4] and selections of generators.
The proof is divided into three main steps.

To lead up to the proof, we first do some preliminary estimates on the locations of the
fixed points of a given set of generators of a Schottky group. These estimates give us a
sufficient control on how the fixed points of a set of generators change in terms of the
Hausdorff dimension of the limit set of the group. The main ingredient of the proofs of
these estimates relies on [4, Theorem 1:1], rewritten in the trace form.

Next we obtain a set of sufficient conditions for any given sequence of Schottky groups
to contain a subsequence of classical Schottky groups in the unit ball in hyperbolic
space. These conditions are stated in the upper-half space hyperbolic model. The idea
is that if the radius of isometric circles of a sequence of generators decreases sufficiently
faster than the reduction of the gaps between any of the fixed points of the sequence of
generators, then this sequence of generators will eventually become classical generators.
We do this first by transforming the generators with the condition that the generator
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with the shortest translation length is transformed into vertical position passing through
the origin with fixed points at north and south poles. And then these generators are
projected into upper-half space.

In the first step of the proof, we consider Schottky subspaces of the Schottky space that
consist of Schottky groups � for which there exists a generating set S� for � with the
set of fixed points of S� on the boundary sphere on the unit 3–ball hyperbolic space
that are mutually bounded away from each other by a positive constant.

In this step we prove that Theorem 1.1 holds for these Schottky subspaces. This is
proved via contradiction. Suppose �n is a sequence of nonclassical Schottky groups in
the subspace with the Hausdorff dimension of ƒ�n

decreasing to 0.

The idea is that we first transform these generators of the generating sets S�n
into the

standard form with the generator of S�n
of shortest translation length put in vertical

position. If no generator of S�n
is of bounded translation length when D�n

! 0

then it’s easy to see this will lead to a contradiction. On the other hand, it’s a simple
corollary of [4] that there can exists at most one generator of bounded translation
length per S�n

when D�n
! 0. If such a generator does exists, then we first make

a careful change of generators which will be constructed based on estimates that its
fixed-point set will be “minimally excluded” from isometric spheres of the generator of
bounded translation length. Working with these generating sets we will show that with
appropriate additional transformations and changes, the generators with translation
length that is not bounded will always grow sufficiently fast to lead to disjoint isometric
spheres which are also disjoint from the rest of the isometric spheres of the other
generators.

One of the crucial tools in estimating this growth is the strong form of the inequality
of [4]. We will show that when one of the generators is of bounded translation length
then it will force the needed growth for the rest of the generators. With appropriate
choice of generators this will lead to a classical Schottky group.

In the second step, we prove that on the nonclassical Schottky space there exist universal
lower bounds for D�CZ� ; see Section 2 for notation and definitions. Essentially this
means that we cannot simultaneously have arbitrarily small Hausdorff dimension and
minimal gaps of the fixed-point set on the space of nonclassical Schottky groups. This
is proved using generator selection and the results of step one.

In the last step, we prove that when D� is taken sufficiently small then � can be
taken as Schottky group. This is based on basic topological arguments and some
well known results on Kleinian groups. We prove (by an easy standard topological
argument) that any finitely generated Kleinian group with limit set of sufficiently small
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Hausdorff dimension is a Schottky group, but Dick Canary pointed out that it’s simpler
in the 2–generated case based on the result of Peter Shalen which assures that any
2–generated Kleinian group is either free or cofinite volume.

The paper is organized as follows: In Section 2, we define and list global notation
which will be used throughout the paper. In Section 3, a strong form of Theorem 1.1
of [4] will be stated for two generators, which we shall use for selecting generators; see
Corollary 3.2. In Section 4, for a given sequence of Schottky groups �n with bounds on
Z�n

(see Section 2), we prove inequalities that will enable us to control fixed points of
a given sequence of generators of �n in relation to the Hausdorff dimensions D�n

of
�n . These will be used in the selection process. In Section 5, sufficient conditions for a
given pair of generators to be classical generators are established which we will use in
our generator selection process. In Section 6, we will use tools developed in previous
sections to form a generator selection process and prove that Schottky groups with small
D�n

and bounds on Z�n
are classical Schottky groups. In Section 7, we will prove

the theorem that will remove the bound condition on Z�n
. Section 8 completes the

proof of our main theorem by reducing finitely generated Kleinian groups with small
Hausdorff dimensions to Schottky groups via a standard known topological argument.

This paper is dedicated to Ying Zhou.
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would like to express my gratitude to Jim Anderson, Peter Shalen, Marc Culler and
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support and unwavering help provided to me during this work.

2 Notation

Let � � PSL.2;C/ denote a Schottky group generated by h˛; ˇi with ˛ having fixed
points 0;1. Assume that 
 2 � is a loxodromic element having fixed points 6D 1.
Write 
 in matrix form


 D

�
a b

c d

�
;

with det.
 /D 1. We will set the following notation and definitions throughout the rest
of the paper.

Notation 1 � Denote the critical exponent of � by D� and the Hausdorff dimen-
sion of ƒ� by D� .
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� R
 denotes the radius of isometric circles of 
 .

� �
 D�d=c , �
 D a=c .

� We will define two different ways to denote the two fixed points of 
 : fz
;l ; z
;ug
denotes the two fixed points of 
 in C with jz
;l j � jz
;uj and fz
;�; z
;Cg
denotes the two fixed points with z
;˙ given by quadratic formula with subscripts
˙ corresponding to ˙

p
tr2.
 /� 4. Note that we always take the principle

branch for the square roots of complex numbers.

� L
 is the axis of 
 .

� T
 is the translation length of 
 .

� Set Zˇ WDminfjzˇ;�� zˇ;Cj; j1=zˇ;�� 1=zˇ;Cjg.

� Zh˛;ˇi WDminfZˇ; jzˇ;Cj; jzˇ;�j; jzˇ;Cj
�1; jzˇ;�j

�1g.

� For � > 0, we say that Z� > � , if there exists a generating set h˛; ˇi of � such
that Zh˛;ˇi > � .

� Given any two sequences of real numbers fpn; qng, the notation pn� qn means
there exists � > 0 such that ��1 < lim inf pn=qn � lim sup pn=qn < � .

Notation 2 Let f
ng � PSL.2;C/ be a sequence of loxodromic transformations. Let
fpng be a sequence of complex numbers, and fqng a sequence of positive real numbers.
We write ˇ̌

z
n;˙�pn

ˇ̌
< qn

if there exists N such that for every n>N we have at least one of the following holds:

(i) jz
n;C�pnj< qn .

(ii) jz
n;��pnj< qn .

3 Free group actions

Given a finitely generated nonelementary Kleinian group � , the critical exponent
of � is the unique positive number D� such that the Poincaré series of � given byP

2� e�s dist.x;
x/ is divergent if s <D� and convergent if s >D� . If the Poincaré

series diverges at s DD� then � is said to be divergent. Bishop–Jones showed that
D� �D� for all analytically finite nonelementary Kleinian groups � . In fact, if � is
topologically tame (H3=� homeomorphic to the interior of a compact manifold-with-
boundary) then D� DD� . Hence it follows Agol’s [1] proof of tameness conjecture
that D� DD� for all finitely generated nonelementary Kleinian groups. The critical
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exponent is a geometrically rigid object in the sense that a decrease in D� corresponds
to a decrease in geometric complexity.

Next we state the following theorem from [4], which provides the relation between the
group action and the critical exponent.

Theorem 3.1 (Hou [4]) Let � be a free nonelementary Kleinian group of rank k

with free generating set S , and x 2H3 thenX

2S

1

1C exp.D� dist.x; 
x//
�

1

2
:

In particular we have at least k � 1 distinct elements f
ij g1�j�k�1 of S that sat-
isfies dist.x; 
ij x/ � log.3/=D� , and at least one element 
ij with dist.x; 
ij x/ �

log.2k � 1/=D� .

The following is a useful corollary of Theorem 3.1, stated here for the case of � is a
free group of rank 2.

Corollary 3.2 Let S D f
1; 
2g be a generating set for a free nonelementary Kleinian
group � . Let x 2H3 . Then

dist.x; 
2x/�
1

D�

log

 
eD� dist.x;
1x/C 3

eD� dist.x;
1x/� 1

!

Corollary 3.3 Let S D f
1; 
2g be a generating set for a free nonelementary Kleinian
group � . Let x 2H3 . Let m be any integer. Then at least one of the elements 
 0 of
S 0 D f
m

1

2; 


mC1
1


2g satisfies dist.x; 
 0x/� log 3=D� .

4 Trace, fixed points and Hausdorff dimension

In this section we study the relationships of fixed points of generating sets of a given
sequence of Schottky groups �n and the Hausdorff dimensions of ƒ�n

.

What we like to do is to find a relationship between the distribution of the fixed points
of one of the generators in terms of the translation length growth of the other generator
and the Hausdorff dimension of its limit set. By having this type of relationship we
will be able to construct a new set of generators from the given generating set with
prescribed distribution of its fixed points. The new set of generators will be a crucial
ingredient in the proof of our theorem.
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Let f�ng be a sequence of rank 2 Schottky groups with Dn! 0 generated by ˛n; ˇn 2

PSL.2;C/ in the upper space model H3 with

˛n D

�
�n 0

0 ��1
n

�
; j�nj> 1:

ˇn D

�
an bn

cn dn

�
:Set

We assume throughout this section that there exists M > 0 such that T˛n
< M for

all n. Set Dn DD�n
. Let trD trace.

First we will state Corollary 3.2 in the trace form.

Proposition 4.1 Suppose there exists �> 0 such that Zˇn
>�. There exists � > 0

depending on � such that

jtr.ˇn/j> �

 
j�nj

2Dn C 3

j�nj
2Dn � 1

!1=.2Dn/

for large n.

Proof Let Tn be the translation length of ˇn and Rn D dist.L˛n
;Lˇn

/. Let xn be a
point on axis of ˛n which is the nearest point of L˛n

to Lˇn
. By triangle inequality,

Tn � dist.xn; ˇnxn/� 2Rn . And for sufficiently large Tn , we have for some positive
constant c > 0, jtr2.ˇn/j> ceTn . Now for large n, from Corollary 3.2,

jtr2.ˇn/j> c

 
j�nj

2Dn C 3

j�nj
2Dn � 1

!1=Dn �
e�2 dist.L˛n ;Lˇn

�
/:

Now Zˇn
>� implies that dist.L˛n

;Lˇn
/ <M for some M > 0. Hence the result

follows.

Remark 4.1.A Note that without assuming bounds on Zˇn
we can state above Propo-

sition 4.1 as

jtr2.ˇn/j> c

 
j�nj

2Dn C 3

j�nj
2Dn � 1

!1=Dn �
e�2 dist.L˛n ;Lˇn /

�
:

If dist.L˛n
;L˛nˇn

/ < � then there exists ı > 0 such that

jtr.ˇn/j> �

 
j�nj

2Dn C 3

j�nj
2Dn � 1

!1=.2Dn/

for large n.
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The next lemma and its corollaries are estimates of convergence rates of fixed points of
the generators of �n in terms of the Hausdorff dimension of ƒn .

Lemma 4.2 Suppose there exists �>0;M >0 such that Zh˛n;ˇni>� and T˛n
<M

for all n. Let kn; ln be any integers such that T˛n
kn ;T˛n

ln <M . Then there exists a
constant � > 0 such thatˇ̌̌

z
˛

kn
n ˇn˛

ln
n ;˙
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
C

ˇ̌̌
z
˛

kn
n ˇn˛

ln
n ;�
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
<

�

jtr.ˇn/jj�
ln�kn
n j

for large n.

Remark 4.3 Lemma 4.2 is an estimate of how fast the fixed points converges, it’s
not important to our applications in this paper which fixed point converges to �
 and
which converges to �
 for a given 
 2 PSL.2;C/.

Given a complex number zD rei� we write
p

z2Dz if �� <2� �� , and
p

z2D�z if
2� >� or 2� ��� . Then a more precise statement of Lemma 4.2 which dichotomizes
the above inequality for large n would be:

(i)
q

tr2.˛
kn
n ˇn˛

ln
n /D tr.˛kn

n ˇn˛
ln
n /ˇ̌̌

z
˛

kn
n ˇn˛

ln
n ;C
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
C

ˇ̌̌
z
˛

kn
n ˇn˛

ln
n ;�
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
<

�

jtr.ˇn/jj�
ln�kn
n j

(ii) �
q

tr2.˛
kn
n ˇn˛

ln
n /D tr.˛kn

n ˇn˛
ln
n /ˇ̌̌

z
˛

kn
n ˇn˛

ln
n ;�
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
C

ˇ̌̌
z
˛

kn
n ˇn˛

ln
n ;C
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
<

�

jtr.ˇn/jj�
ln�kn
n j

Corollary 4.4 Suppose there exists � > 0;M > 0 such that Zh˛n;ˇni > � and
T˛n

<M for all n. Let kn; ln be any integers such that T˛n
kn ;T˛n

ln <M . Then for
any ı > 0 there exists � > 0 such that if Dn < � then,ˇ̌̌

z
˛

kn
n ˇn˛

ln
n ;˙
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
C

ˇ̌̌
z
˛

kn
n ˇn˛

ln
n ;�
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
< ı.j�nj

2
� 1/:

The same dichotomy decomposition of the inequality holds as given in Remark 4.3.

Proof Let us assume that
q

tr2.˛
kn
n ˇn˛

ln
n /D tr.˛kn

n ˇn˛
ln
n /. Also Zh˛n;ˇni �� by

Proposition 4.1 as Dn! 0 we have jtr.ˇn/j !1. In addition, by Zh˛n;ˇni ��, we
have jzC;ˇn

� z�;ˇn
j ��, and also jzC;ˇn

j�1; jz�;ˇn
j�1 �� gives jzC;ˇn

� z�;ˇn
j �

jzC;ˇn
jC jz�;ˇn

j< 2=�. There exists c1; c2 > 0 with c1 < jzC;ˇn
� z�;ˇn

j< c2 . By
jzC;ˇn

�z�;ˇn
jD j

p
tr2.ˇn/� 4=.2cn/j, such we have c1< j

p
tr2.ˇn/� 4=.2cn/j< c2 .
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This implies jtr.ˇn/j� jcnj, and since tr.ˇn/DanCdn , there exists c3; c4>0 such that
c3 < j.anC dn/=cnj< c4 . Since jtr.ˇn/j !1, implies Rˇn

! 0, and Zh˛n;ˇni ��

gives us that there exists c5; c6 > 0 such that c5 < jan=cnj; jdn=cnj< c6 , for large n.

Therefore the fixed points z˙;ˇn
of ˇn must ! fan=cn;�dn=cng. There exists

c; c0;N > 0 such that thatˇ̌̌̌
z
˛

kn
n ˇn˛

ln
n ;C
�

an

cn
�2kn

n

ˇ̌̌̌

D

ˇ̌̌̌
ˇ.an�

knCln
n � dn�

�ln�kn
n /C

q
tr2.˛

kn
n ˇn˛

ln
n /� 4

2cn�
ln�kn
n

�
an�

knCln
n

cn�
ln�kn
n

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ
q

tr2.˛
kn
n ˇn˛

ln
n /� 4�

q
tr2.˛

kn
n ˇn˛

ln
n /

2cn�
ln�kn
n

ˇ̌̌̌
ˇ

�
c

j�
ln�kn
n jjtr.ˇn/j

ˇ̌̌q
tr2.˛

kn
n ˇn˛

ln
n /� 4�

q
tr2.˛

kn
n ˇn˛

ln
n /
ˇ̌̌
:

If jtr.˛kn
n ˇn˛

ln
n /j< � , for some � > 0, and all n then this is at most

c�0

j�
ln�kn
n jjtr.ˇn/j

for some �0 > 0.

Otherwise it is at most

c

ˇ̌q
tr2.˛

kn
n ˇn˛

ln
n /� 4

ˇ̌
j�

ln�kn
n jjtr.ˇn/j

ˇ̌̌̌
ˇ 1q

1� 4= tr2.˛
kn
n ˇn˛

ln
n /

� 1

ˇ̌̌̌
ˇ:

Using the Binomial series

.1� 4= tr2.˛kn
n ˇn˛

ln
n //
�1=2

D 1C 2 tr�2.˛kn
n ˇn˛

ln
n /C �n;

with �n! 0 at order jtr�4.˛
kn
n ˇn˛

ln
n /j gives � > 0 such that

�
c�

j�
ln�kn
n jjtr.ˇn/jjtr.˛

kn
n ˇn˛

ln
n /j

for large n.

Hence in either case we have for some c0 > 0 that

�
c0

j�
ln�kn
n jjtr.ˇn/j

for n>N:

This gives (i) of the Lemma.
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Now T˛n
kn ;T˛n

ln <M implies j�ln�kn
n j<M 0 for M 0 > 0. Hence,ˇ̌̌̌

z
˛

kn
n ˇn˛

ln
n ;C
�

an

cn
�2kn

n

ˇ̌̌̌
�

c00

jtr.ˇn/j
; n>N; c00 > 0:

By 4 cosh.Tˇn
/D jtr2.ˇn/jC jtr2.ˇn/� 4j, we have

eTˇn < jtr2.ˇn/j.1C 2=jtr2.ˇn/j/:

Since jtr.ˇn/j ! 1, there exists a > 0 such that eTˇn � ajtr.ˇn/j
2 for sufficiently

large n.

Note that if jtr.˛kn
n ˇn˛

ln
n /j !1 then we also have the stronger inequalityˇ̌̌̌

z
˛

kn
n ˇn˛

ln
n ;C
�

an

cn
�2kn

n

ˇ̌̌̌
�

c000

jtr.ˇn/jjtr.˛
kn
n ˇn˛

ln
n /j

; n>N; c000 > 0:

Here we can take c000 > c�=j�
ln�kn
n j as given in the above binomial inequality.

And there exists b > 0 such that e
T
˛

kn
n ˇn˛

ln
n � bjtr.˛kn

n ˇn˛
ln
n /j

2 . We therefore need

min
˚
�e�Tˇn=2; �e

�T
˛

kn
n ˇn˛

ln
n
=2	

< ı.j�nj
2
� 1/; for large n; and some � > 0:

By j�nj
2 D eT˛n , we require

maxfTˇn
;T
˛

kn
n ˇn˛

ln
n
g � 2 log

�
�=ı

eT˛n � 1

�
:

Hence it follows there exists �0 > 0 such that if Dn < �0 then at least one of
Tˇn

;T
˛

kn
n ˇn˛

ln
n

satisfies the above inequality. Therefore we have

jzˇn;C� an=cnj< ı.j�nj
2
� 1/

for Dn < � . The proof for the other part is same.

The case

�

q
tr2.˛

kn
n ˇn˛

ln
n /D tr.˛kn

n ˇn˛
ln
n /

is similar with z
˛

kn
n ˇn˛

ln
n ;C

replaced by z
˛

kn
n ˇn˛

ln
n ;�

and vice versa.

Remark 4.5 Based on the proof above, we note that the condition Zh˛n;ˇni >� in
Lemma 4.2 can be replaced with conditions jtr.ˇn/j !1 and jtr.ˇn/j � jcnj.
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Corollary 4.6 Suppose there exists � > 0;M > 0 such that Zh˛n;ˇni > � and
T˛n

<M for all n. Let kn; ln to be any integers such that T˛n
kn ;T˛n

ln <M . Then
there exist constants ı; � > 0 such that if jtr.˛kn

n ˇn˛
ln
n /j !1 thenˇ̌̌

z
˛

kn
n ˇn˛

ln
n ;˙
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
C

ˇ̌̌
z
˛

kn
n ˇn˛

ln
n ;�
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
<

�

jtr.˛kn
n ˇn˛

ln
n /jjtr.ˇn/j

for all Dn < ı . The same dichotomy decomposition of the inequality holds as given in
Remark 4.3.

Proof Let us assume that
q

tr2.˛
kn
n ˇn˛

ln
n /D tr.˛kn

n ˇn˛
ln
n /. Using the inequality in

the proof of Corollary 4.4 and taking � 0 > c=j�
ln�kn
n j with c given in the proof of

Corollary 4.4, we have

ˇ̌̌̌
z
˛

kn
n ˇn˛

ln
n ;C
�

an

cn
�2kn

n

ˇ̌̌̌
� � 0

ˇ̌q
tr2.˛

kn
n ˇn˛

ln
n /� 4

ˇ̌
jtr.ˇn/j

ˇ̌̌̌
ˇ̌̌ 1q

1� 4= tr2.˛
kn
n ˇn˛

ln
n /

� 1

ˇ̌̌̌
ˇ̌̌ :

By using the binomial series as in the proof of Corollary 4.4 and taking � 00 > 0 as
� 00 >�� 0=j�

ln�kn
n j where � is the constant given in the proof of Corollary 4.4 we haveˇ̌̌̌

z
˛

kn
n ˇn˛

ln
n ;C
�

an

cn
�2kn

n

ˇ̌̌̌
�

� 00

jtr.˛kn
n ˇn˛

ln
n /jjtr.ˇn/j

:

The proof for the other part is same.

The case

�

q
tr2.˛

kn
n ˇn˛

ln
n /D tr.˛kn

n ˇn˛
ln
n /

is similar with z
˛

kn
n ˇn˛

ln
n ;C

replaced by z
˛

kn
n ˇn˛

ln
n ;�

and vice versa.

Lemma 4.7 Suppose there exists �>0;M >0 such that Zh˛n;ˇni>� and T˛n
<M

for all n. Let kn; ln to be any integers such that T˛n
kn ;T˛n

ln <M . Then there exists
constants �1; �2 > 0 such that

�1jtr.˛
kn
n ˇn˛

ln
n /j

jtr.ˇn/j
� jz

˛
kn
n ˇn˛

ln
n ;C
� z

˛
kn
n ˇn˛

ln
n ;�
j �

�2jtr.˛
kn
n ˇn˛

ln
n /j

jtr.ˇn/j
;

for all n sufficiently large.

Proof Note that we haveˇ̌̌̌
an

cn
�2kn

n �

�
�

dn

cn
��2ln

n

�ˇ̌̌̌
D

ˇ̌̌̌
ˇan�

knCln
n C dn�

�kn�ln
n

cn�
ln�kn
n

ˇ̌̌̌
ˇD

ˇ̌̌̌
ˇ tr.˛kn

n ˇn˛
ln
n /

cn�
ln�kn
n

ˇ̌̌̌
ˇ :
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As in the proof of Lemma 4.2, Zh˛n;ˇni >� implies c <
p

tr2.ˇn/� 4=.2cn/ < c0 for
some c; c0 > 0 and jtr.ˇn/j !1 implies jtr.ˇn/j � cn (ie �cn < jtr.ˇn/j< �

0cn for
some �; �0 > 0). Since j�ln�kn j<M 0 we have

�jtr.˛kn
n ˇn˛

ln
n /j

M 0jtr.ˇn/j
<
ˇ̌̌
�
˛

kn
n ˇn˛

ln
n
� �

˛
kn
n ˇn˛

ln
n

ˇ̌̌
< �0
jtr.˛kn

n ˇn˛
ln
n /j

jtr.ˇn/j
:

By Lemma 4.2 the result follows.

Although next Lemma is not used in the rest of the paper but we include it here to
demonstrate relations between fixed points and Hausdorff dimensions.

Lemma 4.8 Suppose there exists �> 0;M > 0 such that Zh˛n;ˇni >� and M�1 <

T˛n
<M for all n. Let kn; ln be any integers such that T˛n

kn ;T˛n
ln <M . Then for

at least one i 2 f0; 1g, and any integers k 0n; l
0
n with j.kn � k 0n/j C j.ln � l 0n/j D i , we

have ˇ̌̌
z
˛

k0n
n ˇn˛

l 0n
n ;C
� z

˛
k0n
n ˇn˛

l 0n
n ;�

ˇ̌̌
�

�

Dnjtr.ˇn/j
;

for all n sufficiently large.

Proof Since T˛n
>M�1 we have �n 6! 1. If jtr.˛kn

n ˇn˛
ln
n /j<M thenˇ̌

�
˛

kn
n ˇn˛

ln
n
� �

˛
kn
n ˇn˛

ln
n

ˇ̌
! 0;

otherwise we have
Z
h˛n;˛

kn
n ˇn˛

ln
n i
>�

for some � > 0 which implies by Proposition 4.1, jtr.˛kn
n ˇn˛

ln
n /j !1. Hence we

have j�2
n�˛kn

n ˇn˛
ln
n
� �

˛
kn
n ˇn˛

ln
n
j 6! 0. Since

�
˛

knC1
n ˇn˛

ln
n
D �

˛
kn
n ˇn˛

ln
n

and �
˛

knC1
n ˇn˛

ln
n
D �2

n�˛kn
n ˇn˛

ln
n
;

by Lemma 4.2 we get

jz
˛

knC1
n ˇn˛

ln
n ;C
� z

˛
knC1
n ˇn˛

ln
n ;�
j> �:

Then by Lemma 4.7, jtr.˛knC1
n ˇn˛

ln
n /j > �

0jtr.ˇn/j. Since jtr.ˇn/j > log 3=Dn we
have jtr.˛knC1

n ˇn˛
ln
n /j > �0 log 3=Dn . Similarly we also have jtr.˛kn

n ˇn˛
lnC1
n /j >

�00 log 3=Dn . The result follows from Lemma 4.7.

We note that the condition T˛n
>M�1 is of convenience only not necessary, the lemma

still holds without this condition.
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Finally in this section we make the following observation based the proof of Lemma 4.2.
Note that if we don’t care about the precise upper bound of fixed points of ˛kn

n ˇn˛
ln
n

to �
˛

kn
n ˇn˛

ln
n
; �
˛

kn
n ˇn˛

ln
n

, then we can relax the conditions in Lemma 4.2 and state as
follows:

Remark 4.2.B Suppose that jzˇn;C� zˇn;�j< c and jcn�
ln�kn
n j !1. Then

fz
˛

kn
n ˇn˛

ln
n ;C

; z
˛

kn
n ˇn˛

ln
n ;�
g ! f�

˛
kn
n ˇn˛

ln
n
; �
˛

kn
n ˇn˛

ln
n
g:

5 Sufficient conditions

In this section we will state and prove a set of conditions for a given sequence of
Schottky groups with decreasing Hausdorff dimensions that will be sufficient for the
sequence to contain a subsequence of classical Schottky groups.

Let .B; distB/ be the unit ball model of hyperbolic 3�space. Let � W B �!H3 be the
stereographic hyperbolic isometry.

Given a loxodromic element ˛ , of PSL.2;C/ acting on the unit ball B model of
hyperbolic 3–space, denote by S˛;r and S˛�1;r the isometric spheres of Euclidean
radius r of ˛ . We set ���.˛/ as the multiplier of ��.˛/ in the upper space model H3 .
For R> 0, set CR as the circle in C about origin of radius R.

Proposition 5.1 Let ˛ be a loxodromic element of PSL.2;C/ acting on B , with
axis passing through the origin and fixed points on north and south poles. Then
�.S˛;r \ @B/, �.S˛�1;r \ @B/ maps to C1=���.˛/

, C���.˛/ .

Proof Let T˛ be the translation length of ˛ . The Euclidean radius r is given by
r�1 D sinh.T˛=2/. In terms of ���.˛/ ,

r D
2j���.˛/j

j���.˛/j
2� 1

:

Set e D .0; 0; 1/ as the north pole of @B . Let ı˛; ı˛�1 > 0 denote the radius of
�.S˛;r \ @B/ and �.S˛�1;r \ @B/ respectively. Then for x 2 S˛;r \ @B , ı˛ is given
by

ı2
˛ D

4r2

.1C r2/jx� ej4
where jx� ej2 D

4

j���.˛/j
2C 1

ı˛ D j���.˛/j:which implies
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Similarly for x 2 S˛�1;r \ @B we have

ı2
˛�1 D

4r2

.1C r2/jx� ej4
where jx� ej2 D

4j���.˛/j
2

j���.˛/j
2C 1

ı˛�1 D
1

j���.˛/j
:which gives

This completes the proof.

Lemma 5.2 Let h˛n; ˇni be generators for Schottky groups �n in the upper-half space
model H3 with jtr.ˇn/j !1 and

˛n D

�
�n 0

0 ��1
n

�
; j�nj> 1:

Suppose one of the following set of conditions holds:

� There exists ƒ> 1 such that for large n, we have j�nj<ƒ and

j�nj
�1 < jzˇn;l j � jzˇn;uj< j�n;

lim inf
n

�
1

.jzˇn;uj � j�nj/jtr.ˇn/j
;

1

.jzˇn;l j � j�nj
�1/jtr.ˇn/j

�
D 0:

� There exists � > 0 and for large n, we have j�nj> � and

��1 < jzˇn;l j � jzˇn;uj< �;

lim inf
n

�
1

.jzˇn;uj � �/jtr.ˇn/j
;

1

.jzˇn;l j � �
�1/jtr.ˇn/j

�
D 0:

Then there exists a subsequence such that for i large, ��1h˛ni
; ˇni
i� are classical

generators for �ni
in the unit ball model B .

Proof Let us suppose there exists a subsequence h˛ni
; ˇni
i that satisfies the first set

of conditions. First assume that for large i , jzˇni ;u
� zˇni ;l

j> ı > 0.

Let ri ; �i denote the Euclidean radii of the isometric spheres of ��1˛ni
� , ��1ˇni

�

respectively. Note that 4 cosh.T��1ˇni
�/� jtr

2.��1ˇni
�/j, which implies there exists

c0 > 0 such that
e

T
��1ˇni

�
� c0jtr2.��1ˇni

�/j:

Since ��1
i D cosh dist.o;L��1ˇni

�/ sinh.1
2
T��1ˇni

�/ [2, page 175], we have ��1
i �

sinh.1
2
T��1ˇni

�/, so for large i there exists c > 0 such that

��1
i � ce

.1=2/T
��1ˇni

� :
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Hence there exists ı1 > 0 such that �i � ı1jtr.ˇni
/j�1 for large i . Since for z; w 2C ,

j��1.z/0j D
2

jzC ej2

j��1.z/���1.w/j D j��1.z/0j1=2j��1.w/0j1=2jz�wj:and

This implies for large i , and xi 2 Cjzˇni
;uj

and yi 2 Cj�ni
j ,

�i

j��1xi ���1yi j
�

2ı1jxi C ejjyi C ej
jtr.ˇni

/jjxi �yi j
:

Since j�ni
j<ƒ, there exists ı2 > 0 such that jxi C ejjyi C ej< ı2 , and

lim
i

�i

j��1xi ���1yi j
� lim

i

2ı1ı2

jtr.ˇni
/jjxi �yi j

D 0:

Similarly there exists ı3 > 0 such that for wi 2 Cjzˇni
;l j

and zi 2 Cj�ni
j�1 ,

lim
i

�i

j��1wi ���1zi j
� lim

i

2ı1ı3

jtr.ˇni
/jjwi � zi j

D 0:

Hence it follows that for large i , and Proposition 5.1, the isometric spheres S��1˛ni
�;ri

,
S��1˛�1

ni
�;ri

, S��1ˇni
�;�i

, S��1ˇ�1
ni
�;�i

are disjoint.

Remark 5.3 Note that if we don’t assume that j�ni
j<ƒ then we don’t have bounds

on jxi C ejjyi C ej. However, since jxi C ejjyi C ej � .jzˇni
;ujC 1/.j�ni

jC 1/ for
xi 2 Cjzˇni

;uj
, yi 2 Cj�ni

j and jxi C ejjyi C ej � .jzˇni
;l j C 1/.j�ni

j�1 C 1/ for
xi 2 Cjzˇni

;l j
;yi 2 Cj�ni

j�1 . Hence we can state the condition as follows:

j�nj
�1 < jzˇn;l j � jzˇn;uj< j�nj;

lim inf
n

(
.jzˇn;ujC 1/.j�njC 1/

.jzˇn;uj � j�nj/jtr.ˇn/j
;
.jzˇn;l jC 1/.j�nj

�1C 1/

.jzˇn;l j � j�nj
�1/jtr.ˇn/j

)
D 0:

Next let us assume that jzˇni
;u � zˇni

;l j ! 0. Under this assumption we can do a
much stronger estimate of the lower bounds of cosh dist.j ;Lˇni

/, distance between
the point j on the vertical j –axis and the axis of ˇni

in the H3 . Note however that a
weaker lower bounds is sufficient in our case.

Recall that given any two points h1 D .z1; �1/; h2 D .z2; �2/ 2 H3 the hyperbolic
distance is given by

cosh dist.h1; h2/D
jz1� z2j

2Cj�1� �2j
2

2�1�2

C 1:
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Since jzˇni
;u� zˇni

;l j!0 and 1=ƒ< jzˇni
;l j � jzˇni

;uj<ƒ we can estimate the quan-
tity cosh dist.j ;Lˇni

/ by using the above formula for .z1; �1/ 2 L˛ni
and .z2; �2/ 2

Lˇni
. Since for large i we have jz1� z2j � jzˇni

;l j,

j�1� �2j � jjzˇni
;l j �

1
2
.jzˇni

;u� zˇni
;l j/j; 2�1�2 � jzˇni

;ujjzˇni
;u� zˇni

;l j:

Hence for large i we have

cosh dist.j ;Lˇni
/�
jzˇni

;l j
2C .jzˇni

;l j �
1
2
.jzˇni

;u� zˇni
;l j//

2

jzˇni
;ujjzˇni

;u� zˇni
;l j

C 1:

Since jƒj�1 < jzˇni
;l j � jzˇni

;uj < ƒ and jzˇni
;u � zˇni

;l j ! 0, we have for large i

there exists � > 0 such that

cosh dist.j ;Lˇni
/�

�

jzˇni
;u� zˇni

;l j
:

Also by ƒ�1 < jzˇni
;l j � jzˇni

;uj<ƒ and j�ni
j< jƒj, there exists � 0 > 0 such that

j��1.zˇni
;u/
0jj��1.zˇni

;l/
0j> � 0 . Since

j��1zˇni
;u��

�1zˇni
;l j D j�

�1.zˇni
;u/
0
jj��1.zˇni

;l/
0
jjzˇni

;u� zˇni
;l j;

j��1zˇni
;u��

�1zˇni
;l j � �

0
jzˇni

;u� zˇni
;l j;we have

The equality ��1
i D cosh dist.o;L��1ˇni

�/ sinh.1
2
T��1ˇni

�/ and the above estimates
imply that for i large, there exists ı4 > 0 such that

�i � ı4j�
�1zˇni

;u��
�1zˇni

;l jjtr.ˇni
/j�1:

Hence there exists ı5 > 0 such that for xi 2 Cjzˇni
;uj
;yi 2 Cj�ni

j ,

lim
i

�i

j��1xi ���1yi j
� lim

i

ı5j�
�1zˇni

;u��
�1zˇni

;l j

jtr.ˇni
/jjxi �yi j

D 0:

Similarly there exists ı6 > 0 such that for wi 2 Cjzˇni
;l j

and zi 2 Cj�ni
j�1 ,

lim
i

�i

j��1wi ���1zi j
� lim

i

ı6j�
�1zˇni

;u��
�1zˇni

;l j

jtr.ˇni
/jjwi � zi j

D 0:

From these estimates and Proposition 5.1 we have for sufficiently large i , S��1˛ni
�;ri

,
S��1˛�1

ni
�;ri

are disjoint from S��1ˇni
�;�i

, S��1ˇ�1
ni
�;�i

. Since jtr.ˇni
/j!1 implies

S��1ˇni
�;�i

and S��1ˇ�1
ni
�;�i

are disjoint when i is large, we have the first part of the
lemma.

The second part of the lemma can be proved in the same way.
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Remark 5.4 Note that in the course of the proof we see that if j�nj ! 1 then we can
weaken the first set of conditions in the above lemma to

j�nj
�1 < jzˇn;l j � jzˇn;uj< j�nj;

lim inf
n

�
jzˇn;l � zˇn;uj

.jzˇn;uj � j�nj/jtr.ˇn/j
;

jzˇn;l � zˇn;uj

.jzˇn;l j � j�nj
�1/jtr.ˇn/j

�
D 0;

6 Schottky subspaces Jk.�/

This section is devoted to proving Theorem 6.1 by utilizing results established in the
previous sections.

For � > 0, define Jk.�/ WD f� 2Jk jZ� >�g. Recall that Jk denotes set of all Schottky
groups of rank k .

Theorem 6.1 Let J2 be the set of all 2–generated Schottky groups. For each � > 0

there exists a � > 0 such that f� 2 J2.�/jD� � �g � Jk;o .

Proof We prove by contradiction. Assume there exists a sequence f�ng � J2.�/

of nonclassical Schottky groups with Dn! 0. By passing to subsequence, we may
assume Dn! 0 monotonically. Set �n D h˛n; ˇni with Zh˛n;ˇni > � . We arrange
the generators so that jtr.˛n/j � jtr.ˇn/j. There are two possibilities: (I) There exists a
subsequence such that jtr.˛ni

/j !1, and (II) jtr.˛n/j<M , for some M > 0.

Case (I) is trivial. Since both jtr.˛ni
/j; jtr.ˇni

/j ! 1 as n!1, it follows from
Zh˛n;ˇni > � , there must exists N such that h˛n; ˇni becomes classical Schottky
groups for n>N . A contradiction.

Now we consider Case (II). We work in upper space model H3 . Conjugate h˛n; ˇni

by a Mobius transformation into

˛n D

�
�n 0

0 ��1
n

�
; j�nj> 1:

ˇn D

�
an bn

cn dn

�
:Denote

Since jtr.˛n/j<M implies j�nj<M 0 for some M 0 > 0, it follows from Proposition
4.1 and Dn! 0, we have jtr.ˇn/j ! 1. In addition, by conjugation with Mobius
transformations, we can assume ˇn have �ˇn

D 1. By replacing ˇn with ˇ�1
n if

necessary, we can assume j�ˇn
j � j�ˇn

j.
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Since Zh˛n;ˇni>� , there exists �1; �2; �3; �4> 0 such that �1< jzˇn;l j� jzˇn;uj<

�2 , and �3 < jzˇn;l �zˇn;uj<�4 . It follows from Lemma 4.2, �1 < j�ˇn
j � j�ˇn

j<

�2 , and �3 < limn j�ˇn
� �ˇn

j<�4 .

For each n, choose integers kn such that

1� j�ˇn
�2kn

n j< j�
2
nj:

We consider the generating set h˛n; ˛
kn
n ˇni.

By passing to subsequence if necessary, there are three cases that need to be considered
(to simplify the notation, we denote subsequences by the same index notation):

(A) j�ˇn
�

2kn
n j ! 1.

(B) jj�ˇn
�

2kn
n j � j�nj

2j ! 0.

(C) Cases (A) and (B) do not occur.

6.1 Case (C)

We use the same notation index for subsequences. Since cases (A) and (B) do not occur,
for large n there exists 1< j�j< j�nj, � < 1 such that j�n�

2kn
n j ! � j�j2 . Let  n be

the Mobius transformation that fixes f0;1g defined by  .x/D x=.
p
� j�j/, x 2C .

Then j�
 ˛

kn
n ˇn �1 j ! 1=.

p
� j�j/ and j�

 ˛
kn
n ˇn �1 j !

p
� j�j. By Lemma 4.2, for

n large,

max
nˇ̌̌

z
 ˛

kn
n ˇn �1;�

� �
 ˛

kn
n ˇn �1

ˇ̌̌
;
ˇ̌̌
z
 ˛

kn
n ˇn �1;˙

� �
 ˛

kn
n ˇn �1

ˇ̌̌o
<

�

jtr.ˇn/j
:

Hence there exists �0; �00; �000 > 0 such thatˇ̌̌
z
 ˛

kn
n ˇn �1;C

� z
 ˛

kn
n ˇn �1;�

ˇ̌̌
>

ˇ̌̌̌
ˇjp� j�j � 1

p
�
j�j

ˇ̌̌̌
ˇ� �0

jtr.ˇn/j
;ˇ̌̌̌

1

z
 ˛

kn
n ˇn �1;C

�
1

z
 ˛

kn
n ˇn �1;�

ˇ̌̌̌
> �00

ˇ̌̌̌
j
p
� j�j �

1
p
�
j�j

ˇ̌̌̌
�

�000

jtr.ˇn/j
:and

This implies that there exist �> 0 such that

Z
 ˛

kn
n ˇn �1 >�:

Hence applying Proposition 4.1 to the generators h ˛n 
�1;  ˛

kn
n ˇn 

�1i implies
jtr. ˛kn

n ˇn 
�1/j !1.
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Set � D
p
.� C 1/=2j�j. Then for sufficiently large n we have � < j�nj, ��1 <

jz
 ˛

kn
n ˇn �1;l

j � jz
 ˛

kn
n ˇn �1;u

j< � . And obviously,

lim
n

1�
� �

ˇ̌
z
 ˛

kn
n ˇn �1;u

ˇ̌�
jtr. ˛kn

n ˇn �1/j
D 0;

lim
n

1�ˇ̌
z
 ˛

kn
n ˇn �1;l

j � ��1
�ˇ̌

tr. ˛kn
n ˇn �1/j

D 0:

Therefore, h ˛n 
�1;  ˛

kn
n ˇn 

�1i satisfies the second set of conditions of Lemma
5.2, and so by Lemma 5.2, these will be classical generators for large n, a contradiction.

6.2 Case (A)

By passing to a subsequence if necessary, we have two possibilities:

(A1 ) j�nj
2� 1 is monotonically decreasing to 0.

(A2 ) There exists � > 1 such that j�nj � j�j for large n.

6.2.1 (A1 ) Here we either have

(i) lim supn

ˇ̌
j�
˛

kn
n ˇn
j � j�nj

2
ˇ̌ˇ̌
�
˛

kn
n ˇn
� 1

ˇ̌�1
<1, or

(ii) lim infn

ˇ̌
j�
˛

kn
n ˇn
j � j�nj

2
ˇ̌ˇ̌
�
˛

kn
n ˇn
� 1

ˇ̌�1
!1.

If ˛kn
n ˇn satisfies (ii), we conjugate ˛kn

n ˇn with Mobius transformation  n defined by

 n.x/D
x

�
˛

kn
n ˇn

:

Consider . n˛
kn
n ˇn˛

ln
n  
�1
n /�1 and take lnD�1. By factoring out �2

˛
kn
n ˇn

��2
n in (ii),

lim inf
n
j�
˛

kn
n ˇn
j
2
j�nj
�2
ˇ̌̌
j1� j�

˛
kn
n ˇn
j
�1
j�nj

2
ˇ̌̌ ˇ̌̌
��1

˛
kn
n ˇn

�2
n��

2
n

ˇ̌̌�1
!1:

lim inf
n

ˇ̌̌
j1� j��1

˛
kn
n ˇn

�2
nj

ˇ̌̌ ˇ̌̌
��1

˛
kn
n ˇn

�2
n��

2
n

ˇ̌̌�1
!1:

Since ��1

˛
kn
n ˇn

�2
n D �˛kn

n ˇn˛
�1
n

and �
. n˛

kn
n ˇn˛

�1
n  �1

n /�1 D � n˛
kn
n ˇn˛

�1
n  �1

n
we have

lim inf
n

ˇ̌̌
j1� j�

˛
kn
n ˇn˛

�1
n
j
2
ˇ̌̌ ˇ̌̌
�
˛

kn
n ˇn˛

�1
n
��2

n

ˇ̌̌�1
!1;
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giving

lim sup
n

ˇ̌̌
j�
. n˛

kn
n ˇn˛

�1
n  �1

n /�1 j � j�nj
2
ˇ̌̌ ˇ̌̌
�
. n˛

kn
n ˇn˛

�1
n  �1

n /�1 � 1
ˇ̌̌�1

<1:

The generator . n˛
kn
n ˇn˛

�1
n  �1

n /�1 satisfies (i). Hence replacing the generators
if necessary we can always assume the generators satisfy (i). And without lost of
generality we will assume that h˛n; ˛

kn
n ˇni satisfies (i).

Consider (i).

In this case, we have either

(i1) lim supn

ˇ̌
j�
˛

kn
n ˇn
j � j�nj

2
ˇ̌ˇ̌
�
˛

kn
n ˇn
� 1

ˇ̌�1
> ı > 0, or

(i2) lim supn

ˇ̌
j�
˛

kn
n ˇn
j � j�nj

2
ˇ̌ˇ̌
�
˛

kn
n ˇn
� 1

ˇ̌�1
D 0.

Consider (i1).

Lemma 6.2 There exists c > 0 such that

dist.L˛n
;L
˛

kn
n ˇn

/ < log
�

c

j�nj
2� 1

�
:

Proof We first show that
1

jtr.ˇn/j.j�nj
2� 1/

! 0:

From Proposition 4.1 we have

lim
1

jtr.ˇn/j.j�nj
2� 1/

� lim �

 
j�nj

2Dn � 1

.j�nj
2Dn C 3/.j�nj

2� 1/2Dn

!1=.2Dn/

and for large n, we have j�nj
2Dn � 1< j�nj

2� 1 which implies that for some �0 > 0,

lim
1

jtr.ˇn/j.j�nj
2� 1/

� lim �0.j�nj
2
� 1/.1�2Dn/=.2Dn/ D 0:

It follows from Lemma 4.2 and �
˛

kn
n ˇn
D 1 thatˇ̌̌

�
˛

kn
n ˇn
� 1

ˇ̌̌
� �0jtr.ˇn/j

�1
�

ˇ̌̌
z
˛

kn
n ˇn;�

� z
˛

kn
n ˇn;C

ˇ̌̌
�

ˇ̌̌
�
˛

kn
n ˇn
� 1

ˇ̌̌
C �00jtr.ˇn/j

�1

Since 1� j�
˛

kn
n ˇn
j< j�nj

2 , we haveˇ̌̌
z
˛

kn
n ˇn;�

� z
˛

kn
n ˇn;C

ˇ̌̌
j�nj

2� 1
�

ˇ̌̌
�
˛

kn
n ˇn
� 1

ˇ̌̌
j�nj

2� 1
�

�0

jtr.ˇn/j.j�nj
2� 1/

:
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By the condition (i1 ) we haveˇ̌̌
�
˛

kn
n ˇn
� 1

ˇ̌̌
j�nj

2� 1
D

j�
˛

kn
n ˇn
� 1j

j�nj
2� j�

˛
kn
n ˇn
jC j�

˛
kn
n ˇn
j � 1

>
1

M C 1
; for some M > 0:

Hence for large n there exists � > 0 such thatˇ̌̌
z
˛

kn
n ˇn;�

� z
˛

kn
n ˇn;C

ˇ̌̌
j�nj

2� 1
>

1

M C 1
�

�0

jtr.ˇn/j.j�nj
2� 1/

> �:

For the upper bounds we have

jz
˛

kn
n ˇn;�

� z
˛

kn
n ˇn;C

j< 2j�njC �
00
jtr.ˇn/j

�1:

Note that dist.L˛n
;L
˛

kn
n ˇn

/ D inffdist.h1; h2/jh1 2 L˛n
; h2 2 L

˛
kn
n ˇn
g. Set hj D

.zj ; �j /; j D 1; 2. Then for an upper bound we can take

.z1; �1/D

�
0; jz

˛
kn
n ˇn;l

jC
1

2
jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j

�
;

.z2; �2/D

�
1

2
.z
˛

kn
n ˇn;u

C z
˛

kn
n ˇn;l

�
;
1

2
jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j/:

By Lemma 4.2, 1� �1jtr.ˇn/j
�1< jz

˛
kn
n ˇn;l

j � jz
˛

kn
n ˇn;u

j � j�nj
2C �2jtr.ˇn/j

�1 and
above estimates for jz

˛
kn
n ˇn;u

� z
˛

kn
n ˇn;l

j we have

cosh dist.L˛n
;L
˛

kn
n ˇn

/

�

1
4
jz
˛

kn
n ˇn;u

C z
˛

kn
n ˇn;l

j2Cjz
˛

kn
n ˇn;l

j2

jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j.jz
˛

kn
n ˇn;l

jC
1
2
jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j/
C 1

<
j�nj

2C �000jtr.ˇn/j
�1C �.j�nj

2� 1/C 1

�.j�nj
2� 1/

; �000 > 0:

This last inequality implies the Lemma.

Lemma 6.3
lim

n

1

jtr.˛kn
n ˇn/j.j�nj

2� 1/
D 0

Proof It follows from Proposition 4.1 and Lemma 6.2 that there exists � > 0 such that

ˇ̌
tr.˛kn

n ˇn/
ˇ̌
� �

 
.j�nj

2Dn C 3/.j�nj
2� 1/2Dn

j�nj
2Dn � 1

!1=.2Dn/

;
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hence we have

lim
1

jtr.˛kn
n ˇn/j.j�nj

2� 1/
� lim �0

 
j�nj

2Dn � 1

.j�nj
2Dn C 3/.j�nj

2� 1/4Dn

!1=.2Dn/

:

Since j�nj
2Dn � 1< j�nj

2� 1 for large n we have

lim
1

jtr.˛kn
n ˇn/j.j�nj

2� 1/
� lim �00.j�nj

2
� 1/.1� 4Dn/=.2Dn/D 0:

For large n by condition (i1), we have ı.j�nj
2�1/< j�nj

2� j�
˛

kn
n ˇn
j. Then by Lemma

4.2, ˇ̌̌ˇ̌
z
˛

kn
n ˇn;u

ˇ̌
�
ˇ̌
�
˛

kn
n ˇn

ˇ̌ˇ̌̌
� jz

˛
kn
n ˇn;u

� �
˛

kn
n ˇn
j<

�

jtr.ˇn/j

for some � > 0 we have

j�nj
2
� jz

˛
kn
n ˇn;u

j> j�nj
2
� j�

˛
kn
n ˇn
j �

�

jtr.ˇn/j
> ı.j�nj

2
� 1/�

�

jtr.ˇn/j
:

Set �n D .ı.j�nj
2� 1/��=jtr.ˇn/j/. Define Mobius transformations by

 n.x/D

�
1C

�n

2jz
˛

kn
n ˇn;u

j

�
��1

n .x/:

j�nj � jz n˛
kn
n ˇn 

�1
n ;u
j D j�nj �

�
1C

�n

2jz
˛

kn
n ˇn;u

j

�
j�nj
�1
jz
˛

kn
n ˇn;u

jThen

D

�
j�nj

2
� jz

˛
kn
n ˇn;u

j �
�n

2

�
j�nj
�1

>

�
�n�

�n

2

�
j�nj
�1
D
�n

2
j�nj
�1:

Also by Lemma 4.2 and �
˛

kn
n ˇn
D 1 we have

ˇ̌̌ˇ̌
z
˛

kn
n ˇn;l

ˇ̌
� 1

ˇ̌̌
<

�0

jtr.ˇn/j
:
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This gives

jz
 n˛

kn
n ˇn 

�1
n ;l
j � j�nj

�1

D

�
1C

�n

2jz
˛

kn
n ˇn;u

j

�
jz
˛

kn
n ˇn;l

jj�nj
�1
� j�nj

�1

D j�nj
�1

�
jz
˛

kn
n ˇn;l

j � 1C
�njz˛kn

n ˇn;l
j

2jz
˛

kn
n ˇn;u

j

�

> j�nj
�1

��njz˛kn
n ˇn;l

j

2jz
˛

kn
n ˇn;u

j
�

�0

jtr.ˇn/j

�

>
1

j�njjtr.ˇn/j

�
jtr.ˇn/j�njz˛kn

n ˇn;l
j

2jz
˛

kn
n ˇn;u

j
��0

�

>
1

j�njjtr.ˇn/j

�ıjtr.ˇn/j.j�nj
2� 1/jz

˛
kn
n ˇn;l

j ��jz
˛

kn
n ˇn;l

j

2jz
˛

kn
n ˇn;u

j
��0

�
:

By Lemma 6.3 and the above inequality we haveˇ̌
z
 n˛

kn
n ˇn 

�1
n ;l

ˇ̌
� j�nj

�1 > 0;

jtr.˛kn
n ˇn/j

�ˇ̌
z
 n˛

kn
n ˇn 

�1
n ;l

ˇ̌
� j�nj

�1
�
!1;

jtr.˛kn
n ˇn/j

�
j�nj �

ˇ̌
z
 n˛

kn
n ˇn 

�1
n ;u

ˇ̌�
!1:

Hence,

j�nj
�1 <

ˇ̌
z
 n˛

kn
n ˇn 

�1
n ;l

ˇ̌
�
ˇ̌
z
 n˛

kn
n ˇn 

�1
n ;u

ˇ̌
< j�nj;

lim
n

8<: 1

.jz
 n˛

kn
n ˇn 

�1
n ;u
j � j�nj/jtr.˛

kn
n ˇn/j

;
1

.jz
˛

kn
n ˇn;l

j � j�nj
�1/jtr.˛kn

n ˇn/j

9=;D 0:

The generators h n˛n 
�1
n ;  n˛

kn
n ˇn 

�1
n i satisfy the conditions of Lemma 5.2 for

large n.

Consider (i2).

There exists j�
˛

kn�1
n ˇn

j ! 1 such that �
˛

kn�1
n ˇn

�˛kn�1ˇn
D �

˛
kn�1
n ˇn

D 1. If

lim sup
n
j�
˛

kn�1
n ˇn

� 1j> 0;
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then (with the same index notation for subsequence there exists a subsequence) such
that

lim inf
n
j�
˛

kn�1
n ˇn

� �
˛

kn�1
n ˇn

j> 0:

This implies by Lemma 4.2,

lim inf
n
jz
˛

kn�1
n ˇn;C

� z
˛

kn�1
n ˇn;�

j> 0:

Hence by Proposition 4.1, there exists � > 0 such that for large n,

jtr.˛kn�1
n ˇn/j � �

 
j�nj

2Dn C 3

j�nj
2Dn � 1

!1=.2Dn/

:

In particular, we have jtr.˛kn�1
n ˇn/j !1. Note

lim
n

j�
˛

kn�1
n ˇn

j � 1

j�nj
2� 1

D 0:

This can be seen as follows: since j�nj
2� j�

˛
kn
n ˇn
j � j�nj

2� 1 we have either

j�nj
2� j�

˛
kn
n ˇn
j

j�nj
2� 1

! 0 or 1�
j�nj

2� j�
˛

kn
n ˇn
j

j�nj
2� 1

> � > 0:

Assume that the latter inequality holds. This is equivalent to (i1) and we follow the
same idea used in (i1). Set Mobius transformations  n.x/D �

�1
n .1� �n/

�1x , with
�n D �.j�nj

2� 1/=.2j�nj
2/. Then,

j�nj � j� n˛
kn
n ˇn 

�1
n
j D j�nj � j�

�1
n .1� �n/

�1�
˛

kn
n ˇn
j

D j�nj
�1.1� �n/

�1
�
j�nj

2.1� �n/� j�˛kn
n ˇn
j
�
:

Since j�nj
2� j�

˛
kn
n ˇn
j> �.j�nj

2� 1/ we have

j�nj � j� n˛
kn
n ˇn 

�1
n
j> j�nj

�1.1� �n/
�1.�.j�nj

2
� 1/� j�nj

2�n/D
�.j�nj

2� 1/

2j�nj.1� �n/
:

Since �n! 0, it follows from last inequality that for large n we have

j�nj � j� n˛
kn
n ˇn 

�1
n
j

j�nj
2� 1

> �0 > 0:

And �
 n˛

kn
n ˇn 

�1
n
D ��1

n .1� �n/
�1 we have

j�
 n˛

kn
n ˇn 

�1
n
j � j�nj

�1

j�j2� 1
D

�

2j�nj
3.1� �n/

> �00 > 0:
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Since jtr.˛kn
n ˇn/.j�nj

2� 1/j !1, it follows that for large n,

j�nj
�1 < j�

 n˛
kn
n ˇn 

�1
n
j � j�

 n˛
kn
n ˇn 

�1
n
j< j�nj;

lim
n

8<: 1

jtr.˛kn
n ˇn/j.j� n˛knˇn 

�1
n
j � j�nj

�1/
;

1

jtr.˛kn
n ˇn/j.j� n˛

kn
n ˇn 

�1
n
j � j�nj/

9=;D 0:

Hence by Lemma 4.2, h n˛n 
�1
n ;  n˛

kn
n ˇn 

�1
n i satisfies Lemma 5.2.

If the former holds then

j�nj
2.1� j�

˛
kn
n ˇn

��2
n j/D j�nj

2.1� j�
˛

kn�1
n ˇn

j/

D j�nj
2.j�

˛
kn�1
n ˇn

�˛kn�1ˇn
j � j�

˛
kn�1
n ˇn

j/

D j�nj
2
j�
˛

kn�1
n ˇn

j.j�˛kn�1ˇn
j � 1/

The last equation implies that

lim
n

j�
˛

kn�1
n ˇn

j � 1

j�nj
2� 1

D 0;

and jtr.˛kn�1
n ˇn/.j�nj

2� 1/j !1. It follows that for large n,

j�nj
�1 < j�

˛
kn�1
n ˇn

j � j�
˛

kn�1
n ˇn

j< j�nj;

lim
n

8<: 1

jtr.˛kn�1
n ˇn/j.j�˛kn�1ˇn

j � j�nj/
;

1

jtr.˛kn�1
n ˇn/j.j�˛kn�1

n ˇn
j � j�nj

�1/

9=;D 0:

Hence by Lemma 4.2, h˛n; ˛
kn�1
n ˇni satisfies Lemma 5.2.

Consider the case where �
˛

kn�1
n ˇn

! 1.

Let  n be the Mobius transformations given by

 n.x/D
1

�n

z
˛

kn�1
n ˇn;�

x� z
˛

kn�1
n ˇn;�

z
˛

kn�1
n ˇn;C

x� z
˛

kn�1
n ˇn;�

; x 2C:

�n D
1

z
˛

kn�1
n ˇn;�

z
˛

kn�1
n ˇn;C

� z2

˛
kn�1
n ˇn;�

:where

Let �n be the Mobius transformations defined by

�n.x/D �
�1

 n˛
kn
n ˇn 

�1
n

x:
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Then �
�n n˛

kn
n ˇn 

�1
n ��1

n
is given by

�
�n n˛

kn
n ˇn 

�1
n ��1

n
D

 
1� z

˛
kn�1
n ˇn;�

1� z
˛

kn�1
n ˇn;C

!0@˛kn
n ˇn.z˛kn�1

n ˇn;�
/� z

˛
kn�1
n ˇn;C

˛
kn
n ˇn.z˛kn�1

n ˇn;C
/� z

˛
kn�1
n ˇn;�

1A
To see this we do a simple computation. Set

Q̨n D �n n˛
kn�1
n ˇn 

�1
n ��1

n and Q̌
n D �n n˛

kn
n ˇn 

�1
n ��1

n :

Write the matrix

Q̌
n D

 
Qan
Qbn

Qcn
Qdn

!
:

Note that by our choice of �n , we have � Q̌
n
D 1, so QcnD�

Qdn and � Q̌
n
D Qan=� Qdn . By

straightforward matrix multiplications we have

Qan D � z2

˛
kn�1
n ˇn;�

�kn
n an� z

˛
kn�1
n ˇn;�

�kn
n bn

C z
˛

kn�1
n ˇn;�

z
˛

kn�1
n ˇn;C

.z
˛

kn�1
n ˇn;�

��kn
n cnC�

�kn
n dn/;

Qan D

 
�z
˛

kn�1
n ˇn;�

.�
kn
n anz

˛
kn�1
n ˇn;�

C�
kn
n bn/

z
˛

kn�1
n ˇn;�

�
�kn
n cnC�

�kn
n dn

C z
˛

kn�1
n ˇn;�

z
˛

kn�1
n ˇn;C

!
.z
˛

kn�1
n ˇn;�

�
�kn
n cnC�

�kn
n dn/�1

D

�z
˛

kn�1
n ˇn;�

.˛
kn
n ˇn.z˛kn�1

n ˇn;�
/� z

˛
kn�1
n ˇn;C

/

.z
˛

kn�1
n ˇn;�

�
�kn
n cnC�

�kn
n dn/�1

;

Qdn D z
˛

kn�1
n ˇn;�

z
˛

kn�1
n ˇn;C

�kn
n anC z

˛
kn�1
n ˇn;�

�kn
n bn

� z2

˛
kn�1
n ˇn;�

.z
˛

kn�1
n ˇn;C

�kn
n cn�

�kn
n dn/;

Qdn D

 
z
˛

kn�1
n ˇn;�

.�
kn
n anz

˛
kn�1
n ˇn;C

C�
kn
n bn/

z
˛

kn�1
n ˇn;C

�
�kn
n cnC�

�kn
n dn

� z2

˛
kn�1
n ˇn;�

!
.z
˛

kn�1
n ˇn;C

�
�kn
n cnC�

�kn
n dn/�1

D

z
˛

kn�1
n ˇn;�

.˛
kn
n ˇn.z˛kn�1

n ˇn;C
/� z

˛
kn�1
n ˇn;�

/

.z
˛

kn�1
n ˇn;C

�
�kn
n cnC�

�kn
n dn/�1

:
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Now by �n D 1 we have

z
˛

kn�1
n ˇn;C

�
�kn
n cnC�

�kn
n dn

z
˛

kn�1
n ˇn;�

�
�kn
n cnC�

�kn
n dn

D

1� z
˛

kn�1
n ˇn;C

1� z
˛

kn�1
n ˇn;�

:

Since � Q̌
n
D Qan=� Qdn , the formula for � Q̌

n
follows from the equations for Qan and Qdn .

Let Q�n denote the multiplier of Q̨n .

First, we need to get a estimate of the growth of jtr. Q̌n/j in terms of jtr.ˇn/j. Note
that jtr. Q̌n/j D jtr.˛

kn
n ˇn/j.

Remark 6.A There exists �; � 0 > 0 such that

� 0jtr.ˇn/j> jtr. Q̌n/j> � jtr.ˇn/j.j�nj
2
� 1/ for n large:

In fact we only need the lower bound for jtr. Q̌n/j.

Proof We have

j�nj
2� 1

j�
˛

kn
n ˇn
� 1j
C

j�
˛

kn
n ˇn
j � j�nj

2

j�
˛

kn
n ˇn
� 1j

D

j�
˛

kn
n ˇn
j � 1

j�
˛

kn
n ˇn
� 1j
� 1;

and by condition (i2) we have

j�
˛

kn
n ˇn
j � j�nj

2

j�
˛

kn
n ˇn
� 1j

! 0;

j�
˛

kn
n ˇn
� 1j

j�nj
2� 1

> � > 0; for large n:thus

Recall �
˛

kn
n ˇn
D 1, and by Lemma 4.7, more precisely by the second equation in the

proof of Lemma 4.7 and jtr.ˇn/j � jcnj,

jtr.˛kn
n ˇn/j

jtr.ˇn/j
> � 0j�

˛
kn
n ˇn
� �

˛
kn
n ˇn
j> � 0�.j�nj

2
� 1/; for large n:

The upper bound is trivial.

Lemma 6.4 Assume that there exists a subsequence such that

lim
j

j� Q̌
nj

� 1j

j Q�nj j
2� 1

D 0:

Then h Q̨nj ; Q̌nj i are classical Schottky generators for large j .
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Proof We will show that h Q̨nj ; Q̌nj i satisfies the conditions of Lemma 5.2 with Remark
5.4.

Since by Remark 6.A, � 0jtr.ˇn/j > jtr. Q̌n/j > � jtr.ˇn/j.j�nj
2 � 1/. In particular

jtr. Q̌n/j !1, we have

lim
j

ˇ̌
z Q̌

nj
;C
� z Q̌

nj
;�

ˇ̌
ˇ̌
� Q̌

nj

� 1
ˇ̌ D lim

j

ˇ̌̌̌
ˇ
q
jtr. Q̌nj /j2� 4

tr. Q̌nj /

ˇ̌̌̌
ˇD 1:

Since jtr. Q̌nj /j !1 the isometric circles of Q̌nj are disjoint for large j . Now

� Q̌
nj

and � Q̌
nj

are centers of these isometric circles and so by disjointness, the radius of these isometric
circles must be less than

j� Q̌
nj

� � Q̌
nj

j

2
for large j :

In addition, each isometric circle contains one of the fixed points

z Q̌
nj
;l

or z Q̌
nj
;u
:

By our convention z Q̌
nj
;l
; z Q̌

nj
;u

are contained within the isometric circles with centers
� Q̌

nj

; � Q̌
nj

respectively. Note that � Q̌
nj

D 1. Hence for large j we have

jz Q̌
nj
;l
� � Q̌

nj

j

j� Q̌
nj

� 1j
;

jz Q̌
nj
;u
� 1j

j� Q̌
nj

� 1j
<

1

2
:

From these bounds we have

lim
j

jz Q̌
nj
;l
� z Q̌

nj
;u
j

.jz Q̌
nj
;u
j � jQ�nj j/jtr. Q̌nj /j

D lim
j

ˇ̌
� Q̌

nj

� 1
ˇ̌

ˇ̌
.jz Q̌

nj
;u
j � 1/C .1� jQ�nj j/

ˇ̌ˇ̌
tr. Q̌nj /

ˇ̌
� lim

j

1�ˇ̌̌
jQ�nj
j�1

� Q̌nj
�1

ˇ̌̌
�

1
2

�
jtr. Q̌nj /j

D 0:

Geometry & Topology, Volume 14 (2010)



Kleinian groups of small Hausdorff dimension are classical Schottky groups. I 501

Similarly we have

lim
j

jz Q̌
nj
;l
� z Q̌

nj
;u
j

.jz Q̌
nj
;l
j � jQ�nj j

�1/jtr. Q̌nj /j

D lim
j

ˇ̌
� Q̌

nj

� 1
ˇ̌

ˇ̌
.jz Q̌

nj
;u
j � j� Q̌

nj

j/C .j� Q̌
nj

j � 1/C .1� jQ�nj j
�1/

ˇ̌ˇ̌
tr. Q̌nj /

ˇ̌
� lim

j

1�
1

jQ�nj
j

ˇ̌̌
jQ�nj
j�1

� Q̌nj
�1

ˇ̌̌
C

ˇ̌̌ j� Q̌nj j�1

� Q̌nj
�1

ˇ̌̌
�

1
2

�
jtr. Q̌nj /j

D 0:

Hence by Remark 5.4, h Q̨nj ; Q̌nj i are classical Schottky generators for sufficiently
large j .

Lemma 6.5 Assume that there exists M > 0 such that

M <
j� Q̌

n
� 1j

j Q�nj
2� 1

:

Then there exists N ; � > 0 such that

j Q�nj
2Dn � 1> � jtr. Q̌n/j2Dn=.2Dn�1/ for n>N :

Proof Use matrix representations we can write

Q̌
n D

 
Qan
Qbn

Qcn
Qdn

!
:

Note that � Q̌
n
D 1. So Qcn D�

Qdn and we have

Q̌
n D

 
Qan
Qbn

� Qdn
Qdn

!
:

By j� Q̌
n
j � 1 and our assumption on M , we have

M.j Q�2
nj � 1/ <

ˇ̌
� Q̌

n
� 1

ˇ̌
<M 0:

By jtr. Q̌n/j !1 and as in the proof of Lemma 6.4 we have

lim
n

ˇ̌
z Q̌

n;C
� z Q̌

n;�

ˇ̌ˇ̌
� Q̌

n
� 1

ˇ̌ D lim
n

ˇ̌̌̌
ˇ
q
jtr. Q̌n/j2� 4

tr. Q̌n/

ˇ̌̌̌
ˇD 1:
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Since jz Q̌
n;C
� z Q̌

n;�
j D j Qdnj

�1j

q
tr2 Q̌

n� 4j it follows that for some �; � 0 > 0 and
large n,

� jtr. Q̌n/j< j Qdnj< �
0
jtr. Q̌n/j.j Q�nj

2
� 1/�1:

Let e be the Euler number. If there exists a subsequence such that limi j� Q̌
ni

j D e�1 ,
then 1� e�1 < jz Q̌

ni
;C
� z Q̌

ni
;�
j< 1C e�1 for large n. Otherwise we let mn > 0 be

integers defined as

1C
1

mnC 1
� jQ�nj � 1C

1

mn
:

From this definition we have limn j
Q�nj

mn D limn.1Cm�1
n /mn D e . Then there exists

N; ı > 0 such that for n>N we have

j�
Q̨

mn
n
Q̌
n
� �
Q̨

mn
n
Q̌
n
j �

ˇ̌
j� Q̌

n
jj Q�nj

mn C 1
ˇ̌

� ı.eC 1/;

j�
Q̨

mn
n
Q̌
n
� �
Q̨

mn
n
Q̌
n
j �

ˇ̌
j� Q̌

n
jj Q�nj

mn � 1
ˇ̌

� ı.e� 1/:

Hence it follows from Lemma 4.2 that there exists � > 0 such that

��1 < jz
Q̨

mn
n
Q̌
n;C
� z
Q̨

mn
n
Q̌
n;�
j< �:

Therefore by setting mn D 0 for the subsequence with limi j� Q̌
ni

j D e�1 , we can
always assume that for large n,

��1 < jz
Q̨

mn
n
Q̌
n;C
� z
Q̨

mn
n
Q̌
n;�
j< �:

jz
Q̨

mn
n
Q̌
n;C
� z
Q̨

mn
n
Q̌
n;�
j D

ˇ̌q
tr2. Q̨

mn
n
Q̌
n/� 4

ˇ̌
j Qdn
Q�

mn
n j

;Since

� 00jtr. Q̌n/j< jtr. Q̨mn
n
Q̌
n/j<

� 000jtr. Q̌n/j

.j Q�nj
2� 1/

:we have

��1 < jz
Q̨

mn
n
Q̌
n;C
� z
Q̨

mn
n
Q̌
n;�j<�

;Since

we have dist.L Q̨n ;L Q̨mn
n
Q̌
n
/ < ı for some ı > 0. By Remark 4.1.A applied to

h Q̨n; Q̨
mn
n
Q̌
ni we have

jtr. Q̨mn
n
Q̌
n/j> �

 
j Q�nj

2Dn C 3

j Q�nj
2Dn � 1

!1=.2Dn/
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and as an upper bound for jtr. Q̨mn
n
Q̌
n/j we have

jtr. Q̌n/j> �� 000�1.j Q�nj
2
� 1/

 
j Q�nj

2Dn C 3

j Q�nj
2Dn � 1

!1=.2Dn/

> �0
j Q�nj

2� 1�
j Q�nj

2Dn � 1
�1=.2Dn/

> �00
�
j Q�nj

2Dn � 1
�1�1=.2Dn/:

The last inequality implies that

j Q�nj
2
� 1> j Q�nj

2Dn � 1> �000jtr. Q̌n/j2Dn=.2Dn�1/:

Proposition 6.6 Assume (i2). Suppose that there exists a M > 0 such that

M <
j� Q̌

n
� 1j

j Q�nj
2� 1

:

Then h˛n; ˛
kn�1ˇni are classical generators for large n.

To prove Proposition 6.6 when lim supn jtr.˛
kn�1
n ˇn/j<1 we use disjoint nonisomet-

ric circles for ˛kn�1
n ˇn based on the following.

Proposition 6.7 Given any loxodromic transformation 
 with fixed points 6D 0;1

and multiplier �2

 , there exists disjoint circles So;r ;So0;r 0 of center o radius r and

center o0 radius r 0 respectively such that


 .interior.So;r //\ interior.So0;r 0/D∅ and r C r 0 D jz
;C� z
;�j
2j�
 j

j�
 j2� 1
:

Note that since j�
 j> 1, so by this equality for r C r 0 we have an upper bound

r C r 0 < jz
;�� z
;Cj
j�
 jC 1

j�
 j � 1
:

Proof We conjugate 
 into Mobius transformation 
 0 with fixed points f0;1g.
Consider circles S0;j�
 j�1 ;S0;j�
 j . The Mobius transformation �.x/D .x�1/=.xC1/

maps the fixed points of 
 0 which are f0;1g to fixed points f�1; 1g respectively. In
addition it maps S0;j�
 j�1 ;S0;j�
 j to Sz1;r1

;Sz0
1
;r 0

1
respectively. Here we can use basic
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formulas to determine z1; z
0
1
; r1; r

0
1

(see page 91 of [6]). Explicitly by [6] we have

r1 D

ˇ̌̌̌
ˇ�j�
 j�2� 1

�j�
 j�2C 1
�
j�
 j

�1� 1

j�
 j�1C 1

ˇ̌̌̌
ˇ

D
2j�
 j

j�
 j2� 1
;

r 01 D

ˇ̌̌̌
ˇ�j�
 j2� 1

�j�
 j2C 1
�
j�
 j � 1

j�
 jC 1

ˇ̌̌̌
ˇ

D
2j�
 j

j�
 j2� 1
:

r1C r 01 D
4j�
 j

j�
 j2� 1
:This gives

The distance between the centers is

jz1� z01j D

ˇ̌̌̌
ˇ�j�
 j�2� 1

�j�
 j�2C 1
�
�j�
 j

2� 1

�j�
 j2C 1

ˇ̌̌̌
ˇD 2

j�
 j
2C 1

j�
 j2� 1
:

The equality .j�
 j2C 1/� 2j�
 j D .j�
 j � 1/2 > 0 implies Sz1;r1
;Sz0

1
;r 0

1
are disjoint.

By conjugating �
 0��1 with

 .x/D xC
z
;CC z
;�

z
;C� z
;�

we map the fixed points f�1; 1g to(
2z
;�

z
;C� z
;�
;

2z
;C

z
;C� z
;C

)
:

Because  .x/ is a translation (ie Euclidean isometry), the circles are mapped to
Sz2;r2

, Sz0
2
;r 0

2
with same radius and preserves the disjointness. Finally conjugating

 �
��1 �1 by �.x/D .z
;C� z
;�/=2 maps(
2z
;�

z
;C� z
;�
;

2z
;C

z
;C� z
;C

)
to fz
;�; z
;Cg, and maps circles to Sz3;r3

, Sz0
3
;r 0

3
. Note that

r3; r
0
3 D jz
;C� z
;�j

j�
 j

j�
 j2� 1
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and preserves the disjointness. Note that 
 D � �
 0��1 �1��1 . Hence the sum of
the radius of the resulting disjointed circles is

r3C r 03 D jz
;�� z
;Cj
2j�
 j

j�
 j2� 1
:

Proof of Proposition 6.6 First assume that lim supn jtr.˛
kn�1
n ˇn/j<1. Let Son;rn

,
So0n;r

0
n

be the disjoint circles for ˛kn�1
n ˇn given by Proposition 6.7. We will show that

lim
n

rnC r 0n
j�nj

2� 1
D 0:

Note that

lim
n

rnC r 0n
j�nj

2� 1
� lim

n
jz
˛

kn�1
n ˇn;C

� z
˛

kn�1
n ˇn;�

j
2j Q�nj

.j Q�nj
2� 1/.j�nj

2� 1/

� lim
n
jz
˛

kn�1
n ˇn;C

� z
˛

kn�1
n ˇn;�

j
2C

.j Q�nj
2� 1/.j�nj

2� 1/
;

where the second inequality holds since jtr.˛kn�1
n ˇn/j< C for some C > 0.

Since lim supn jtr.˛
kn�1ˇn/j <1 and lim supn j�nj

kn�1 <1, we have by Lemma
4.7,

jz
˛

kn�1
n ˇn;C

� z
˛

kn�1
n ˇn;�

j �
1

jtr.ˇn/j
:

By Proposition 4.1,

jtr.ˇn/j
2Dn > �Dn

j�nj
2Dn C 3

j�nj
2Dn � 1

>
4�Dn

j�nj
2� 1

:

The last inequality follows from j�nj
2Dn � 1< j�nj

2� 1 for large n.

By our assumption that

M <
j� Q̌

n
� 1j

j Q�nj
2� 1

and Lemma 6.5 we have

lim
n

rnC r 0n
j�nj

2� 1
� lim

n
.4�Dn/�1M 0

jtr.ˇn/j
�1
jtr.ˇn/j

2Dn jtr. Q̌n/j2Dn=.1�2Dn/

< lim
n
.4�Dn/�1�2Dn=.1�2Dn/M 0

jtr.ˇn/j
.Dn.6�4Dn/�1/=.1�2Dn/ D 0;

where the second inequality holds since jtr. Q̌n/j< � jtr.ˇn/j.
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Now the circles Son;rn
contains one of z

˛
kn�1
n ˇn;�

; z˛kn�1ˇn;C
and So0n;r

0
n

contains
the other fixed point, and since �

˛
kn�1
n ˇn

D 1 and j�
˛

kn�1
n ˇn

j ! 1, it follows from
Lemma 4.2, we must have Son;rn

;So0n;r
0
n

contained in the region between 1=j�nj and
j�nj for large n. Hence we have classical generators for large n.

Now if there is a subsequence such that jtr.˛
kni
�1

ni
ˇni
/j !1, then h˛ni

; ˛kni
�1ˇni

i

satisfies conditions of Lemma 5.2.

6.2.2 (A2 ) To prove (A2 ) we can follow the steps given in the proof of (A1 ), and do
the appropriate modifications. Some of the estimates will be simpler because j�nj> �

and so estimates involving .j�nj
2 � 1/�1 will hold trivially. However to avoid too

much reproduction of the previous proof of (A1 ), we give here a alternative short cut
proof of (A2 ) instead.

Proof of (A2 ) Suppose that there is a subsequence (use same index for subsequence)
such that jtr.˛kn

n ˇn/j ! 1. Then by our assumption of (A2 ), j�
˛

kn
n ˇn
j ! 1 and

j�nj> � > 1 we have for large n,

��1 < j�
˛

kn
n ˇn
j � j�

˛
kn
n ˇn
j< �;

lim
n

8<: 1

jtr.˛kn
n ˇn/j.j�˛kn�1ˇn

j ���1/
;

1

jtr.˛kn
n ˇn/j.j�˛kn

n ˇn
j ��n/

9=;D 0:

By Lemma 4.2, h˛n; ˛
kn
n ˇni satisfies the second set of conditions of Lemma 5.2, hence

classical.

Otherwise we have jtr.˛kn
n ˇn/j<C for some C >0. Since j�

˛
kn
n ˇn
j!1 and �

˛
kn
n ˇn
D

1, by Lemma 4.2 we have jz
˛

kn
n ˇn;˙

j! 1. Now by Remark 4.1.A and jtr.˛kn
n ˇn/j<C

we must have dist.L˛n
;L
˛

kn
n ˇn

/!1. This implies that jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j ! 0.
More precisely we have:

Lemma 6.8 Suppose jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j ! 0 and jz
˛

kn
n ˇn;˙

j ! 1. Then there
exists ı > 0 such that

dist.L˛n
;L
˛

kn
n ˇn

/ < log

 
ı

jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j

!
:
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Proof By using hyperbolic distance formula, and since jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j ! 0

and jz
˛

kn
n ˇn;˙

j ! 1, we have for large n,

cosh dist.L˛n
;L
˛

kn
n ˇn

/

<
jz
˛

kn
n ˇn;u

j2C
1
4
.jz
˛

kn
n ˇn;u

C z
˛

kn
n ˇn;l

j/2

1
2
.jz
˛

kn
n ˇn;l

jC
1
2
jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j/.jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j/
C 1

<
�

jz
˛

kn
n ˇn;u

� z
˛

kn
n ˇn;l

j
for some � > 0:

Let So;rn
;So0;r 0n

be the circles given by Proposition 6.7.

Proposition 6.9 If jtr.˛kn
n ˇn/j<C for some C > 0, then we must have .rnCr 0n/! 0.

Proof First note that we have showed jtr.˛kn
n ˇn/j< C implies

jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j ! 0 and jz
˛

kn
n ˇn;˙

j ! 1:

Set  n.x/D
x� z

˛
kn
n ˇn;C

x� z
˛

kn
n ˇn;�

:

Let �
˛

kn
n ˇn

be the multiplier of  n˛
kn
n ˇn 

�1
n . We have

j�˛n
j
2 >

 
j�
˛

kn
n ˇn
j2Dn C 3

j�
˛

kn
n ˇn
j2Dn � 1

!1=Dn �
e
�2 dist.L

 n˛n 
�1
n
;L
 n˛

kn
n ˇn 

�1
n
/�
:

by Remark 4.1.A applied to  nh˛n; ˛
kn
n ˇni 

�1
n . Since fz n˛n �1;C; z n˛n 

�1
n ;�g D

f1; z
˛

kn
n ˇn;C

=z
˛

kn
n ˇn;�

g we have

jz n˛n 
�1
n ;˙j ! 1;ˇ̌

z n˛n 
�1
n ;C� z n˛n 

�1
n ;�

ˇ̌
D

ˇ̌̌̌
ˇ1� z

˛
kn
n ˇn;C

z
˛

kn
n ˇn;�

ˇ̌̌̌
ˇ! 0:

By Lemma 6.8 we have for large n,

dist.L n˛n 
�1
n
;L
 n˛

kn
n ˇn 

�1
n
/ < log

 
ı

jz n˛n 
�1
n ;C� z n˛n 

�1
n ;�j

!
:
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This implies that for large n,

j�˛n
j> ı�1

 
j�
˛

kn
n ˇn
j2Dn C 3

j�
˛

kn
n ˇn
j2Dn � 1

!1=.2Dn/

jz n˛n 
�1
n ;C� z n˛n 

�1
n ;�j

> ı�1
�
j�
˛

kn
n ˇn
j
2Dn C 3

�1=.2Dn/

 
jz n˛n 

�1
n ;C� z n˛n 

�1
n ;�j

j�
˛

kn
n ˇn
j2� 1

!

> ı�1
�
j�
˛

kn
n ˇn
j
2Dn C 3

�1=.2Dn/ .rnC r 0n/

2C 0jz
˛

kn
n ˇn;�

j

The last inequality follows from Proposition 6.7 and j�
˛

kn
n ˇn
j < C 0 . The second

inequality in the above calculations follows since j�
˛

kn
n ˇn
j < C 0 and for large n we

have �
j�
˛

kn
n ˇn
j
2Dn � 1

�1=.2Dn/
� j�

˛
kn
n ˇn
j
2Dn � 1� j�

˛
kn
n ˇn
j
2
� 1:

Since j�˛n
j<M for some M ,

rnC r 0n <
2C 0M ıjz

˛
kn
n ˇn;�

j�
j�
˛

kn
n ˇn
j2Dn C 3

�1=.2Dn/
<

2C 0M ı0

41=.2Dn/
! 0:

Now we can continue and finish the proof for jtr.˛kn
n ˇn/j < C . By Proposition 6.9

and j�nj> � > 1 (this is the condition of (A2 )) we have

rnC r 0n
j�nj

2� 1
! 0:

Since the circles Son;rn
contains one of z

˛
kn
n ˇn;�

; z˛knˇn;C
and So0n;r

0
n

contains the
other fixed point, and �

˛
kn
n ˇn

D 1 and j�
˛

kn
n ˇn
j ! 1 (condition of (A2 )), it follows

from Lemma 4.2, we must have Son;rn
;So0n;r

0
n

contained in the region between 1=j�nj

and j�nj for large n. Hence we have classical generators for large n. This completes
the proof for (A2 ).

6.3 Case (B)

Set Mobius transformations

 n.x/D �
�1
n �2�2kn

n x

and consider the generators  nh˛n; ˛
kn�1ˇni 

�1
n . Then

�
 n˛

kn�1
n ˇn 

�1
n
D 1 and �

 n˛
kn
n ˇn 

�1
n
D ��1

n �2�2kn
n :
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Since 1� �n�
2kn
n < �2

n and j�n�
2kn
n j � j�

2
nj ! 0 (the condition of (B)) we have

j�n�
2kn
n j.1� j�

�1
n �2�2kn

n j/! 0:

Since j�nj<M for some M >0, we have j�
 n˛

kn�1
n ˇn 

�1
n
j!1. Hence by considering

h n˛n 
�1
n ;  nˇ

�1
n ˛

1�kn
n  �1

n i we have

j�
 nˇ

�1
n ˛

1�kn
n  �1

n
j ! 1 and �

 nˇ
�1
n ˛

1�kn
n  �1

n
D 1:

We have reduced (B) to (A).

Hence we have completed our proof of Theorem 6.1.

7 � with small D� is either classical or there exists a univer-
sal lower bound on Z�

This section is devoted to proving Theorem 7.1 which will enable us to remove the
constraint on Z�n

that was placed in the previous section.

Theorem 7.1 There exists c > 0 such that if �n is a sequence of Schottky groups
with Dn! 0, Then for sufficiently large n, either there exists a subsequence �ni

that
are classical Schottky groups, or there exists a subsequence �nj with generating set
h˛nj ; ˇnj i such that Zh˛nj

;ˇnj
i > c .

Proof We prove by contradiction. Suppose there exists �n a sequence of Schottky
groups such that for every generating set h˛n; ˇni of �n we have Zh˛n;ˇni! 0.

For each n, by replacing h˛n; ˇni with h˛n; ˛
mn
n ˇni for sufficiently large mn if

necessary, we can always assume that every �n is generated by generators with
jtr.˛n/j � jtr.ˇn/j and jtr.ˇn/j � log 3=Dn .

We take the upper space model H3 . By conjugating with Mobius transformations, we
can assume that ˛n have fixed points 0;1 with multiplier �n , and ˇn with zˇn;u D 1.
Recall that, as before we denote the two fixed points of ˇn by zˇn;l ; zˇn;u , with
jzˇn;l j � jzˇn;uj. When we write ˇn in matrix form, we assume that janj � jdnj,
otherwise we replace ˇn with ˇ�1

n .

By assumption, we have two cases: either (A) zˇn;l ! 1 or (B) zˇn;l ! 0. First we
consider Case (A).

7.1 Case (A)

There are two possibilities, (A1 ) lim infn j�nj D 1 or (A2 ) there exists � > 1 such that
j�nj> �.
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7.1.1 (A2 ) Since jtr.ˇn/j !1 and zˇn;l ! zˇn;u D 1 and j�nj > � > 1, we have
1=�< jzˇn;l j � jzˇn;uj<� for large n. Hence h˛n; ˇni satisfies Lemma 5.2 for large n.

7.1.2 (A1 ) Taking a subsequence if necessary, we may assume that j�nj is strictly
decreasing to 1. For large enough n, we choose a sequence of positive integers mn

depends on n such that 1C 1=.mnC 1/ � j�nj � 1C 1=mn . Let us set �n D an=cn ,
�n D�dn=cn . Since jtr.ˇn/j !1 and j

p
tr2.ˇn/� 4=.2cn/j D jzˇn;C� zˇn;�j ! 0

implies jtr.ˇn/j< cn , it follows from Lemma 4.2 and Remark 4.5 thatˇ̌
z˛mn

n ˇn;˙
� �n�

2mn
n

ˇ̌
� �
j�

mn
n j

jtr.ˇn/j
� �

e

jtr.ˇn/j

for large n. Also by Lemma 4.2 and Remark 4.5, and the assumption that zˇn;l !

zˇn;u D 1, we have both �n; �n! 1. Hence

jz˛mn
n ˇn;˙

��2mn
n jC jz˛mn

n ˇn;�
� 1j ! 0:

Since by our choice of mn , we have j�2mn
n j ! e2 . It follows that jz˛mn

n ˇn;˙
j ! e2

and jz˛mn
n ˇn;�

j ! 1. Therefore, there exists c > 0 such that Zh˛n;˛
mn
n ˇni

> c for
sufficiently large n.

7.2 Case (B)

Here we have either (B1 ) lim infn j�nj<ƒ for some ƒ> 1, or (B2 ) lim infn j�nj!1.
We also assume that j�nj � j�nj as before.

7.2.1 (B1 ) We will show that there exists integers kn such that Z
h˛n;˛

kn
n ˇni

> c for
some c > 0.

Take subsequence if necessary, we may assume that j�nj � ƒ for large n. Choose
positive integers kn to be the smallest such that e2 � j�n�

2kn
n j. Since j�nj � ƒ,

we must have some � > 0 such that e2 < j�n�
2kn
n j < � . We claim that there exists

0< � < e2 and n>N� such that e2� � < jz
˛

kn
n ˇn;C

j; jz
˛

kn
n ˇn;�

j< �C � . To see this,
we use Remark 4.2.B.

To prove the claim, note that since jzˇn;�� zˇn;Cj< 1C� for some � > 0 and large n,
and also jtr.ˇn/j!1, we have jcnj!1. By Remark 4.2.B we have jzˇn;u��nj!0,
hence �n! 1.

First we show that jz
˛

kn
n ˇn;C

� z˛knˇn;�
j 6! 1. Assume otherwise. Let �n be

the center of the circle having z
˛

kn
n ˇn;C

and z
˛

kn
n ˇn;�

as antipodal points. Since
j�
˛

kn
n ˇn
C �

˛
kn
n ˇn
j< � C 1C �0 for some �0 > 0 and large n, and

�n D

z
˛

kn
n ˇn;C

C z˛knˇn;�

2
;
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and
z
˛

kn
n ˇn;C

C z˛knˇn;�
D �

˛
kn
n ˇn
C �

˛
kn
n ˇn

we have j�n��
0j< � for some � > 0 and � 0D �C1C�0 . Note that since j�n��

0j �

j�njCj�
0j<.�C1C�0/=2C�C1C�0 we can take �D 3

2
.�C1C�0/. This implies that

dist.L˛n
;L
˛

kn
n ˇn

/ < ı for some ı > 0. By Remark 4.1.A we have jtr.˛kn
n ˇn/j !1,

and

j�
˛

kn
n ˇn
� �

˛
kn
n ˇn
j D
jtr.˛kn

n ˇn/j

jcn�
�kn
n j

;

we get jtr.˛kn
n ˇn/j � jcn�

�kn
n j. But this implies that jz

˛
kn
n ˇn;C

� z˛knˇn;�
j < C for

some C > 0, hence a contradiction.

Note that if jz˛knˇn;C
� z˛knˇn;�

j ! 0 then

jz˛knˇn;˙
j !

1

2
j�
˛

kn
n ˇn
C �

˛
kn
n ˇn
j D

1

2
j�
˛

kn
n ˇn
C 1j:

Since 1
2
.e2� 1/ < 1

2
j�
˛

kn
n ˇn
C 1j< 1

2
� 0 for large n, this implies that 1

2
.e2� 1/ <

jz˛knˇn;˙
j< 1

2
� 0 for large n.

Finally if c < jz
˛

kn
n ˇn;C

� z˛knˇn;�
j < c0 for some c; c0 > 0, then by Remark 4.1.A

we have jtr.˛kn
n ˇn/j !1 which implies jcn�

�kn
n j !1 . Hence by Remark 4.2.B we

have fz
˛

kn
n ˇn;C

; z˛knˇn;�
g ! f�

˛
kn
n ˇn

; �
˛

kn
n ˇn
g which implies the claim.

With the claim true, there are two possibilities: (B 0
1

) lim inf jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j! 0,
or (B 00

1
) lim infn jz˛kn

n ˇn;C
� z

˛
kn
n ˇn;�

j > 0. For (B 00
1

), we have Z
h˛n;˛

kn
n ˇni

> c , for
some c > 0 and large n.

Suppose (B 0
1

) holds. By passing to subsequence if necessary, we take

jz
˛

kn
n ˇn;C

� z
˛

kn
n ˇn;�

j ! 0:

If j�nj ! 1 then we choose positive integers mn as defined in Case (A1 ). Then

e2
� �n�

2knC2mn
n < e4 and �1 < jz˛knCmn

n ˇn;C
� z

˛
knCmn
n ˇn;�

j< �2

for some 0 < �1; �2 . By Remark 4.1.A we have jtr.˛knCmn
n ˇn/j ! 1. Hence by

Remark 4.2.B we have

fz
˛

knCmn
n ˇn;C

; z
˛

knCmn
n ˇn;�

g ! f�
˛

knCmn
n ˇn

; �
˛

knCmn
n ˇn

g:

This implies that e2 � jz
˛

knCmn
n ˇn;˙

j< e4 and jz
˛

knCmn
n ˇn;�

j! 1. Hence there exists
c > 0 such that Z

h˛n;˛
knCmn
n ˇni

> c for large n.
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If j�nj> c > 0 then we take mn D 1. Then

ı1 < jz˛knC1
n ˇn;C

� z
˛

knC1
n ˇn;�

j< ı2

for some 0 < ı1; ı2 . And it follows from Remark 4.1.A and Remark 4.2.B we have
that Z

h˛n;˛
knC1
n ˇni

> c for large n.

7.2.2 (B2 ) By taking a subsequence of ˛n , we may assume that j�nj is strictly
increasing. Choose a sequence of largest integers kn � 0 such that j�n�

2kn
n j � 1.

If lim sup j�n�
2kn
n j D 1 but lim sup j�n�

2kn
n � 1j 6D 0, then there is a subsequence

h˛nj ; ˛
knjnj
ˇnj i of h˛n; ˛

kn
n ˇni such that lim infj Zh˛nj

;˛
knj
nj

ˇnj
i > 0.

If lim sup �n�
2kn
n D 1, then let h˛ni

; ˛knini
ˇni
i be the subsequence of h˛n; ˛

kn
n ˇni with

limi �ni
�2knini

D 1.

If lim sup jtr.˛knini
ˇni
/jD1, then by passing to a subsequence if necessary, for large i ,

˛knini
ˇni

will have disjoint isometric circles. Note jtr.ˇni
/j ! 1, zˇni

;u D 1 and
zˇni

;l!0, so jzˇni
;C�zˇni

;�j�1C�n for �n!0 (ie jzˇni
;C�zˇni

;�j< c , for c>0),
we have jcni

j !1. By Remark 4.2.B, limi minfj�ni
� zˇni

;�j; j�ni
� zˇni

;Cjg ! 0.
Since �˛knini

ˇni
! 1D �˛knini

ˇni
and jtr.˛knini

ˇni
/j !1 we have

j�˛knini
ˇni
� �˛knini

ˇni
j D
jtr.˛knini

ˇni
/j

j�
�kni
ni

cni
j

! 0 and j�
�kni
ni

cni
j !1:

Also jz˛knini
ˇni

;C� z˛knini
ˇni

;�j D

ˇ̌q
tr2.˛knini

ˇni
/� 4

ˇ̌
2j�
�kni
ni

cni
j

! 0:

Hence by Remark 4.2.B, there exists a � > 0 such that for large i we have

��1 < jz˛knini
ˇni

;l j � jz˛knini
ˇni

;uj< �:

And since j�ni
j ! 1, we are able to choose Mobius transformations  i such that

 ih˛ni
; ˛knini

ˇni
i �1

i satisfies Lemma 5.2.

If lim sup jtr.˛knini
ˇni
/j<1, then let �i be Mobius transformations such that the maps

�i˛
knini
ˇni
��1

i have fixed points 0;1, and the fixed point z�i˛ni
��1

i
;u of ˛ni

is 1. It
follows that z�i˛ni

��1
i
;l ! 1. Since jtr.�i˛ni

��1
i /j !1, hence we have reduced this

case to Case (A), which we already considered.

If lim sup j�n�
2kn
n j< 1, then we have two possibilities: (B 0

2
) lim inf j�n�

2knC2
n j D 1,

or (B 00
2

) lim inf j�n�
2knC2
n j> 1.
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Consider Case (B 0
2

). Let h˛ni
; ˛knini

ˇni
i be a subsequence of h˛n; ˛

kn
n ˇni such that

limi j�ni
�

2kni
C2

ni
j ! 1. If supi jtr.˛

kniC1
ni

ˇni
/j<1, then we conjugate ˛ni

; ˛knini
ˇni

to Ǒi D �i˛ni
��1

i ; Ǫ i D �i˛
kni
C1

ni
ˇni
��1

i with Ǫ i have fixed points 0;1 and Ǒi have
z Ǒ

i ;u
D 1. Since supi j

O�i j<1, it follows that, if z Ǒ
i ;l
! 1 then h Ǫ i ; Ǒii, falls under

Case (A), and if z Ǒ
i ;l
! 0 then h Ǫ i ; Ǒii falls under Case (B1 ). Otherwise there exists

� > 0 such that � < jz Ǒ
i ;l
j< 1� � , hence Z

h Ǫ i ; Ǒi i
> c for some c > 0.

On the other hand, if supi jtr.˛
kni
C1

ni
ˇni
/j D 1, then for large i since the radius of

isometric circles is

R
˛

kni
C1

ni
ˇni

D

ˇ̌̌
z
˛

kni
C1

ni
ˇni

;u
� z

˛
kni
C1

ni
ˇni

;l

ˇ̌̌
jtr.˛

kni
C1

ni
ˇni
/j

and the distance between the centers of these isometric circles is

j�
˛

kni
C1

ni
ˇni

� �
˛

kni
C1

ni
ˇni

j D
jtr.˛

kni
C1

ni
ˇni
/j

cn�
�kni

�1
ni

;

ˇ̌̌
z
˛

kni
C1

ni
ˇni

;u
� z

˛
kni
C1

ni
ˇni

;l

ˇ̌̌
D

q
tr2.˛

kni
C1

ni
ˇni
/� 4

2cni
�
�kni

�1
ni

and by

we have

lim
i

ˇ̌̌
�
˛

kni
C1

ni
ˇni

� �
˛

kni
C1

ni
ˇni

ˇ̌̌
R
˛

kni
C1

ni
ˇni

D lim
i

2
ˇ̌̌
tr.˛

kni
C1

ni
ˇni
/
ˇ̌̌2

q
tr2.˛

kni
C1

ni
ˇni
/� 4

> ıjtr.˛
kni
C1

ni
ˇni
/j

for some ı > 0. Henceˇ̌̌
�
˛

kni
C1

ni
ˇni

� �
˛

kni
C1

ni
ˇni

ˇ̌̌
> 2R

˛
kni
C1

ni
ˇni

for large i . This implies ˛
kni
C1

ni
ˇni

have disjointed isometric circles for large i . By
Lemma 4.2 and zˇni

;u D 1 we have �ˇni
! 1. And since

�
˛

kni
C1

ni
ˇni

D �ˇni
;

we have that
�
˛

kni
C1

ni
ˇni

! 1:

Note that if
inf
i

ˇ̌̌
�
˛

kni
C1

ni
ˇni

� 1
ˇ̌̌
> 0 and

ˇ̌̌
�
˛

kni
C1

ni
ˇni

ˇ̌̌
! 1;
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then by jtr.˛
kni
C1

ni
ˇni
/j !1 we haveˇ̌̌

1� z
˛

kni
C1

ni
ˇni

;l

ˇ̌̌
;
ˇ̌̌
�
˛

kni
C1

ni
ˇni

� z
˛

kni
C1

ni
ˇni

;u

ˇ̌̌
! 0;

inf
i

ˇ̌̌
z
˛

kni
C1

ni
ˇni

;u
� z

˛
kni
C1

ni
ˇni

;l

ˇ̌̌
> 0:

Hence for large i there exits � > 0 such that

1� � <
ˇ̌̌
z
˛

kni
C1

ni
ˇni

;l

ˇ̌̌
�

ˇ̌̌
z
˛

kni
C1

ni
ˇni

;u

ˇ̌̌
< 1C �;

therefore we must have
inf
i

Z˝
˛ni

;˛
kni
C1

ni
ˇni

˛ > 0:

It follows we can assume that

�
˛

kni
C1

ni
ˇni

! 1:

Then we have ˇ̌̌
�
˛

kni
C1

ni
ˇni

� �
˛

kni
C1

ni
ˇni

ˇ̌̌
! 0:ˇ̌

tr.˛
kni
C1

ni
ˇni
/
ˇ̌

cn�
�kni

�1
ni

! 0:Hence

Since jtr.˛
kni
C1

ni
ˇni
/j !1,

ˇ̌̌
z
˛

kni
C1

ni
ˇni

;u
� z

˛
kni
C1

ni
ˇni

;l

ˇ̌̌
D

q
tr2.˛

kni
C1

ni
ˇni
/� 4

2cni
�
�kni

�1
ni

! 0:

Therefore the distance between the centers of these isometric circles decreases to 0

and the radius
R
˛

kni
C1

ni
ˇni

! 0:

Since infi j�ni
j2 > c > 1, we have for large i that the isometric circles of ˛

kni
C1

ni
ˇni

are disjoint and lies between c�1 and c . In particular,

c�1 <
ˇ̌̌
z
˛

kni
C1

ni
ˇni

;l

ˇ̌̌
�

ˇ̌̌
z
˛

kni
C1

ni
ˇni

;u

ˇ̌̌
< c;

and h˛ni
; ˛

kni
C1

ni
ˇni
i satisfies Lemma 5.2.

Now consider Case (B 00
2

). First we define a new sequence of h Q̨n; Q̌ni as follows: Con-
sider h˛n; ˛

kn
n ˇni. If jtr.˛kn

n ˇn/j � jtr.˛n/j, then set Q̨n D ˛n; Q̌n D ˇn . Otherwise,
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let �n be the Mobius map so that �n˛
kn
n ˇn�

�1
n have fixed points 0;1, and �n˛n�

�1
n

have z�n˛n�
�1
n ;u D 1. Set ˛n;1 D �n˛

kn
n ˇn�

�1
n ; ˇn;1 D �n˛n�

�1
n . We define integer

kn;1 with respect to h˛n;1; ˇn;1i the same way as we defined kn before.

Now if jtr.˛kn;1

n;1
ˇn;1/j � jtr.˛n;1/j then we set Q̌n D ˇn;1 and Q̨n D ˛n;1 . Otherwise,

we repeat this construction to get a sequence h˛n;m; ˇn;mi. By construction for a
each n, either there exists a m such that jtr.˛kn;m

n;m ˇn;m/j � jtr.˛n;m/j or we have
jtr.˛kn;m

n;m ˇn;m/j < jtr.˛n;m/j for all m. Assume the latter holds, since ˛n;mC1 D

�n;m˛
kn;m

n;m ˇn;m�
�1
n;m we have jtr.˛n;mC1/j< jtr.˛n;m/j for all m. If limm jtr.˛n;m/jD

0 then take mn to be the first integer m with jtr.˛n;m/j< 1=n. If limm jtr.˛n;m/j> 0

then take mn to be the first integer m with jtr.˛n;mC1/j > jtr.˛n;m/j � 1=n. If the
former holds, we set mn to be the first integer m with jtr.˛kn;m

n;m ˇn;m/j � jtr.˛n;m/j.
Hence there exists a mn such that either jtr.˛kn;mn

n;mn
ˇn;mn

/j > jtr.˛n;mn
/j � 1=n, or

jtr.˛n;mn
/j< 1=n. We define Q̨n D ˛n;mn

; Q̌n D ˇn;mn
.

Now consider h Q̨n; Q̌ni. If lim infn jtr. Q̨n/j < 1, we choose a subsequence with
jtr. Q̨ni

/j < c for all large i and some c > 0. Let pi be a sequence of least positive
integers such that jtr. Q̨pi

ni
Q̌
ni
/j> 1=Dni

. We conjugate Q̨pi
ni
Q̌
ni

by  i that fixes 0;1

and z
 i Q̨

pi
ni
Q̌
ni
 �1

i
;u
D 1. Set N̨ i D  i Q̨ni

 �1
i ; Ňi D  i Q̨

pi
ni
Q̌
ni
 �1

i . By construction,
if z N̨ i ;l ! 0 then h N̨ i ; Ňii satisfies (B1 ), and if z N̨ i ;l ! 1 then h N̨ i ; Ňii satisfies (A).
Otherwise there exists � >0 such that � < jz N̨ i ;l j<1�� which implies that Z

h N̨ i ; Ňi i
> c

for some c > 0. Hence in either case, we are done.

On the other hand, suppose lim infn jtr. Q̨n/j D1. Since jtr. Q̌n/j � jtr. Q̨n/j then it’s
sufficient to assume that h Q̨n; Q̌ni satisfies Case (B 00

2
), otherwise we are done. We

define Qkn D kn;mn
.

Set �nD Q̨
Qkn
n
Q̌
n; �nD Q̨n . Since jtr. Q̌n/j � jtr. Q̨n/j and jz Q̌

n;�
�z Q̌

n;C
j � 1C ın with

ın! 0 (this follows from z Q̌
n;u
D 1; z Q̌

n;l
! 0), it follows from Lemma 4.2 with Re-

mark 4.5 and jtr.˛kn;mn
n;mn

ˇn;mn
/j> jtr.˛n;mn

/j � 1=n which implies limn jtr.�n/j=j Q�nj>

� for � > 0, we have j��n
� 1j< ıj Q�nj

�2 , for some ı > 0. Since ��n�n
D ��n

Q��2
n and

��n�n
D ��n

, we have j��n�n
� Q��2

n jD j��n
Q��2

n �
Q��2

n j<ıj
Q�nn
j�4 and j��n�n

� 1jD

j��n
� 1j< ıj Q�nn

j�2 , for large n

We have two cases to consider:

lim
n

j Q�n Q�
2 Qkn
n j � j

Q�nj
�2

j Q�nj
�2

D1:(1)

lim
i

j Q�ni
Q�

2 Qkni
ni
j � jQ��2

ni
j

j Q�ni
j�2

< � for some subsequence ni .(2)
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Proof assuming (2) Since j Q�ni
Q�

2 Qkni
ni
j > j Q�ni

j�2 and (2) holds, and ��i�i
D Q�2

ni
��i

,
we have for large i ,

1< j��i�i
j< .� C 1/:

Since we also have
1� ıj Q��2

ni
j< j��i�i

j< 1C ıj Q��2
ni
j

and j Q�ni
j!1 it follows that there exists � > 1 such that 1���1 < j��i�i

j; j��i�i
j<

1C � for large i . By Lemma 4.2 with Remark 4.5 and jtr.�i/j> �j Q�ni
j for large i we

have for some �1; �2 > 0 that

1� ��1
� �1j

Q�ni
j
�1 < jz�i�i ;l j; jz�i�i ;uj< 1C �C �2j

Q�ni
j
�1:

Hence there exists �0 > 1 such that �0�1 < jz�i�i ;l j � jz�i�i ;uj< �
0 .

If jtr.�i�i/j ! 1, then h�i ; �i�ii satisfies the second set of conditions of Lemma
5.2, hence is classical.

If lim sup jtr.�i�i/j<1, then define Mobius transformations  i such that  i�i�i 
�1

have fixed points 0;1 and z i�i 
�1
i
;u D 1. If z i�i 

�1
i
;l ! 0 or z i�i 

�1
i
;l ! 1

then  ih�i ; �i�ii 
�1
i satisfies (A) or (B1 ). Otherwise we have for some � > 0 such

that � < jz i�i �1;l j< 1�� , which implies that Z i h�i ;�i�i i 
�1
i
> c for some c > 0.

This completes our proof of (B 00
2

) with (2).

Proof assuming (1) By (1), there exists 0 < �n ! 1 with �n < j Q�nj such that
j Q�n Q�

2 Qkn
n j � j

Q�nj
�2 > �nj

Q�nj
�2 . Let �n be Mobius transformations defined by �n.x/D

.Q�n=
p
�n/x . We will show that �nh�n; �ni�

�1
n satisfies Remark 5.3 of Lemma 5.2.

Since j��n
� 1j< ı=j Q�nj

2 we have

j Q�nj
p
�n
�

ı

j Q�nj
p
�n

< j��n�n�
�1
n
j<
j Q�nj
p
�n
C

ı

j Q�nj
p
�n

:

By the condition of (B2 ) we have j Q�n Q�
2 Qkn
n j< 1. This gives,

p
�n

j Q�nj
C

1

j Q�nj
p
�n

< j��n�n�
�1
n
j<
j Q�nj
p
�n
:

By Lemma 4.2 with Remark 4.5, jz�i ;˙ � ��n
j < � jtr.�n/j

�2 and jz�i ;� � ��n
j <

� jtr.�n/j
�2 for some � > 0. Since jtr.�n/j> �j Q�nj for large n we have

jz�n�n�
�1
n ;˙� ��n�n�

�1
n
j<

�

�j Q�nj
p
�n

; jz�n�n�
�1
n ;�� ��n�n�

�1
n
j<

�

�j Q�nj
p
�n

:
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jz�n�n�
�1
n ;uj<

j Q�nj
p
�n
C

ı

j Q�nj
p
�n

C
�

�j Q�nj
p
�n

;Hence

jz�n�n�
�1
n ;l
j>

p
�n

j Q�nj
�

ı

j Q�nj
p
�n

�
�

�j Q�nj
p
�n

:

We have j Q�nj
�1 < jz�n�n�

�1
n ;l j � jz�n�n�

�1
n ;uj< j

Q�nj for large n.

By above estimates for fixed points of �n�n�
�1
n , and jtr.�n/j> �j Q�nj we have

.jz�n�n�
�1
n ;ujC 1/.j Q�njC 1/

jtr.�n/j.j Q�nj � jz�n�n�
�1
n ;uj/

<
j Q�nj

2=
p
�nCj

Q�nj=
p
�nCj

Q�njC ı
0

�j Q�nj
2.1� 1=�n� ı=.j Q�nj

2p�n/� �=.�j Q�nj
2p�n//

<
1C 1=j Q�njC

p
�n=j Q�njC ı

0p�n=j Q�nj
2

�
p
�n.1� 1=�n� ı=.j Q�nj

2p�n/� �=.�j Q�nj
2p�n//

and by �n < j Q�nj we have some ı00 > 1 such that

<
ı00

�
p
�n.1� 1=�n� ı=.j Q�nj

2p�n/� �=.�j Q�nj
2p�n//

! 0:

For the other part of the conditions of Remark 5.3 we have:

If jz�n�n�
�1
n ;l j<M then,

.jz�n�n�
�1
n ;l jC 1/.j Q�nj

�1C 1/

jtr.�n/j.jz�n�n�
�1
n ;l j � j

Q�nj
�1/

<
.M C 1/.j Q�nj

�1C 1/

�j Q�nj.
p
�n=j Q�nj � ı=.j Q�nj

p
�n/� �=.�j Q�nj

p
�n/� 1=j Q�nj/

<
M 0

�.
p
�n� ı=

p
�n� �=.�

p
�n/� 1/

<
M 0

�00
p
�n
! 0:

Otherwise we have jz�n�n�
�1
n ;l j !1 and

.jz�n�n�
�1
n ;l jC 1/.j Q�nj

�1C 1/

jtr.�n/j.jz�n�n�
�1
n ;l j � j

Q�nj
�1/

<
ı00

�j Q�nj
! 0 for some ı00 > 0:
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Hence �nh�n; �ni�
�1
n satisfies

j Q�nj
�1 < jz�n�n�

�1
n ;l j � jz�n�n�

�1
n ;uj< j

Q�nj;

lim
n

(
.jz�n�n�

�1
n ;ujC 1/.j Q�njC 1/

jtr.�n/j.j Q�nj � jz�n�n�
�1
n ;uj/

;
.jz�n�n�

�1
n ;l jC 1/.j Q�nj

�1C 1/

jtr.�n/j.jz�n�n�
�1
n ;l j � j

Q�nj
�1/

)
D 0;

the conditions of Remark 5.3.

Hence we have completed proof Theorem 7.1.

8 Proof of Main Theorem

Theorem 8.1 There exists � > 0 such that every 2–generated Schottky group � with
D� < � is a classical Schottky group.

Proof This follows from Theorem 6.1 and Theorem 7.1.

Proof of Theorem 1.1 Let � 0 be a nonelementary finitely generated Kleinian group.
Selberg’s lemma implies � 0 contains a torsion-free subgroup � 00 of finite index, in
particular D� 0 DD� 00 .

Note that if � 00 is geometrically infinite with �� 00 6D ∅ then D� 00 D 2, this implies
D� 00 D 2 for geometrically infinite groups. So we can assume � 00 is geometrically
finite when D� 00 < 2.

If � 00 contains parabolic of rank l� 00 then D� 00 � l� 00=2. Hence, for sufficiently small
Hausdorff dimension D� 00 , we can assume � 00 is convex-cocompact of second kind.

It follows from Ahlfors’ finiteness theorem, that �� 00=� 00 consists of finite number of
compact Riemann surfaces. Let S be a component of �� 00=� 00 . If S is incompressible
then �1.S/ is a surface subgroup of � 00 . Since 1 D D�1.S/ � D� 00 , if D� 00 ¡1, we
may assume S is compressible. So we can decompose � 00 along the compression
disk. After repeating the decomposition process finitely many times we are left with
topological balls, ie H3=� 00 is a handle body. This implies � 00 is a finitely generated
free purely loxodromic Kleinian group of second kind, ie � 00 is a Schottky group.

By assuming the limit set have sufficiently small Hausdorff dimension we have reduced
the general case to the case of Schottky groups. Now it follows from Marden’s
rigidity theorem, all Schottky groups of the same rank are quasiconformally equivalent.
Therefore we have from Theorem 8.1, there exists � > 0 such that all nonelementary
finitely generated Kleinian � 0 with D� 0 � � contains a classical Schottky group of
finite index. It follows that we have a strict lower bound on the Hausdorff dimension
of all nonclassical Schottky group.
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