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A geometric construction of colored HOMFLYPT homology

BEN WEBSTER

GEORDIE WILLIAMSON

The aim of this paper is twofold. First, we give a fully geometric description of the
HOMFLYPT homology of Khovanov and Rozansky. Our method is to construct
this invariant in terms of the cohomology of various sheaves on certain algebraic
groups, in the same spirit as the authors’ previous work on Soergel bimodules. All the
differentials and gradings which appear in the construction of HOMFLYPT homology
are given a geometric interpretation.

In fact, with only minor modifications, we can extend this construction to give
a categorification of the colored HOMFLYPT polynomial, colored HOMFLYPT
homology. We show that it is in fact a knot invariant categorifying the colored
HOMFLYPT polynomial and that it coincides with the categorification proposed by
Mackaay, Stošić and Vaz.

17B10, 57T10

1 Introduction

The colored HOMFLYPT polynomial is an invariant of links together with a labeling or
“coloring” of each component with a positive integer; in particular, for knots, there is
an invariant for each positive integer. Its most important properties are that

� it reduces to the usual HOMFLYPT polynomial when all labels are 1, and

� colored HOMFLYPT encapsulates all Reshetikhin–Turaev invariants for the link
labeled with wedge powers of the standard representation of sln , just as the
HOMFLYPT polynomial does for the standard representation alone.

In this paper we give a geometric construction of a categorification of this invariant,
colored HOMFLYPT homology. Like the HOMFLYPT homology of Khovanov and
Rozansky [13], this associates a triply graded vector space to each colored link such
that the bigraded Euler characteristic is the colored HOMFLYPT polynomial. In fact,
we produce an infinite sequence of such invariants, one for each page of a spectral
sequence, but only the first and second pages are connected via an Euler characteristic
to a known classical invariant.
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2558 Ben Webster and Geordie Williamson

Our construction and proofs of invariance and categorification are algebro-geometric
in nature. As a special case we obtain a new and entirely geometric interpretation of
Khovanov’s Soergel bimodule construction of HOMFLYPT homology [12].

We also show that this invariant has a purely combinatorial description via the Hoch-
schild homology of bimodules analogous to that of Khovanov. In fact, it coincides
with the link homology proposed from an algebraic perspective by Mackaay, Stošić
and Vaz [17]. Thus, the main result of our paper has an entirely algebraic statement:

Theorem 1.1 The colored HOMFLYPT homology defined in [17] is a knot invariant,
and its Euler characteristic is the colored HOMFLYPT polynomial.

Our definition also has the advantage of categorifying essentially all algebraic objects
involved in the definition of colored HOMFLYPT homology. Let us give a schematic
diagram for the pieces here, with actual operations given by solid arrows, and (de)cat-
egorifications given by dashed ones:

n
colored
braids

o n
colored

links

o

n MOY
graphs

o
�ˇHN�ˇ

C.q; t/

DGD
.XD/DPˇ�Pˇ .GL.N //

g3Vect

ˇ 7! y̌

ˆˇ

TrJO

H�
.Pˇ/�

.GL.N /I �/

FD

eval

H�
GD
.XD I �/

HOMFLYPT

A
2 . y̌
/

The top half of the diagram shows two different definitions of the colored HOMFLYPT
polynomial:

� The path through {MOY graphs} is the description of the colored HOMFLYPT
polynomial by Murakami, Ohtsuki and Yamada [19]: one associates to a link diagram
a sum of weighted trivalent graphs, and then defines an evaluation function on such
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graphs, which in turn gives a state sum interpretation of the colored HOMFLYPT poly-
nomial. While the paper [19] only considers certain specializations of the HOMFLYPT
polynomial, their technique is easily extended to the polynomial itself.

� The path through �ˇHN�ˇ is described by Lin and Zheng [16]: to each closable
colored braid ˇ , we have an associated element of the Hecke algebra HN , where N

is the colored braid index of ˇ (the sum of the colorings of the strands). In fact, this
element lies in a certain subalgebra �ˇHN�ˇ , where �ˇ is a projection which depends
on the coloring of ˇ . The colored HOMFLY polynomial is obtained by applying a
certain trace TrJO defined by Ocneanu [11] on HN .

In this paper, we show how to categorify both of these paths, as is schematically
indicated in the bottom half of the diagram, and briefly summarized in Section 1.2. The
final result of this construction is a knot invariant A2. y̌/; we show that this invariant
is well-defined in Theorem 1.2 and that it agrees with HOMFLYPT homology in
Theorem 1.4.

� The leftmost dashed arrow is the isomorphism of �ˇHN�ˇ with the Grothendieck
group of sheaves on GL.N / which are bi-equivariant for the left and right multiplication
of a subgroup of block upper triangular matrices Pˇ .

� The rightmost dashed arrow can be described as follows: to each link diagram D ,
we associate a group GD , a GD –variety XD and a GD –equivariant perverse sheaf
whose the composition factors are in bijection with the MOY graphs arising from this
link diagram.

� The central dashed arrow simply indicates taking bigraded Euler characteristic of a
trigraded vector space with respect to one of its gradings.

We must also show that this diagram, including the dashed arrows, “commutes”. This
follows from a result of the authors giving a similar construction of a Markov trace for
the Hecke algebra of any semisimple Lie group, shown in the paper [27].

As should be clear from the above, the techniques we use are those of algebraic
geometry and geometric representation theory. While these are not familiar to the
average topologist, we have striven to make this paper accessible to the novice, at least
if they are willing to accept a few deep results as black boxes. As a general rule, our
actual calculations are simple and quite geometric in nature; however, we must cite
rather serious machinery to show that these calculations are meaningful.

1.1 The geometric machinery

Let us briefly indicate the geometric setting in which we work. All material covered
here is discussed in greater detail in Section 3.
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Let X be an algebraic variety defined by equations with integer coefficients. (In this
paper, our varieties are built from copies of the general linear group, so we can always
describe them in terms of integral equations.) To X one may associate a derived
category Db.X / of sheaves with constructible cohomology. There are numerous
technicalities in the construction of this category, but we postpone discussion of these
until Section 3.

The category Db.X / behaves similarly to the bounded derived category of constructible
sheaves on the complex algebraic variety defined by these equations. However, since
we used integral equations, we have an alternate perspective on these varieties; one
can also reduce modulo a prime p , and work over the finite field Fp . The objects
in Db.X / can also be interpreted as sheaves on these varieties in characteristic p , and
for technical reasons, this is the perspective we will take. In this situation, there is an
extra structure which helps us to understand our complexes of sheaves: an action of
the Frobenius Fr on our variety.

The category Db.X / contains a remarkable abelian subcategory P .X / of “mixed
perverse sheaves”. For us the most important feature of P .X / is that every object
of P .X / has a canonical “weight filtration” with semisimple subquotients, which is
defined using the Frobenius.

As with any filtration, this leads to a spectral sequence

E
p;q
1
DHpCq.grW

�p F/ H) HpCq.F/:

Each term on the left hand side also carries an action of Frobenius induced by that on
the variety. Considering the norms of the eigenvalues of Frobenius may be used to give
an additional grading to each page of the spectral sequence. It follows that each page
of the spectral sequence is triply graded.

We will need to consider a generalization of this category, which is a version of
equivariant sheaves for the action of an affine algebraic group on X . While in principle,
the technical difficulties of understanding such a category could be resolved by working
in the category of stacks, we have found it less burdensome to give a careful definition
of the mixed equivariant derived category from a more elementary perspective. For the
sake of brevity, this has been done in a separate note [25].

1.2 Application to knot theory

In order to apply the above machinery to knot theory, we must define a sheaf associated
to a link. More precisely, as we discuss in Section 2, to any projection D of a colored
link, we associate the natural graph with vertices given by crossings and edges by arcs.
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To this graph, we associate a variety XD together with the action of a reductive
group GD . Remembering the crossings in D allows us to construct a GD –equivariant
mixed shifted perverse sheaf FD 2Db

GD
.XD/. We then show that FD may be used

to construct a series of knot invariants.

Associated to any filtration on FD (as a perverse sheaf), we have a canonical spectral
sequence converging to H�

GD
.XD IFD/. Furthermore, we can endow H�

GD
.XD I �/

of any mixed sheaf with the weight grading. This is a grading which is preserved by all
spectral sequence differentials, so we can think of any page of this spectral sequence
as a triply graded vector space, where two gradings are given by the usual spectral
sequence structure, and the third by weight.

The sheaf FD carries a natural weight filtration. This is easily confused with, but
distinct from, the weight grading discussed above.1 We call the spectral sequence
associated to this weight filtration chromatographic.

Theorem 1.2 If D is the diagram of a closed braid, then every page Ei for i � 2 of
the spectral sequence computing H�

GD
.XD IFD/ associated to the weight filtration is

an invariant of the underlying link L, up to an overall shift in the grading. We let Ai. y̌/

be the i th page of this spectral sequence.

If D is not a closed braid, then this theorem fails, since Ai. y̌/ can be changed by the
Reidemeister IIb move; above we are using the fact that by the Markov theorem, any
two braid closure diagrams for the same knot can be related without using this move.

This description has a similar flavor to that of Khovanov and Rozansky [13] or Bar-
Natan [2]: it begins by assigning a simple object to a single crossing, and then an
algebraic rule for gluing crossings together (this process can be formalized as an object
called a canopolis as introduced by Bar-Natan [2]; we will discuss this perspective
in Section 6.2). However, other papers, such as [12] or [17], have used a description
which depended on the link diagram chosen being a closed braid. In order to show that
our invariants coincide with those of [17], we must find a geometric description of this
form.

Assume that ˇ is a closable colored braid with coloring given by positive integers, y̌ its
closure and let N be the colored braid index (the sum of the colorings over the strands
of the braid). Let Pˇ be the block upper triangular matrices inside GN WD GL.N /

with the sizes of the blocks given by the coloring of the strands of ˇ . Using left and
right multiplication, we obtain a natural Pˇ �Pˇ action on GN . We let .Pˇ/� be

1The weight grading mentioned above comes from the weight filtration of the pushforward of FD to a
point.
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the diagonal subgroup, which acts on GN by conjugation. By the classical theory
of characteristic classes, we have a canonical isomorphism of H�.BPˇ/ to partially
symmetric polynomials corresponding to the block sizes of Pˇ , which we will use
freely from now on.

Theorem 1.3 For each ˇ , there is a .Pˇ�Pˇ/–equivariant complex of sheaves ˆˇ
on GN with a natural filtration, such that the associated spectral sequence computing
H�
.Pˇ/�

.GN Iˆˇ/ is canonically isomorphic to the spectral sequence obtained from the
weight filtration for H�

G y̌
.X y̌IF y̌/.

Moreover, we have an isomorphism of the E1 page A1. y̌/ of the spectral sequence for
the hypercohomology H�

Pˇ�Pˇ
.GN Iˆˇ/, as a complex of bimodules over H�.BPˇ/,

to the complex of singular Soergel bimodules considered by Mackaay, Stošić and Vaz
in [17, Section 8].

Singular Soergel bimodules have been defined and classified in the thesis of the second
author [28] and in the context of Harish-Chandra bimodules by Stroppel [23]. Since
previous work of the authors [26] has related Hochschild homology to conjugation
equivariant cohomology, we can identify our geometric knot invariant in terms of such
bimodules.

Theorem 1.4 If D is a closed braid, then the E2 page of our spectral sequence is the
categorification of the colored HOMFLYPT polynomial proposed in [17].

If all the labels on the components of D are 1, then this agrees with the triply graded
link homology as defined by Khovanov and Rozansky in [13].

The higher pages of this spectral sequence are not easy to compute, and it is not known
what their Euler characteristics are. Whether they correspond to any classical link
invariant is unknown.
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Mautner for comments on an earlier version of this paper. Part of this research was
conducted whilst Williamson took part in the program “Algebraic Lie Theory” at the
Isaac Newton Institute, Cambridge. Webster was supported by an NSF Postdoctoral
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2 Description of the varieties

We start by recalling the steps involved in our categorification, beginning with a braidlike
diagram D of an oriented colored link L:

� To D (with its coloring) we associate a reductive group GD together with a
GD –variety XD , which only depends on the graph obtained from the diagram D

by forgetting the distinction between under and overcrossings.
� The crossing data allows us to define a GD –equivariant sheaf FD on XD .
� This sheaf FD has a chromatographic spectral sequence converging to the

GD –equivariant hypercohomology of FD .
� Each page Ei of this spectral sequence for i � 2 is a knot invariant (up to overall

shift) and the E2 page categorifies the colored HOMFLYPT polynomial.

In this section we discuss the first step.

First let us fix some notation. We fix a chain of vector spaces 0� V1 � V2 � V3 � � � �

over Fq such that dim Vi D i for all i . Let

Gi1;:::;in
WD GL.i1/� � � � �GL.in/;

and let Pi1;:::;in
be the block upper triangular matrices with blocks fi1; : : : ; ing. We

may identify Pi1;i2;:::;in
with the stabilizer in Gi1C���Cin

of the standard partial flag

f0� Vi1
� Vi1Ci2

� � � � � Vi1C���Cin
g:

Let D be a diagram of an oriented tangle with marked points, with no marked points
occurring at a crossing. Let � be the oriented graph obtained by the diagram’s
projection, with vertices corresponding to crossings and marked points in D . That
is, we simply forget the over and undercrossings in D . We deal with the exterior
ends of the tangle in a somewhat unconventional manner; we do not think of them as
vertices in the graph, so we think of the arcs connecting to the edge as connecting to 1

or 0 vertices. By adding marked points to D if necessary, we may assume that every
component of � contains at least one vertex.

Recall that to the diagram D we wish to associate a variety XD acted on by an
algebraic group GD . Let us write E.D/ and V.D/ for the edges and vertices of �
respectively. Given an edge e 2 E.D/ write Ge for Gi , where i is the label on e .
Similarly, given v 2 V.D/ write Gv for Gi , where i is the sum of the labels on the
incoming vertices at v (which necessarily equals the sum of the labels on the outgoing
vertices). We define

XD WD

Y
v2V.D/

Gv and GD WD

Y
e2E.D/

Ge:
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It remains to describe how GD acts on XD . Locally, near any crossing, � is isotopic
to a graph of the form:

e1
!!

v

e4

!!

e2

==

e3

==

We will call e1 and e2 upper and e3 and e4 lower edges with respect to the vertex v .
Whenever a vertex v lies on an edge e we define an inclusion map ieW Ge ! Gv ,
which is the identity if v corresponds to a marked point, and is the composition of the
canonical inclusions �

Gi ,!Gi;j ,!GiCj if e is upper,
Gi ,!Gj ;i ,!GiCj if e is lower.

That is, Ge is included as the upper left or lower right block matrices in Gv , according
to whether e is upper or lower.

We now describe how GD acts on XD by describing the action componentwise. Let
g 2Ge and x 2Gv . We have

g �x D ie.g/
!xie.g/

�˛;

where ! D 1 if e is incoming at v , and 0 otherwise, and ˛ D 1 if e is outgoing at v
and 0 otherwise. Thus, we have

g �x D

8̂̂̂<̂
ˆ̂:

x if v does not lie on e,
xie.g/

�1 if e is only outgoing at v,
ie.g/x if e is only incoming at v.
ie.g/xie.g/

�1 if e forms a loop at the vertex v.

Example 2.1 Here are two examples of XD and GD .

� Let D be the standard diagram of the unknot labeled i with one marked point:

� ��

i

Then we have XD DGD DGi and GD acts on XD by conjugation.

� If D is an oriented arc with a single marked point, then we have XD DGi �Gi ,
and GD DGi , with the action g � .a; b/D .ag�1;gb/, where a corresponds to the arc
leaving the marked point, and b to the arc entering it.
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� Let D be the diagram of an .i; j /–crossing:

i

��
j

??

Here XD DGiCj and GD DGi �Gj �Gj �Gi and .a; b; c; d/ acts on x 2GiCj by�
a 0

0 b

�
x

�
ccc�1 0

0 d�1

�
:

Note that if we glue two open edges with label i of the tangle diagram D together to
make a new diagram D0 by adding a marked point, then the spaces XD D XD0 are
isomorphic, but GD0 D GD �Gi , with the new factor acting on the factors in XD

corresponding to the glued edges.

The group Gi attached to a marked point acts freely if the two connected edges don’t
close into a loop, and removing this point simply quotients both XD and GD by
this Gi , leaving the equivariant geometry unchanged. Combining these observations
with the examples above is enough to construct XD and GD for any tangle diagram.

This is the variety and group that we shall use in our construction. But before defining
our invariant, we must first cover some generalities on categories of sheaves on these
varieties.

3 Mixed and equivariant sheaves

In the rest of this paper, we will be using the machinery of mixed equivariant sheaves.
In this section we intend to summarize the essential features of the theory that are
necessary for us, and to indicate to the reader where the details can be found.

3.1 Weight grading

An important point underlying what follows is that cohomology of a complex algebraic
variety (as well as most variations, such as equivariant cohomology, or intersection
cohomology) has an additional natural grading, the weight grading. This grading is
difficult to describe explicitly without using methods over characteristic p (as we will
later), but is best understood by two simple properties:
� The weight grading is preserved by cup products, pullback and all maps in long

exact sequences (in fact, by all differentials in any Serre spectral sequence).
� This weight grading is equal to the cohomological grading on smooth projective

varieties.
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Example 3.1 (cohomology of C� ) If we write CP1 as the union of C and CP1�f0g,
then in the Mayer–Vietoris sequence we have an isomorphism H 2.CP1/ŠH 1.C�/.
Thus, the cohomological and weight gradings do not agree on H 1.C�/.

We plan to describe homological knot invariants using the equivariant cohomology of
varieties, and the weight grading will be necessary to give all the gradings we expect
on our knot homology.

3.2 Sheaves and perverse sheaves

We must use a generalization of the weight grading, the weight filtration on a mixed
perverse sheaf. References for this section include [1], [9], [5] and [14]. Although
we will not use it below, we should also point out that there is a way to understand
mixed perverse sheaves which only uses characteristic-0 methods (Saito’s mixed Hodge
modules [22]; see the book of Peter and Steenbrink [21]).

Let qDpe be a prime power. We consider throughout a finite field Fq with q elements,
and an algebraic closure F of Fq . Unless we state otherwise all varieties and morphisms
will be defined over Fq . Given a variety X we will write X ˝F for its extension of
scalars to F .

We fix a prime number `¤ p and let k denote the algebraic closure Q` of the field of
`–adic numbers. We should note that the choices of p , q and ` are purely auxiliary;
the resulting knot homology will be independent of all of these choices. Throughout we
fix a square root of q in k and denote it by q1=2 . Given a variety Y defined over Fq

or F we denote by Db.Y / (resp. DC.Y /) the bounded (resp. bounded below) derived
category of constructible k–sheaves on Y ; see [9]. By abuse of language we also
refer to objects in Db.X / or DC.X / as sheaves. Given a sheaf F on X we denote
by F ˝ F its extension of scalars to a sheaf on X ˝ F . Given a sheaf F on X we
abuse notation and write

H�.F/ WDH�.X ˝F ;F ˝F/DH�.F ˝F/:

We never consider hypercohomology before extending scalars.

On the category Db.X /, we have the Verdier duality functor DW Db.X /!Db.X /op ,
and for each map f W X ! Y , we have Verdier dual pushforward functors

f�; f!W D
b.X /!Db.Y /

(often denoted Rf� and Rf! ), and Verdier dual pullback functors

f �; f !
W Db.Y /!Db.X /:

In Db.X / we have the full abelian subcategory P .X / of perverse sheaves; see [5].
We will call a sheaf F shifted perverse if F Œn� is perverse for some n 2 Z.

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2567

3.3 The Frobenius and its action on sheaves

Given any variety X defined over Fq we have the Frobenius morphism

FrqW X !X;

which for affine X �Am is given by .x1; : : : ;xm/ 7! .x
q
1
; : : : ;x

q
m/. The fixed points

of Frqn WD .Frq/
n are precisely X.Fqn/, the points of X defined over Fqn .

Given any F 2Db.X / we have an isomorphism (see [5, Chapter 5])

F�q W Fr�qF �!� F ;

and obtain an induced action of F�qn WD .F
�
q /

n on the stalk of F at any point x2X.Fqn/.
By considering the eigenvalues of the action of F�qn on the stalks of F at all points
x 2 X.Fqn/ for all n � 1, one defines the subcategory of mixed sheaves Db

m.X / as
well as the full subcategories of sheaves of weight � w and weight � w for w 2 Z,
which we denote Db

�w.X / and Db
�w.X / respectively; see [5, Chapter 5], [10] or the

first chapter of [14]. An object is called pure of weight i if it lies in both Db
�i.X /

and Db
�i.X /.

Given any mixed sheaf F on X , all eigenvalues ˛ 2 k of Fr�q on H�.F/ are algebraic
integers such that all complex numbers with the same minimal polynomial have the
same complex norm, which by abuse of notation we denote by j˛j. As F is assumed
mixed, all such norms will be qi=2 for some i . Let H�˛.F/�H�.F/ be the generalized
eigenspace of ˛ , and let

(1) H�;i.F/ WD
M
j˛jDqi=2

H�˛.F/:

If X is proper and F pure, then the decomposition (1) will agree with the cohomological
grading of H�.F/ by the Riemann hypothesis for X ; that is, H�;i.F/DHi.F/. Since
we are not assuming that X is proper, this can fail even if F is pure. For example, if
X DA1nf0gŠG1 and F DkX , then as in Example 3.1, we have H�;2.F/DH1.F/.

Definition 3.2 The grading on H�.F/ where the elements of H�;i.F/ are defined to
have degree i is called the weight grading.

Remark 1 The constant sheaf on X has a unique mixed structure for which the
Frobenius acts trivially on all stalks, and its hypercohomology is the étale cohomology
of X . The i th graded component of H�.X Ik/ for the weight grading is H�I i.X Ik/.
So our previous discussion was a reflection of some of the properties of the Frobenius
action on the cohomology of algebraic varieties.
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If X D Spec Fq , then a perverse sheaf on X is the same as a finite-dimensional k–
vector space together with a continuous action of the absolute Galois group of Fq . In
particular we have the Tate sheaf k.1/, which under the above equivalence corresponds
to k, with action of F�q given by q�1 . Recall that we have fixed a square root q1=2

of q in k, allowing us to define the half Tate sheaf k
�

1
2

�
, with F�q acting by q�1=2 .

Given any X with structure morphism X
a
!Spec Fq and any sheaf F on X , we define

F
�

m
2

�
WD F ˝ a�k

�
1
2

�˝m
:

The following notation will prove useful:

Fhdi D F Œd �
�

d

2

�
:

If F is pure of weight w , then F Œd � is pure of weight w C d , and F.d=2/ pure
of weight w � d , so Fhdi is again pure of weight 0. The natural isomorphism
H�.F /ŠH�.F /hdi has degree d for both the weight and cohomological gradings.

The most important fact about mixed sheaves for our purposes is that every mixed
perverse sheaf F on X admits a unique increasing filtration W , called the weight
filtration, such that, for all i ,

grW
i F WDWiF=Wi�1F

is pure of weight i . Any morphism of mixed sheaves preserves this filtration. The de-
composition (1) comes from the weight filtration applied to the pushforward sheaf p�F
to a point.

In fact, after extension of scalars to the algebraic closure, the extensions in this filtration
are the only way that mixed perverse sheaves can fail to be semisimple.

Theorem 3.3 (Gabber; [5, Théorème 5.3.8]) If F is a pure perverse sheaf on X then
F ˝F is semisimple.

3.4 The function–sheaf dictionary

The eigenvalues of the Frobenius on stalks are also valuable for analyzing the structure
of a given perverse sheaf. To any mixed perverse sheaf F (or more generally, any mixed
sheaf) one may associate a function on X.Fqn/ for each n given by the supertrace of
the Frobenius on the stalks of the cohomology sheaves at those points:

ŒF �nW X.Fqn/! k; x 7! Tr.F�qn ;Fx/ WD
X

.�1/j Tr.F�qn ;Hj .Fx//:
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Proposition 3.4 These functions give a map from the Grothendieck group of the
category of mixed perverse sheaves to the abelian group of functions on X.Fqn/ for
each n, and these maps are jointly injective. That is, if F and G are semisimple and
ŒF �n D ŒG�n for all n, then F and G are isomorphic.

Proof The fact that these functions give a map of Grothendieck groups is just that
all maps in the long exact sequence must respect the action of the Frobenius, so the
supertrace is additive under extensions. The proof that this map is injective may be
found in [15, Théorème 1.1.2]; see also [14, Theorem 12.1].

This reduces the calculation of the constituents of a weight filtration to a problem of
computing ŒF �n for simple perverse sheaves, followed by linear algebra. Indeed, sup-
pose that F ;G 2Db

m.X / are such that ŒF �n and ŒG�n agree for all n, with G semisimple.
As ŒF �n D

P
ŒgrW

i F �n for all n, we conclude that grW
i F is isomorphic to the largest

direct summand of G of weight i .

3.5 The chromatographic complex

We want to explain how to move between the weight filtration and a complex, which we
term the chromatographic complex, composed of its pure constituents. For background,
the reader is referred to [8, Section 1.4] and [5, Section 3.1].

Let A be an abelian category with enough injectives and let DC.A/ denote its bounded
below derived category. We may also consider the filtered derived category DFC.A/
whose objects consist of K 2DC.A/ together with a finite increasing filtration

� � � �Wi�1K �WiK �WiC1K � � � � ;

where finite means that WiK D 0 for i � 0 and WiK DWiC1K for i � 0.

For all p we define
grW

p K WDW pK=W p�1K:

More generally, for q � p , let

.W p=W q/.K/ WDW pK=W qK:

For all p we have a distinguished triangle

grW
p K! .W pC1=W p�1/.K/! grW

pC1 K
Œ1�
�!

and in particular a “boundary” morphism grpC1
W
! grp

W
KŒ1�. Shifting, we obtain a

sequence

(2) � � � ! grW
pC1 KŒ�.pC 1/�! grW

p KŒ�p�! grW
p�1 KŒ�.p� 1/�! � � � :
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Lemma 3.5 The morphisms in (2) define a complex.

Proof After completing the (commuting) triangle

.W pC1=W p�1/.K/

++

grW
p K

55

// .W pC2=W p�1/.K/

to an octahedron, one sees that the morphism

grW
pC2 K! grW

pC1 KŒ1�! grW
p KŒ2�

may be factored as

grW
pC2!W pC1=W p�1.K/! grW

pC1 KŒ1�! grW
p KŒ2�:

However, the second two morphisms form part of a distinguished triangle, and so their
composition is zero.

Given any left exact functor T W A! B between abelian categories we can consider
the hypercohomology objects RiT .K/ 2 B , obtained by applying T to an injective
resolution of K . One has a spectral sequence

(3) E
p;q
1
DRpCqT .grW

�p K/)RpCqT .K/

(see [18, Theorem 2.6] or [8, Section 1.4.5]), and a diagram chase shows that the first
differential of this spectral sequence (ie the differential on the E1 page) is the same as
the differential obtained by applying RqT .�/ to the complex (2).

We now apply these ideas to Db
m.X /, where X and Db

m.X / are as in Section 3.3.

Lemma 3.6 Any G 2Db
m.X / admits a “filtration” � � � ! G�i ! G�iC1! � � � such

that:

(1) If we define gri.X / via the distinguished triangle

G�i�1! G�i! gri.G/
Œ1�
�!;

then gri.G/ is pure of weight i .

(2) gri.G/D 0 for ji j � 0.

We will refer to any sequence of maps satisfying the conditions of the lemma as a
weight filtration on G . As the choice of article emphasizes, this is not unique. (For
example, the reader may convince themselves easily that the zero object admits many
nonequivalent weight filtrations.)
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Proof It is enough to show that for any G 2 Db
m.X / there exists a distinguished

triangle

G�0! G! G>0
Œ1�
�!

with G�0 (resp. G>0 ) of weight � 0 (resp. > 0). If G is perverse then the statement
is an immediate consequence of the existence of weight filtrations on perverse sheaves
[5, Théorèm 5.3.5].

By induction on the perverse filtration it is enough to show the following claim: if

F ! G!K
Œ1�
�!

is a distinguished triangle of sheaves, and there exist distinguished triangles

F�0! F ! F>0
Œ1�
�! and K�0!K!K>0

Œ1�
�!

with F�0 and K�0 (resp. F>0 and K>0 ) of weights � 0 (resp. > 0), then there exists
a filtration

G�0! G!G>0
Œ1�
�!

satisfying the same conditions. For the rest of the proof the following notation will be
useful. Given a commutative triangle

A C

B

we denote by O.A;B; C/ the corresponding octahedron (the maps will be clear from
the context).

By considering O.G;K;K>0/ we deduce the existence of distinguished triangles

A! G!K>0
Œ1�
�! and F !A!K�0

Œ1�
�! :

By considering O.F�0;F ;A/ we deduce the existence of distinguished triangles

F�0!A! B Œ1�
�! and F>0! B!K�0

Œ1�
�! :

Because Hom.K�0;F>0Œ1�/ D 0 by [5, Proposition 5.1.15(ii)], we deduce that the
“connecting” map K�0! F>0Œ1� in the second triangle is zero, and hence that B Š
F>0 ˚ K�0 . (This decomposition is not canonical; we fix one.) By considering
O.A;B;F>0/ (the map B D F>0 ˚Z�0 ! F>0 is the projection) we deduce the
existence of distinguished triangles

C!A! F>0
Œ1�
�! and F�0! C!K�0

Œ1�
�! :
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In particular, C has weight � 0. Finally, by considering O.C;A;G/ we deduce the
existence of distinguished triangles

C! G! D Œ1�
�! and F>0! D!K>0

Œ1�
�! :

In particular, D has weight > 0. It follows that we can take G�0 WD C and G>0 WDD .

Applying the above considerations to F together with its weight filtration we obtain:

Definition 3.7 The local chromatographic complex of a mixed sheaf F 2Db
m.X / is

the complex of objects in Db
m.X / given by

� � � ! grW
pC1 F Œ�.pC 1/�! grW

p F Œ�p�! grW
p�1 F Œ�.p� 1/�! � � � :

Applying T DH�.�/ we obtain the global chromatographic complex,

� � � !H�.grW
iC1 F Œ�.i C 1/�/!H�.grW

i F Œ�i �/!H�.grW
i�1 F Œ�.i � 1/�/! � � � :

The spectral sequence (3) with T DH�.�/ is the chromatographic spectral sequence.

Note that the global chromatographic complex sends hdi to simultaneous grading
shift on terms of the complex, and the Tate twist .d=2/ to homological shift of the
complex. Unfortunately, this definition is not entirely an invariant of the object G , but
the dependence on choice of filtration is not very strong.

Proposition 3.8 The chromatographic complexes associated to two different weight
filtrations on a single object G 2 Db.X / are homotopy equivalent, after extending
scalars to F .

In particular, this shows that all pages of the chromatographic spectral sequence after
the first are independent of the choice of filtration.

Proof We note that if G is quasi-isomorphic to a complex � � � ! Fi ! � � � , then we
obtain a natural bicomplex by writing the chromatographic complexes of Fi vertically,
and then the maps induced by the original differentials horizontally. By Gabber’s
theorem, we note that after passing to F every term in this bicomplex is semisimple,
and the horizontal maps go between objects pure of the same degree, and thus split.

Now assume perverse sheaves F 0i form another complex isomorphic in the derived
category to G . For simplicity, we may assume there is a quasi-isomorphism �i W Fi!F 0i
between these complexes. This induces a map �# between our bicomplexes, which
is an isomorphism after taking horizontal cohomology, since this will give us the
chromatographic complexes of the perverse cohomology of G .
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Consider the kernel of �# . This is itself a bicomplex, and each of its rows has trivial
cohomology, and is split. Thus, each row is homotopic to 0. Furthermore, we can
choose these homotopies so that they commute with the vertical differentials, and thus
when applied to the total complex of the kernel, they show that this total complex is
nullhomotopic.

We now use the result that any surjective chain map whose kernel is homotopic to the
zero complex and is a summand of the chain complex with the differentials forgotten
is a homotopy equivalence (this is a consequence of Gaussian elimination). Thus, the
chromatographic complex from the Fi is homotopy equivalent to the total complex of
the image of �# , and the dual result applied to the inclusion of the image shows that
the chromatographic complex for F 0i is also equivalent to this image.

Proposition 3.9 The global chromatographic complex is preserved (up to homotopy)
by proper pushforward.

Proof Proper pushforward preserves purity, and thus sends weight filtrations to weight
filtrations. Furthermore, pushforward always preserves hypercohomology.

Corollary 3.10 If we let E
�;�
� be the chromatographic spectral sequence, then all

differentials preserve the weight grading on hypercohomology. Furthermore, we have:

� E
i;j
1
DHiCj .grW

�j F/ is the global chromatographic complex.

� E2 is the cohomology of the global chromatographic complex.

� The chromatographic spectral sequence converges to the hypercohomology
HiCj .F/.

Remark 2 It seems likely that it is possible to interpret the results of this section
in terms of “weight structures”, introduced by Bondarko [6] and Paukzsello [20]. In
particular, Bondarko shows the existence of a functor from a derived category equipped
with a suitable weight structure, to the homotopy category of pure complexes in a very
general framework.

3.6 The equivariant derived category

We have thus far discussed the theory of perverse sheaves on schemes, but we will
require a generalization of schemes that includes the quotient of a scheme X by the
action of an algebraic group G , which can be understood as G –equivariant geometry
on X .
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This quotient can be understood as a stack, but the theory of perverse sheaves on stacks
is not straightforward, and it proved more suitable to give a treatment of the equivariant
derived category similar to that of Bernstein and Lunts [4], but with an eye to working
over characteristic p with the action of the Frobenius (that is, “in the mixed setting”).
We have done this in a separate note [25].

The result is the bounded below equivariant derived category DC
G
.X / and its subcate-

gory Db
G
.X / of bounded complexes for a variety X acted on by an affine algebraic

group G . The resulting formalism is essentially identical to that of Bernstein and Lunts.
We now summarize the essential points.

We have a forgetful functor

ForW DC
G
.X /!DC.X /

which preserves the subcategories of bounded complexes and, given any F 2DC
G
.X /,

the cohomology sheaves of For.F/ are locally constant along the G –orbits on X .

Given an equivariant map f W X ! Y of G –varieties we have functors

f�; f!W D
C

G
.X /!DC

G
.Y / and f �; f !

W DC
G
.Y /!DC

G
.X /

for equivariant maps f W X ! Y of G–varieties. These functors commute with the
forgetful functor.

If H � G is a closed subgroup and X is a G–space, we have an adjoint pair
.resG

H
; indG

H / of restriction and induction functors

resG
H W D

C

G
.X /!DC

H
.X / and indG

H W D
C

H
.X /!DC

G
.X /:

These functors preserve the subcategories of bounded complexes, and one has an
isomorphism resG

f1g
Š For.

More generally, given a map �W H ! G , a G–variety X , an H –variety Y and a
�–equivariant map mW X ! Y , we have an adjoint pair .G

H
m�;G

H
m�/ of functors

G
H m�W DC

H
.Y /!DC

G
.X / and G

H m�W D
C

G
.X /!DC

H
.Y /:

As a special case, we have G
H

id�Š resG
H

and G
H

id�Š indG
H . The functor G

H
m� preserves

the subcategory of bounded complexes, but this is not true in general for G
H

m� . In fact,
this is the reason that we are forced to consider complexes of sheaves which are not
bounded above.

If G DG1 �G2 and G1 acts freely on X with quotient X=G1 , one has the quotient
equivalence

(4) DC
G
.X /ŠDC

G2
.X=G1/;

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2575

which restricts to an equivalence between the subcategories of bounded complexes. If
we let �W G1 �G2!G2 denote the projection, then the quotient map X !X=G1 is
�–equivariant and the above equivalence is realized by G2

G1�G2
m� and G2

G1�G2
m� .

Using the forgetful functor ForW DC
G
.X /!DC.X / many notions carry over immedi-

ately. For example, we call an object F in DC
G
.X / perverse if and only if ForF is

perverse.

Moreover, if X is defined over Fq , then we can also incorporate the action of the
Frobenius. In particular, perverse objects in DC

G
.X / still have weight filtrations, which

are preserved by the restriction functor and we can extend Proposition 3.4 to the
equivariant setting.

4 Description of the invariant

Equipped with these geometric tools, we continue the construction of our invariant.

4.1 The sheaf associated to a diagram

In this subsection we describe the sheaf FD on XD .

We first discuss the case of a single .i; j /–crossing:

i
!!
v

!!

==

j

==

As we have seen, XD DGiCj . Consider the big Bruhat cell

(5) U WD fg 2GiCj j Vi \gVj D 0g;

and let kW U ,! GiCj denote its inclusion. As U is an orbit under Pi;j �Pj ;i it is
certainly GD –invariant. We now define Fv D FD 2DGD

.XD/ as follows:

i

��

??

j
7�! k�kU hij i;

i

��
j

??

7�! k!kU hij i:

As U is the complement of a divisor in GiCj , both these sheaves are shifted perverse.

We now consider the case of a general diagram D of an oriented colored tangle.
After forgetting equivariance, FD is simply the exterior product of the above sheaves
associated to each crossing. To take care of the equivariant structure we need to proceed
a little more carefully.
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Let D be the diagram of an oriented colored tangle and � its underlying graph. Let D0

be the diagram obtained from D by cutting each strand connecting two vertices in �
(so that D0 is a disjoint union of .i; j /–crossings). Let � 0 be the graph corresponding
to D0 . Obviously we have XD DX 0

D
. Note also that for every e with two vertices in

� , we have two edges, which we denote by e1 and e2 , in � 0 . We have a natural map
GD!G0

D
, which is the identity on factors corresponding to external edges, and is the

diagonal Ge!Ge1
�Ge2

on the remaining factors.

We define

FD WD resG
G0

�
�

v2V.D0/

Fv
�
2Db

GD
.XD/:

Of course, this sheaf depends on the link diagram used; different diagrams correspond
to sheaves on different spaces. Instead, we will studying the hypercohomology of these
sheaves, and the corresponding chromatographic spectral sequence.

Definition 4.1 We let Ai.L/ denote the i th page of the chromatographic spectral
sequence (as given by Definition 3.7) for FD . This is triply graded, where by convention
subquotients of Hj�`Ij�k.grW

`
FD/ lie in A

j IkI`
i .L/.

Remark 3 These grading conventions may seem strange, but they are an attempt to
match those already in use in the field. These conventions are almost those of [17],
though we will not match perfectly since we have different grading shifts in our
definition of the complex for a single crossing. We hope the reader finds these choices
defensible on grounds of geometric naturality. This simply changes the shift we must
apply to our invariant to assure it is a true knot invariant.

It is these spaces for i > 1 which we intend to show are knot invariants (up to shift).

4.2 Braids and sheaves on groups

As we mentioned in Section 1, in the special case of a braid ˇ , there is a different
perspective on this construction.

Let ˇ be the diagram of a colored braid on n strands with labels nD .i1; i2; : : : ; in/

and underlying labeled graph � . Let N D
Pn

jD1 ij denote the colored braid index.
We assume our braid is in generic position, so reading from start to finish, we fix an
order on the vertices v1; v2; : : : ; vp of � . This corresponds to an expression for ˇ in
the standard generators of the braid group.
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In the previous section we described how to associate to ˇ a group Gˇ and a Gˇ–
variety Xˇ . We can decompose Gˇ as

Gˇ DGC
ˇ
�G�

ˇ �G�ˇ ;

where GC
ˇ

, G�
ˇ

and G�
ˇ

denote the factors of Gˇ corresponding to incoming, interior
and outgoing edges of � respectively.

In what follows we will describe an action of GC
ˇ
�G�

ˇ
on GN and a map

mW Xˇ!GN

equivariant with respect to the natural projection �W Gˇ!GC
ˇ
�G�

ˇ
. We will study

our sheaf Fˇ by considering its equivariant pushforward under this map.

First we describe an embedding ˛vW Gv! GN corresponding to each vertex v 2 � .
Let us fix a basis e1; : : : ; eN of VN and let W1;W2; : : : ;Wn be vector spaces (again
with fixed bases) of dimensions i1; i2; : : : ; in respectively.

Definition 4.2 Given any permutation w 2 Sn , we let

hwW W D

nM
jD1

Wj �!
� V

be the isomorphism defined by mapping the basis vectors of Ww�1.1/ to the first w�1.1/

basis vectors of V in their natural order, the basis vectors of Ww�1.2/ to the next w�1.2/

basis vectors, etc.

For any braid ˇ , we have an induced permutation, and by abuse of notation, we let hˇ
be the map corresponding to this permutation.

In the obvious basis, this map is a permutation matrix. The corresponding permutation is
a shortest coset representative for the Young subgroup preserving the partition of Œ1;N �

of sizes i1; : : : ; in , corresponding to the “cabling” of the permutation w .

Now choose a vertex v in � and let e0 and e00 denote the two incoming edges which
are in the strands connected to the incoming vertices labeled j 0 and j 00 respectively,
so ij 0 and ij 00 are the labels on e0 and e00 . Because we have ordered the vertices of � ,
we may factor ˇ into braids ˛v � ˇv � !v , with ˇv consisting of a simple crossing
corresponding to v . The procedure described in the previous paragraph yields an
embedding

Wj 0 ˚Wj 00 ,!W
h˛v
��! VN :

This induces an embedding
�vW Gv ,!GN :
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We let braids on n strands act on sequences of n elements on the right by the usual
association of a permutation to each braid. We may then identify

GC
ˇ
ŠGn; G�ˇ ŠGnˇ;

and therefore obtain an action of GC
ˇ
�G�

ˇ
on GN by left and right multiplication.

We let PC
ˇ
D Pn and P�

ˇ
D Pnˇ . We denote by �W Gˇ! PC

ˇ
�P�

ˇ
the composition

of the natural projection with the inclusion G˙
ˇ
,! P˙

ˇ
.

Consider the map

mW Xˇ!GN ; .gv1
; : : : ;gvp

/ 7! �v1
.gv1

/�v2
.gv2

/ � � � �vp
.gvp

/:

It is easy to see that this map is equivariant with respect to � .

Definition 4.3 Let ˆˇ D P
C

ˇ
�P�

ˇ

Gˇ
m�Fˇ .

This definition is useful, since it is compatible with braid multiplication. We have a
diagram of equivariant maps of spaces:

GN �GN GN

�
//

GN �2
rr

GN �1ll

As usual, this diagram can be used to construct the functor of sheaf convolution:

�?� W Db
Pn�Pnˇ

.GN /�Db
Pnˇ�Pnˇˇ0

.GN /!Db
Pn�Pnˇˇ0

.GN /;

F1 ?F2 Š
Pn�Pnˇˇ0

Pn�Pnˇ�Pnˇˇ0
��

�
res

Pn�P2
nˇ�Pnˇˇ0

Pn�Pnˇ�Pnˇˇ0
.F1 �F2/

�
:

Theorem 4.4 We have a canonical isomorphism ˆˇ ?ˆˇ0 Šˆˇˇ0 .

We should note that here we are simply claiming that this holds for the composition
of diagrams. We will prove in Sections 8 and 9 that the sheaf we associate to a braid
doesn’t depend on the choice of presentation.

Proof Immediate from the definition of ˆ.

As G�
ˇ

acts freely on Xˇ , we may factor m as

Xˇ!Xˇ=G�
ˇ!GN :

One may verify that the second map is the composition of an affine bundle along which
Fˇ is smooth, and a proper map. It follows that

P
C

ˇ
�P�

ˇ

Gˇ
m�
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preserves the weight filtration on Fˇ . Hence the chromatographic spectral sequences
for Fˇ and ˆˇ are isomorphic.

Note that if ˇ is closable, then nˇ D n, and P˙
ˇ

have the same image in the group.
Thus these subgroups are canonically isomorphic. Let .Pˇ/� � PC

ˇ
� P�

ˇ
be the

diagonal and let y̌ be the colored link diagram given by the closure of ˇ .

Theorem 4.5 We have a canonical isomorphism between

� the chromatographic spectral sequence of F y̌ as a G y̌–sheaf, and

� the chromatographic spectral sequence of ˆˇ as a .Pˇ/�–sheaf.

Proof Since P� and G� are homotopy equivalent, the functor resP�
G�

is fully faithful,
so we may work with their restrictions instead. We have already observed that the
weight filtration on ˆˇ and the pushforward of the weight filtration on Fˇ agree. Thus
the equivariant chromatographic spectral sequences of

resGˇ

��1.H /
Fˇ and res

G
C

ˇ
�G�

ˇ

H
ˆˇ

are canonically isomorphic for any subgroup H �GC
ˇ
�G�

ˇ
.

On the other hand, we have a canonical identification G y̌Š�
�1..Gˇ/�/, and XˇDX y̌ ,

with
F y̌D resGˇ

G y̌
Fˇ:

The result follows.

5 Analyzing an .m; n/–crossing

5.1 Preliminary details

In this section we work out all the details for an .m; n/–crossing. This will be of use
in expressing the invariant in terms of bimodules.

We consider an .m; n/–crossing. Its underlying graph is

m ##
�

n

;;

m

##

n ;;

and the variety in question is GmCn acted on by Pm;n � Pn;m by left and right
multiplication: .p; q/ � g D pgq�1 for g 2 GnCm and .p; q/ 2 Pm;n � Pn;m . The
orbits under this action are

Oi D fg 2GmCn j dim Vm\gVn D ig;
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for 0� i �min.n;m/. Clearly Oj �Oi if and only if j > i . For all 0� i �min.n;m/
we denote the inclusion of the orbit Oi by fi W Oi ,!GnCm .

For each orbit Oi we have the corresponding intersection cohomology complex. It will
prove natural to normalize them by requiring

IC.Oi/jOi
Š kOi

hnm� i2
i:

Under this normalization each IC.Oi/ is pure of weight 0.

We first describe resolutions for the closures Oi �GmCn . Consider the variety

zOi D f.W;g/ 2 Grm
i �GmCn jW � Vm\gVng:

We have an action of Pm;n �Pn;m on zOi given by .p; q/ � .W;g/ D .pW;pgq�1/.
The second projection induces an equivariant map:

�i W zOi!Oi :

Proposition 5.1 This is a small resolution of singularities.

Proof The morphism �i is patently an isomorphism over Oi . Since Oi is exactly the
subset of GnCm where the induced map Vn! V =Vm has rank n� i , we have that Oi

has the same codimension in GmCn as the space of rank n� i matrices in Gn , which
is i2 . Hence, for j < i , Oi is of codimension i2� j 2 in Oj . Over any x 2 Oj the
fiber is the Grassmannian Grj

i . Thus

2 dim��1
i .x/D 2i.j � i/ < .j C i/.j � i/D codimOi

Oj :

Corollary 5.2 IC.Oi/Š �i�k zOi
hnm� i2

i:

Proof Proposition 5.1 implies that �i�k zOi
is a shift and twist of IC.Oi/, since

pushforward by a small resolution sends the constant sheaf to a shift of the intersection
cohomology sheaf on the target. The restriction of �i�k zOi

hnm�i2i to Oi is isomorphic
to kOi

hnm� i2i, which is our choice of normalization.

Given sheaves F ;G 2Db
G
.X / let us write

Hom�.F ;G/ WD
M

m

Hom.F ;GŒm�/:

This is a graded vector space.

Proposition 5.3 In Db
Pm;n�Pn;m

.G/ we have an isomorphism

Hom�.IC.Oi/; IC.Oi0//Š
M

j

Hom�.f �j IC.Oi/; f
!

j IC.Oi0//:
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Proof For flag varieties this is [3, Theorem 3.4.1]. One may reduce to this situation
using the quotient equivalence.

The space Hom�.IC.Oi/; IC.Oi0// itself has a weight grading, when thought of as
sections of the sheaf-Hom from Hom�.IC.Oi/; IC.Oi0//, which has a natural mixed
structure. The decomposition of Proposition 5.3 is compatible with the Frobenius
structure, and so the purity of the cohomology of Oi (which is an affine bundle over a
partial flag variety) and the pointwise purity of IC.Oi/ shows that the weight grading
of Hom�.IC.Oi/; IC.Oi0// agrees with the cohomological grading.

This shows that:

Proposition 5.4 In the mixed equivariant derived category Db
m;Pm;n�Pn;m

.G/, there
are no higher Exts between IC.Oi/ and IC.Oi0/hdi.

Proof By the purity discussed above, all of the eigenvalues of Frobenius on the space
Exti.IC.Oi/; IC.Oi0/hdi/ have complex norm pi=2 , so they are not 1. Thus, there are
no invariants of Frobenius in this space.

This shows immediately that:

Corollary 5.5 Any mixed .Pm;n�Pn;m/–equivariant sheaf F on G is the iterated
cone of its local chromatographic complex (in any dg-refinement). In particular, F is
indecomposable if and only if the same is true of its local chromatographic complex.

5.2 Calculating the weight filtration

Our aim in this section is to calculate the weight filtration on the sheaves associated to
positive and negative crossings. We set

Œn�q D 1C qC � � �C qn�1;

Œn�q!D Œn�q Œn� 1�q � � � Œ1�q;h
j
i

i
q
D

Œj �q

Œj � i �q!Œi �q!
:

In order to understand the constituents via the function–sheaf correspondence discussed
in Section 3.4, we must calculate the trace of the Frobenius on the stalks of IC.Oi/.
Base change combined with the Grothendieck–Lefschetz fixed point formula yields:

Corollary 5.6 If j > i and x 2Oj .Fqa/, we have

Tr.F�qa ; .�i�k zOi
/x/D # Grj

i .Fqa/D
h
j
i

i
qa
:
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In the following proposition W denotes the weight filtration.

Proposition 5.7 One has isomorphisms

grW
�i j!kO0

hnmi Š IC.Oi/
�

i
2

�
; grW

i j�kO0
hnmiŠ IC.Oi/

�
�

i
2

�
:

Proof Because taking weight filtrations commutes with forgetting equivariance, it
is enough to handle the nonequivariant case. Note also that IC.Oi/.i=2/ is pure of
weight �i . Thus, by the remarks in Section 3.4, the first statement of the proposition
follows from the equality of the functions

Œj!kO0
hnmi�qa D

X
i

�
IC.Oi/

�
i
2

��
qa

for all a� 1. Evaluating at a point x 2Oj .Fqa/ we need to verify that

.�1/nm=2ı0j q�anm=2
D

X
0�i�j

.�1/nm�i2

qa.i2�nm�i/=2
h
j
i

i
qa
;

or equivalently,

ı0j D

X
0�i�j

.�1/iqi.i�1/=2
h
j
i

i
q
;

which is a standard identity on q–binomial coefficients. The second statement follows
from the first by Verdier duality.

Proposition 5.8 We have equalities

dim Ext1.IC.Oi/; IC.OiC1//D dim Ext1.IC.OiC1/; IC.Oi//D 1:

Proof By the Verdier self-duality of IC sheaves, we have an equality of dimensions

dim Ext1.IC.Oi/; IC.OiC1//D dim Ext1.IC.OiC1/; IC.Oi//;

so we need only give a proof for one.

Using Proposition 5.3, we have that

dim Ext1.IC.Oi/; IC.OiC1//D dim Hom.IC.Oi/; IC.OiC1/Œ1�/

D dim Hom.f �iC1 IC.Oi/; f
!

iC1 IC.OiC1/Œ1�/;

since no other terms that appear in Proposition 5.3 can contribute in this degree (by the
conditions for being an IC sheaf).

Recall our small resolution �i W zOi!Oi from earlier. We have

f �iC1 IC.Oi/D f
�

iC1�i�k zOi
Œnm� i2�DH�.P i/˝k zOi

Œnm� i2�
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by the proper base change theorem and the fact that �i is a fiber bundle with fiber P i

over OiC1 . Thus

Hom.f �iC1 IC.Oi/; f
!

iC1 IC.OiC1/Œ1�/

D Hom.H�.P i/˝kOi
Œnm� i2�;kOi

Œnm� .i C 1/2C 1�/

D Hom.H�.P i/˝kOi
;kOi

Œ�2i �/D k

because Hom.kOi
;kOi

Œa�/D 0 for a< 0, and H 2i.P i/D k.

Corollary 5.9 The local chromatographic complex of j!kO0
hnmi is the unique com-

plex of the form

0! IC.O0/! IC.O1/h1i ! � � � ! IC.Oi/hii ! � � �

where all differentials are nonzero. Similarly, that for j�kO0
hnmi is the unique

complex of the form

� � � ! IC.Oi/h�ii ! � � � ! IC.O1/h�1i ! IC.O0/! 0

also where all differentials are nonzero.

Remark 4 This corollary shows that this chromatographic complex categorifies the
MOY expansion of a crossing in terms of trivalent graphs, with IC.Oi/ corresponding
to the following MOY graph:

**
m

//
i 44

n

33

n

//

nCm�i ++

m

��
m�i

GG n�i

Proof The terms in the complex are determined by Proposition 5.7, and Proposition 5.8
implies that the isomorphism type of the complex is just determined by which maps are
nonzero. Since j!kO0

and j�kO0
are indecomposable, all these maps must be nonzero

by Corollary 5.5.

6 The invariant via bimodules

6.1 The global chromatographic complex of a crossing

The following lemma gives a description of zOi as a “Bott–Samelson” type space.
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Lemma 6.1 We have an isomorphism of .Pm;n�Pn;m/–equivariant varieties

zOi Š Pm;n �Pi;m�i;n
Pi;mCn�i �Pi;n�i;m

Pn;m:

Proof The map sending Œg; h; k� to .gVi ;ghVn;ghk/ defines a closed embedding

Pm;n �Pi;m�i;n
Pi;mCn�i �Pi;n�i;m

Pn;m ,! Grm
i �GrnCm

n �GmCn:

Its image is given by triples .W;V;g/ satisfying W � V and V D gVn , which is
isomorphic to zOi under the map forgetting V .

Definition 6.2 We let Ri1;:::;im
D kŒx1; : : : ;xm�

Si1
�����Sim be the rings of partially

symmetric functions corresponding to Young subgroups. We will use without further
mention the canonical isomorphism Ri1;:::;im

ŠH�.BGi1;:::;im
/ sending Chern classes

of tautological bundles to elementary symmetric functions.

Given a graded module or bimodule M over any ring R, we let M.n/ be the same
module with the grading decreased by n.

Corollary 6.3 As .Rm;n˝Rn;m/–modules, we have natural isomorphisms

H�Pm;n�Pn;m
. zOi/ŠMi

def
D Ri;m�i;n˝Ri;mCn�i

Ri;n�i;m;

H�Pm;n�Pn;m
.IC.Oi//ŠMi.nm� i2/:

Proof The first equality follows immediately from the main theorem of [4] (which we
restated in the most convenient form for our work in our earlier paper [26, Theorem 3.3])
and Lemma 6.1. The second is a consequence of Corollary 5.2.

Now have a global version of Proposition 5.8:

Proposition 6.4 The spaces of bimodule maps

HomRm;n˝Rn;m
.Mi.�2i/;Mi�1/ and HomRm;n˝Rn;m

.Mi.2i/;MiC1/

are trivial in degrees < 1, and one-dimensional in degree 1.

Proof This follows from [28, Theorem 5.4.1]. In fact, combined with Proposition 5.3,
the theorem cited above implies that we have isomorphisms

HomRm;n˝Rn;m
.Mi.�2i/;Mi�1/Š Hom�.IC.Oi/; IC.Oi�1//;

HomRm;n˝Rn;m
.Mi.2i/;MiC1/Š Hom�.IC.Oi/; IC.OiC1//;

with grading degree on module maps matching the homological grading. Thus, this
result is equivalent to Proposition 5.8.

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2585

Corollary 6.5 The global chromatographic complex of j!kO0
hnmi is the unique

complex of the form

(6) M�
D � � �

@�
iC1

���!MiC1.nm� i.i C 1//
@�

i
��!Mi.nm� i.i � 1//

@�
i�1
���! � � �

where all differentials are nonzero. Similarly, that for j�kO0
hnmi is the unique

complex of the form

(7) MC
D � � �

@
C

i�1
�!Mi.nm� i.1C i//

@
C

i
�!MiC1.nm� .i C 1/.i C 2//

@
C

iC1

�! � � �

also where all differentials are nonzero.

We note that these are the complexes defined in [17, Section 8], with slight change in
grading shift, since they have the same modules, and there is only one such complex
up to isomorphism.

We note that these maps have a geometric origin. Consider the correspondence

zOiC1;i D f.U;W;g/ 2 Grn
iC1 �Grn

i �GnCm j gVn\Vm � U �W g:

Obviously, we have natural maps:

zOiC1;i

p1
i

{{

p2
i

""

zOiC1
zOi

Proposition 6.6 Up to scaling, we have equalities

@�i D .p
2
i /�.p

1
i /
�; @Ci D .p

1
i /�.p

2
i /
�:

Proof We note that .p2
i /�.p

1
i /
� has the expected degree and is nonzero. Thus it must

be @�i . Similarly with .p1
i /�.p

2
i /.

6.2 Building the global chromatographic complex, I: via canopolises

Now, we are faced with the question of how to build the global chromatographic complex
of an arbitrary braid fragment (by which we mean a tangle that can be completed to a
closed braid by planar algebra operations).

While the operations we describe are nothing complicated or mysterious, it can be
a bit difficult to both be precise and not pile on unnecessary notation. In an effort
to give an understandable account for all readers, we give two similar, but slightly
different, expositions of how to build the complex for a knot: one quite analogous to
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Khovanov’s exposition in [12] using braids and their closures, and one in the language
of planar algebras and canopolises, in the vein of the work of Bar-Natan [2] and the
first author [24].

This approach is based around planar diagrams in sense of planar algebra: a planar
diagram is a crossingless tangle diagram in a planar disk with holes. A canopolis is a
way of formalizing the process of building up a tangle by gluing smaller tangles into
planar diagrams.

Our definition of our geometric invariant can be phrased in this language. Given a
tangle T written as a union of smaller tangles Ti in a planar diagram D , the space XT

has a product decomposition XT Š
Q

i XTi
, and GT is a subgroup of

Q
i GTi

, given
by taking the diagonal inside the factors corresponding to the edges on Ti and Tj

identified by D .

That is, the sheaf FD can be built from the sheaves corresponding to crossings by
successive applications of exterior product and restriction of groups. It is easy to
understand how each of these affects chromatographic complexes, and our desired
invariant can be built piece by piece.

Formally, to each oriented colored tangle diagram in a disk with boundary points
fp1; : : : ;pmg, we will associate a complex of modules over R… D H�

�Q
i BGpi

�
,

where we use … to denote all the boundary data of the tangle (the points, their coloring,
their orientation).

The association of the category K.R…–mod/ of complexes up to homotopy over R…

to the boundary data … (with their colorings) is a canopolis K, where the functor
associated to a planar diagram is an analogue of that used in the canopolis M0 in [24].
The canopolis functor

z�W K.R…1
–mod/� � � � �K.R…k

–mod/!K.R…0
–mod/;

associated to a planar diagram with outer circle labeled with …0 and k inner circles
labeled with …1; : : : ;…k , will be given by tensoring with a complex of .R…0

;R…�/–
bimodules, where R…� DR…1

˝ � � �˝R…k
.

Let A.�/ be the set of arcs in �, let ˛a; !a be the tail and head of a2A.�/, and let na

be the integer a is colored with. Associated to each arc is the sequence

.e1.!a/� e1.˛a/; : : : ; ena
.!a/� ena

.˛a//;

which identifies the classes ei 2H�.BGn/ corresponding to the elementary symmetric
polynomials (geometrically, these are the Chern classes of the tautological bundle
on BGn ) for the endpoints connected by the arc. To our diagram, we associate the
concatenation of these sequences.
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Let �.�/ be the Koszul complex over R…0
˝� � �˝R…k

of this concatenated sequence
for our diagram �, which we think of as a bimodule with the R…0

action on the left
and the R…� on the right.

Definition 6.7 The canopolis functor z� associated to the diagram � is �.�/˝
R…�
� .

Proposition 6.8 The map sending a tangle T to the global chromatographic complex
of FT is a canopolis map.

Proof We simply need to justify why tensoring with such a Koszul resolution (which is
a free resolution of the diagonal bimodule for H�.BGpi

/) is the same as changing GT

to only include the diagonal subgroup of G!a
�G˛a

. This is one of the basic results
of [4]; as we mentioned earlier, this is rephrased most conveniently for us in [26,
Theorem 3.3].

Remark 5 We note that this construction at no point used the fact that our diagram
should be a braid fragment; unfortunately, it is unclear whether our construction will
be invariant under the oppositely oriented Reidemeister II move, as with Khovanov
and Rozansky’s original construction (see, for example, [24, Section 3]), though we
will note that proving invariance under this move for the labeling with all labels 1 is
sufficient to imply it for every labeling, by the same cabling arguments we will use
later.

6.3 Building the global chromatographic complex, II: via bimodules

A less flexible, but perhaps more familiar, perspective is to associate to each braid
a complex of bimodules, in a manner similar to [12] (though the same complex had
previously appeared in other works on geometric representation theory). In the case
where all labels are 1, our construction will coincide with Khovanov’s.

As in Section 4.2, we let ˇ be a braid with n strands, and nD .i1; : : : ; im/ be the labels
of the top end of the strands (so nˇ is the labeling of the bottom end). In that section,
we showed that our invariant can also be described in terms of the chromatographic
complex of a sheaf ˆˇ on GN .

This sheaf has the advantage that it can be built from the sheaves for smaller braids by
convolution of sheaves. However, convolution of sheaves is a geometric operation which
is not always easy to understand. Thus, we will give a description of it using the tensor
product of bimodules. Let F.ˇ/ be the Pn�Pnˇ –equivariant global chromatographic
complex of ˆˇ , considered as a complex of bimodules over H�.BPn/ and H�.BPnˇ/.
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Proposition 6.9 We have natural isomorphisms

F.ˇˇ0/Š F.ˇ/˝H �.BPnˇ/ F.ˇ0/:

Proof Form the exterior product ˆˇ�ˆˇ0 on GN�GN . The Pn�Pnˇ�Pnˇ�Pnˇˇ0 –
equivariant chromatographic complex of this is F.ˇ/˝C F.ˇ0/. If we restrict to the
diagonal Pnˇ , then this complex is

F.ˇ/
L
˝H �.BPnˇ/ F.ˇ0/:

By the equivariant formality of all simple, Schubert-smooth perverse sheaves on a
partial flag variety, F.ˇ/ is free as a right module, so it is not necessary to take derived
tensor product.

By the convolution description, we have

ˆˇ 0̌ Š
Pn�Pnˇˇ0

Pn�Pnˇ�Pnˇˇ0
��.ˆˇ;ˇ0/;

where �W GN � GN ! GN . Since G=Pnˇ is projective, this map simply has the
effect of forgetting the H�.BPnˇ/ action on each page of the chromatographic spectral
sequence.

Thus, we can construct F.ˇ/ just by knowing the complex F.�˙1
i / for the elementary

twists �˙1
i . However, first we must compute the corresponding sheaves. Given n, we

let Qj D Pi1;:::;ijCijC1;:::;in
and Q̊j DQj �Q0 .

Proposition 6.10 We have isomorphisms

ˆ�i
D j�kQ̊i

hiiiiC1i; ˆ��1
i
D j!kQ̊i

hiiiiC1i;

where j W Q̊i ,!GN is the obvious inclusion.

The global complex of this is very close to the complex MC described in (6), considered
as a complex of .Rii ;iiC1

;RiiC1;ii
/–bimodules. However, we must extend scalars to

get a complex of .Rn;R�i n/–bimodules:

Proposition 6.11 F.�˙1
i /DRi1;:::;ii�1

˝Q M˙
˝Q RiiC2;:::;ik

:

Again, this is precisely the complex given in [17, Section 8] up to grading shift.

If nˇ D n, then we can close this braid to a link. Our definition of the knot invariant
for this link is the equivariant chromatographic complex for the diagonal Pn action.
By the authors’ previous work [26, Theorem 1.2], this coincides with the Hochschild
homology HH�.F.ˇ//, applied termwise, of the complex F.ˇ/.

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2589

Proposition 6.12 The cohomology of the complex HH�Rn
.F.ˇ// coincides with the

invariant A2. y̌/ of the closure of the braid.

In fact, the chromatographic spectral sequence is exactly the natural spectral sequence

Hi.HHj .F.ˇ///)HiCj .K˝Rn˝Rn
F.ˇ//;

where K is a free resolution of Rn as a Rn˝Rn –module.

Proof Let � W GN ! pt, and consider the object ��ˆˇ in the equivariant derived
category DPn�Pn

.pt/. Under the equivalence to Rn –dg-bimodules given in [25,
Theorem 7], this is sent to the complex F.�/. Similarly, the weight filtration is sent to
that induced by thinking of F.ˇ/ as a complex. Thus, the spectral sequences match
under this equivalence.

Since H�.HH�.F.ˇ/// is precisely the invariant proposed by [17], Theorem 1.4 follows
immediately.

7 Decategorification

We also wish to show that our knot invariant is, in fact, a categorification of the
HOMFLYPT polynomial.

7.1 A categorification of the Hecke algebra

This requires a few basic results about the relationship between sheaves on Gn and the
Hecke algebra Hn . As usual, B D P1;:::;1 is the standard Borel.

Definition 7.1 The Hecke algebra Hn is the algebra over ZŒq1=2; q�1=2� given by the
quotient of the group algebra of the braid group Bn by the quadratic relation

.�i C q1=2/.�i � q�1=2/D 0

for each elementary twist �i .

Proposition 7.2 [14] The Grothendieck group K0.Db
B�B

.Gn// of the equivariant
derived category Db

B�B
.Gn/ is isomorphic to the Hecke algebra Hn , with the convolu-

tion product decategorifying to the algebra product in Hn .

This map is fixed by the assignment

Œj�kBsi B � 7! q1=2�i ;

where j W BsiB ,!Gn is the obvious inclusion.
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Let F be a B �B –equivariant sheaf on Gn . Then we have a map

EB.GIF/D
X
i;j ;k

.�1/`qj=2tk dim Hj�`Ij�k
B�

.grW
` F/;

sending the class of F in the Grothendieck group to the bigraded Euler characteristic
of its global chromatographic complex, often called the mixed Hodge polynomial.

This map agrees with a previously known trace on the Hecke algebra, a fact that the
authors have proven in a separate note, due to its independent interest and separate
connection to the question of constructing Markov traces on general Hecke algebras.

Proposition 7.3 [27, Theorem 1] The map EB.GnI �/ is the Jones–Ocneanu trace Tr
.see [11]/ on Hn with appropriate normalization factors.

Remark 6 This geometric definition applies equally well to any simple Lie group, and
defines a canonical trace on the Hecke algebra for any type. In fact, our construction
can be modified in a straightforward way to a “triply graded homology” invariant on all
Artin braid groups. In type B, this can be interpreted as a homological knot invariant
for knots in the complement of a solid torus.

7.2 Decategorification for colored HOMFLYPT

To apply this result, we must relate our construction to the categorification of the
Hecke algebra above. Recall that if � is a braid with all labels 1, then ˆ� is an object
of Db

B�B
.Gn/.

Proposition 7.4 The class Œˆ� � 2 Hn is the image of � under the natural map
Bn! Hn .

This, combined with Proposition 7.3, gives a new proof of the result of Khovanov [12]
that when all components are labeled with 1, the invariant

E.L/D EGD
.XD IFD/D

X
i;j ;k

.�1/`qj tk dimA
j IkI`
2

.L/

is the appropriately normalized HOMFLYPT polynomial of the link L underlying
the diagram D . We wish to extend this to the colored case. For this, we must use a
“cabling/projection” formula.

Consider a closable colored braid � , and let P D Pn and G DGN . We have defined
a P�P –equivariant sheaf ˆ� on G by the multiplication map mW X� !G .

Theorem 7.5 For any colored link L, the Euler characteristic E.D/ is the (suitably
normalized) colored HOMFLYPT polynomial for any diagram D of L.
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In order to prepare for the proof, we show a pair of lemmata. Let �cab denote the
cabling of � in the blackboard framing with multiplicities given by the colorings,
thought of as colored with all labels 1.

Lemma 7.6 We have an isomorphism of P �B –equivariant sheaves,

resP�P
P�B ˆ� Š indP�B

B�B ˆ�cab :

Proof The proof is a straightforward induction on the length of � , left to the reader.

Let �n be the partition given by arranging the parts of n in decreasing order, and let �t
n

be its transpose. Let �n be the projection in the Hecke algebra to the representations
indexed by Young diagrams less than �t

n in dominance order. Alternatively, if we
identify HN with the endomorphisms of V ˝N , where V is the standard representation
of Uq.slm/ for m� n, then this is the projection to

Vi1V ˝ � � �˝
VinV .

Let qP D
P

WP
q`.w/ be the Poincaré polynomial of the flag variety P=B .

Lemma 7.7 For every complex ˆ in Db
B�B

.G/, we have

ŒresB�B
P�B indP�B

B�B ˆ�D qP�P Œˆ�:

Proof First consider the case where P DG . In this case, the sheaf resB�B
G�B

indG�B
B�B ˆ

has a filtration whose successive quotients are of the form Hi.ˆ/˝kG . Thus we have

ŒresB�B
G�B indG�B

B�B ˆ�D dimq H�.ˆ/ � ŒkG �:

It is a classical fact that ŒkG �D qG�G ; here �G is just the projection to
VN

V . This
computation immediately extends to the general case.

Remark 7 This proposition shows why our approach works for colored HOMFLYPT
polynomials, but would need to be modified to approach the HOMFLY polynomials
for more general type A representations; we lack a good categorification of most of the
projections in the Hecke algebra, but �P has a beautiful geometric counterpart. This
may be related to the fact that �P is the projection not just to a subrepresentation, but
in fact to a cellular ideal in Hn .

Proof of Theorem 7.5 Immediately from Lemmata 7.6 and 7.7, we have the equality
of Grothendieck classes ŒresP�P

B�B
ˆ� �D qP�P Œˆ�cab �. Thus

EP .GIˆ� /D q�1
P EB.GI resP�P

B�B ˆ� /

D Tr.q�1
P ŒresP�P

B�B ˆ� �/

D Tr.�P Œˆ�cab �/:
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By the “projection/cabling” formula (see, for example, [16, Lemma 3.3]), this is
precisely the colored HOMFLYPT polynomial.

8 The proof of invariance: the 1–colored case

We first concentrate on the simpler case of GL.2/ before attacking the general case. In
this case, we will obtain an invariant which matches the HOMFLYPT homology of
Khovanov and Rozansky [13; 12], so the section below can be thought of as a geometric
proof of the invariance of this homology theory.

Recall that if � is a braidlike diagram on n strands, we described in Section 4.2 a map

mW X� !Gn

which is equivariant with respect to �W G� ! T �T , where T �T acts on Gn by left
and right multiplication. This map gives rise to a functor

B�B
G�

m�W D
C

GD
.XD/!DC

T�T
.Gn/;

and we denoted the image of F� by ˆ� . We saw that this functor preserves weight
filtrations.

Now suppose that w is an element of the symmetric group on n letters (which we
regard as permutation matrices in Gn ) and that � D �i1

�i2
� � � �ip is a (positive) braid

in the standard generators corresponding to a reduced expression si1
� � � sip for w .

It is straightforward to see that if we restrict m to the open set zU in GD consisting of
tuples .g1; : : : ;gp/ with each gi 2 U , where U denotes the open Bruhat cell in G2 ,
then we may factor m as

(8) zU ! zU = ker�!Gn;

where the first map is a quotient by a free action, and the second map is an isomorphism.

Moreover, if we denote by B the subgroup of upper triangular matrices, then the image
of the restriction of m to zU is contained in Schubert cell BwB . It follows that

(9) ˆ� D jw�kBwBh`.w/i;

where jw denotes the inclusion of the Bruhat cell BwB into Gn .

Proposition 8.1 Theorem 1.2 holds in the case where all strands are labeled by 1.
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Proof As usual with proofs that knot invariants defined in terms of a projection are
really invariants, we check that our description is unchanged by the Reidemeister
moves. Since we only consider closed braids, we only need to check Reidemeister II
and III in the braid-like case, when all strands are coherently oriented. Those who
prefer to use the Markov theorem can consider the proof of Reidemeister I as a proof
of the Markov 1 move, and the Reidemeister II and III calculations as proving the
independence of the presentation of our braid in terms of elementary twists and of the
Markov 2 move (which only uses Reidemeister IIa).

In each case, we will use the fact that while we wish to compare the pushforwards of
sheaves corresponding to diagrams D and D0 from XD=GD and XD0=GD0 to a point,
we can accomplish this by showing that their pushforwards by any pair of maps to any
common space coincide. Being able to use these techniques is one of the principal
advantages of a geometric definition over a purely algebraic one.

In each case, the calculation we need to do is local in terms of diagrams. Proposition 6.8
implies that if we show that we have an isomorphism of global chromatographic
complexes of two diagrams as modules over the polynomial rings attached to external
edges, then “pasting” these into a fixed larger diagram again gives an isomorphism of
global chromatographic complexes.

Reidemeister I Consider the following tangles:

(10) D D D0 D

To simplify notation we denote the associated varieties by X and X 0 and groups by G

and G0 , respectively. We have X D G2 and X 0 D G1 , G D G3
1

and G0 D G2
1

. The
determinant gives a map

d W X !X 0;

which is equivariant with respect to the map �W G! G0 forgetting the factor corre-
sponding to the internal edge. We wish to exhibit an isomorphism

(11) G0

G d�FD Š FD0

compatible with the weight filtrations on both sheaves. Note that the weight filtration
on FD0 is trivial, whereas that on FD is not.
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Let B
a
,!X

b
 - BsB be the decomposition of X DG2 into its two Bruhat cells. We

have a distinguished triangle

a!a
!kX h1i ! kX h1i ! b�b

�kX h1i
Œ1�
�! :

Because a is the inclusion of a smooth divisor, a!kX DkX h�2iDkX Œ�2�.�1/. Hence

a!kX h1i D kX Œ�1�
�
�

1
2

�
:

Turning the triangle gives the weight filtration on b�kBsBh1i:

(12) kX h1i ! b�kBsBh1i ! a�kB

�
�

1
2

� Œ1�
�! :

The left (resp. right) hand term is pure of weight 0 (resp. 1). In the following we
analyze the effect of G0

G
d� on this triangle.

The restriction of d to BsB �X is a trivial G1�A2 –bundle over X 0 . One may easily
check that ker� acts freely on the multiplicative group in the fiber. It follows that

G0

G d�b�kBsB Š kX 0 :

On the other hand, the restriction of d to B �X yields a trivial G1�A1 –bundle, with
ker� only acting on A1 . It follows that

G0

G d�a�kB DH �.P1/˝H �.G1/˝kX 0 :

Applying G0

G
d� to (12) and using the above isomorphisms, we obtain

G0

G d�kX h1i ! kX 0h1i !H �.P1/˝H �.G1/˝kX 0

�
�

1
2

� Œ1�
�! :

As Hom.k
X 0
;k

X 0
Œi �/DH i

G0
.X 0/ is zero for i < 0 we conclude that the second arrow

above is zero. Thus, the induced weight filtration on k
X 0

is trivial. Thus, we have the
desired Equation (11). As discussed before, the general case follows from Section 6.2,
where we think of adding the rest of the diagram as a canopolis operation.

Reidemeister IIa Here we are concerned with the following two tangles:

D D D0 D

We denote the associated varieties and groups X , X 0 , G , G0 . We denote by m the
multiplication map X !G2 considered at the start of this section. We regard X 0 as
the diagonal matrices inside G2 .
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We have seen that G0

G
m� preserves weight filtrations, and hence we may ignore weight

filtrations when comparing G0

G
m�FD and FD0 . The map B ! X 0 forgetting the

off-diagonal entry is acyclic, and therefore it is enough to show that G0

G
m�FD Š k

B
.

We decompose G2 into its Bruhat cells B
a
,! G2

b
 - BsB as before. We claim we

have isomorphisms

G0

G m�.a�kB � b!kBsB/Š b!kBsB;(13)
G0

G m�.kG � a�kB/Š kG ;(14)
G0

G m�.kG � kG/Š kG ˚kGh�2i;(15)
G0

G m�.kG � b!kBsB/Š kGh�2i:(16)

(As always we regard the exterior tensor product of equivariant sheaves on G2 as an
equivariant sheaf on X via restriction.)

Indeed, (13) and (14) follow from the fact that the restriction of m to B �G or G �B

is a trivial B –bundle, with ker� acting freely on the multiplicative groups in the fiber.
The factorization (8) of m as “essentially a P1 –bundle” implies (15). Then (16) follows
from the others by taking the exterior tensor product of k

G
with the distinguished

triangle b!kBsB
! k

G
! a�kB

! and applying G0

G
m� .

Now B is smooth of codimension 1 inside G2 so a!k
G
D k

B
h�2i and we have an

exact triangle

a�kBh�2i ! kG! b�kBsB

Œ1�
�! :

Taking the exterior tensor product with b!kBsB
, applying G0

G
m� and using the above

isomorphisms we obtain a distinguished triangle

(17) b!kBsBh�2i ! kGh�2i ! G0

G m�.b�kBsB � b!kBsB/
Œ1�
�! :

Note that Hom.b!kBsB
;k

G
/ is one-dimensional and contains the adjunction morphism

b!b
!k

G
! k

G
. By considering its dual, one may show that the first arrow in (17) is

nonzero. It follows that this arrow is the adjunction morphism (up to a nonzero scalar)
and we have an isomorphism

G0

G m�.b�kBsB � b!kBsB/Š kBh�2i:

Finally note that by definition FD is b�kBsB
� b!kBsB

h2i and so

G0

G m�FD Š kB;

which finishes the proof of invariance under Reidemeister II.
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Reidemeister III This follows immediately from the considerations at the beginning
of this section. Indeed, if � and � 0 are the diagrams corresponding to the words �1�2�1

and �2�1�2 we have maps

X�
m
!G3

m0

 X� 0

and we have
T�T

G�
m�F� Š jw0

kBw0B Š
T�T

G�
m0�F� 0 ;

where w0 indicates the longest element in S3 .

9 The proof of invariance: arbitrary labels

Now, we expand to the full case of all possible positive integer labels.

Proof of Theorem 1.2 All of the Reidemeister moves can simply be reduced to the
corresponding statement for the cabling with all labels 1. Interestingly, the same trick
was used in [17] to prove invariance in a special case. Almost certainly our proof could
be rephrased in a purely algebraic language like their paper, though at the moment it is
unclear how.

Reidemeister IIa & III Here we need only establish the isomorphisms of P�P –
equivariant sheaves

ˆ�i
?ˆ��1

i
Š kP and ˆ�i

?ˆ�iC1
?ˆ�i

Šˆ�iC1
?ˆ�i

?ˆ�iC1
:

Lemma 7.6 implies that these hold as P�B –equivariant sheaves, applying the invari-
ance for the cabling with all labels 1.

In fact, both are the �–inclusion of a local system on a P�P –orbit: P itself in the
first case, and the P�P orbit of the permutation corresponding to the cabling of
�i�iC1�i in the second. Since the stabilizer of any point under P�P is connected,
any P�B–equivariant local system on an orbit has at most one P�P –equivariant
structure, and this equality holds as P�P –equivariant sheaves.

Reidemeister I We again use the “cabling/projection” philosophy, but this argument
requires a bit more subtlety. We are interested in the chromatographic complex of a
single crossing with its right ends capped off; that is, the tangle projection denoted
by D in (10). To construct the sheaf FD , we take U � G2n , as defined in (5), and
consider j�kU

hn2i or j!kU
hn2i, depending on whether our crossing is positive or

negative. These cases are Verdier dual, and the proofs of invariance are essentially
identical, so we will treat the positive case, and only note where the negative differs.
If we consider this sheaf equivariantly for the action of Gn;n on the left and the right,
then we obtain the sheaf attached to a single crossing with label n on both strands.
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By convention, we let G1 denote the first copy of Gn �Gn;n and G2 the second. As
before, we let Tn be diagonal matrices in Gn , and we use T 1;T 2 for the inclusions
into the two factors. We let G1;1;2 denote G1�G1� .G2/� ; that is, the left and right
action of G1 , and the conjugation action of G2 . This is the group GD for the diagram
labeled D in (10). The sheaf FD for this diagram is thus j!kU

hn2i (or j�kU
hn2i

if D is taken with a positive crossing) considered equivariantly for G1;1;2 .

Thus in order to prove the theorem, what we must do is consider the G1;1;2 –equivariant
global chromatographic complex of FD as a H�.BG1/–bimodule, and show that it
matches that of an untwisted strand (the diagram denoted D0 in (10)).

Note that for any Gn sheaf F on any Gn –space X , the inclusion of the symmetric group
as permutation matrices normalizing Tn gives an action of Sn on H�

Tn
.X I resGn

Tn
F/.

Lemma 9.1 The natural transformation of functors

H�
G1;1;2.G2nI �/!H�

G1;1�T 2.G2nI resG1;1;2

G1;1�T 2 �/

is the inclusion of the Sn –invariants for the permutation action on T 2 .

Proof This is the abelianization theorem for equivariant cohomology; see, for example,
[7, Proposition 1].

Let yU be the Bruhat cell Bw
n;n
2n

B , where wn;n
2n

is the permutation which switches i

and i ˙ n, and let yj be its inclusion to G2n . We note that yj�k yU is ˆ� where � is
the braid given by the n–cabling of a single crossing:

� � � � � �

� � � � � �

„ ƒ‚ …
n strands

„ ƒ‚ …
n strands

Lemma 9.2 The G1;1�T 2 –equivariant global chromatographic complex of j�kU is
isomorphic to the T 1;1�T 2 –equivariant one for yj�k yU , with the bimodule structure
restricted to H�.BG1;1/�H�.BT1;1/.

Proof Let QDG1\B be the upper triangular matrices in Gn . Then

indG1;1�T 2

T 1;1�T 2 j�k yU Š indG1;1�T 2

Q�Q�T 2 indQ�Q�T 2

T 1;1�T 2 j�k yU Š resG1;1;2

T 1;1�T 2 j�kU :

The first induction leaves chromatographic complexes unchanged, since Q and T 1

are homotopy equivalent, and j�k yU is smooth on Q�Q–orbits.
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For the second, we have a projective map

�W Gn �Q
yU �Q Gn!G2n;

which induces an isomorphism

Gn �Q
yU �Q Gn Š U:

By [25, Theorem 5], under taking equivariant cohomology, induction of sheaves
corresponds to the restriction of scalars, and since Gn=Q is projective, pushforward
preserves purity and thus commutes with taking local chromatographic complex. This
means that the result extends to all terms in the chromatographic spectral sequence.

By definition, the T 1;1�T 2 –equivariant chromatographic complex for yj�k yU is just
the complex of bimodules for the tangle diagram Dcab corresponding to closing the
right half of the strands in the braid above. Applying the invariance result for labelings
with all labels 1, this is the same as the complex corresponding to a full twist of
n strands. Since yj�k yU is in fact equivariant for T 1;1�G2 , this has an Sn action,
which is compatible with its module structure over H�.BT2/Š kŒx1; : : : ;xn�. Doing
this straightening one strand at a time, we see that the actions of H�.BT2/ and
H�.BT1/Š kŒy1; : : : ;yn� are intertwined by the map sending xi to ynC1�i . Thus,
the Sn action discussed above is compatible with the standard Sn –module action on
H�.BTn/ acting on the left and right after conjugation by the longest element w0 .

Note that if we consider a negative crossing, we will have to include n times the
usual shift for removing a negative stabilization, but this is easily accounted for in the
normalization.

Restricted to symmetric polynomials (that is, H�.BGn/), every Soergel bimodule is a
number of copies of the regular bimodule, and every map in the complex for a single
crossing splits, so restricted to H�.BGn/, the complex attached to a braid with all
labels 1 is homotopic to a single copy of H�.BTn/ with the regular bimodule action
and standard Sn action (conjugated by the longest element w0 ).

By Lemma 9.1, to obtain the G1;1;2 –equivariant global chromatographic complex we
simply take Sn –invariants and thus we obtain a single copy of the regular bimodule
for H�.BGn/, as desired.
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