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Anosov representations and proper actions

FRANÇOIS GUÉRITAUD

OLIVIER GUICHARD

FANNY KASSEL

ANNA WIENHARD

We establish several characterizations of Anosov representations of word hyperbolic
groups into real reductive Lie groups, in terms of a Cartan projection or Lyapunov
projection of the Lie group. Using a properness criterion of Benoist and Kobayashi,
we derive applications to proper actions on homogeneous spaces of reductive groups.
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1 Introduction

Anosov representations of word hyperbolic groups into real Lie groups were first
introduced by Labourie [58]. They provide an interesting class of discrete subgroups
of semisimple or reductive Lie groups, with a rich structure theory. In many respects
they generalize, to a higher-rank setting, the convex cocompact representations into
rank-one simple groups; see Guichard and Wienhard [37] and Kapovich, Leeb and
Porti [42; 43; 44]. They also play an important role in the context of higher Teichmüller
spaces.

The original definition of Anosov representations from [58] involves the flow space
of a word hyperbolic group, whose construction is not completely straightforward. In
this paper, we establish several characterizations of Anosov representations that do
not involve the flow space. A central role in our characterizations is played by the
Cartan projection of G (associated with a fixed Cartan decomposition), which measures
dynamical properties of diverging sequences in G . We apply our characterizations
to the study of proper actions on homogeneous spaces by establishing a direct link
between the properties, for a representation �W �!G to be Anosov, and for � to act
properly discontinuously via � on certain homogeneous spaces of G .

We now describe our results in more detail.
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1.1 Existence of continuous boundary maps

Since the foundational work of Furstenberg and the celebrated rigidity theorems of
Mostow and Margulis, the existence of boundary maps has played a crucial role in
the study of discrete subgroups of Lie groups. Given a representation �W �!G of a
finitely generated group � into a reductive (eg semisimple) Lie group G , measurable
�–equivariant boundary maps from a Poisson boundary of � to a boundary of G
exist under rather weak assumptions, eg the Zariski density of �.�/ in G . However,
if � comes with some geometric or topological boundary, obtaining a continuous
�–equivariant boundary map is in general difficult.

Anosov representations of word hyperbolic groups come, by definition, with a pair of
continuous equivariant boundary maps. More precisely, let �W �!G be a P� –Anosov
representation. (We always assume G to be noncompact and linear, and use the notation
P� and P�

�
for its standard parabolic subgroups, with the convention that P∅ DG ;

see Section 2.2.) Then there exist �–equivariant boundary maps �CW @1�!G=P�
and ��W @1� ! G=P�

�
that are continuous. These boundary maps have additional

remarkable properties: they are transverse, ie for any distinct points �, �0 2 @1�
the images �C.�/ 2G=P� and ��.�0/ 2G=P�

�
are in general position, and they are

dynamics-preserving, which means that, for any 
 2 � of infinite order with attracting
fixed point �C
 2 @1� , the point �C.�C
 / (resp. ��.�C
 /) is an attracting fixed point
for the action of �.
/ on G=P� (resp. G=P�

�
). Furthermore, these maps satisfy an

exponential contraction property involving certain bundles over the flow space of �
(see Section 2.5).

In this paper, given a word hyperbolic group � and a representation �W � ! G , we
construct, under some growth assumption for the Cartan projection of G restricted
to �.�/ (Theorem 1.1(1)), an explicit pair .�C; ��/ of continuous, �–equivariant
boundary maps. (Recall that the Cartan projection �W G! aC , defined from a Cartan
decomposition G DK.exp aC/K , is a continuous, proper, surjective map to the closed
Weyl chamber aC ; see Section 2.3.1, and Example 2.16 for G D GLd .R/.) We give a
sufficient condition for these maps to be dynamics-preserving (Theorem 1.1(2)). Under
an additional assumption on the growth of � along geodesic rays in � (Theorem 1.1(3)),
we prove that the pair of maps .�C; ��/ is also transverse and that � is Anosov. This
assumption involves the following notion: we say that a sequence .xn/ 2 .RC/N is
CLI (ie has coarsely linear increments) if there exist � , �0 , �00 , �000 > 0 such that, for
all n, m 2N ,

(1-1) �m� �0 � xnCm� xn � �
00mC �000:

In other words, n 7! xn is a quasi-isometric embedding of N into RC .
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Theorem 1.1 Let � be a word hyperbolic group and j � j� W � ! N its word length
function with respect to some fixed finite generating subset of � . Let G be a real
reductive Lie group and �W � ! G a representation. Fix a nonempty subset � � �
of the simple restricted roots of G (see Section 2.2.2), and let †C

�
� a� be the set of

positive roots that do not belong to the span of �X � .

(1) If there is a constant C > 0 such that, for any ˛ 2 � ,

h˛;�.�.
//i � 2 log j
 j� �C;

then there exist continuous, �–equivariant boundary maps �CW @1�!G=P�
and ��W @1�!G=P�

�
.

(2) If moreover, for any ˛ 2 � and any 
 2 � ,

h˛;�.�.
n//i � 2 log jnj !C1 as jnj !C1;

then �C and �� are dynamics-preserving.

(3) If moreover, for any ˛ 2†C
�

and any geodesic ray .
n/n2N in the Cayley graph
of � , the sequence

�
h˛;�.�.
n//i

�
n2N is CLI, then �C and �� are transverse

and � is P� –Anosov.

Let us briefly discuss the meaning of the assumptions of Theorem 1.1. Let k � k be a
Euclidean norm on the Cartan subspace a which is invariant under the restricted Weyl
group of a in G . For any ˛ 2 �, the function h˛; � iW aC ! RC is proportional to
the distance function to the wall Ker.˛/, with respect to k � k. Thus the assumption of
Theorem 1.1(1) means that the set �.�.�// “drifts away at infinity” from the union
of walls

S
˛2� Ker.˛/ in aC , at speed at least twice the log of the word length. The

CLI assumption in Theorem 1.1(3) means that the image under � ı � of any geodesic
ray in the Cayley graph of � drifts away “forever linearly” from the hyperplane
Ker.˛/ for every ˛ 2 †C

�
(see Section 2.3.2). Inside the Riemannian symmetric

space G=K of G , the function k�. � /kW G ! RC gives the distance between the
basepoint x0 D eK 2 G=K and its image under an element of G (see (2-8)). The
functions h˛;�. � /i can be thought of as refinements of k�. � /k. The CLI assumption
in Theorem 1.1(3) means that h˛;� ı �. � /iW � ! RC restricts to a quasi-isometric
embedding on any geodesic ray in the Cayley graph of � for ˛ 2†C

�
.

Remarks 1.2 (a) Theorem 1.1(1) extends a rank-one result of Floyd [25] to the
setting of higher real rank. As in [25], the image of �C in Theorem 1.1 is the limit set
of � in G=P� (Definition 5.1); see Theorem 5.3.
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(b) Boundary maps are commonly constructed only on some large subset of @1�
(dense or of full measure). By contrast, Theorem 1.1(1) is based on an explicit con-
struction of the boundary maps at every point; see Theorem 5.3.

(c) Theorem 5.3 refines Theorem 1.1 by providing weaker conditions for the existence
of �–equivariant boundary maps with various properties. The subtleties in dropping one
assumption among continuity, dynamics-preservation or transversality are illustrated
by Examples 5.5 and A.6. We expect that the methods of the proof of Theorem 5.3
will have applications in broader contexts where � is not necessarily word hyperbolic.

(d) The growth condition in Theorem 1.1(2) is optimal (see Lemma 2.27 and Remark
2.32(a)).

(e) In Theorem 1.1(3) the CLI constants are not required to be uniform.

(f) The CLI assumption in Theorem 1.1(3) can be restricted to the set of geodesic
rays starting at the identity element e 2 � . In fact, we only need the CLI assumption
for one quasigeodesic representative per point in the boundary at infinity @1� (see
Proposition 5.12). If � D� (ie P� is a minimal parabolic subgroup of G ), then the
CLI assumption for all ˛ 2 †C

�
is equivalent to the CLI assumption for all ˛ 2 � ,

because in this particular case †C
�
� span.�/.

(g) For a quasigeodesic ray .
n/n2N , under the hypothesis of Theorem 1.1(3), the
sequence

�
h˛;�.�.
n//i

�
n2N is always upper CLI; see (2-11) and Fact 2.18.

(Here we use the terminology .�00; �000/–upper CLI for a sequence .xn/ 2 .RC/N

satisfying the right-hand inequality of (1-1) for all n, m 2 N ; we say .xn/n2N is
upper CLI if it is .�00; �000/–upper CLI for some �00 , �000 > 0. Similarly, we shall use
below the terminology .�; �0/–lower CLI for a sequence .xn/ 2 .RC/N satisfying the
left-hand inequality of (1-1) for all n, m 2N .)

1.2 Characterizations of Anosov representations in terms of the Cartan
projection

Theorem 1.1 provides sufficient conditions for a representation �W � ! G to be
Anosov in terms of the Cartan projection �. Conversely, we prove that any Anosov
representation satisfies these conditions. This yields the following characterizations:

Theorem 1.3 Let � be a word hyperbolic group, G a real reductive Lie group and
� �� a nonempty subset of the simple restricted roots of G . For any representation
�W �!G , the following conditions are equivalent:

(1) � is P� –Anosov.

Geometry & Topology, Volume 21 (2017)



Anosov representations and proper actions 489

(2) There exist continuous, �–equivariant, dynamics-preserving and transverse
maps �CW @1� ! G=P� and ��W @1� ! G=P�

�
, and for any ˛ 2 � we

have h˛;�.�.
//i !C1 as 
 !1 in � ;

(3) There exist continuous, �–equivariant, dynamics-preserving and transverse maps
�CW @1�!G=P� and ��W @1�!G=P�

�
, and constants c , C > 0 such that

h˛;�.�.
//i � cj
 j� �C for all ˛ 2 � and 
 2 � ;

(4) There exist � , �0 > 0 such that, for any ˛ 2†C
�

and any geodesic ray .
n/n2N

with 
0 D e in the Cayley graph of � , the sequence
�
h˛;�.�.
n//i

�
n2N is

.�; �0/–lower CLI.

By 
 !1 we mean that 
 leaves every finite subset of � , or equivalently that the
word length j
 j� of 
 goes to C1.

Remark 1.4 For Zariski-dense representations the existence of continuous, �–equi-
variant, dynamics-preserving and transverse maps �CW @1�!G=P� and ��W @1�!
G=P�

�
is sufficient for � to be P� –Anosov; see Guichard and Wienhard [37, The-

orem 4.11]. However, this is not true in general, even when � is semisimple; see
Example 7.15.

Remark 1.5 From Theorem 1.3(3) we recover the fact (see Labourie [58] and Guichard
and Wienhard [37, Theorem 5.3]) that any Anosov representation is a quasi-isometric
embedding. For a semisimple Lie group G of real rank one, ie when j�j D 1, being
a quasi-isometric embedding is equivalent to being P�–Anosov (Remark 2.36), and
in particular is an open property. In higher real rank this is not true: being a quasi-
isometric embedding is not an open property (see the appendix), whereas being Anosov
is. In higher real rank it is more difficult to find natural constraints on quasi-isometric
embeddings �W �!G that define an open subset of Hom.�;G/; characterization (4)
of Theorem 1.3 provides one answer to this problem.

The characterization of Anosov representations given by Theorem 1.3(4) does not
involve the boundary @1� , but only the behavior of the Cartan projection along
geodesic rays. Here are some consequences:

Remarks 1.6 (a) Theorem 1.3(4) provides a notion of Anosov representations of
word hyperbolic groups into p–adic Lie groups. Indeed, the Cartan projection �, with
values in a convex cone inside some Euclidean space, is also well defined, with similar
properties, when G is a reductive group over Qp (or more generally a non-Archimedean
local field).
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(b) Theorem 1.3(4) can be used to define new classes of representations into real
Lie groups. For instance, for a free group � , requiring condition (4) only for certain
“primitive” geodesic rays gives rise to a notion of primitive stable representations
into higher-rank Lie groups (generalizing the notion introduced by Minsky [61] for
G D PSL2.C/).

1.3 Relation to the work of Kapovich, Leeb and Porti

There is overlap between Theorem 1.3 (which contains a weaker version of Theorem
1.1(3); see Remark 1.2(e)) and independent results of Kapovich, Leeb and Porti, as we
now describe.

In a series of three papers [42; 43; 44] (see also [45]), Kapovich, Leeb and Porti develop
a theory of discrete groups of isometries of higher-rank Riemannian symmetric spaces
with nice geometric, dynamical and topological properties, generalizing some of the
characterizations of convex cocompactness in rank one. This theory depends on the
choice of a face �mod of the model Weyl chamber �mod associated with the Riemannian
symmetric space. In [42; 44], they prove the equivalence of several properties for
�mod –nonelementary finitely generated discrete groups of isometries � , namely

(i) �mod –RCA (regularity, conicality, antipodality);

(ii) �mod –CEA (convergence, expansion, antipodality);

(iii) word hyperbolicity, �mod –regularity and �mod –asymptotic embeddedness;

(iv) word hyperbolicity and a �mod –Morse property;

(v) word hyperbolicity and a �mod –Anosov property.

In [43], using asymptotic cones, they prove that these properties are equivalent to

(vi) nondistortion and asymptotic uniform �mod –regularity.

Let G be the full isometry group of Riemannian symmetric spaces of noncompact
type. In our language and with our notation, the choice of �mod is equivalent to the
choice of a subset � � � of the simple restricted roots of G , via the identification
� 7!

T
˛2�X� Ker.˛/ \ aC ; in turn, this is equivalent to the choice of a standard

parabolic subgroup P� of G (see Section 2.2). The �mod –Anosov property in (v) is the
P� –Anosov property of the present paper (see Definition 2.30). Condition (vi) means,
in our language, that there exist c , C > 0 such that h˛;�.�.
//i � cj
 j� �C for all
˛ 2 � and 
 2 � . The implications (1)()(2)D)(3) in Theorem 1.3 are analogous
to the implications (iii)()(v)D)(vi) above, after observing that the �mod –conicality
requirement in �mod –asymptotic embeddedness in (iii) is always satisfied when the
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continuous equivariant boundary maps are dynamics-preserving and transverse. The
implication (4)D)(1) in Theorem 1.3 follows from (vi)D)(v) above. We do not see
any direct link between the implication (1)D)(4) and the characterizations above in
general, since (4) involves †C

�
and not � .

We note that the characterizations (i), (ii) and (vi) of Kapovich, Leeb and Porti do not
assume the discrete group to be hyperbolic a priori.

In [43] the authors also develop a notion of Morse action on Euclidean buildings, in
particular Bruhat–Tits buildings of p–adic groups; this echoes our Remark 1.6(a).

1.4 Characterizations of Anosov representations in terms of the
Lyapunov projection

We also establish new characterizations of Anosov representations that are analogous to
Theorem 1.3 but involve the Lyapunov projection �W g 7! limn �.gn/=n associated with
the Jordan decomposition in G (see Section 2.4), and the stable length 
 7! j
 j1 D
limn j
nj�=n (see (2-1)).

Theorem 1.7 Let � be a word hyperbolic group, G a real reductive Lie group and
� �� a nonempty subset of the simple restricted roots of G . For any representation
�W �!G , the following conditions are equivalent:

(1) � is P� –Anosov.

(2) There exist continuous, �–equivariant, dynamics-preserving and transverse
maps �CW @1� ! G=P� and ��W @1� ! G=P�

�
, and for any ˛ 2 � we

have h˛; �.�.
//i !C1 as j
 j1!C1.

(3) There exist continuous, �–equivariant, dynamics-preserving and transverse maps
�CW @1� ! G=P� and ��W @1� ! G=P�

�
, and a constant c > 0 such that

h˛; �.�.
//i � cj
 j1 for all ˛ 2 � and 
 2 � .

A P� –Anosov representation �W �!G is not necessarily semisimple, even when P�
is a minimal parabolic subgroup of G (Remark 2.41). In the course of the proof of
Theorem 1.7 we establish the following result, which is of independent interest. (See
Section 2.5.4 for a definition of the semisimplification.)

Proposition 1.8 Let � be a word hyperbolic group, G a real reductive Lie group and
� � � a nonempty subset of the simple restricted roots of G . Let �W � ! G be a
representation and �ss its semisimplification. Then

� is P� –Anosov () �ss is P� –Anosov.
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Since the character variety of � in G can be viewed as the quotient of Hom.�;G/
by the relation “having the same semisimplification”, Proposition 1.8 means that the
notion of being P� –Anosov is well defined in the character variety.

1.5 Anosov representations and proper actions

The first applications of Anosov representations to proper actions on homogeneous
spaces were investigated by Guichard and Wienhard [37] through constructions of
domains of discontinuity. Theorem 1.3 now provides a more direct link via the following
properness criterion of Benoist [4] and Kobayashi [54]:

Properness criterion [4; 54] Let G be a reductive Lie group, and H and � two
closed subgroups of G . Then � acts properly on G=H if and only if, for any compact
subset C of a, the intersection .�.�/CC/\�.H/� a is compact.

In other words, � acts properly on G=H if and only if the set �.�/ “drifts away
at infinity” from �.H/. In this case the quotient �nG=H is an orbifold, sometimes
called a Clifford–Klein form of G=H .

Based on the properness criterion, a strengthening of the notion of proper discontinuity
was introduced by Kassel and Kobayashi [51]: a discrete subgroup � < G is said to
act sharply (or strongly properly discontinuously) on G=H if the set �.�/ drifts away
from �.H/ at infinity “with a nonzero angle”, ie there are constants c , C > 0 such
that, for all 
 2 � ,

(1-2) da.�.
/; �.H//� ck�.
/k�C;

where da denotes the metric on a induced by k � k. The quotient �nG=H is said to
be a sharp Clifford–Klein form. Many (but not all) properly discontinuous actions are
sharp; the sharpness constants .c; C / give a way to quantify this proper discontinuity.
Sharp actions are interesting for several reasons. Firstly, they tend to be stable under
small deformations, which is not true for general properly discontinuous actions.
Secondly, there are applications to spectral theory in the setting of affine symmetric
spaces G=H : by [51], if the discrete spectrum of the Laplacian on G=H is nonempty
(which is equivalent to the rank condition rankG=H D rankK=.K \H/), then the
discrete spectrum of the Laplacian is infinite on any sharp Clifford–Klein form �nG=H .

Here is an immediate consequence of the implication (1)D)(3) of Theorem 1.3 and of
(2-11) below (which expresses the subadditivity of k�k):

Corollary 1.9 Let � be a word hyperbolic group, G a real reductive Lie group and
� � � a nonempty subset of the simple restricted roots of G . For any P� –Anosov
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representation �W �!G , the group �.�/ acts sharply (in particular, properly discon-
tinuously) on G=H for any closed subgroup H of G such that �.H/�

S
˛2� Ker.˛/.

Since the set of P� –Anosov representations is open in Hom.�;G/ (see Guichard and
Wienhard [37] and Labourie [58]), Corollary 1.9 provides sharp actions that remain
sharp under any small deformation.

This corollary applies for instance to Hitchin representations of surface groups (which
are Anosov with respect to a minimal parabolic subgroup, ie � D�) and to maximal
representations (which are Anosov with respect to a specific maximal proper parabolic
subgroup, ie j� j D 1). We refer to Sections 6.1 and 6.2 for more explanation.

Corollary 1.10 Let .G;H/ be a pair in Table 1 and let † be a closed hyperbolic
surface. For any Hitchin representation �W �1.†/!G , the group �1.†/ acts sharply
on G=H .

G H conditions

(i) SLd .R/ SLk.R/ k < d � 1

(ii) SLd .R/ SO.d � k; k/ jd � 2kj> 1

(iii) SL2d .R/ SLd .C/�U.1/
(iv) SO.d; d/ SO.k; `/�SO.d � k; d � `/ jk� `j> 1

(v) SO.d; d C 1/ SO.k; `/�SO.d � k; d C 1� `/ ` … fk; kC 1g

(vi) SO.d; d/ GLk.R/ k < d � 1

(vii) SO.d; d C 1/ GLk.R/ k < d

(viii) SO.2d; 2d/ U.d; d/
(ix) Sp.2d;R/ U.d � k; k/
(x) Sp.2d;R/ Sp.2k;R/ k < d

(xi) Sp.4d;R/ Sp.2d;C/

Table 1: In these examples, 0 � k , ` � d are any integers with d � 2

satisfying the specified conditions.

Corollary 1.11 Let .G;H/ be a pair in Table 2. For any maximal representation
�W �1.†/!G , the group �1.†/ acts sharply on G=H .

Applying Corollary 1.9, it is easy to find many other examples with similar properties.

Conversely to Corollary 1.9, we prove that certain properly discontinuous actions give
rise to Anosov representations, using the implication (4)D)(1) of Theorem 1.3. This
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G H conditions

(i) SO.2; d/ U.1; k/ k � d=2

(ii) Sp.2d;R/ U.d � k; k/ d ¤ 2k

(iii) Sp.2d;R/ Sp.2k;R/ k < d

(iv) Sp.4d;R/ Sp.2d � 2;C/
(v) SU.2d C 1; 2d C 1/ SO�.4d C 2/
(vi) SU.p; q/ SU.k; `/�SU.p� k; q� `/ .p� q/.k� `/ < 0

(vii) SO�.2d/ U.d � k; k/�U.1/
(viii) SO�.4d/ SO�.4d � 2/
(ix) E6.�14/ F4.�20/
(x) E7.�25/ E6.�14/
(xi) E7.�25/ SU.6; 2/

Table 2: In these examples, k , ` , d , p , q 2N are any integers with d � 2
and k , ` � d (as well as k � p and ` � q in (vi)) satisfying the specified
conditions.

works well, for instance, in the so-called standard case, namely when the discrete
group � lies inside some Lie subgroup G1 of G that itself acts properly on G=H ; in
this case the action of � is automatically properly discontinuous, and even sharp; see
Kassel and Kobayashi [51, Example 4.10] and Section 6.3.

Corollary 1.12 Let G be a real reductive Lie group, � � � a nonempty subset of
the simple restricted roots of G , and H a closed subgroup of G such that �.H/ �S
˛2� Ker.˛/ \ aC . Let G1 be a reductive subgroup of G , of real rank 1, acting

properly on G=H . Then, for any convex cocompact subgroup � of G1 , the inclusion
of � into G is P� –Anosov.

Recall that � being convex cocompact in G1 means that there is a nonempty, � –
invariant, closed, convex subset C of the Riemannian symmetric space of G1 such
that �nC is compact. Since G1 has real rank 1, this is equivalent to � being finitely
generated and quasi-isometrically embedded in G1 (Remark 2.36).

Corollary 1.12 applies in particular to the examples in Table 3 below. For more examples,
including exceptional groups, see Kobayashi and Yoshino [56]. In examples (i) to (iv)
when k D d

2
, in example (v) when `D d

4
, and in example (vii), the group G1 acts

cocompactly on G=H , hence compact Clifford–Klein forms of G=H can be obtained
by taking � to be a uniform lattice in G1 . We refer to Okuda [63] and Bochénski,
Jastrzębski, Okuda and Tralle [9] for many more examples to which Corollary 1.12
applies, where G1 is locally isomorphic to SL2.R/.
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G � H G1

(i) SO.2; d/ ˛1 SO.1; d/ U.1; k/
(ii) SO.2; d/ ˛0 U.1; k/ SO.1; d/
(iii) U.2; d/ ˛1 U.1; d/ Sp.1; k/
(iv) U.2; d/ ˛0 Sp.1; k/ U.1; d/
(v) SO.4; d/ ˛1 SO.3; d/ Sp.1; `/
(vi) SO.4; d/ ˛0 Sp.1; `/ SO.1; d/
(vii) SO.8; 8/ ˛1 SO.7; 8/ Spin.8; 1/
(viii) SO.8; 8/ ˛0 Spin.8; 1/ SO.1; 8/

Table 3: In these examples, d , k and ` are any integers with 0 < k � d
2

and 0 < `� d
4

. We denote by ˛0 the simple root of G such that P˛0 is the
stabilizer of an isotropic line, and by ˛1 the simple root of G such that P˛1
is the stabilizer of a maximal isotropic subspace.

The geometric construction of domains of discontinuity of Guichard and Wienhard [37]
can be applied in many of the cases of Table 3 to furthermore obtain compactifications of
the corresponding Clifford–Klein forms �nG=H . These compactifications generalize
for instance the conformal compactifications of Fuchsian and quasi-Fuchsian groups.
This is the object of Guéritaud, Guichard, Kassel and Wienhard [33].

Remarks 1.13 (a) The properness criterion of Benoist and Kobayashi also applies
when G is a reductive group over a non-Archimedean local field (eg Qp ); see
Benoist [4]. Corollaries 1.9 and 1.12 also hold in this setting (see Remark 1.6(a)).

(b) From Corollaries 1.9 and 1.12, we recover the main result of Kassel [50]: in the
setting of Corollary 1.12 (over R or Qp ), there is a neighborhood U � Hom.�;G/ of
the natural inclusion such that for any ' 2 U the group '.�/ is discrete in G and acts
properly discontinuously on G=H .

1.6 Proper actions on group manifolds

For a Lie group G , let Diag.G/ be the diagonal of G � G . The homogeneous
space .G � G/=Diag.G/ identifies with G endowed with the transitive action of
G �G by left and right translation, and is called a group manifold. Using the full
equivalence (1)()(3) of Theorem 1.3, as well as Theorem 1.7, we obtain a particularly
satisfying characterization of quasi-isometrically embedded groups acting properly on
.G �G/=Diag.G/ when G is semisimple of real rank 1. This covers in particular the
cases of anti-de Sitter 3–manifolds (G D PSL2.R/) and of Riemannian holomorphic
complex 3–manifolds with constant nonzero sectional curvature (G D PSL2.C/).
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Theorem 1.14 Let G be a semisimple Lie group of real rank 1 and � a finitely
generated subgroup of G �G . Then the following are equivalent:

(1) � acts properly discontinuously on .G �G/=Diag.G/ and the inclusion � ,!
G �G is a quasi-isometric embedding.

(2) � acts sharply on .G �G/=Diag.G/ and the inclusion � ,!G �G is a quasi-
isometric embedding.

(3) � is word hyperbolic, of the form

� D f.�L.
/; �R.
// j 
 2 �0g;

where �L , �RW �0!G are representations and, up to switching the two factors
of G � G , the representation �L is convex cocompact and uniformly domi-
nates �R .

Here we say that �L uniformly dominates �R if there exists c < 1 such that, for all

 2 �0 ,

�.�R.
//� c�.�L.
//;

where �W G ! RC is the translation length function in the Riemannian symmetric
space G=K of G , given by �.g/D infx2G=K d.x; g � x/ for all g 2G .

Remark 1.15 Theorem 1.14, together with Corollary 1.18 below, was first established
by Kassel [48] for G D PSL2.R/' SO.1; 2/0 , then by Guéritaud and Kassel [34] for
G D SO.1; d/ with d � 2. (For a p–adic version, with G of relative rank 1 over a
non-Archimedean local field, see Kassel [49].) The fact that, for a general Lie group
G of real rank 1, any discrete subgroup of G �G acting properly discontinuously on
.G �G/=Diag.G/ is of the form .�L; �R/.�0/ where �L or �R is discrete with finite
kernel, was proved in Kassel [47]; see Theorem 7.14 for a precise statement.

To prove Theorem 1.14, we relate conditions (1), (2) and (3) to the fact that � is
word hyperbolic and its natural inclusion inside some larger group containing G �G
is Anosov. Such a relationship also exists, in a weaker form, when G has higher
real rank; a general statement is given in Theorem 7.3 below. Here we explain this
relationship when G D AutK.b/ is the group of automorphisms of a vector space
over KDR or KDC preserving a nondegenerate bilinear (symmetric or symplectic)
form b , or the group of automorphisms of a vector space over K D C or K D H
(the quaternions) preserving a nondegenerate (Hermitian or anti-Hermitian) form b —
a situation that includes all classical simple groups of real rank 1, namely SO.1; d/,
SU.1; d/ and Sp.1; d/ (Example 7.5).
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Theorem 1.16 For KDR, C or H , let V be a K–vector space and bW V ˝RV !K
a nondegenerate R–bilinear form which is symmetric, antisymmetric, Hermitian or anti-
Hermitian over K, with G WD AutK.b/ noncompact. Let Q0.b˚ b/ be the stabilizer
in AutK.b˚b/ of a .b˚b/–isotropic line in V ˚V and similarly for b˚ .�b/. For a
discrete subgroup � of G �G , the following three conditions are equivalent:

(3) � is word hyperbolic, of the form

� D f.�L.
/; �R.
// j 
 2 �0g;

where �L , �RW �0!G are representations and, up to switching the two factors
of G � G , the representation �L is Q0.b/–Anosov and uniformly Q0.b/–
dominates �R (Definition 7.1).

(4) � is word hyperbolic and the natural inclusion

� ,!G �G D AutK.b/�AutK.b/ ,! AutK.b˚ b/

is Q0.b˚b/–Anosov.

(5) � is word hyperbolic and the natural inclusion

� ,!G �G D AutK.b/�AutK.�b/ ,! AutK.b˚ .�b//

is Q0.b˚.�b//–Anosov.

If (3), (4) or (5) holds, then (1) and (2) of Theorem 1.14 hold. The converse is true if
and only if G has real rank 1.

We refer to Remark 7.6 for an explanation of why (2) does not imply (4) when G has
higher real rank.

Even though AutK.b/ D AutK.�b/, the embeddings in (4) and (5) are in general
quite different. For instance, for AutK.b/ D O.1; d/, these embeddings are � ,!
O.1; d/�O.1; d/ ,! O.2; 2d/ and � ,! O.1; d/�O.1; d/' O.1; d/�O.d; 1/ ,!
O.d C 1; d C 1/.

Here are two consequences of Theorems 1.14 and 1.16 and their refinement Theorem 7.3;
the second one uses the fact that being Anosov is an open property.

Corollary 1.17 Let G be a semisimple Lie group of real rank 1 and � a discrete
subgroup of G �G . If the action of � on .G �G/=Diag.G/ is properly discontinuous
and cocompact, then it is in fact sharp.
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Corollary 1.18 Let G be a semisimple Lie group of real rank 1 and � a finitely
generated quasi-isometrically embedded subgroup of G � G . If � acts properly
discontinuously on .G�G/=Diag.G/, then there is a neighborhood U�Hom.�;G�G/
of the natural inclusion such that any � 2 U is a quasi-isometric embedding from � to
G �G , and � acts properly discontinuously on .G �G/=Diag.G/ via � . If moreover
the action of � on .G �G/=Diag.G/ is cocompact, then � also acts cocompactly on
.G �G/=Diag.G/ via � .

Remark 1.19 For G semisimple of real rank 1, Corollary 1.18 and a result of
Tholozan [68, Theorem 3] imply that the space of complete .G�G; .G�G/=Diag.G//–
structures on a compact manifold M is a union of connected components of the space
of .G �G; .G �G/=Diag.G//–structures on M .

Conventions

In the whole paper, we assume the reductive group G to be noncompact, equal to a finite
union of connected components (for the real topology) of G .R/ for some algebraic
group G . We set RC WD Œ0;C1/, as well as N WD Z\RC and N� WDN X f0g.

Organization of the paper

In Section 2 we review some background material on word hyperbolic groups, the
structure of reductive Lie groups, proximality, and Anosov representations, and es-
tablish some basic preliminary results. In Section 3 we explain how one can always
reduce to Anosov representations into GL.V /. In Section 4 we prove the equivalences
(1)()(2)()(3) of Theorems 1.3 and 1.7 (characterizations of Anosov representations
assuming the existence of boundary maps). In Section 5 we give a point-by-point
construction of boundary maps (proving Theorem 1.1) and establish the equivalence
(1)()(4) of Theorem 1.3. In Section 6 we provide short proofs of Corollaries 1.10,
1.11 and 1.12. The links between Anosov representations and proper actions on group
manifolds are established in Section 7, where we prove Theorems 1.14 and 1.16 as
well as Corollaries 1.17 and 1.18.
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2 Preliminaries on Anosov representations and the structure
of reductive Lie groups

In this section we set up notation and recall some definitions and useful facts about
word hyperbolic groups � , real reductive Lie groups G and Anosov representations
�W �!G .

2.1 Word hyperbolic groups and their boundary at infinity

Recall that a finitely generated group � , with finite generating set S � � , is said
to be word hyperbolic if its Cayley graph C.�; S/, equipped with the natural graph
metric, is Gromov hyperbolic. The induced metric on � is the one coming from the
word length j � j� .

2.1.1 The boundary at infinity Let c , C >0. A map f W .X; d/! .X 0; d 0/ between
metric spaces is a .c; C /–quasi-isometric embedding if, for all x , y 2X ,

c�1d.x; y/�C � d 0.f .x/; f .y//� c d.x; y/CC:

It is a quasi-isometry if, furthermore, there exists R � 0 such that for any x0 2 X 0

we can find x 2X with d 0.x0; f .x//�R . When X DN , a .c; C /–quasi-isometric
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embedding is called a quasigeodesic ray. When X 0 is the Cayley graph of � , a
sequence .
n/ 2 �N defines a .c; C /–quasigeodesic ray in the Cayley graph of � if,
for all n, m 2N ,

c�1jn�mj �C � j
�1n 
mj� � c jn�mjCC:

If X and X 0 are geodesic metric spaces and f W X!X 0 is a quasi-isometry, then X is
Gromov hyperbolic if and only if X 0 is, and in this case f induces a homeomorphism
@1f W @1X ! @1X

0 between the visual boundaries [21, Chapter III, Theorem 2.2].
This fundamental fact has the following consequences:

(i) The word hyperbolicity of the group � does not depend on the choice of finite
generating set S .

(ii) The boundary at infinity @1� D @1C.�; S/ is well defined and � acts on it by
homeomorphisms.

The word hyperbolic group � acts on @1� as a uniform convergence group (see eg
Bowditch [15]), which means that it acts properly discontinuously and cocompactly on
the set of triples of pairwise distinct elements of @1� . As a consequence, it satisfies
the following dynamical properties:

Fact 2.1 (1) For any sequence .
n/2�N going to infinity, there exist �, �0 2 @1�
(possibly equal) and a subsequence .
�.n//n2N such that 
�.n/j@1�Xf�0g con-
verges, in the compact–open topology, to the constant map with image f�g.

(2) For any 
 2 � of infinite order, there exist �C
 ¤ ��
 in @1� such that
limn!C1 
n � � D �C
 for all � ¤ ��
 and limn!C1 
�n � � D ��
 for all
�¤ �C
 .

(3) The pairs .�C
 ; �
�

 / of attracting and repelling fixed points of elements 
 2 � of

infinite order form a dense subset of .@1� � @1�/XDiag.@1�/.

(4) If � is nonelementary (ie if # @1� >2, equivalently if � is not virtually cyclic),
then the action of � on @1� is minimal (ie every nonempty � –invariant subset
is dense).

2.1.2 Word length, stable length and translation length Associated with the word
length function j � j� W �!N is the stable length function j � j1W �!R, given by

(2-1) j
 j1 D lim
n!C1

1

n
j
nj�

for all 
 2 � . It is easily seen to be invariant under conjugation: jˇ
ˇ�1j1 D j
 j1
for all ˇ , 
 2 � . Moreover, it is related as follows to the translation length function on
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the Cayley graph

(2-2) 
 7! `�.
/D inf
ˇ2�
jˇ
ˇ�1j� W

Proposition 2.2 [21, Chapter X, Proposition 6.4] If the group � is ı–hyperbolic,
then `�.
/� 16ı � j
 j1 � `�.
/ for all 
 2 � .

2.1.3 The flow space An important object for the definition of an Anosov represen-
tation below and for some proofs in this paper is the flow space of the word hyperbolic
group � . It is a proper metric space G� with the following properties:

(1) G� is Gromov hyperbolic.

(2) G� is equipped with a properly discontinuous and cocompact action of � by
isometries. In particular, any orbit map 
 7! 
 � v from � to G� is a quasi-
isometry, and @1� is equivariantly homeomorphic to @1G� .

(3) G� is equipped with a flow f'tgt2R (ie a continuous R–action) which commutes
with the � –action and for which there exist c , C >0 such that any orbit R!G�
of the flow is a .c; C /–quasi-isometric embedding. This implies the existence
of two continuous maps

'˙1W G� ! @1�; v 7! lim
t!˙1

't � v;

associating to v 2 G� the endpoints of its orbit.

(4) G� is equipped with an isometric Z=2Z–action commuting with � and anti-
commuting with R.

(5) The natural map

.'C1; '�1/W RnG� ! .@1� � @1�/XDiag.@1�/

is a homeomorphism.

The flow space was constructed by Gromov [32, Theorem 8.3.C], and more details
were provided by Champetier [20, Section 4]. Mineyev [59] introduced a different
construction of the flow space of a hyperbolic graph with bounded valency (not nec-
essarily coming with a group action). It is based on the existence of a hyperbolic
metric yd on the graph satisfying some subtle properties (see [59, Theorem 26; 60,
Theorem 17]); when applied to a Cayley graph of � these yield a space G� as above.
In Mineyev’s version the R–orbits are geodesics and not only quasigeodesics. There
is also a uniqueness statement for the flow space G� as a ��.RÌZ=2Z/–space up to
quasi-isometry and up to reparametrization of the R–orbits, but we shall not need it.
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Remark 2.3 It follows from Fact 2.1(3) that the union of the periodic geodesics of
the flow f'tgt2R is dense in G� .

If �1! �2 is a homomorphism with finite kernel and finite-index image, and �2 is
word hyperbolic with flow space G�2 , then �1 is finitely generated and word hyperbolic
and a flow space for �1 is G�2 with the action of �1 induced by the homomorphism
�1! �2 .

2.1.4 Negatively curved Riemannian manifolds For a large class of word hyper-
bolic groups � (including the fundamental groups of closed, negatively curved Rie-
mannian manifolds), the flow space G� has a simple geometric interpretation:

Fact 2.4 Let X be a simply connected Riemannian manifold with sectional curvature
bounded above by �a2 for some a¤ 0, and let �W �! Isom.X/ be a homomorphism
with finite kernel and convex cocompact image. Then � is finitely generated and word
hyperbolic, and a flow space of � is given by

G� D fv 2 T 1.X/ j .'C1; '�1/.v/ 2ƒ�.�/ �ƒ�.�/g

D fv 2 T 1.X/ j �.'t � v/ 2 C�.�/ for all t 2Rg

with its natural � � .R Ì Z=2Z/–action.

Here Isom.X/ is the group of isometries of X and � W T 1.X/ ! X the natural
projection. We denote by ƒ�.�/ the limit set of �.�/ in @1X , which is by definition
the closure in @1X of any �–orbit in X . By convex cocompact we mean that �
acts properly discontinuously and cocompactly, via � , on the convex hull C�.�/ �X
of ƒ�.�/ . In this case @1� is homeomorphic to the limit set ƒ�.�/ .

This example illustrates the nonuniqueness of the flow space as a metric space, since a
given convex cocompact subgroup of Isom.X/ can have nontrivial deformations.

Remark 2.5 In Corollaries 1.10, 1.11 and 1.12, Theorem 1.14 and Corollaries 1.17
and 1.18, the group � falls in the setting of Fact 2.4.

2.1.5 Geodesics in � and in its flow space We make the following definition:

Definition 2.6 A sequence .xn/ 2 RN is CLI (ie has coarsely linear increments) if
n 7! xn is a quasi-isometric embedding of N into Œa;C1/ for some a 2R, ie there
exist � , �0 , �00 , �000 > 0 such that, for all n, m 2N ,

�m� �0 � xnCm� xn � �
00mC �000:

In this case we say that .xn/n2N is .�; �0/–lower CLI.
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Remark 2.7 For a positive sequence .xn/n2N , the property of being CLI is stronger
than the property of growing linearly as n!C1. For instance, if f W N! .RC/2 is a
quasi-isometric embedding whose image zigzags vertically and horizontally between the
lines y D x and y D 2x , then the composition of f with either of the two projections
.RC/2!RC grows linearly but is not CLI.

The following result will be used several times throughout the paper:

Proposition 2.8 Let � be a word hyperbolic group with flow space G� . For any
c , C > 0, there exist a compact subset D of G� and constants � , �0 > 0 with the
following property: for any .c; C /–quasigeodesic ray .
n/n2N with 
0 D e in the
Cayley graph of � , there exist v 2 D and a .�; �0/–lower CLI sequence .tn/ 2 RN

such that 'tn � v 2 
n �D for all n 2N .

Proof Any .c; C /–quasigeodesic ray .
n/n2N with 
0 D e can be extended to a full
uniform quasigeodesic .
n/n2Z in the Cayley graph of � . Let  W � ! G� be an
orbit map; it is a quasi-isometry. By hyperbolicity, . .
n//n2Z lies within uniformly
bounded Hausdorff distance R > 0 from the R–orbit in G� with the same endpoints
at infinity. Let us write this R–orbit as .'t � v/t2R , where v lies at distance at most R
from  .e/. For any n2N , the point  .
n/2G� lies at distance at most R from 'tn �v

for some tn 2R, and the sequence .tn/n2N is CLI because  is a quasi-isometry and
the R–orbits are quasi-isometric embeddings. The lower CLI constants of .tn/n2N

depend only on .c; C / and on the quasi-isometry constants of  .

Corollary 2.9 Let � be a word hyperbolic group. Then there exist a compact set
D � G� and constants c1 , c2 > 0 with the following property: for any 
 2 � there
exist v 2 D and t � 0 such that 't � v 2 
 �D and t � c1j
 j� � c2 .

Proof Any 
 2 � belongs to a uniform quasigeodesic .
n/n2N with 
0 D e and

j
 j� D 
 . We conclude using Proposition 2.8.

2.2 Parabolic subgroups of reductive Lie groups

We now recall the necessary Lie-theoretic background. Let G be a noncompact real
reductive Lie group. We assume that G is a finite union of connected components
(for the real topology) of G .R/ for some algebraic group G . For simplicity, we
assume that the adjoint action of G on its Lie algebra g is by inner automorphisms,
ie Ad.G/� Aut.g/0 ; this is the case for instance if G is connected. Recall that G is
the almost product of Z.G/0 and Gs , where Z.G/0 is the identity component (for
the real topology) of the center Z.G/ of G , and Gs DD.G/ is the derived subgroup
of G , which is semisimple.
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2.2.1 Parabolic subgroups By definition, a parabolic subgroup of G is a subgroup
of the form P DG \P.R/ for some algebraic subgroup P of G with G .R/=P.R/
compact.

Definition 2.10 Two parabolic subgroups P and Q are said to be

� transverse (or opposite) if their intersection is a reductive subgroup;

� compatible (or in singular position) if their intersection is a parabolic subgroup.

When G has real rank 1, two proper parabolic subgroups are either transverse (ie
distinct) or compatible (ie equal), but when G has higher real rank there are other cases
between these two extremes.

Remark 2.11 Any parabolic subgroup P is its own normalizer in G , hence G=P
identifies (as a G–set) with the set of conjugates of P in G . In the sequel, we shall
make no distinction between elements of G=P and parabolic subgroups. In particular,
the terminology transverse and compatible will be used for elements of G=P �G=Q .

Remark 2.12 Let X D G=K be the Riemannian symmetric space of G ; it has
nonpositive curvature and its visual boundary @1X is a sphere. Geometrically, a
proper parabolic subgroup of G is the stabilizer in G of a (not necessarily unique)
point � 2 @1X . Two proper parabolic subgroups P and Q are transverse if and
only if there is a bi-infinite geodesic cW R!X such that P D StabG.limC1 c/ and
QD StabG.lim�1 c/.

Example 2.13 Let K be R, C or the ring H of quaternions, and let G be GLK.V /

for some (right) K–vector space V . Any parabolic subgroup of G is the stabilizer in G
of a partial flag of K–subspaces of V . Two parabolic subgroups are transverse if and
only if the corresponding flags f0gDV0¨ � � �¨Vr DV and f0gDW0¨ � � �¨WsDV
satisfy r D s and V D Vi ˚Wr�i for all 0� i � r .

2.2.2 Lie algebra decompositions Let z.g/ (resp. gs ) be the Lie algebra of the center
Z.G/ (resp. of the derived group Gs ). Then gD z.g/˚ gs , and this decomposition is
orthogonal with respect to the Killing form of g, whose restriction to z.g/ (resp. gs ) is
zero (resp. nondegenerate). Here are some algebraic and combinatorial objects needed
to give a more comprehensive description of the parabolic subgroups of G :

� K : a maximal compact subgroup of G , with Lie algebra k.

� g D k ˚ q: a Cartan decomposition, ie q is the .�1/–eigenspace of some
involution of g whose 1–eigenspace is k.
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� a � q: a Cartan subspace of g, ie a maximal abelian subspace of q; it is the
direct sum of q\ z.g/ and of a maximal abelian subspace as of q\ gs (unique
up to the Ad.K/–action).

� g D g0 ˚
L
˛2† g˛ : the decomposition of g into ad.a/–eigenspaces. By

definition,
.adY /.Y 0/D h˛; Y iY 0

for all Y 2 a and Y 0 2 g˛ . The eigenspace g0 is the centralizer of a in g; it
is the direct sum of z.g/ and of the centralizer of a in gs . The set † � a� D

HomR.a;R/ projects to a (possibly nonreduced) root system of a�s , and each
˛ 2† is called a restricted root of a in g.

� ��†: a simple system (see Knapp [52, Section II.6, page 164]), ie a subset
such that any root is expressed uniquely as a linear combination of elements
of � with coefficients all of the same sign; the elements of � are called the
simple roots.

� †C �†: the set of positive roots, ie roots that are nonnegative linear combina-
tions of elements of �; then †D†C[ .�†C/.

Note that � projects to a basis of the vector space a�s . The real rank of G is by
definition the dimension of a. Let

aC WD fY 2 a j h˛; Y i � 0 for all ˛ 2†Cg D fY 2 a j h˛; Y i � 0 for all ˛ 2�g

be the closed positive Weyl chamber of a associated with †C .

Given a subset � ��, we define P� and P�
�

to be the normalizers in G of the Lie
algebras

(2-3) u� D
M
˛2†

C

�

g˛ and u�� D
M
˛2†

C

�

g�˛;

respectively, where †C
�
D†CXspan.�X�/ is the set of positive roots that do not belong

to the span of �X � . The groups P� and P�
�

are parabolic subgroups of G , equal to
the semidirect product of their unipotent radical U� WD exp.u� / and U� WD exp.u�� /,
respectively, with the Levi subgroup

(2-4) L� WD P� \P
�
� :

Explicitly,

(2-5) Lie.P� /D g0˚
M
˛2†C

g˛˚
M

˛2†CX†
C

�

g�˛:

In particular, P∅ DG and P� is a minimal parabolic subgroup of G .
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Example 2.14 Let K be R, C or the ring H of quaternions and let G be GLd .K/,
seen as a real Lie group. Its derived group is Gs D D.G/ D SLd .K/. If K D R
(resp. C , H), then we can take K to be O.d/ (resp. U.d/, Sp.d/), and in all cases
we can take a � gld .K/ to be the set of real diagonal matrices of size d � d . For
1� i �d , let "i 2 a� be the evaluation of the i th diagonal entry. Then aD z.g/\a˚as ,
where z.g/\ aD

T
1�i;j�d Ker."i � "j / is the set of real scalar matrices and as D

Ker."1C� � �C"d / the set of traceless real diagonal matrices. The set of restricted roots
of a in G is

†D f"i � "j j 1� i ¤ j � dg:

We can take �D f"i � "iC1 j 1� i � d � 1g, so that

†C D f"i � "j j 1� i < j � dg

and aC is the set of the elements of a whose entries are in nonincreasing order. For
� D f"n1 � "n1C1; : : : ; "nm � "nmC1g with 1� n1 < � � �< nm � d � 1, the parabolic
subgroup P� (resp. P�

�
) is the set of block upper (resp. lower) triangular matrices in

GLd .K/ with square diagonal blocks of sizes n1 , n2�n1; : : : , nm�nm�1 , d �nm .
In particular, P� is the set of upper triangular matrices in GLd .K/.

The following classical fact will be used in Section 3:

Fact 2.15 (see eg [52, Proposition 7.76]) Any Lie subalgebra of g containing
Lie.P�/ is of the form Lie.P� / for a unique � ��.

2.2.3 Conjugacy classes of parabolic subgroups and invariant distributions on
G=L� Recall that any parabolic subgroup is conjugate to P� for some � ��, and
any pair of opposite parabolic subgroups is conjugate to .P� ; P�� / for some � ��; the
set � is unique since Ad.G/ is assumed to act on g by inner automorphisms (see Borel
and Tits [10, Section 5]). Since the stabilizer in G of .P� ; P�� / is L� DP� \P�� , the
set of pairs .P;Q/ of transverse parabolic subgroups of G identifies, as a G–set, with
the disjoint union of the G=L� for � ��. More precisely, with the identification of
Remark 2.11,

(2-6) f.P;Q/ 2G=P� �G=P
�
� j P;Q transverseg 'G=L� ;

and G=L� is the unique open G–orbit in G=P� �G=P�� . From this the tangent bundle
T .G=L� / inherits a decomposition

(2-7) T .G=L� /DE
C
˚E�:

This decomposition is G–invariant, and so for any bundle with fiber G=L� there is a
corresponding decomposition of the vertical tangent space (see Section 2.5.1).
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2.3 The Cartan projection

A central role in this paper is played by the Cartan projection �, which can be used to
measure dynamical properties of diverging sequences in G .

2.3.1 Basics on the Cartan projection Recall that, with the notation of Section 2.2.2,
the Cartan decomposition K.exp aC/K holds: any g 2 G may be written as g D
k.exp�.g//k0 for some k , k0 2 K and a unique �.g/ 2 aC (see Helgason [40,
Chapter IX, Theorem 1.1]). This defines a map

�W G! aC; g 7! �.g/;

called the Cartan projection, inducing a homeomorphism KnG=K ' aC .

Example 2.16 For KDR or C , let G D GLd .K/, and let K �G and aC be as in
Example 2.14. Then the diagonal entries of �.g/ are the logarithms of the singular
values of g (ie of the square roots of the eigenvalues of t xgg , where xg is the complex
conjugate of g ), in nonincreasing order.

The (restricted) Weyl group of a in g is the group W DNK.a/=ZK.a/, where NK.a/
(resp. ZK.a/) is the normalizer (resp. centralizer) of a in K . We now fix a W –invariant
Euclidean norm k � k on a. By a little abuse of notation, we shall use the same symbol
for the induced norm on the dual space a� . If G is simple, then k � k is unique up to
scale: it derives from the restriction to a of the Killing form of g. In general, k � k
is not unique, but any choice will do. This choice determines the Riemannian metric
dG=K on the symmetric space G=K , and for any g 2G we have

(2-8) k�.g/k D dG=K.x0; g � x0/;

where x0 WD eK 2G=K .

Seen as a subgroup of GLR.a/, the Weyl group W is a finite Coxeter group. A
system of generators of W is given by the orthogonal reflections s˛ in the hyperplanes
Ker.˛/� a for ˛ 2�. The group W acts simply transitively on the set of connected
components of aX

S
˛2† Ker.˛/ (open Weyl chambers). Therefore there is a unique

element w0 2W such that w0 � .�aC/D aC ; it is the longest element with respect to
the generating set fs˛g˛2� . The involution of a defined by Y 7! �w0 �Y is called the
opposition involution;1 it sends �.g/ to �.g�1/ for any g 2 G . The corresponding
dual linear map preserves †. We shall denote it by

(2-9) a�! a�; ˛ 7! ˛? D�w0 �˛:

1This involution is nontrivial only if the restricted root system † is of type An , D2nC1 or E6
with n� 2 .
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By definition, for any ˛ 2† and any g 2G ,

(2-10) h˛;�.g/i D h˛?; �.g�1/i:

Example 2.17 Take GDGLd .K/ with K, K and aC as in Example 2.14. The Weyl
group W is the symmetric group Sd , which permutes the diagonal entries of the
elements of a. The longest element w0 of W is the permutation of f1; : : : ; dg taking
i to d C 1� i . For ˛ D "i � "iC1 2�, we have ˛? D "d�i � "d�iC1 .

Here are some useful properties (see for instance [47, Lemma 2.3]), expressing that the
map � is “strongly subadditive”:

Fact 2.18 For any g , g1 , g2 , g3 2G ,

(1) k�.g/k D k�.g�1/k;

(2) k�.g1g2/��.g1/k � k�.g2/k;

(3) in particular, k�.g1g2g3/��.g2/k � k�.g1/kCk�.g3/k.

As a consequence, for any representation �W �!G , there exists k > 0 such that, for
any 
 2 � ,

(2-11) k�.�.
//k � kj
 j� :

Indeed, we can take k WDmaxs2S k�ı�.s/k, where S is the finite generating set of �
defining the word length j � j� .

2.3.2 Properness of the Cartan projection and consequences A crucial point is
that the map �W G! aC is proper, by compactness of K . This implies the following:

Remark 2.19 Let � be a finitely generated discrete group and �W �!G a represen-
tation. The representation � has finite kernel in � and discrete image in G if and only
if there is a function f W N!R with limC1 f DC1 such that, for all 
 2 � ,

k�.�.
//k � f .j
 j�/:

The map � is a quasi-isometric embedding if and only if f can be taken to be affine.

In particular, if � is a quasi-isometric embedding, then for any positive root ˛ 2†C

the following two conditions are equivalent:

(i) There exist c , C > 0 such that h˛;�.�.
//i � ck�.�.
//k�C for all 
 2 � .

(ii) There exist c , C > 0 such that h˛;�.�.
//i � cj
 j� �C for all 
 2 � .
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aC

�.�.�//

C

C0

"1� "2

"2� "3

�.�.
n//

�.�.
n//CC0R

�.�.
n0//
�.�.
n0//CC0R

"1� "2

"2� "3

Figure 1: Here G D SL3.R/ and � D f˛g D f"2 � "3g . Left: condition (i)
above. Right: the CLI condition of Theorem 1.1(3) for a geodesic ray
RD .
n/n2N .

Condition (i) means that the set �.�.�// avoids some translate C0 of the cone C WD

fx 2 a j h˛; xi< ckxkg in the Euclidean space a (see Figure 1, left).

In Theorem 1.1(3) we consider the following slightly different condition: for any
geodesic ray RD .
n/n2N in the Cayley graph of � , the sequence

�
h˛;�.�.
n//i

�
n2N

is lower CLI, ie there exist �R; �0R > 0 such that, for all n, m 2N ,

h˛;�.�.
nCm//��.�.
n//i � �Rm� �
0
R:

This means that there is a translate C0R in a of the cone

CR WD fx 2 a j h˛; xi< �Rkxkg

such that, for any n 2 N , the sequence .�.�.
nCm///m2N avoids �.�.
n//C C0R
(see Figure 1, right). This “nested cone” property is what we mean when we say (in
Section 1.1 in the introduction) that the sequence .�.�.
n///n2N 2 .a

C/N drifts away
“forever linearly” from Ker.˛/.

If G has real rank 1, then Proposition 2.8 implies the following strengthening of
Remark 2.19 (which yields the implication (1)D)(4) of Theorem 1.3 in that case):

Corollary 2.20 Let � be a finitely generated discrete group and G a semisimple
Lie group of real rank 1. If �W � ! G is a quasi-isometric embedding then, for any
geodesic ray .
n/n2N in the Cayley graph of � , the sequence

�
k�.�.
n//k

�
n2N is CLI;

moreover, the CLI constants are uniform over all geodesic rays .
n/n2N with 
0 D e .

In other words, in real rank one the fact that � is a quasi-isometric embedding implies
that the sequence

�
h˛;�.�.
n//i

�
n2N is CLI for all ˛ 2†C . This is not true when G

has higher real rank; see eg the representation �0W �! SL2.R/�SL2.R/ constructed
in the proof of Proposition A.1.
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Proof of Corollary 2.20 If �W � ! G is a quasi-isometric embedding, then � has
finite kernel and the group �.�/ is convex cocompact in G (see Bourdon [13] and
Bowditch [14]). By Fact 2.4, � admits a flow space G� which isometrically, �–
equivariantly and .'t /–equivariantly embeds into the unit tangent bundle T 1.X/. We
conclude using Proposition 2.8.

2.3.3 The Cartan projection for L� and the � –coset distance map Let � � �
be a nonempty subset of the simple restricted roots of G . Recall the Levi subgroup L�
of P� from (2-4). The group K� WDK \L� is a maximal compact subgroup of L� ,
and L� admits the Cartan decomposition L� DK� .exp aC

�
/K� , where

(2-12) aC
�
WD fY 2 a j h˛; Y i � 0 for all ˛ 2�X �g:

We denote by

(2-13) �� W L� ! aC
�

the corresponding Cartan projection of L� . As in Section 2.3.1, the map �� induces a
homeomorphism K�nL�=K� ' aC

�
. The Weyl chamber aC

�
for L� is convex and is a

union of W –translates of the Weyl chamber aC for G . We will sometimes use the
following observation:

Remark 2.21 For l 2L� , if �� .l/2 aC (equivalently if h˛;�� .l/i� 0 for all ˛ 2 � ),
then �� .l/D �.l/.

Example 2.22 Take G D GLd .K/ with K, K and aC as in Example 2.14. For
� D f"i � "iC1g, the set aC

�
consists of elements diag.t1; : : : ; td / 2 a with tj � tjC1

for all j 2 f1; : : : ; d � 1g X fig.

The Cartan projection �� induces a Weyl-chamber-valued metric on the Riemannian
symmetric space of L�

d�� W L�=K� �L�=K� ! aC
�
; .gK� ; hK� / 7! �� .g

�1h/:

This extends to a coset distance map on the set of pairs of elements of G=K� projecting
to the same element in G=L� .

Definition 2.23 The � –coset distance map is

d�� W
˚
.gK� ; hK� / 2G=K� �G=K� j gL� D hL�

	
! aC

�
;

.gK� ; hK� / 7! �� .g
�1h/:

This map was introduced in the study of Anosov representations in [37]; it will play a
crucial role in Section 4.
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2.4 The Lyapunov projection and proximality in G=P�

The natural projection associated with the Jordan decomposition is called the Lyapunov
projection; we denote it by �W G! aC . Explicitly, any g 2G can be written uniquely
as the commuting product g D ghgegu of a hyperbolic, an elliptic and a unipotent
element (see eg Eberlein [24, Theorem 2.19.24]). The conjugacy class of gh intersects
exp.aC/ in a unique element exp.�.g//. This projection can also be defined as a limit:
for any g 2G ,

(2-14) �.g/D lim
n!C1

1

n
�.gn/:

Note that, by definition of the opposition involution, and similarly to (2-10),

(2-15) h˛; �.g/i D h˛?; �.g�1/i

for all ˛ 2† and g 2G .

Example 2.24 For KDR or C , let G D GLd .K/, and let K �G and aC be as in
Example 2.14. Then the diagonal entries of �.g/ are the logarithms of the moduli of
the complex eigenvalues of g , in nonincreasing order.

Let � �� be a nonempty subset of the simple restricted roots of G . We shall use the
following terminology:

Definition 2.25 An element g 2 G is proximal in G=P� if it satisfies either of the
following two equivalent properties:

(1) g has a fixed point �Cg 2G=P� which is attracting, in the sense that the derivative
at �Cg 2G=P� of the action of g on G=P� has spectral radius < 1.

(2) h˛; �.g/i> 0 for all ˛ 2 � .

The equivalence between (1) and (2) is well known, and implicitly contained in Benoist’s
work [5]. Since we could not find it explicitly in the literature, we shall provide a
proof of it, as well as of the uniqueness of the attracting fixed point �Cg 2 G=P� , in
Proposition 3.3(c) below. The basin of attraction of a proximal element g in G=P� is
described as follows (see Section 3.3 for a proof).

Lemma 2.26 If g 2 G is proximal in G=P� , then g�1 is proximal in G=P�
�

and
limn!C1 gn � x D �Cg for all x 2 G=P� transverse to the attracting fixed point ��

g�1

of g�1 in G=P�
�

.

We now prove the following:
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Lemma 2.27 An element g 2G is proximal in G=P� if and only if, for any ˛ 2 � ,

(2-16) h˛;�.gn/i � 2 logn!C1 as n!C1:

Lemma 2.27 is based on the following claim:

Claim 2.28 For any unipotent element u 2 G , there is a constant Cu > 0 such that,
for all ˛ 2� and n 2N�,

h˛;�.un/i � 2 lognCCu:

Proof of Claim 2.28 Consider the following two elements of sl2.R/:

x D

�
1=2 0

0 �1=2

�
; eC D

�
0 1

0 0

�
:

Let �SL2.R/W SL2.R/!RCx be the Cartan projection of SL2.R/ with respect to the
Cartan decomposition SL2.R/D SO.2/.exp RCx/SO.2/. For any n 2N , an elemen-
tary computation shows that �SL2.R/.expneC/ D tnx , where tn D 2 argsinh

�
n
2

�
�

2 log.nC 1/.

Let u 2G be unipotent. By the Jacobson–Morozov theorem (see eg [12, Chapter VIII,
Section 11, Proposition 2]), there is a homomorphism � W SL2.R/ ! G such that
�.exp eC/D u. Up to conjugating in G (which only changes � by a bounded additive
amount; see Fact 2.18), we may assume that de�.x/ 2 aC and that �.SO.2// � K .
Then �.un/D tnde�.x/, and so

h˛;�.un/i D tnh˛; de�.x/i � 2 log.nC 1/h˛; de�.x/i

for all ˛ 2� and n 2N . We conclude using the fact (see Kostant [57, Lemma 5.1])
that h˛; de�.x/i 2

˚
0; 1
2
; 1
	

for all ˛ 2�.

Proof of Lemma 2.27 Let g 2 G . If g is proximal in G=P� , then (2-16) holds
by (2-14). Conversely, suppose g satisfies (2-16), and let

� 0 WD f˛ 2� j h˛; �.g/i> 0g:

It is sufficient to prove the existence of a constant C > 0 such that, for all ˇ 2�X � 0

and n 2N ,

(2-17) hˇ;�.gn/i � 2 lognCC:

Indeed, then (2-16) shows that � and �X � 0 do not intersect, hence � � � 0 and g is
proximal in G=P� by definition of � 0 .
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To prove (2-17), consider the Jordan decomposition g D ghgegu of g . By Fact 2.18,
k�.gn/��.gn

h
gnu/k � k�.g

n
e /k is bounded, and so we may assume ge D 1. Up to

conjugation (which only changes � by a bounded additive amount, by Fact 2.18 again),
we may assume that gh D exp.�.g// 2 aC and that gu 2 exp

�L
ˇ2†C gˇ

�
. Then gh

belongs to the center of the group L� 0 of (2-4); the element gu commutes with gh ,
hence belongs to

exp
� M
ˇ2†C\span.�X� 0/

gˇ

�
� L� 0 I

and we have �� 0.gn/D n�.g/C�� 0.gnu/ for all n 2N . By Fact 2.18, for any ˛ 2 � 0

and n 2N ,

jh˛;�� 0.g
n/��� 0.g

n
h/ij � k˛kk�� 0.g

n/��� 0.g
n
h/k � k˛kk�� 0.g

n
u/k:

By Claim 2.28 applied to gu 2 L� 0 , the right-hand side grows logarithmically with n,
while h˛;�� 0.gnh/i D nh˛; �.g/i grows linearly; therefore, h˛;�� 0.gn/i � 0 for all
large enough n 2N . This holds for all ˛ 2 � 0 , and so for all large enough n 2N we
have �� 0.gn/ 2 aC, hence �.gn/D �� 0.gn/ (see Remark 2.21). In particular, for any
ˇ 2�X � 0 and any large enough n 2N ,

hˇ;�.gn/i D hˇ;�� 0.g
n/i D hˇ; n�.g/C�� 0.g

n
u/i D hˇ;�� 0.g

n
u/i:

By Claim 2.28 again, there is a constant Cgu > 0 such that the right-hand side is
bounded by 2 lognC Cgu for all n 2 N� . This proves (2-17) and completes the
proof.

2.5 Anosov representations

Finally, in this section we recall the definition and some properties of Anosov represen-
tations. For more details and proofs we refer to [37].

Remark 2.29 In this paper, our convention for the notation of parabolic subgroups
is different from the one adopted in [37]: definitions and statements involving � ��
should be changed to �X � when compared with their versions there.

We now fix a word hyperbolic group � with flow space G� , a nonempty subset ��� of
the simple restricted roots of our reductive Lie group G and a representation �W �!G .

2.5.1 The dynamical definition The space

E.�/ WD �n.G� �G=L� /
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is a G=L� –bundle over �nG� . The subbundles EC and E� of T .G=L� / defined
in (2-7) induce vector bundles (still denoted by EC and E� ) over E.�/. In fact, EC

and E� are subbundles of the vertical tangent bundle

T vE.�/ WD �n.G� �T .G=L� //:

The geodesic flow f'tgt2R naturally acts on the products G��G=L� and G��T .G=L� /
(leaving the second coordinate unchanged), hence on their quotients E.�/ and T vE.�/;
the subbundles E˙ are flow-invariant.

Definition 2.30 The representation �W �!G is P� –Anosov if there is a continuous
section � W �nG� ! E.�/ with the following properties:

(i) � is flow-equivariant (ie its image F D �.�nG�/ is flow-invariant).

(ii) The action of the flow on the vector bundle ECjF � T vE.�/ is dilating.

(iii) The action of the flow on the vector bundle E�jF � T vE.�/ is contracting.

It is known that (ii) implies (iii) [37, Proposition 3.16] and that the section � is unique.
This definition is useful to determine certain properties of Anosov representations, such
as openness, or to define natural metrics on spaces of Anosov representations [16].

2.5.2 Another equivalent definition The following notions will be needed for vari-
ous characterizations of Anosov representations:

Definition 2.31 Two maps �CW @1�!G=P� and ��W @1�!G=P�
�

are said to be

� transverse if, for any �¤�0 in @1� , the points �C.�/ and ��.�0/ are transverse
in the sense of Definition 2.10;

� dynamics-preserving for � if for any 
 2 � of infinite order with attracting fixed
point �C
 2 @1� , the point �C.�C
 / (resp. ��.�C
 /) is an attracting fixed point
for the action of �.
/ on G=P� (resp. G=P�

�
).

Remarks 2.32 (a) If there exists a map �CW @1� ! G=P� which is dynamics-
preserving for � , then �.
/ is proximal in G=P� for any 
 2 � of infinite order.

(b) Continuous, dynamics-preserving boundary maps

�CW @1�!G=P� and ��W @1�!G=P��

for � , if they exist, are entirely determined on the dense subset consisting of the
attracting fixed points �C
 for 
 2 � of infinite order. As a consequence, such maps
are necessarily unique and �–equivariant. Moreover, for any � 2 @1� , the points
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�C.�/ 2 G=P� and ��.�/ 2 G=P�
�

are compatible in the sense of Definition 2.10;
indeed, the attracting fixed points �C.�C
 / and ��.�C
 / are always compatible for

 2 � of infinite order.

(c) If �C and �� are continuous, dynamics-preserving for � , and transverse, then
they are both injective. Indeed, for any �¤ �0 in @1� , the points �C.�/ 2G=P� and
��.�/ 2G=P�

�
are compatible while the points �C.�0/ 2G=P� and ��.�/ 2G=P�

�

are transverse.

A section � as in Definition 2.30 is equivalent to a �–equivariant map z� W G�!G=L� .
Working out the properties of z� , one obtains the following equivalent definition of
Anosov representations (see [37, Definition 2.10]), which still makes use of the flow
space G� of � but avoids the language of bundles. Recall the maps '˙1 from point (3)
of Section 2.1.3 and the coset distance map d�� from Definition 2.23.

Definition 2.33 A representation �W �!G is P� –Anosov if there exist continuous,
�–equivariant maps �CW @1�! G=P� and ��W @1�! G=P�

�
with the following

properties:

(i) �C and �� are transverse. This implies that �C and �� combine, via (2-6), to
a continuous, � –equivariant, flow-invariant map

z� W G� !G=L� ; v 7! .�C ı'C1.v/; �
�
ı'�1.v//:

Such a map z� always admits a continuous, � –equivariant lift

žW G� !G=K� ;

(this follows from the contractibility of L�=K� ), ie pr ı ž D z� .

(ii) There exist c , C > 0 such that, for all ˛ 2 � , all v 2 G� and all t 2R,

h˛; d�� .
ž.v/; ž.'t � v//i � ct �C:

This last inequality expresses the exponential contraction in Definition 2.30. Note that
the left-hand side of the inequality is nonnegative for ˛ 2�X � as well, by definition
(2-12) of the range aC

�
of d�� .

The maps �C and �� of an Anosov representation are always dynamics-preserving
(see [37, Lemma 3.1]); in particular, they are unique (Remark 2.32(b)).

Let �? �� be the image of � under the opposition involution (2-9). By definition, the
group P�

�
is conjugate to P�? , hence G=P�

�
identifies with G=P�? . It is sometimes

useful to reduce to the case that � D �? ; this is always possible by the following fact:
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Fact 2.34 [37, Lemma 3.18] A representation �W �!G is P� –Anosov if and only
if it is P�[�? –Anosov.

Remark 2.35 If � D �? , then the maps �C and �� associated with an Anosov
representation are equal (after identifying G=P� and G=P�

�
with the set of parabolic

subgroups of G conjugate to P� ; see Remark 2.11). More generally, any continuous,
dynamics-preserving boundary maps �CW @1�!G=P� and ��W @1�!G=P�

�
for

an arbitrary representation �W �!G are equal, by uniqueness (Remark 2.32(b)).

2.5.3 Examples and properties Examples of Anosov representations include:

(a) The inclusion of convex cocompact subgroups in semisimple Lie groups G of
real rank 1 [37; 58] (here j�j D 1 and so P� is the only proper parabolic
subgroup of G up to conjugacy).

(b) Representations of surface groups belonging to the Hitchin component when G
is a split real semisimple Lie group [58; 26, Theorem 1.15].

(c) Maximal representations of surface groups when the Riemannian symmetric
space of G is Hermitian [18; 19].

(d) The inclusion of quasi-Fuchsian subgroups in SO.2; d/ [2; 3].

(e) Holonomies of compact convex Pn.R/–manifolds whose fundamental group is
word hyperbolic [7].

Here are some basic properties of Anosov representations [37; 58]:

(1) The set of P� –Anosov representations is open in Hom.�;G/, invariant under
conjugation by G at the target, and the maps � 7! �C� and � 7! ��� are continuous.

(2) Any P� –Anosov representation �W �!G is a quasi-isometric embedding (see
Remark 2.19 for an interpretation in terms of �).

(3) Let � 0 be a finite-index subgroup of � . A representation �W � ! G is P� –
Anosov if and only if its restriction to � 0 is.

Remark 2.36 Let � be a finitely generated discrete group and �W � ! G a repre-
sentation. If G has real rank 1, then the following are actually equivalent (see [13;
14]):

� � is word hyperbolic and � is Anosov.

� The kernel of � is finite and the image of � is convex cocompact in G .

� � is finitely generated and � is a quasi-isometric embedding.
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Remark 2.37 To check the Anosov property, it is always possible to restrict to a
semisimple Lie group instead of a reductive one. Indeed, if G is reductive with
center Z.G/, then the group G0 WDG=Z.G/ is semisimple, and � identifies with a
simple system for G0 . For � � �, let P 0

�
be the corresponding parabolic subgroup

of G0 . Then G=P� identifies with G0=P 0
�

. A representation �W �!G is P� –Anosov
if and only if the induced representation �0W � ! G0 is P 0

�
–Anosov. Similarly, �

admits equivariant (resp. continuous, transverse or dynamics-preserving) boundary
maps if and only if �0 does.

2.5.4 Semisimple representations of discrete groups Let �W �!G be a represen-
tation of the discrete group � into the reductive Lie group G . Recall that � is called
semisimple if the Zariski closure of �.�/ in G is reductive or, equivalently, if for any
linear representation � W G! GL.V / we can write V as a direct sum of irreducible
.�ı�/.�/–modules.

Remark 2.38 If � 0 is a finite-index subgroup of � , then � is semisimple if and only
if �j� 0 is semisimple.

For a general representation �W � ! G , we define the semisimplification of � as
follows: Let H be the Zariski closure of �.�/ in G . Choose a Levi decomposition
H DLËRu.H/, where Ru.H/ is the unipotent radical of H . The composition of �
with the projection onto L does not depend, up to conjugation by Ru.H/, on the
choice of the Levi factor L. We shall call this representation the semisimplification
of � , denoted by �ss . The G–orbit of �ss in Hom.�;G/ (for the action of G by
conjugation at the target) is the unique closed orbit in the closure of the G–orbit of � .

As a consequence of the openness of the set of Anosov representations, a representation
is Anosov as soon as its semisimplification is. The converse is also true, and will be
proved in Section 4.7.

Proposition 2.39 Let � be a word hyperbolic group, G a real reductive Lie group,
� � � a nonempty subset of the simple restricted roots of G , and �W � ! G a
representation. If a representation �0 belonging to the closure of the G–orbit of � in
Hom.�;G/ is P� –Anosov, then the representation � itself is P� –Anosov. In particular,
if the semisimplification of � is P� –Anosov, then � is P� –Anosov.

Proof Recall from Section 2.5.3 that being P� –Anosov is an open property which is
invariant under the action of G on Hom.�;G/. Let �0 2 Hom.�;G/ be P� –Anosov.
There is a neighborhood U � Hom.�;G/ of �0 consisting of P� –Anosov representa-
tions. If �0 belongs to the closure of the G–orbit of � , then � admits a conjugate in U ,
hence � is P� –Anosov.
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Finally, semisimplification does not change the values taken by the Lyapunov projection
� of Section 2.4:

Lemma 2.40 Let �W �!G be a homomorphism from a group � into a reductive Lie
group G , and let �W G! aC be a Lyapunov projection for G . Then the semisimplifi-
cation �ss of � satisfies, for all 
 2 � ,

�.�ss.
//D �.�.
//:

Proof There is a sequence .�n/n2N of conjugates of � converging to �ss . The map �
is invariant under conjugation and continuous.

Remark 2.41 There exist P� –Anosov representations that are not semisimple. For
instance, let � be a free group and �W �! SL2.R/ a convex cocompact representation.
By embedding SL2.R/ into the upper left corner of SL3.R/, we see � as a represen-
tation of � into G D SL3.R/. It easily follows from Theorem 1.3 that �W �!G is
P�–Anosov. By embedding R2 into the upper right corner of SL3.R/, any �–cocycle
�W � ! R2 defines a representation �� W � ! G D SL3.R/ with semisimplification
�ss
�
D � . This representation is P� –Anosov by Proposition 2.39; it is semisimple only

if � is a �–coboundary.

3 Reducing to Anosov representations into GLK.V /

Let G be a reductive Lie group and � �� a nonempty subset of the simple restricted
roots of G . In this section we explain that there exist (infinitely many) finite-dimensional
linear representations .�; V / of G over K D R, C or H with the property that a
homomorphism �W �!G is P� –Anosov if and only if the composed homomorphism
� ı �W � ! GLK.V / is Anosov with respect to the stabilizer of a line (Lemma 3.2
and Proposition 3.5). This will be used with KDR in the proofs of Section 5; it will
make computations simpler by reducing them to the group GLR.V /. Certain technical
lemmas, and the possibility of working with KDC or KDH , will also be used in
Section 7.

The section is organized as follows: In Section 3.1 we set up some notation. In
Section 3.2 we introduce the notion of � –proximal linear representation of G ; we state
that irreducible � –proximal representations .�; V / exist in abundance and make the
link with Anosov representations. The core of the proofs lies in Section 3.3.

All linear representations in this paper are understood to be finite-dimensional.
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3.1 Notation: restricted weights of linear representations of G

Let G be a real reductive Lie group as in Section 2.2. We use the notation of Section 2:
in particular, we denote by . � ; � / a W –invariant scalar product on a and by k � k the
induced Euclidean norm on a; we use the same symbols for the induced scalar product
and norm on a� . Any linear representation .�; V / of G decomposes under the action
of a; the joint eigenvalues (elements of a� ) are called the restricted weights of .�; V /.
The union of the restricted weights of all linear representations of G is the set

ˆD

�
˛ 2 a�

ˇ̌̌
2
.˛; ˇ/

.ˇ; ˇ/
2 Z for all ˇ 2†

�
;

which projects to a lattice of a�s ; the set ˆ is discrete if and only if G is semisimple.
Let .z.g/\ a/0 � a� be the annihilator of z.g/\ a, ie the subspace of a� consisting
of linear forms vanishing on z.g/\ a; it identifies with the dual a�s of as . Similarly,
let a0s � a� be the annihilator of as . For any ˛ 2�, let !˛ 2 .z.g/\ a/0 � a� be the
fundamental weight associated with ˛ , defined by

(3-1) 2
.!˛; ˇ/

.ˇ; ˇ/
D ı˛;ˇ for all ˇ 2�;

where ı�;� is the Kronecker symbol. Then

ˆD a0s C
X
˛2�

Z!˛

and .!˛/˛2� projects to a basis of a�s . The set of dominant weights is the semigroup
ˆC D a0s C

P
˛2�N!˛ . The cone generated by the positive roots (or, equivalently,

by the simple roots) determines a partial ordering on a� , given by

� � �0 () �0� � 2
X
˛2†C

RC˛ D
X
˛2�

RC˛:

Given an irreducible linear representation .�; V / of G , the set of restricted weights
of � admits, for that ordering, a unique maximal element (see eg Goodman and Wallach
[31, Corollary 3.2.3]), which is a dominant weight called the highest weight of � ; we
denote it by �� .

3.2 Compatible and proximal linear representations of G

For KDR, C or H , let V be a finite-dimensional (right) K–vector space. Recall that
an endomorphism g 2 GLK.V / is said to be proximal in PK.V /D .V X f0g/=K

� if
it has a unique eigenvalue of maximal modulus and if the corresponding eigenspace
is one-dimensional. This coincides with both Definitions 2.25(1) and 2.25(2) for
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G D GLK.V / and P� the stabilizer of a line in V . The eigenspace corresponding to
the highest eigenvalue then gives rise to a unique attracting fixed point �Cg 2PK.V / for
the action of g on PK.V /. There is a unique complementary hyperplane H�g which
is stable under g , and limn!C1 gn � x D �Cg for all x 2 PK.V /XPK.H

�
g /.

Let G be a reductive group as above. We shall say that a linear representation
� W G ! GLK.V / is proximal if the group �.G/ � GLK.V / contains an element
which is proximal in PK.V /. For irreducible � , this is equivalent to the highest-weight
space V �� � V being a line.

We introduce the following notions:

Definition 3.1 Let � �� be a nonempty subset of the simple restricted roots of G .
An irreducible representation � W G! GLK.V / with highest weight �� is

(1) � –compatible if
f˛ 2� j .�� ; ˛/ > 0g D � I

(2) � –proximal if it is proximal and � –compatible.

Since the highest weight �� of any irreducible representation .�; V / belongs to ˆC D
a0s C

P
˛2�N!˛ , we have that .�; V / is � –compatible if and only if

�� 2 a
0
s C

X
˛2�

N�!˛:

We shall use the following fact:

Lemma 3.2 For any real reductive Lie group G , there is an integer N � 1 such that
any � 2N

P
˛2�N!˛ is the highest weight of some irreducible proximal linear repre-

sentation .�; V / of G . (By definition, such a representation .�; V / is � –compatible
for some nonempty subset � of � if and only if � 2

P
˛2� N�!˛ .)

Proof The image H WDAd.G0/�GLR.g/ of the identity component G0 of G under
the adjoint representation is a connected, semisimple, linear Lie group whose Lie
algebra h is isomorphic to gs . Any weight � for the group G induces a weight for the
group H . By results of Abels, Margulis and Soı̆fer [1, Theorem 6.3] and Helgason [41,
Chapter V, Theorem 4.1] (see Benoist [6, Section 2.3]), any weight �1 2 2

P
˛2�N!˛

is the highest weight of an irreducible proximal representation .�1; V1/ of H , hence
of G0 . The induced representation V2 D IndGG0V1 is an irreducible representation
of G ; its highest weight is again �1 but the weight space V �12 is now p–dimensional,
where p WD ŒG WG0� is the number of connected components of G . The factor .�; V /
in ƒp.V2/ generated by ƒp.V �12 / is then an irreducible proximal representation of G
with highest weight �D p�1 . Thus N D 2p has the desired property.
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The relevance of the notion of � –proximality lies in the following two propositions:

Proposition 3.3 Let .�; V / be an irreducible, � –proximal linear representation of G
with highest weight �� . Let V �� be the weight space corresponding to �� in V and
V<�� the sum of all other weight spaces.

(a) The stabilizer in G of V �� (resp. V<�� ) is the parabolic subgroup P� (resp. P�
�

).

(b) The maps g 7! �.g/V �� and g 7! �.g/V<�� induce � –equivariant embeddings

�CW G=P� ! PK.V / and ��W G=P�� ! PK.V
�/:

Two parabolic subgroups P 2G=P� and Q 2G=P�
�

of G are transverse if and
only if �C.P / and ��.Q/ are transverse.

(c) For an element g 2G , the following conditions are equivalent:

(i) g has an attracting fixed point �Cg 2G=P� .
(ii) h˛; �.g/i> 0 for all ˛ 2 � .

(iii) �.g/ is proximal in PK.V /.
In this case the attracting fixed point �Cg 2G=P� of g is unique, and its image
�C.�Cg / 2 PK.V / is the unique fixed point of �.g/.

(d) A similar statement holds after replacing .�; �C; V / with .�?; ��; V �/.

Here we use the identification of Remark 2.11. Recall also Example 2.13, characterizing
transversality in PK.V /. Proposition 3.3 will be proved in Section 3.3 just below.

Remark 3.4 For G D GLd .R/, for � D f"i � "iC1g, and for V D ƒiRd , the
space G=P� is the Grassmannian of i –dimensional planes of Rd and the map �C of
Proposition 3.3 is the Plücker embedding.

Proposition 3.5 Let .�; V / be an irreducible, � –proximal linear representation of G
over K one of R, C or H . Let � be a word hyperbolic group. Then:

(1) There exist continuous, �–equivariant, dynamics-preserving, transverse bound-
ary maps �CW @1�!G=P� and ��W @1�!G=P�

�
if and only if there exist

continuous, .�ı�/–equivariant, dynamics-preserving, transverse boundary maps
�CV W @1�! PK.V / and ��V W @1�! PK.V

�/.

(2) A representation �W �!G is P� –Anosov if and only if � ı �W �! GLK.V /

is P"1�"2 –Anosov (ie Anosov with respect to the stabilizer of a line; see
Example 2.14).
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Proposition 3.5(2) was proved in [37, Section 4] for KDR, using the characterization
of P� –Anosov representations in terms of the coset distance map d�� (Definition 2.33).
We could use the same characterization to prove Proposition 3.5(2) in general. However,
here we shall instead use the characterization of Anosov representations given by
Theorem 1.3(2), which is simpler. This characterization is established in Sections
4.1–4.4; therefore, we postpone the proof of Proposition 3.5(2) to Section 4.5.

3.3 Embeddings into projective spaces

This subsection is devoted to the proof of Propositions 3.3 and 3.5(1), as well as
Lemma 2.26. As in Theorem 1.1, we denote by †C

�
the set of positive roots that do

not belong to the span of �X � .

Remark 3.6 For a linear representation .�; V / of G , we will always choose a Cartan
decomposition of GLK.V / compatible with that of G . This means that the basis
.e1; : : : ; ed / of V providing the isomorphism GLK.V /'GLd .K/ is a basis of eigen-
vectors for the action of de�.a/, and that the group �.K/ is included in O.d/ or
U.d/ or Sp.d/, depending on whether K is R, C or H . We shall always assume
that e1 2 V ��, so that h�� ; Y i D h"1; de�.Y /i for all Y 2 a. The Cartan projection for
GLK.V / will be denoted by �GLK.V / and the Lyapunov projection by �GLK.V / .

Proposition 3.3 relies on the following fact, which will also be used in Section 7:

Lemma 3.7 Suppose � W G! GLK.V / is � –compatible. Then:

(1) For any weight � of � , we have �� �� 2
P
˛2†

C

�

N˛ .

(2) For any ˛ 2 � , the element �� �˛ 2 a� is a weight of � .

(3) If � is � –proximal, then h"1 � "2; �GLK.V /.�.g//i D min˛2� h˛;�.g/i and
h"1� "2; �GLK.V /.�.g//i Dmin˛2� h˛; �.g/i for all g 2G .

Proof Let ˆ0 WD
P
˛2�Z˛ � ˆ be the root lattice of G . The set of weights of �

is the intersection of �� Cˆ0 with the convex hull of the W –orbit of �� in a� (see
[31, Proposition 3.2.10]). Therefore, in order to prove (1), it is sufficient to prove that
���w��� 2

P
˛2†

C

�

RC˛ for all w2W , or in other words that ���w��� … span.�X�/
for all w 2W with w ��� ¤ �� . By definition of � –compatibility, �� belongs to the
orthogonal of span.�X �/. Therefore, for any w 2W , if �� �w ��� 2 span.�X �/,
then

kw ���k
2
D k��k

2
Ck�� �w ���k

2:
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But this is also equal to k��k2 by W –invariance of the norm, and so �� D w � �� .
This proves (1). For any ˛ 2�, the orthogonal reflection s˛ 2W in the hyperplane
Ker.˛/ satisfies

s˛ ��� D �� � 2
.�� ; ˛/

.˛; ˛/
˛;

and s˛ ��� is a weight of � . Therefore the intersection of �� CZ˛ with the segment
Œ�� ; ���2..�� ; ˛/=.˛; ˛//˛� consists of weights of � . In particular, ���˛ is a weight
of � since 2.�� ; ˛/=.˛; ˛/� 1 and ˛ 2ˆ. This proves (2).

Point (3) follows from (1)–(2) and the definition of †C
�

.

Proof of Proposition 3.3 (a) Let us first prove that the stabilizer of V �� in g is
Lie.P� /. To simplify notation, we abusively write � for the derivative de� W g! gl.V /.
We use the notation g0 and g˛ of Section 2.2.2. The fact that this derivative of � is a
Lie algebra homomorphism implies that, for any root ˛ 2† and any weight � of � ,

(3-2) �.g˛/V
�
� V �C˛:

In particular, �.g0/V �� � V �� , and �.g˛/V �� D f0g for all ˛ 2 †C by (3-2) and
maximality of �� for the partial order of Section 3.1. This means that the stabilizer of
V �� in g contains the Lie algebra Lie.P�/, hence it is of the form Lie.P� 0/ for a unique
subset � 0 of � (see Fact 2.15). By (3-2) and Lemma 3.7, for any ˛ 2�X � we have
�.g�˛/V

�� Df0g�V �� ; moreover, for any ˛2� we have f0g¤�.g�˛/V �� �V ���˛

(see eg [31, proof of Lemma 3.2.9]), hence �.g�˛/V �� ¤ V �� . Therefore, � 0 D � , ie
the stabilizer of V �� in g is Lie.P� /.

In particular, the stabilizer of V �� in G is contained in P� . For the reverse inclusion,
note that for any g 2 P� the line �.g/V �� is stable under Ad.g/Lie.P� /D Lie.P� /,
hence in particular under Lie.P�/. But V �� is the only Lie.P�/–invariant line in V ,
by arguments similar to the above (any Lie.P�/–invariant line L is a–invariant, hence
contained in a weight space V � , and for � ¤ �� there always exists ˛ 2 � with
f0g ¤ �.g˛/L� V

�C˛ ). This proves that the stabilizer of V �� in G is exactly P� .

Similarly, the stabilizer in G of the hyperplane V<�� is P�
�

.

(b) The map �CW G=P� ! PK.V / is well defined and injective by (a); it is clearly
a � –equivariant embedding. Similarly, ��W G=P�

�
! PK.V

�/ is a � –equivariant
embedding.

Let us show that two parabolic subgroups P 2 G=P� and Q 2 G=P�
�

of G are
transverse if and only if �C.P / and ��.Q/ are transverse. Note that transversality is
invariant under the G–action, both in G=P� �G=P�� and in PK.V /�PK.V

�/ (by
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� –equivariance of �C and �� ). We can write P D gP�g�1 and QD hP�
�
h�1, where

g , h 2G . By the Bruhat decomposition (see Borel and Tits [10, Theorem 5.15]), there
exist .p; p0/ 2P�

�
�P� and w 2W DNK.a/=ZK.a/ such that h�1gD pwp0 . Up to

conjugating both P and Q by p�1h�1 , we may assume that .P;Q/D .wP�w�1; P�� /,
so that �C.P /D V w ��� and ��.Q/D V <��. Then �C.P / and ��.Q/ are transverse
if and only if w ��� D �� . By [11, Chapter V, Section 3, Proposition 1], this happens
if and only if w belongs to the subgroup W�X� of W generated by the reflections s˛
for ˛ 2 �X � . Therefore, it is sufficient to prove that P D wP�w�1 and Q D P�

�

are transverse if and only if w 2W�X� . If w 2W�X� , it is not difficult to see that

Ad.w/Lie.P� /D Lie.P� /;

and so P and Q are transverse. Conversely, suppose w …W�X� ; let us prove that P D
wP�w

�1 and QDP�
�

are not transverse. Let s˛1 � � � s˛q be a reduced expression of w
and i 2 f1; : : : ; qg the smallest index such that ˛i belongs to � . By [11, Chapter VI,
Section 1, Corollary 2], the root ˇD s˛q � � � s˛iC1.˛i / is positive, hence gˇ � Lie.P� /.
Its image under w is �ˇ0 D�s˛1 � � � s˛i�1.˛i /, which satisfies

g�ˇ 0 D Ad.w/gˇ � Ad.w/Lie.P� /D Lie.wP�w
�1/:

Since !˛i is invariant under the reflections s˛ for ˛ ¤ ˛i and since the scalar product
. � ; � / is W –invariant,

.ˇ0; !˛i /D .s˛1 � � � s˛i�1.˛i /; s˛1 � � � s˛i�1.!˛i //D .˛i ; !˛i / > 0:

This forces ˇ0 to belong to †C
�

; this means that g�ˇ 0 2u�� and Lie.wP�w�1/ intersects
nontrivially the unipotent radical of Lie.P�

�
/. Thus P D wP�w�1 and QD P�

�
are

not transverse.

(c) It follows from the definition that �.g/ 2 GLK.V / is proximal in PK.V / if and
only if h"1 � "2; �GLK.V /.g/i > 0. This is equivalent to min˛2� h˛; �.g/i > 0 by
Lemma 3.7(3). Thus the equivalence (ii)()(iii) holds.

We claim that if (iii) holds, ie if �.g/ admits an attracting fixed point �C
�.g/

in PK.V /,
then g admits a fixed point in G=P� . Indeed, let g D ghgegu be the Jordan decom-
position of g , so that �.g/D �.gh/�.ge/�.gu/ is the Jordan decomposition of �.g/.
If �C

�.g/
is an attracting fixed point for �.g/, then it is also an attracting fixed point

for �.gh/; by construction, it is then equal to �C.m � x� /, where m 2 G satisfies
gh 2 m exp.aC/m�1 and x� D eP� 2 G=P� . Then m � x� is a fixed point of g , by
equivariance and injectivity of �C . Thus, if either of (i), (ii) or (iii) holds, then g admits
a fixed point in G=P� .

We now prove the equivalence (i)()(ii) for g admitting a fixed point in G=P� . Up to
replacing g with a conjugate (which does not change �.g/), we may assume that this
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fixed point is x� . The tangent space Tx� .G=P� / with the derivative of the action of g
on G=P� identifies with g=Lie.P� / with the adjoint action of g . Further identifying
g=Lie.P� / with

L
˛2†

C

�

g�˛ using (2-5), we see that the eigenvalues of the derivative
at x� of the action of g on G=P� are the e�h˛;�.g/i for ˛ 2†C

�
. By definition of †C

�
,

these eigenvalues are all < 1 (ie (i) holds) if and only if h˛; �.g/i > 0 for all ˛ 2 �
(ie (ii) holds). In this case V �� D �C.x� / is an attracting fixed point of �.g/ in PK.V /

since h"1 � "2; �GLK.V /.g/i > 0. This proves that in general, if �Cg is an attracting
fixed point of g in G=P� , then �C.�Cg / is an attracting fixed point of �.g/ in PK.V /;
the uniqueness of �Cg follows from the uniqueness of �C

�.g/
and from the injectivity

of �C .

Proof of Proposition 3.5(1) Let �CW G=P� ! PK.V / and ��W G=P�
�
! PK.V

�/ be
the � –equivariant embeddings given by Proposition 3.3(b).

Suppose there exist continuous, �–equivariant, transverse, dynamics-preserving bound-
ary maps �CW @1�!G=P� and ��W @1�!G=P�

�
. The maps

�CV WD �
C
ı �CW @1�! PR.V / and ��V WD �

�
ı ��W @1�! PR.V

�/

are continuous and .�ı�/–equivariant. They are transverse by Proposition 3.3(b) and
dynamics-preserving by Proposition 3.3(c)–(d).

Conversely, suppose there exist continuous, .� ı �/–equivariant, transverse, dynamics-
preserving boundary maps �CV W @1� ! PR.V / and ��V W @1� ! PR.V

�/. For any

 2 � of infinite order with attracting fixed point �C
 2 @1� , the element � ı �.
/
is proximal in PK.V / with attracting fixed point �CV .�

C

 /. By Proposition 3.3(c), the

element �.
/ 2 G is proximal in G=P� and its attracting fixed point �Cg 2 G=P�
satisfies �C.�Cg /D �

C

V .�
C

 /. The set

f� 2 @1� j �
C

V .�/ 2 �
C.G=P� /g

is closed and contains the dense set f�C
 j 
 2 � of infinite orderg, hence it is equal
to @1� . Therefore there is a map �CW @1� ! G=P� such that �CV D �C ı �C .
Similarly there is a map ��W @1� ! G=P�

�
such that ��V D �

� ı �� . The maps �C

and �� are continuous and �–equivariant. They are transverse by Proposition 3.3(b)
and dynamics-preserving by Proposition 3.3(c)–(d).

Proof of Lemma 2.26 By Lemma 3.2, there exists an irreducible, � –proximal, linear
representation .�; V / of G . For any g 2G , if �.g/ 2GLR.V / is proximal in PR.V /,
then �.g�1/ is proximal in PR.V

�/ by definition of the action on V � . The attracting
fixed point �C

�.g/
of �.g/ in PR.V / is the eigenline of �.g/ corresponding to the

maximal eigenvalue, and the attracting fixed point ��
�.g�1/

of �.g�1/ in PR.V
�/ is
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the hyperplane of V which is the sum of the eigenspaces of �.g/ corresponding
to nonmaximal eigenvalues. In particular, �.g/n � x ! �C

�.g/
as n ! C1 for all

x 2 PR.V /X �
�

�.g�1/
. We conclude using Proposition 3.3.

4 Anosov representations in terms of boundary maps and
Cartan or Lyapunov projections

In this section we prove the equivalences (1)()(2)()(3) of Theorems 1.3 and 1.7.
(The equivalence (1)()(4) of Theorem 1.3 will be proved in Section 5.) More
precisely, we prove the following refinements. Recall the word length function
j � j� W �!N and the stable length function j � j1W �!RC from Section 2.1.2.

Theorem 4.1 Let � be a word hyperbolic group, G a real reductive Lie group, and
� � � a nonempty subset of the simple restricted roots of G . Let �W � ! G be
a representation, and suppose there exist continuous, �–equivariant and transverse
maps �CW @1�!G=P� and ��W @1�!G=P�

�
. Then the following conditions are

equivalent:

(1) The maps �C and �� lift to a map žW G� ! G=K� satisfying the contraction
property (ii) of Definition 2.33, ie � is P� –Anosov.

(2) The maps �C and �� are dynamics-preserving for � and

9c; C > 0 8˛ 2 � 8
 2 � h˛;�.�.
//i � cj
 j� �C:

(3) The maps �C and �� are dynamics-preserving for � and

9c; C > 0 8˛ 2 � 8
 2 � h˛;�.�.
//i � ck�.�.
//k�C:

(4) The maps �C and �� are dynamics-preserving for � and

8˛ 2 � lim

!1

h˛;�.�.
//i D C1:

Theorem 4.2 Let � , G , � , � and �˙ be as in Theorem 4.1. Then the following
conditions are equivalent:

(1) � is P� –Anosov.

(2) The maps �C and �� are dynamics-preserving for � and

9c > 0 8˛ 2 � 8
 2 � h˛; �.�.
//i � cj
 j1:

(3) The maps �C and �� are dynamics-preserving for � and

9c > 0 8˛ 2 � 8
 2 � h˛; �.�.
//i � ck�.�.
//k:
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(4) The maps �C and �� are dynamics-preserving for � and

8˛ 2 � lim
j
 j1!C1

h˛; �.�.
//i D C1:

Remarks 4.3 (a) In Theorem 4.1, conditions (2), (3) and (4) use the Cartan projec-
tion �, whereas condition (1) uses the coset distance map d�� as in Definition 2.33(ii)
of the Anosov property. Recall that the range of d�� is a finite union of copies of the
range of � (see Section 2.3.3).

(b) If � is nonelementary, then the existence of a continuous, injective, �–equivariant
map �CW @1� ! G=P� as in Theorems 4.1 and 4.2 (see Remark 2.32(c)) already
implies that � has finite kernel and discrete image. Indeed, consider a sequence
.
n/ 2 �

N such that .�.
n//n2N is bounded in G . Seen as a sequence of homeo-
morphisms of G=P� , the family .�.
n//n2N is equicontinuous. Since �C is injective
and continuous and, since @1� is compact, the map �C is a homeomorphism onto
its image. Therefore, seen as a sequence of homeomorphisms of @1� , the family
.
n/n2N is equicontinuous. By Fact 2.1(1), no subsequence of .
n/n2N can diverge
to infinity, ie .
n/n2N is bounded in � .

(c) By Proposition 2.2, condition (2) of Theorem 4.2 is also equivalent to:

.20/ The maps �C and �� are dynamics-preserving for � and

9c; C > 0 8˛ 2 � 8
 2 � h˛; �.�.
//i � c`�.
/�C;

where `� W �!N is the translation length function (2-2) on the Cayley graph
of � .

(d) By Fact 2.34, as well as (2-10) and (2-15), all conditions of Theorems 4.1 and 4.2
are invariant under replacing � with �? or with �[�? . Thus, without loss of generality,
we may assume that � is symmetric (ie � D �? ).

The implication (2)D)(3) of Theorem 4.1 follows from the subadditivity of k�k;
see (2-11). The implication (3)D)(4) follows from Remark 4.3(b) above and from
the properness of �. We start by proving the implications (1)D)(2) and (4)D)(1)
of Theorem 4.1 in Sections 4.2 and 4.4, respectively. Then Theorem 4.2 is proved in
Sections 4.6 and 4.7.

4.1 A preliminary result

In the setting of Theorem 4.1, the maps �C and �� always combine, as in Definition
2.33(i), into a continuous, �–equivariant, flow-invariant map z� W G� ! G=L� , of
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which we choose a continuous lift žW G� ! G=K� (with L� and K� defined as in
Section 2.3.3). We further choose a �–equivariant set-theoretic lift M̌W G� !G of ž.
Then, for any .t; v/ 2 R� G� , since M̌.'t � v/L� D z�.'t � v/D z�.v/D M̌.v/L� , we
have

M̌.'t � v/D M̌.v/lt;v

for some lt;v 2 L� satisfying the following � –invariance property: for all 
 2 � and
v 2 G� ,

(4-1) lt;
 �v D lt;v;

since M̌.
 �v/�1 M̌.'t �
 �v/D M̌.v/�1�.
/�1�.
/ M̌.'t �v/. By definition, �� .lt;v/D
d�� .

ž.v/; ž.'t � v//, where d�� is the � –coset distance map (Definition 2.23). The
following cocycle condition is satisfied: for all t , s 2R and v 2 G� ,

(4-2) ltCs;v D lt;'s �vls;v:

We fix this map .t; v/ 7! lt;v for the remainder of Section 4.

The following lemma will be used in Sections 4.2 and 4.4 to prove the implications
(1)D)(2) and (4)D)(1) of Theorem 4.1.

Lemma 4.4 For any compact subset D of G� , the set M̌.D/ is relatively compact
in G ; in particular, K WD 2 supv2D k�. M̌.v//k is finite. Moreover, for any v 2 D , any
t 2R and any 
 2 � such that 't � v 2 
 �D ,

k�.lt;v/��.�.
//k � K:

Proof The set M̌.D/ is mapped onto the compact set ž.D/ by the proper map
G!G=K� , hence it is relatively compact in G . In particular, the continuous function
k�k is bounded on M̌.D/, ie K < C1. Consider .v; t; 
/ 2 D �R � � such that
't � v 2 
 �D . Then

M̌.v/lt;v D M̌.'t � v/D �.
/ M̌.

�1
�'t � v/

and 
�1 � 't � v 2 D . Therefore, �.
/ D g1lt;vg�12 for some g1 , g2 2 M̌.D/. The
bound follows by Fact 2.18.

4.2 The Cartan projection on an Anosov representation

We first prove the implication (1)D)(2) of Theorem 4.1.

Let � be a word hyperbolic group, G a real reductive Lie group, � �� a nonempty
subset of the simple restricted roots of G , and �W �!G a representation. Suppose
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condition (1) of Theorem 4.1 is satisfied, ie � is P� –Anosov. Then the exponential
contraction property (ii) in Definition 2.33 is satisfied: there are constants c , C > 0
such that, for all ˛ 2 � , all v 2 G� and all t 2R,˝

˛; d�� .
ž.v/; ž.'t � v//

˛
� ct �C:

For any t 2 R and v 2 G� , let lt;v 2 L� be defined as in Section 4.1. This equation
can be rephrased as

(4-3) h˛;�� .lt;v/i � ct �C

for all ˛ 2 � , all v 2 G� and all t 2R. We claim that if t � C=c then

(4-4) �.lt;v/D �� .lt;v/:

Indeed, we always have h˛;�� .lt;v/i � 0 for ˛ 2 �X � by definition (2-12) of the
range aC

�
of �� , and if t � C=c then h˛;�� .lt;v/i � 0 for ˛ 2 � by (4-3). Therefore,

if t �C=c , then �� .lt;v/2 aC for all v 2G� , hence �.lt;v/D�� .lt;v/ (Remark 2.21).

By Corollary 2.9, there are a compact subset D of G� and constants c1 , c2 > 0 such
that for any 
 2� there exists .t; v/2R�D with 't �v 2 
 �D and t � c1j
 j��c2 . In
particular, if j
 j� �n0 WD .CCcc2/=cc1 , then t �C=c and so (4-4) holds. Lemma 4.4
applied to the compact set D gives K > 0 such that

h˛;�.�.
//i � h˛;�.lt;v/i �Kk˛k D h˛;�� .lt;v/i �Kk˛k � cc1j
 j� �C 0;

where C 0 D cc2CC CKk˛k. Up to adjusting the additive constant C 0 , the same in-
equality also holds for the (finitely many) 
 2� such that j
 j� <n0 , hence condition (2)
of Theorem 4.1 holds.

This completes the proof of the implication (1)D)(2) of Theorem 4.1.

4.3 Weak contraction and Anosov representations

In the course of proving (4)D)(1) of Theorem 4.1, we will need the following charac-
terization of Anosov representations:

Proposition 4.5 Let � be a word hyperbolic group, G a real reductive Lie group,
� � � a nonempty subset of the simple restricted roots of G , and �W � ! G

a representation. Suppose there exist continuous, �–equivariant, transverse maps
�CW @1� ! G=P� and ��W @1� ! G=P�

�
and let z� W G� ! G=L� be the induced

equivariant map and žW G� !G=K� a lift (as in Definition 2.33(i)). Suppose also that,
for any ˛ 2 � ,

(4-5) lim
t!C1

inf
v2G�
h˛; d�� .

ž.v/; ž.'t � v//i D C1:
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Then the representation is P� –Anosov (Definition 2.33): there exist c , C > 0 such that

8˛ 2 � 8t 2R 8v 2 G� h˛; d�� .
ž.v/; ž.'t � v//i � ct �C:

Remark 4.6 For fixed t 2R, by the �–equivariance of ž and the invariance of d��
under the diagonal action of G on G=K� �G=K� (see Definition 2.23), we have

inf
v2G�
h˛; d�� .

ž.v/; ž.'t � v//i D inf
v2D
h˛; d�� .

ž.v/; ž.'t � v//i

for any subset D of G� with � �DD G� . Choosing D to be compact, we see that the
infimum is in fact a minimum.

For the proof it will be useful to relate the contraction on G=P� with a lower bound
on h˛;�� . � /i for ˛ 2 � . We set x� WD eP� 2G=P� .

Lemma 4.7 Let G be a real reductive Lie group and � � � a nonempty subset
of the simple restricted roots of G . Fix a K� –invariant norm on the tangent space
Tx� .G=P� /' u�

�
. Then there is a constant C > 0 with the following properties:

(i) For any t 2 R, if the left multiplication action of l 2 L� on Tx� .G=P� / is
e�t –Lipschitz, then h˛;�� .l/i � t for all ˛ 2 � .

(ii) For any nonnegative t 2R and any l 2 L� , if h˛;�� .l/i � t for all ˛ 2 � , then
the action of l on Tx� .G=P� / is Ce�t –Lipschitz.

Proof of Lemma 4.7 The action of l 2L� on Tx� .G=P� / identifies with the adjoint
action of l on u�

�
D
L
˛2†

C

�

g�˛ . Write l 2 K� .exp�� .l//K� , where �� .l/ 2 a
C

�
.

By definition, any a 2 exp a acts on g�˛ by multiplication by the scalar e�h˛;logai .
Applying this to log aD�� .l/ and using the K� –invariance of the norm, we obtain (i).
For (ii), note that if h˛;�� .l/i� t for all ˛ 2 � , then the scalars e�h˛;�� .l/i for ˛ 2†C

�

are all in .0; e�t �, since h˛;�� .l/i � 0 for ˛ 2�X� by definition (2-12) of the range
aC
�

of �� . The constant C comes from the fact that the weight spaces g�˛ may not
be orthogonal for the chosen K� –invariant norm on Tx� .G=P� /' u�

�
.

Proof of Proposition 4.5 As in Section 4.1, we choose a �–equivariant set-theoretic
lift M̌W G�!G of ž, and for any .t; v/ 2R�G� we set lt;v WD M̌.v/�1 M̌.'t �v/ 2L� ,
so that d�� . ž.v/; ž.'t � v//D �� .lt;v/. Suppose (4-5) holds for all ˛ 2 � , ie

inf
˛2�; v2G�

h˛;�� .lt;v/i !C1 as t !C1:

By Lemma 4.7(ii), there exists � > 0 such that l�;v is e�1–contracting on Tx� .G=P� /
for all v 2 G� , where x� D eP� 2 G=P� . Let M � 0 be a bound for the Lipschitz
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constant of ls;w acting on Tx� .G=P� / for all s 2 Œ0; �� and w 2 G� . By (4-2), for any
t � 0 and v 2 G� ,

lt;v D lt�n�;'n� �v.l�;'.n�1/� �v � � � l�;v/; where nD
j
t

�

k
;

hence lt;v is Me�n–Lipschitz on Tx� .G=P� /. By Lemma 4.7(i), for any ˛ 2 � ,

h˛;�� .lt;v/i �
j
t

�

k
� logM � 1

�
t � logM � 1:

4.4 When the Cartan projection drifts away from the �–walls

We now address the implication (4)D)(1) of Theorem 4.1. We first fix an arbitrary
representation �W �!G of the word hyperbolic group � into the reductive group G
and establish the following:

Proposition 4.8 If condition (4) of Theorem 4.1 holds, then there exists T � 0 such
that, for all t � T and v 2 G� ,

(4-6) �� .lt;v/D �.lt;v/:

Before proving Proposition 4.8, we establish Lemmas 4.9, 4.10 and 4.11 below.

Recall that condition (4) of Theorem 4.1 is the existence of continuous, �–equivariant,
transverse, dynamics-preserving maps �CW @1� ! G=P� and ��W @1� ! G=P�

�

and the fact that, for any ˛ 2 � ,

(4-7) lim

!1

h˛;�.�.
//i D C1:

Consider maps z� , ž, M̌ and lt;v as in Section 4.1 and let

K WD 2 sup
v2D
k�. M̌.v//k<C1;

where D is a compact fundamental domain of G� for the action of � . By (4-7), there
is a finite subset F of � such that, for any ˛ 2 � and 
 2 � XF ,˝

˛;�.�.
//
˛
� 1Ck˛kK:

By Lemma 4.4, we then have h˛;�.lt;v/i � 1 for all ˛ 2 � , all t 2R and all v 2 D
with 't �v 2 .�XF / �D . Note that the set of t 2R with 't �D\F �D¤∅ is compact.
Therefore there exists T > 0 such that for any v 2 D we have

(4-8) 8˛ 2 � 8t � T h˛;�.lt;v/i � 1:

This actually holds for any v 2 G� by (4-1).
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Using the Weyl group W , we define

s� WD fY 2 a
C
j h˛; Y i � 1 for all ˛ 2 �g; s0� WD aC

�
\ .W � s� /:

Lemma 4.9 The set s� is a connected component of s0
�

.

s�
s0
�
X s�

aC
�

aC

"1� "2

"2� "3

Figure 2: Illustration of Lemma 4.9 when G D SL3.R/ and � D f"1� "2g;
the set s0

�
D s� [ .s

0
�
X s� / is shown in dark gray.

Proof The set s� is clearly connected (in fact, convex) and contained in s0
�

. Since s0
�

is a union of W –translates of s� , it is sufficient to prove that, for any nontrivial w 2W ,
if w �s� \s� ¤∅, then w �s� 6� s0

�
(see Figure 2). Note that for any nontrivial w 2W

there exists ˛ 2� such that h˛; Y i � 0 for all Y 2w �aC . If s� \w �s� ¤∅, then any
such ˛ belongs to �X � by definition of s� , and so w � s� 6� s0

�
by definition (2-12)

of aC
�

.

Let 
 2� be an element of infinite order. The invariant axis A
 � G� of 
 is the set of
v 2 G� such that .'C1; '�1/.v/D .�C
 ; �

�

 /, where �C
 and ��
 are respectively the

attracting and the repelling fixed point of 
 in @1� . There is a constant T
 > 0 (the
period of 
 ) such that 
 �vD'T
 �v for all v2A
 . The assumption from Theorem 4.1(4)
that the maps �C and �� are dynamics-preserving for � implies the following:

Lemma 4.10 Suppose condition (4) of Theorem 4.1 holds. Let 
 2 � be an element
of infinite order, with invariant axis A
 � G� . Then, for any v 2A
 ,

�� .lT
 ;v/ 2 a
C;

ie h˛;�� .lT
 ;v/i � 0 for all ˛ 2 � (for ˛ 2�X � the same inequality is true a priori
by definition (2-12) of the range aC

�
of �� ).

Proof Let v 2 A
 . Then z�.v/ D M̌.v/L� and �C.'C1.v// D �C.�C
 / D M̌.v/P� .
Also,

M̌.v/lT
 ;v D
M̌.'T
 � v/D

M̌.
 � v/D �.
/ M̌.v/
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(from the construction of lt;v ), hence lT
 ;v and �.
/ are conjugate by M̌.v/. In
particular, since the attracting fixed point of �.
/ in G=P� is M̌.v/P� , the attracting
fixed point for lT
 ;v is P� . By Lemma 4.7(i),

h˛;�� .lT
 ;v/i> 0

for all ˛ 2 � , hence �� .lT
 ;v/ 2 a
C .

Lemma 4.11 Suppose condition (4) of Theorem 4.1 holds. Recall the constant T
from (4-8). Let 
 2 � be an element of infinite order with invariant axis A
 � G� . For
any v 2A
 and any t � T ,

�� .lt;v/ 2 s� :

Proof By (4-8), the map  W ŒT;C1/! aC
�

sending t to �� .lt;v/ takes values in s0
�

.
This map is continuous since the map .t; v/ 7!K� lt;vK� and the (bi–K� –invariant)
Cartan projection �� are both continuous. Applying Lemma 4.10 to an appropriate
power of 
 , we see that  .t/ 2 s� for some t � T . Lemma 4.9 then implies  .t/ 2 s�
for all t � T .

Proof of Proposition 4.8 Using Lemma 4.11, we see that for any t � T the closed
set

fv 2 G� j �� .lt;v/ 2 s�g

contains the invariant axis A
 of any element 
 2 � of infinite order. By density of
the union of those axes (Remark 2.3), this set is all of G� . Using again Remark 2.21,
we see that �� .lt;v/D �.lt;v/ for all t � T and all v 2 G� .

Proof of the implication (4)D)(1) of Theorem 4.1 Suppose that (4) holds, ie there
exist continuous, �–equivariant, transverse, dynamics-preserving maps �C; �� and
(4-7) holds. By Proposition 4.5, in order to show that � is P� –Anosov, it is enough to
prove that

(4-9) lim
t!C1

inf
v2G�

˝
˛;�� .lt;v/

˛
DC1 for all ˛ 2 �:

By Remark 4.6, the infimum needs to be taken only on a compact set D such that
� �D D G� . For all v 2 D and all t 2 R there is 
t;v 2 � such that 't � v 2 
t;v �D .
By Lemma 4.4 and Proposition 4.8, there are constants K> 0 and T � 0 (independent
of t and v ) such that if t � T then

k�� .lt;v/��.�.
t;v//k � K:

Since any orbit map �!G� is a quasi-isometry, we obtain that 
t;v!1 as t!C1
(uniformly in v 2 D), and so the assumption (4-7) readily implies (4-9).
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4.5 Anosov representations and embeddings into general linear groups

Proposition 3.5(2) is a consequence of the results of Section 3.3 and of the equivalence
(1)()(4) of Theorem 4.1 (or equivalence (1)()(2) of Theorem 1.3) which we have
just established.

Proof of Proposition 3.5(2) By Proposition 3.5(1), there exist continuous, �–equivari-
ant, dynamics-preserving, transverse maps �CW @1�!G=P� and ��W @1�!G=P�

�

if and only if there exist continuous, .�ı�/–equivariant, dynamics-preserving, trans-
verse maps �CV W @1�! PK.V / and ��V W @1�! PK.V

�/.

By Lemma 3.7(3), we have h˛;�.�.
//i ! C1 as 
 ! 1 for all ˛ 2 � if and
only if h"1� "2; �GLK.V /.� ı �.
//i !C1 as 
 !1. Therefore, condition (4) of
Theorem 4.1 holds for � if and only if it holds for � ı � . Since (4) is equivalent to (1)
in Theorem 4.1, we conclude that � is P� –Anosov if and only if � ı � is.

4.6 Approaching the Cartan projection by the Lyapunov projection

The implications (1)D)(2)D)(3) of Theorem 4.2 rely on (2-1) and on (2-14), which
expresses the fact that the Lyapunov projection can be approached by the Cartan
projection.

Proof of (1)D)(2) in Theorem 4.2 Suppose � is P� –Anosov. By Theorem 4.1(2),
there exist c , C > 0 such that h˛;�.�.
//i � cj
 j� �C for all ˛ 2 � and 
 2 � .
Using (2-1) and (2-14), we find that, for all ˛ 2 � and 
 2 � ,

h˛; �.�.
//i D lim
n!C1

1

n
h˛;�.�.
n//i � lim

n!C1

1

n
.cj
nj� �C/D cj
 j1:

Proof of (2)D)(3) in Theorem 4.2 By (2-11) there is a constant k > 0 such that
k�.�.
//k � kj
 j� for all 
 2 � . Using (2-1) and (2-14), we find that, for all 
 2 � ,

k�.�.
//k D lim
n!C1

1

n
k�.�.
n//k � k lim

n!C1

1

n
j
nj� D kj
 j1:

The implication (2)D)(4) of Theorem 4.2 is obvious. It only remains to prove (3)D)(1)
and (4)D)(1).

For semisimple � , these implications both rely on the following result, which states
that the Cartan projection can be approached by the Lyapunov projection. This was
established by Benoist [5], using a theorem of Abels, Margulis and Soı̆fer [1]. Since
the result is not explicitly stated as such in [5], we recall a sketch of the proof.
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Theorem 4.12 [5] Let � be a discrete group, G a real reductive Lie group and
�W � ! G a semisimple representation. Then there exist a finite set F � � and a
constant C� > 0 such that for any 
 2 � we can find f 2 F with

k�.�.
f //��.�.
//k � C�:

Proof By subadditivity of � (Fact 2.18), it is sufficient to prove the existence of a
finite set F �� and a constant C > 0 such that for any 
 2� we can find f 2F with
k�.�.
f //��.�.
f //k � C . Since � is semisimple by assumption, ie the Zariski
closure of �.�/ in G is reductive, we may assume without loss of generality that �.�/
is actually Zariski-dense in G . It is then known that the set h˛;�.�.�//i � RC is
unbounded for all ˛ 2� (see Gol’dsheı̆d and Margulis [30], Guivarc’h and Raugi [39],
Benoist and Labourie [8] and Prasad [65]). By Lemma 3.2, for any ˛ 2 � there is
an irreducible proximal linear representation .�˛; V˛/ whose highest weight ��˛ is a
multiple of the fundamental weight !˛ associated with ˛ . By [1, Theorem 5.17], there
are a finite set F � � and a constant " > 0 with the following property: for any 
 2 �
we can find f 2 F such that, for any ˛ 2�, the element �˛ ı�.
f / 2GLR.V˛/ is "–
proximal in PR.V˛/ in the sense of [5, Section 2.2]. We conclude as in [5, Lemma 4.5]:
on the one hand, for any ˛ 2�, there is a constant C˛ > 0 such that for any g 2G ,
if �˛.g/ is "–proximal in PR.V˛/, then jh!˛; �.g/��.g/ij � C˛ [5, Lemma 2.2.5];
on the other hand, the fundamental weights !˛ for ˛ 2� form a basis of a�s , and for
any g 2G the elements �.g/ and �.g/ of a have the same projection to z.g/.

Proof of (3)D)(1) and (4)D)(1) in Theorem 4.2 for semisimple � Let F be the
finite subset of � and C� > 0 the constant given by Theorem 4.12. Let .
n/ 2 �N

be a sequence of elements going to infinity in � . The existence of �–equivariant,
continuous, transverse maps �C and �� implies that � has finite kernel and discrete
image (Remark 4.3(b)), and so k�.�.
n//k!C1 by properness of the map �. By
Theorem 4.12, for any n2N there is fn 2F such that k�.�.
nfn//��.�.
n//k�C� .
In particular, k�.�.
nfn//k!C1.
� If condition (3) of Theorem 4.2 holds, then for any ˛ 2 � we have

h˛; �.�.
nfn//i !C1;

hence h˛;�.�.
n//i !C1. This holds for any sequence .
n/ 2 �N going to
infinity in � , hence condition (4) of Theorem 4.1 is satisfied. Therefore � is
P� –Anosov by the implication (4)D)(1) of Theorem 4.1.

� Note that k�.�.
nfn//k!C1 implies that the conjugacy classes of the 
nfn
diverge, ie `�.
nfn/!C1, and so j
nfnj1!C1 by Proposition 2.2. If
condition (4) of Theorem 4.2 holds, then we obtain h˛; �.�.
nfn//i!C1 for
all ˛ 2 � , and we conclude as above.
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4.7 When the Lyapunov projection drifts away from the �–walls

It remains to establish the implications (3)D)(1) and (4)D)(1) of Theorem 4.2 in
the general case, when � is not necessarily semisimple. We first prove the following
proposition:

Proposition 4.13 Let � be a word hyperbolic group, G a real reductive Lie group and
� �� a nonempty subset of the simple restricted roots of G . Consider a representation
�W � ! G with semisimplification �ssW � ! G (see Section 2.5.4). If there exist
continuous, dynamics-preserving, transverse boundary maps �CW @1�!G=P� and
��W @1�!G=P�

�
for � , then there exist continuous, dynamics-preserving, transverse

boundary maps � 0CW @1�!G=P� and � 0�W @1�!G=P�
�

for �ss .

Proof For any irreducible linear representation .�; V / of G , the representation � ı�ss

is a semisimplification of .� ı�/. Therefore, by Proposition 3.5(1), up to postcomposing
� with some irreducible, � –proximal representation � W G! GLR.V / (which exists
by Lemma 3.2), we may assume that G D GLR.V / and � D f"1 � "2g, so that
G=P� D PR.V / and G=P�

�
D PR.V

�/.

Viewing PR.V / and PR.V
�/ as the sets of lines and hyperplanes of V , respectively,

we define the linear subspaces

U WD
X

�2@1�

�C.�/ and V1 WD U \
\

�2@1�

��.�/

of V ; they are �.�/–invariant. Let V2 be a complementary subspace of V1 in U , and
V3 a complementary subspace of U in V .

Under the decomposition V D V1 ˚ V2 ˚ V3 , the representation �W � ! GLR.V /

is block upper triangular: there are representations �i W � ! GLR.Vi / and maps
ai;j W �! HomR.Vi ; Vj / for 1� i , j � 3 such that, for any 
 2 � ,

�.
/D

0@�1.
/ a1;2.
/ a1;3.
/�2.
/ a2;3.
/

�3.
/

1A :
Then

�ss.
/D

0@�ss
1 .
/

�ss
2 .
/

�ss
3 .
/

1A
for all 
 2 � , where �ss

i is a semisimplification of �i . We now construct con-
tinuous, dynamics-preserving, transverse boundary maps � 0CW @1� ! PR.V / and
� 0�W @1�! PR.V

�/ for �ss .
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Since the maps �C and �� are transverse, �C takes values in PR.V1˚V2/XPR.V1/

and �� takes values in PR.V
0
1 /XPR.V1˚V2/

0 , where we denote by V 01 � V
� the

annihilator of V1 and by .V1˚V2/0 � V � the annihilator of V1˚V2 . Let

pW V1˚V2! V2

be the linear projection onto V2 with kernel V1 and PpW PR.V1˚ V2/XPR.V1/!

PR.V2/ the induced map. Similarly, let

p�W V 01 ! .V1˚V3/
0

be the linear projection onto .V1˚V3/0 with kernel .V1˚V2/0 and

Pp�W PR.V
0
1 /XPR..V1˚V2/

0/! PR..V1˚V3/
0/

the induced map. We set�
� 0C WD Pp ı �CW @1�! PR.V2/� PR.V /;

� 0� WD Pp� ı ��W @1�! PR..V1˚V3/
0/� PR.V

�/:

These maps are continuous and transverse by construction, as well as dynamics-
preserving for �ss

1 ˚�2˚�
ss
3 W �!GLR.V1˚V2˚V3/. To see that they are dynamics-

preserving for �ssW �! GLR.V /, it is sufficient to prove that �2 D �ss
2 .

If � is elementary, ie if � is virtually the infinite cyclic group generated by a nontorsion
element 
 and @1� D f�C
 ; �

�

 g, then V1 D f0g and U D V2 D �C.�C
 /˚ �

C.��
 /,
thus �2jh
i is semisimple and �2 D �ss

2 by Remark 2.38. We now assume that � is
nonelementary. We claim that �2W � ! GLR.V2/ is then irreducible. Indeed, let R
be a �2.�/–invariant subspace of V2 . Let 
 2 � be an element of infinite order with
attracting (resp. repelling) fixed point �C
 (resp. ��
 ) in @1� . Since � 0C and � 0� are
dynamics-preserving for �ss

1˚�2˚�
ss
3 and take values in PR.V2/ and PR..V1˚V3/

0/'

PR.V
�
2 /, respectively, Lemma 2.26 implies that for any x 2 PR.V2/X �

0�.��
 / we
have �2.
n/ �x! � 0C.�C
 / as n!C1. Since R is closed and �2.�/–invariant, we
obtain that either PR.R/ � �

0�.��
 / or � 0C.�C
 / 2 PR.R/. Thus, one of the closed
� –invariant subsets f� 2 @1� j PR.R/ � �

0�.�/g or f� 2 @1� j � 0C.�/ 2 PR.R/g

is nonempty, hence equal to @1� by minimality of the action of the nonelementary
group � on @1� (Fact 2.1(4)). This shows that R D f0g or R D V2 . Thus �2 is
irreducible, and in particular �2 D �ss

2 .

Proof of Proposition 1.8 If �ss is P� –Anosov, then � is P� –Anosov by Proposition
2.39. Conversely, suppose �W �!G is P� –Anosov. By Proposition 4.13, there exist
continuous, dynamics-preserving, transverse boundary maps � 0CW @1�!G=P� and
� 0�W @1� ! G=P�

�
for �ss . By the implication (1)D)(4) of Theorem 4.2 applied

to � , for any ˛ 2 � we have h˛; �.�.
//i !C1 as j
 j1!C1. The point is that
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�ı�ssD�ı� (Lemma 2.40). Therefore, for any ˛2� we have h˛; �.�ss.
//i!C1 as
j
 j1!C1, and so �ss is P� –Anosov by the implication (4)D)(1) of Theorem 4.2
applied to the semisimple representation �ss (this implication has been proved in
Section 4.6).

Proof of (3)D)(1) and (4)D)(1) in Theorem 4.2 for general � By Lemma 2.40
and Proposition 4.13, if � satisfies (3) or (4) then so does �ss . In Section 4.6 we
proved the implications (3)D)(1) and (4)D)(1) of Theorem 4.2 for the semisimple
representation �ss . By Proposition 2.39, if �ss satisfies (1), then so does � .

5 Construction of the boundary maps

In this section we prove Theorem 1.1 (which implies in particular (4)D)(1) in Theorem
1.3) by establishing an explicit version of it, namely Theorem 5.3. We also complete
the proof of Theorem 1.3 by establishing its implication (1)D)(4). In particular this
implication shows that the CLI constants in Theorem 1.1(3), if they exist, must be
uniform (see Remark 1.2(e)).

To put things into perspective, we start by recalling the notion of limit set in G=P� . This
notion was first introduced and studied by Guivarc’h [38] for subgroups of GDSLd .R/
acting proximally and strongly irreducibly on Rd , then by Benoist [5] for Zariski-
dense subgroups of any reductive Lie group G ; here we give a definition for arbitrary
subgroups of G .

5.1 Limit sets in flag varieties

Let G be a real reductive Lie group with Cartan decomposition K.exp aC/K and
corresponding Cartan projection �W G ! aC ; we use the notation of Section 2.2.
For any nonempty subset � � � of the simple restricted roots of a in G , let x� D
eP� 2G=P� be the basepoint of G=P� . We define a map „� W G!G=P� as follows:
for any g 2G , we choose kg , k0g 2K such that g D kg.exp�.g//k0g and set

(5-1) „� .g/ WD kg � x� 2G=P� :

This does not depend on the choice of kg and k0g as soon as h˛;�.g/i > 0 for all
˛ 2 � (see Helgason [40, Chapter IX, Theorem 1.1]). If g is proximal in G=P�
(Definition 2.25), then the sequence .„� .gn//n2N converges to the attracting fixed
point of g in G=P� ; see Lemma 5.11 below. We make the following definition:

Definition 5.1 Let � be any discrete group and �W �!G any representation. The
limit set ƒG=P�

�.�/
of �.�/ in G=P� is the set of all possible limits of sequences

.„� ı �.
n//n2N for .
n/ 2 �N with h˛;�.�.
n//i !C1 for all ˛ 2 � .

Geometry & Topology, Volume 21 (2017)



Anosov representations and proper actions 539

The limit set ƒG=P�
�.�/

is closed and �.�/–invariant, and does not depend on the choice
of Cartan decomposition (Corollary 5.9 below). It is well known that if �.�/ is Zariski-
dense in G , then �.�/ contains elements that are proximal in G=P� (see [8; 30; 39;
65]); by [5, Lemma 3.6], in this case ƒG=P�

�.�/
is the closure in G=P� of the set of

attracting fixed points of these elements.

The limit set ƒG=P�
�.�/

is nonempty for instance if � is P� –divergent, in the sense that

h˛;�.�.
//i!C1 as 
 !1 for all ˛ 2 �:

When G has real rank one, P� –divergence is equivalent to � having finite kernel
and discrete image; in this case, we recover the usual limit set of �.�/ in G=P� '
@1.G=K/.

5.2 Constructing boundary maps

In this Section 5 we prove that if � is word hyperbolic and if for any ˛ 2 � we have
h˛;�.�.
//i!C1 fast enough as 
 !1, then the map „C WD„� ı�W �!G=P�
extends continuously to a �–equivariant boundary map �CW @1�!G=P� with image
the limit set ƒG=P�

�.�/
. More precisely, “fast enough” is given by the following conditions:

Definition 5.2 A representation �W � ! G has the gap summation property with
respect to � if, for any ˛ 2 � and any geodesic ray .
n/n2N in the Cayley graph of � ,

(5-2)
X
n2N

e�h˛;�.�.
n//i <C1:

The representation � has the uniform gap summation property with respect to � if
this series converges uniformly for all geodesic rays .
n/n2N with 
0 D e , ie if, for
any ˛ 2 � ,

(5-3) sup
.
n/n2N
geodesic

with 
0De

X
n�n0

e�h˛;�.�.
n//i! 0 as n0!C1:

For instance, if there exists C > 0 such that h˛;�.�.
//i � 2 log j
 j� � C for all
˛ 2 � and 
 2 � , then � has the uniform gap summation property with respect to � ,
and even with respect to � [ �? by (2-10).

Recall that the parabolic subgroup P�
�

of G is conjugate to P�? , and so G=P�
�

identifies with G=P�? . The goal of this section is to prove the following result, which
implies Theorem 1.1:
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Theorem 5.3 Let � be a word hyperbolic group, G a real reductive Lie group, � ��
a nonempty subset of the simple restricted roots of G , and �W �!G a representation.

(1) If � has the gap summation property with respect to � [ �? , then the maps�
„C WD„� ı �W �!G=P� ;

„� WD„�? ı �W �!G=P�? ;

induce �–equivariant boundary maps�
�CW @1�!G=P� ;

��W @1�!G=P�? 'G=P
�
�
;

which are independent of all choices. For any �2@1� , the points �C.�/2G=P�
and ��.�/ 2G=P�

�
are compatible in the sense of Definition 2.10.

(2) If moreover, for any ˛ 2 � and any 
 2 � of infinite order,

h˛;�.�.
n//i � 2 log jnj !C1 as jnj !C1;

then �C and �� are dynamics-preserving for � .

(3) If � has the uniform gap summation property with respect to � [ �? , then�
„C t �CW � [ @1�!G=P� ;

„� t ��W � [ @1�!G=P�? 'G=P
�
�
;

are continuous, and the images of �C and �� are the respective limit sets ƒG=P�
�.�/

and ƒG=P�?
�.�/

(Definition 5.1).

(4) If moreover for any ˛ 2 †C
�

and any geodesic ray .
n/n2N the sequence�
h˛;�.�.
n//i

�
n2N is CLI (Definition 2.6), then �C and �� are transverse.

In particular, � is P� –Anosov and �C and �� define homeomorphisms between
@1� and the limit sets ƒG=P�

�.�/
and ƒG=P�?

�.�/
, respectively.

In (1), by “induce” we mean that �C.�/ D limn„C.
n/ and ��.�/ D limn„�.
n/
for any quasigeodesic ray .
n/n2N in the Cayley graph of � with endpoint � 2 @1� .

In (4), the fact that � is P� –Anosov comes from the implication (2)D)(1) in Theorem
1.3, and the fact that �C and �� are homeomorphisms onto their image comes from
the fact that they are continuous and injective and @1� is compact.

Remark 5.4 Let 
 2 � be an element of infinite order, with attracting fixed point
�C
 2@1� . The image of �C
 under �C, or under any �–equivariant map @1�!G=P� ,
is always a fixed point of �.
/ in G=P� ; however, this fixed point �C.�C
 / is attracting
(in the sense used in Definition 2.25) only if h˛;�.�.
/n/i grows faster than 2 log.n/
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for every ˛ 2 � (Lemma 2.27). This shows that the growth assumption in (2) above is
optimal. For instance, here is a case where the assumptions of (1) and (3) are satisfied
but the conclusion of (2) fails:

Example 5.5 Let GD SL2.R/, with Cartan projection �W G!RC obtained by iden-
tifying aC with RC . Let � be a finitely generated Schottky subgroup of G containing
a parabolic element u. There is a constant C > 0 such that �.�.
//� 2 log j
 j� �C
for all 
 2 � ; in particular, � satisfies the uniform gap summation property (5-3).
However, this growth rate cannot be improved since �.un/ D 2 lognCO.1/. The
continuous equivariant boundary map �W @1� ! @1H2 given by Theorem 5.3(3)
is not dynamics-preserving since the fixed point of u in G=P� D @1H2 is neither
attracting nor repelling; thus the conclusion of Theorem 5.3(2) fails. The transversality
conclusion of Theorem 5.3(4) also fails since �.limC1 un/ D �.limC1 u�n/ (see
Remark 2.32(c)).

We first discuss the gap summation property (Section 5.3), then establish some estimates
for the map „� (Section 5.4), which are useful in the proof of Theorem 5.3(1)–(2)–(3)
(Section 5.5). The proof of Theorem 5.3(4) (hence of (4)D)(1) of Theorem 1.3) is
more delicate, and is the object of Section 5.6. Finally, in Section 5.7 we establish the
implication (1)D)(4) of Theorem 1.3.

5.3 The gap summation property

The following observation will be useful in the proof of Theorem 5.3:

Lemma 5.6 For any c , C > 0, there exists C0 > 0 such that, for any .c; C /–quasi-
geodesic rays .
n/n2N and .
 0n/n2N in the Cayley graph of � with the same initial
point 
0 D 
 00 and the same endpoint in @1� and for any ˛ 2�,X

n2N

e�h˛;�.�.

0
n//i � C0

X
n2N

e�h˛;�.�.
n//i:

Therefore, in Definition 5.2 (the gap summation property), it is equivalent to ask for
the convergence of the series (5-2) for all quasigeodesic rays.

Proof Since .
n/n2N and .
 0n/n2N have the same endpoint at infinity in the word
hyperbolic group � , there is a .c0; C 0/–quasi-isometry �W N ! N such that the
sequence .
 0n


�1
�.n//n2N is contained in the R–ball Be.R/ centered at e in � . The

constants c0 , C 0 and R depend only on .c; C / (and on the hyperbolicity constant
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of � ). Let M be a real number such that k�.�.
//k �M for all 
 2 Be.R/. By
subadditivity of � (Fact 2.18(3)), for any n 2N ,

jh˛;�.�.
�.n///��.�.

0
n//ij � k�.�.
�.n///��.�.


0
n//kk˛k

� k�.�.
 0n

�1
�.n///kk˛k �Mk˛k:

Moreover, for any p 2N , the set fn 2N j �.n/D pg has at most c0C 0C 1 elements.
Thus, for any n 2N ,X

n2N

e�h˛;�.�.

0
n//i � eMk˛k

X
n2N

e�h˛;�.�.
�.n///i

� eMk˛k.c0C 0C 1/
X
p2N

e�h˛;�.�.
p//i:

For any g 2G , we set

(5-4) T� .g/ WDmin
˛2�
h˛;�.g/i � 0:

If the gap summation property holds with respect to � , then the series
P
n e
�T� .�.
n//

converges for every quasigeodesic ray .
n/n2N . Here is an immediate consequence of
Lemma 5.6:

Corollary 5.7 If the uniform gap summation property holds with respect to � , then,
for any c , C > 0,

sup
.
n/n2N

.c;C/-quasigeodesic
with 
0De

X
n�n0

e�T� .�.
n//! 0 as n0!C1:

5.4 Metric estimates for the map „�

Consider an irreducible, � –proximal linear representation .�; V / of G (see Definition
3.1 and Lemma 3.2). Let k � kV be a K–invariant Euclidean norm on V for which the
weight spaces of � are orthogonal. It defines a K–invariant metric dP.V / on PR.V /,
given by

dP.V /.Œv�; Œv
0�/D jsin ].v; v0/j

for all nonzero v , v0 2 V . By Proposition 3.3, the space G=P� embeds into PR.V /

as the closed G–orbit of the point x� WD PR.V
�� / 2 PR.V /, and inherits from this a

K–invariant metric dG=P� : for any g , g0 2G ,

dG=P� .g � x� ; g
0
� x� / WD dP.V /.g � x� ; g

0
� x� /:
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Here, and sometimes in the rest of the section, to simplify notation we omit � and
write “ �” for the � –action of G on both V and PR.V /.

The goal of this subsection is to establish the following useful estimates.

Lemma 5.8 For any compact subset M of G , there is a constant CM > 0 such that,
for any g 2G and m 2M,

(i) dG=P� .„� .gm/;„� .g//� CMe
�T� .g/ ,

(ii) dG=P� .„� .mg/;m �„� .g//� CMe
�T� .g/ .

Lemma 5.8 has the following consequence:

Corollary 5.9 Consider a sequence .gn/ 2 GN with T� .gn/!C1. Suppose that
.„� .gn//n2N converges to some x 2G=P� . Then:

(1) For any m 2G , the sequence .„� .mgn//n2N converges to m � x 2G=P� .

(2) x does not depend on any choice made in the definition of „� ; namely, it does
not depend on the choice of Cartan decomposition G D K.exp aC/K (which
determines the basepoint x� 2 G=P� ) nor, given this choice, on the choice of
kgn , k0gn 2K .

Proof For (1), apply Lemma 5.8(ii) with g D gn . For (2), recall that any Cartan
decomposition of G is obtained from GDK.exp aC/K by conjugating K and exp aC

by some common element m 2G ; this corresponds to replacing kg by mkm�1gmm
�1

for any g 2 G and the basepoint x� by m � x� . Independence from the choice of
Cartan decomposition then follows from the existence, given by Lemma 5.8 applied to
MD fm;m�1g, of a constant CM > 0 such that, for all g 2G ,

dG=P� .mkm�1gm � x� ; kg � x� /� 2CMe
�T� .g/:

Finally, since T� .gn/ > 0 for all large enough n, the choice of kgn , k0gn 2K has no
effect on „� .gn/, as seen in Section 5.1.

In order to prove Lemma 5.8, we make the following observation, where for g 2G we
denote by

R.g/ WD h�� ; �.g/i D max
v2VXf0g

log
�
kg � vkV

kvkV

�
� 0

the logarithm of the largest singular value of �.g/. By Lemma 3.7, the quantity T� .g/
of (5-4) is the logarithm of the ratio of the two largest singular values of �.g/.
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0
v

tv

w

hv

a�1 � hva�1 �w

Figure 3: Illustration of Observation 5.10 when bD 1: as a�1 compresses
eT� .a/ times less strongly along v? than in the v–direction, we get a lower
bound on ka�1 � hvkV in terms of the angle ].v; hv/ (or its sine
dG=P� .x� ; h � x� // .

Observation 5.10 Let v 2 V be a highest-weight vector for � with kvkV D 1. For
any h 2G and a , b 2 exp aC ,

dG=P� .x� ; h � x� /� e
�T� .a/eR.a/�R.b/CR.h

�1/
ka�1hb � vkV :

Proof of Observation 5.10 Write h � v D tvCw , where t 2R and w belongs to the
orthogonal v? of v in .V; k�kV / (see Figure 3). Then kwkV Dkh�vkV jsin ].v; h�v/jD
kh � vkV dG=P� .x� ; h � x� /, and so

ka�1h � vkV � ka
�1
�wkV � e

�R.a/CT� .a/kwkV

D e�R.a/CT� .a/kh � vkV dG=P� .x� ; h � x� /:

To conclude, note that 1D kh�1h �vkV � eR.h
�1/kh �vkV and b �vD eR.b/v , so that

ka�1hb � vkV D e
R.b/
ka�1h � vkV

� e�R.a/CT� .a/CR.b/kh � vkV dG=P� .x� ; h � x� /

� e�R.a/CT� .a/CR.b/�R.h
�1/dG=P� .x� ; h � x� /:

Proof of Lemma 5.8 Let M be a compact subset of G . By continuity of �, there
is a constant ı � 0 such that km � v0kV � eıkv0kV and k�.m/k � ı for all m 2M
and v0 2 V , where k � k is the W –invariant Euclidean norm on a from Section 2.3.1.
Let v 2 V �� be a highest-weight vector for � with kvkV D 1. Recall the elements
kg , k0g 2K defined before (5-1). For any g 2G and m 2M,

kexp.��.g//.k�1g kgm/ exp.�.gm// � vkV D kk0gmk
0�1
gm � vkV � e

ı :
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By applying Observation 5.10 to .a; b; h/ D .exp�.g/; exp�.gm/; k�1g kgm/, we
obtain

dG=P� .„� .g/;„� .gm//D dG=P� .kg � x� ; kgm � x� /� e
�T� .g/eR.g/�R.gm/eı :

By strong subadditivity of � (Fact 2.18),

jR.g/�R.gm/j D jh�� ; �.g/��.gm/ij � k�.g/��.gm/kk��k

� k�.m/kk��k � ık��k:

Therefore,
dG=P� .„� .g/;„� .gm//� e

ı.1Ck��k/e�T� .g/;

ie (i) holds with CM D e
ı.1Ck��k/ .

Similarly, we have

kexp.�.mg//�1.k�1mgmkg/ exp.�.g// � vkV D kk0mgmk
0�1
g � vkV � e

ı :

By applying Observation 5.10 to .a; b; h/ D .exp�.mg/; exp�.g/; k�1mgmkg/, we
obtain

dG=P� .„� .mg/;m �„� .g//D dG=P� .kmg � x� ; mkg � x� /

� e�T� .g/eR.mg/�R.g/CR.m
�1/eı :

As above, jR.mg/�R.g/j � k�.m/kk��k � ık��k, and

R.m�1/� k�.m�1/kk��k D k�.m/kk��k � ık��k;

hence
dG=P� .„� .mg/;m �„� .g//� e

ı.1C2k��k/e�T� .g/;

ie (ii) holds with CM D e
ı.1C2k��k/ .

5.5 Existence, equivariance, continuity, and dynamics-preserving prop-
erty for the boundary maps

We now give a proof of statements (1), (2) and (3) of Theorem 5.3.

Proof of Theorem 5.3(1) Let .
n/n2N be a .c; C /–quasigeodesic ray in the Cayley
graph of � , with endpoint � 2 @1� . The set f
�1n 
nC1 j n 2Ng is contained in the
ball Be.cCC/ of radius cCC centered at e 2 � . Applying Lemma 5.8(i) to �.
n/
and to M WD �.Be.cCC//, we obtain

dG=P� .„
C.
n/;„

C.
nC1//D dG=P� .„� ı �.
n/;„� ı �.
nC1//� CMe
�T� .�.
n//
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for all n 2N . The gap summation property and Lemma 5.6 implyX
n2N

e�T� .�.
n// <C1:

Thus .„C.
n//n2N is a Cauchy sequence in G=P� , and so its limit �C.�/ 2 G=P�
exists. More precisely, for any n0 2N ,

(5-5) dG=P� .„
C.
n0/; �

C.�//� CM

X
n�n0

e�T� .�.
n//:

This limit �C.�/ does not depend on the choice of the quasigeodesic ray .
n/n2N ,
because any other quasigeodesic ray .
 0n/n2N lies within some distance R from .
n/,
and so we can apply Lemma 5.8(i) again (and Lemma 5.6), taking for M the image
under � of the Cayley R–ball centered at e . Thus �CW @1�!G=P� is well defined.
The independence of �C from all choices then follows from Corollary 5.9.

For the �–equivariance of �C , consider a quasigeodesic ray .
n/n2N with endpoint
� 2 @1� and an element 
 2 � . Then .

n/n2N is a quasigeodesic ray with endpoint

 � � 2 @1� , and �C.
 � �/D �.
/ � �C.�/ by Corollary 5.9(1).

We argue similarly for ��W @1� ! G=P�? ' G=P�
�

, replacing � with �? and
„C with „� . By construction, for any � 2 @1� , the points �C.�/ 2 G=P� and
��.�/ 2G=P�

�
are compatible in the sense of Definition 2.10.

Theorem 5.3(2) is based on the following observation:

Lemma 5.11 For any g 2G which is proximal in G=P� ,

„� .g
n/! �Cg as n!C1;

where �Cg is the attracting fixed point of g in G=P� .

Proof The element g admits a Jordan decomposition gDghgegu , where gh is hyper-
bolic, ge is elliptic, gu is unipotent and gh , ge and gu commute. Since �.gegu/D 0
by definition of �, we have k�.gneg

n
u/k D o.n/ as n!C1, by (2-14). Let us write

ghDmzm
�1 with m 2G and z 2 exp.aC/. Then �Cg Dm �P� . Let .�; V / and k �kV

be as in Section 5.4, and let v 2 V �� be a highest-weight vector for � with kvkV D 1.
For any n 2N ,

kz�nm�1kgn exp.�.gn// � vkV D km�1g�nh gnk0�1gn � vkV D km
�1gneg

n
uk
0�1
gn � vkV :
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By Observation 5.10 applied to .a; b; h/D .zn; exp�.gn/;m�1kgn/, we have

dG=P� .�
C
g ; „� .g

n//D dG=P� .m � x� ; kgn � x� /� CdG=P� .x� ; m
�1kgn � x� /

� Ce�nT� .z/eR.z
n/�R.gn/CR.m/

km�1gneg
n
uk
0�1
gn � vkV ;

where C � 0 is a Lipschitz constant for the action of m on G=P� . By strong subaddi-
tivity of � (Fact 2.18),

jR.zn/�R.gn/j D jh�� ; �.z
n/��.mznm�1gneg

n
u/ij

� k��k
�
2k�.m/kCk�.gneg

n
u/k

�
D o.n/:

Similarly,

km�1gneg
n
uk
0�1
gn � vkV � e

h�� ;�.m
�1gne g

n
u /i � ek��k.k�.m

�1/kCk�.gne g
n
u /k/ D eo.n/:

Therefore, dG=P� .�
C
g ; „� .g

n//D e�nT� .z/Co.n/! 0 as n!C1.

Proof of Theorem 5.3(2) Let 
 2� be an element of infinite order with attracting fixed
point �C
 in @1� . Suppose that for any ˛ 2 � we have h˛;�.�.
n//i � 2 logn!
C1 as n! C1. By Lemma 2.27, the element �.
/ 2 G is proximal in G=P� .
By Lemma 5.11, the sequence .„C.
n//n2N D .„� ı �.


n//n2N converges to the
attracting fixed point of �.
/ in G=P� . On the other hand, this sequence converges
to �C.�C
 / by construction of �C . Thus �C is dynamics-preserving for � . We argue
similarly for �� , replacing � with �? and „C with „� , and using (2-10).

Proof of Theorem 5.3(3) It is sufficient to check the continuity of „C t �C and
„�t�� at any point �2 @1� . Let ı > 0 be the Gromov hyperbolicity constant of the
Cayley graph of � . By definition of the topology on � [ @1� (see [17, Lemma 3.6]),
for any � 2 @1� which is the endpoint of a geodesic ray .�n/ 2 �N with �0 D e , a
basis of neighborhoods of � in �[@1� is given by the family .V�n0/n02N , where V�n0
is by definition the set of endpoints of geodesic segments or rays .
n/n�0 of length at
least n0 with j��1n 
nj� � 3ı for all 0� n� n0 . By Corollary 5.7, under the uniform
gap summation property,

".n0/ WD sup
.
n/n2N

geodesic ray
with 
0De

X
n�n0

e�T� .�.
n//

tends to 0 as n0 ! C1. Let M WD �.Be.1C 3ı// and let CM > 0 be given by
Lemma 5.8. For any � 2 @1� , any n0 2N and any y 2 V�n0 which is the endpoint of
a geodesic segment or ray .
n/n�0 as above, we have

dG=P� ..„
C
t �C/.y/; �C.�//� 2CM".n0/:
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Indeed, by (5-5) applied to the .1; 3ı/–quasigeodesic ray coinciding with .
n/n�0 for
n� n0 and with .�n/n2N for n > n0 , we have

dG=P� .„
C.
n0/; �

C.�//� CM".n0/;

and by (5-5) applied to .
n/n�0 we have

dG=P� .„
C.
n0/; .„

C
t �C/.y//� CM".n0/:

This shows that „C t �C is continuous at any � 2 @1� .

By construction, �C.@1�/ is contained in the limit set ƒG=P��.�/ . To check equality,
consider a point x 2ƒG=P�

�.�/
which is the limit of a sequence .„C.
n//n2N for some

.
n/ 2 �
N with h˛;�.�.
n//i ! C1 for all ˛ 2 � . Since � is a proper map, we

have 
n!1 in � . By compactness of @1� , up to extracting we may assume that
.
n/n2N converges to some � 2 @1� . Then x D �C.�/ by continuity of „C t �C .
This shows that �C.@1�/DƒG=P��.�/

.

We argue similarly for �� and „� , replacing � with �? .

5.6 Transversality of the boundary maps

In order to prove the transversality of the boundary maps �C and �� under the
assumption that the sequence .h˛;�.�.
n//i/n2N is CLI for any ˛ 2 †C

�
and any

geodesic ray .
n/n2N (Theorem 5.3(4)), we first consider the special case where
G D GLd .R/ and P� is the stabilizer of a line, ie G=P� D Pd�1.R/. The general
case is treated in Section 5.6.2: we reduce to this special case using the results of
Section 3.

5.6.1 Transversality in GLd.R/ Let G D GLd .R/. As in Example 2.14, we take
K to be O.d/ and aC to be the set of real diagonal matrices of size d �d with entries
in nonincreasing order; for 1� i � d we denote by "i 2 a� the evaluation of the i th

diagonal entry. For � D f"1� "2g, we see G=P� as Pd�1.R/ and G=P�? 'G=P��
as the space of projective hyperplanes in Pd�1.R/. Transversality of �C and �� in
this case is given by the following proposition:

Proposition 5.12 Let G D GLd .R/ and � D f"1� "2g. Let � be a word hyperbolic
group and �W �!G a representation. Suppose the maps �C and �� of Theorem 5.3(1)
are well defined and �–equivariant, and that

„� t �� D .„�? ı �/t �
�
W � [ @1�!G=P�?

is continuous. Let .
n/n2N be a quasigeodesic ray in the Cayley graph of � , with
endpoint � 2 @1� . If the sequences

�
h"1�"i ; �.�.
n//i

�
n2N are CLI (Definition 2.6)

for all 2� i � d , then �C.�/ … ��.�0/.
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Before proving Proposition 5.12, let us fix some notation. Let .e1; e2; : : : ; ed / be the
canonical basis of Rd . The point P� 2G=P� corresponds to

x� WD Œe1� 2 Pd�1.R/:

The points P�? 2G=P�? and P�
�
2G=P�

�
correspond to the projective hyperplanes

X� WD PR.span.e1; : : : ; ed�1// and Y� WD PR.span.e2; : : : ; ed //;

respectively. For any n 2 N , we set gn WD �.
n/ and an WD exp.�.gn// (this is a
diagonal matrix with positive entries, in nonincreasing order), and choose elements kn ,
k0n 2K such that

gn D knank
0
n:

The crux of the proof of Proposition 5.12 will be to control the elements

(5-6) Hm
n WD k

�1
n knCm 2K:

More precisely, our main technical result will be the following:

Lemma 5.13 With the above notation, if the sequence .h"1� "i ; �.gn/i/n2N is CLI
for every 2� i � d , then the absolute value of the .i; 1/–entry of the matrix a�1n Hm

n an
is uniformly bounded for every 2� i � d and for .n;m/ 2N2 .

Lemma 5.13 has the following easy consequence. We use the K–invariant metric
dG=P� of Section 5.4 on G=P� D Pd�1.R/, which is valued in Œ0; 1�.

Corollary 5.14 With the above notation, if for every 2 � i � d the sequence
.h"1 � "i ; �.gn/i/n2N is CLI, then there exists 0 < ı � 1 such that, for all large
enough n 2N ,

(5-7) dG=P� .g
�1
n � �

C.�/; k0�1n � x� /� 1� ı:

Remark 5.15 Corollary 5.14 states an expansion property for the action of .g�1n /n2ND

.�.
�1n //n2N on Pd�1.R/ at �C.�/. Indeed, for any large enough n 2N , the open
set

Un WD
˚
x 2 Pd�1.R/ j dG=P� .a

�1
n k�1n � x; x� / < 1�

ı
2

	
is a neighborhood of �C.�/ by Corollary 5.14 (recall that dG=P� is K–invariant).
There is a constant C > 0 such that for any n the element an is Ce�h"1�"2;�.gn/i–
Lipschitz on the ball of radius 1� ı

2
centered at x� . Therefore, �.
�1n / D g�1n is

C�1eh"1�"2;�.gn/i–expanding on Un , where C�1eh"1�"2;�.gn/i!C1.
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Proof of Corollary 5.14 By construction of �C and the definition (5-6) of Hm
n , for

any n 2N ,
�C.�/D lim

m!C1
knH

m
n � x� :

Since dG=P� is K–invariant and x� D an � x� , we see that (5-7) is equivalent to

lim sup
m!C1

dG=P� ..a
�1
n Hm

n an/ � x� ; x� /� 1� ı:

To check the existence of 0 < ı � 1 such that this last inequality holds for all large
enough n 2N , it is sufficient to see that

(i) the first column of the matrix a�1n Hm
n an is uniformly bounded for .n;m/2N2 ;

(ii) the .1; 1/–entry of the matrix a�1n Hm
n an , which is also the .1; 1/–entry of Hm

n ,
is uniformly bounded from below for .n;m/ 2N2 .

(Here all bounds are meant for the absolute values of the entries.) Suppose that the
sequence .h"1 � "i ; �.gn/i/n2N is CLI for every 2 � i � d . By Lemma 5.13, for
every 2� i � d the .i; 1/–entry of a�1n Hm

n an is uniformly bounded for .n;m/ 2N2 .
The .1; 1/–entry is also bounded since Hm

n 2 K D O.d/, hence (i) holds. On the
other hand, Lemma 5.13 implies that for every 2 � i � d the .i; 1/–entry of Hm

n

is uniformly bounded by a constant multiple of e�h"1�"i ;�.gn/i , which goes to 0 as
n! C1. Since Hm

n 2 K D O.d/, this in turn implies that the absolute value of
.1; 1/–entry of Hm

n is close to 1 for all large enough n and all m. Thus (ii) holds.

Proof of Proposition 5.12 Let 0 < ı � 1 be given by Corollary 5.14. We shall prove
that for any �0 2 @1� X f�g we can find (infinitely many) n 2N such that

(5-8) distG=P� .g
�1
n � �

C.�/; g�1n � �
�.�0//� ı

2
;

where distG=P� denotes the distance from a point to a set. In particular, the point �C.�/
does not belong to the hyperplane ��.�0/.

Applying Fact 2.1(1), we can find a subsequence .
�.n//n2N such that .
�1
�.n/

/n2N

converges to some point �00 2 @1� and that limn 
�1�.n/ ��
0D �00 for all �0 2 @1�Xf�g.

By �–equivariance and continuity of �� , for all �0 2 @1� X f�g,

lim
n
g�1�.n/ � �

�.�0/D ��.lim
n

�1�.n/ � �

0/D ��.�00/:

For any n, the decomposition gnD knank0n 2K.exp aC/K induces the decomposition
g�1n D lnbnl

0
n 2K.exp aC/K with

.ln; bn; l
0
n/D .k

0�1
n zw0; zw

�1
0 a�1n zw0; zw

�1
0 k�1n /;
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where zw0 2 O.d/ is the permutation matrix sending .e1; : : : ; ed / to .ed ; : : : ; e1/,
representing the longest element w0 of the Weyl group W DSd (see Example 2.17).
By the definition of �� , the continuity of „�t�� , and the fact that ln �X� D k0�1n �Y� ,
we have

��.�00/D lim
n
k0�1�.n/ �Y� :

Thus,
lim
n
g�1�.n/ � �

�.�0/D lim
n
k0�1�.n/ �Y� :

On the other hand, by definition of dG=P� (see Section 5.4), for any x 2 Pd�1.R/,

distG=P� .x; Y� /
2
C dG=P� .x; x� /

2
D 1;

and so Corollary 5.14 implies the existence of 0 < ı � 1 such that, for all large
enough n,

distG=P� .g
�1
n � �

C.�/; k0�1n �Y� /�
p
1� .1� ı/2 � ı:

In particular, for any �0 2 @1� X f�g we have, for all large enough n,

distG=P� .g
�1
�.n/ � �

C.�/; g�1�.n/ � �
�.�0//� ı

2
;

proving (5-8).

For any n 2 N , let hn WD k�1n knC1 2 K , so that Hm
n D hnhnC1 � � � hnCm�1 for all

n, m 2N . The rest of the section is devoted to establishing Lemma 5.13. For this we
first observe that we have a control on the entries of the matrices hn . For 1� i , j � d ,
the .i; j /–entry of a matrix h 2 GLd .R/ is denoted by h.i; j /.

Lemma 5.16 There is a constant r � 0 such that for any 1� i , j � d and any n 2N ,

jhn.i; j /j � e
r�jh"i�"j ;�.gn/ij:

Proof of Lemma 5.16 Since .
n/n2N is a geodesic ray in the Cayley graph of � ,
the sequence 
�1n 
nC1 is bounded (it takes only finitely many values). Therefore, the
sequence �.
�1n 
nC1/ D g

�1
n gnC1 D k

0�1
n a�1n hnanC1k

0
nC1 is bounded, as well as

the sequence �.gn/ � �.gnC1/ D log.a�1nC1an/ by Fact 2.18. Thus the sequence
a�1n hnan D .a�1n hnanC1/.a

�1
nC1an/ is bounded in GLd .R/, as well as its trans-

posed inverse anhna�1n . Since hn.i; j /e˙h"i�"j; loganiD .a˙1n hna
�1
n /.i; j / and anD

exp�.gn/, we can take for er a bound for the absolute values of the entries of these
matrices .a˙1n hna

�1
n /n2N .

Proof of Lemma 5.13 Let us first explain the strategy. The goal, rephrased, is to
bound, independently of m, the entries Hm

n .i; 1/ in the first column of the orthogonal
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matrix Hm
n by a multiple of e�h"1�"i ;�.gn/i . We will develop the entries of Hm

n in
terms of the .hk/n�k<nCm . In doing so, subproducts of the form

hk.uk; ukC1/hkC1.ukC1; ukC2/ � � � hkC`.ukC`; ukC`C1/

appear (where uk; : : : ; ukC`C1 2 f1; : : : ; dg). Using Lemma 5.16 to control the last
factor and bounding all others by 1, such a product is bounded by (a constant multiple
of) eh"uk�"ukC`C1; �.gkC`/i, under the assumption that ukC`C1 < uk � ukC` . Even
more is true: the sum of all those products with the triple .uk; ukC`; ukC`C1/ fixed
and .ukC1; : : : ; ukC`�1/ varying in fuk; : : : ; dg`�1 is also bounded by (a constant
multiple of) the same estimate eh"uk�"ukC`C1; �.gkC`/i. A summation by parts reveals
pairings of the form h"u1 � "uk ; �.gk/��.gkC`/i that can be bounded thanks to the
CLI hypothesis. At that point the coefficient .a�1n Hm

n an/.i; 1/ is written as a sum of
terms each bounded by (a constant multiple of) e��ms for some ms 2 f1; : : : ; mg. The
final bound comes from the fact that, for each value of ms 2N , the number of terms
in that sum corresponding to ms is a polynomial in ms . We now give the details.

Let us first introduce some notation. For any integer 1 � i � d and any matrix
h 2 GLd .R/, we denote by hŒi � 2 GLdC1�i .R/ the matrix obtained by crossing out
the i � 1 topmost rows and the i � 1 leftmost columns of h. When h is orthogonal,
hŒi � is the matrix of a 1–Lipschitz linear transformation. Similarly to Hm

n , we define

iH
m
n WD hnŒi �hnC1Œi � � � � hnCm�1Œi � 2 GLdC1�i .R/:

Then iH
m
n is the matrix of a 1–Lipschitz transformation and its entries are bounded

by 1 in absolute value. As above, the .k; `/–entry of a matrix h 2 GLd .R/ is denoted
by h.k; `/. To make things more natural, we index the entries of hŒi � and of iHm

n by
pairs .k; `/ 2 fi; : : : ; dg2 .

Fix i 2 f2; : : : ; dg. Using this notation, we now express the .i; 1/–entry of Hm
n :

Hm
n .i; 1/D

X
u

Hu;

where the sum is over all .mC1/–tuples uD .u0; u1; : : : ; um/ 2 f1; : : : ; dgmC1 with
u0 D i and um D 1 and we set

Hu WD hn.u0; u1/hnC1.u1; u2/ � � � hnCm�1.um�1; um/:

This sum admits the following decomposition:

(5-9) Hm
n .i; 1/D

X
s2f1;:::;i�1g

X
i ;j ;m

Hi ;j ;m;

where, for fixed s 2 f1; : : : ; i � 1g, the sum is over all i , j and m such that
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� i D .i0; i1; : : : ; is/ 2NsC1 satisfies i D i0 > i1 > � � �> is D 1;

� j D .j0; j1; : : : ; js�1/ 2Ns satisfies d � jk � ik for all 0� k � s� 1;

� mD .m1; : : : ; ms/ 2Ns satisfies 0 < m1 <m2 < � � �<ms �m;

and the summand is

Hi ;j ;m D i0
Hm1�1
n .i0; j0/hnCm1�1.j0; i1/

� i1H
m2�m1�1
nCm1

.i1; j1/hnCm2�1.j1; i2/

� � � � � is�1H
ms�ms�1�1
nCms�1

.is�1; js�1/hnCms�1.js�1; is/

�H
m�ms
nCms

.is; 1/:

Indeed, Hi ;j ;m is the sum of the Hu over all uD .u0; u1; : : : ; um/ 2 f1; : : : ; dgmC1

with u0 D i and um D 1 such that

� the smallest index k with uk < u0 D i is m1 ;

� the smallest index k with uk < um1 is m2 ;
:::
� the smallest index k with uk < ums�2 is ms�1 ;

� the smallest index k with uk D 1 is ms , (well defined since um D 1);

� and umk D ik and umkC1�1D jk for any k 2 f1; : : : ; s�1g, and ums D is D 1.

From this we see that the subsums Hi ;j ;m , for varying s and i , j and m, form a
partition of all the Hu .

Since the entries of iHm
n are bounded by 1 in absolute value, we have

jHi ;j ;mj � jhnCm1�1.j0; i1/jjhnCm2�1.j1; i2/j � � � jhnCms�1.js�1; is/j:

We take the convention that log.0/D�1. By Lemma 5.16, we then have

log jHi ;j ;mj � sr C
sX

kD1

h"jk�1 � "ik ; �.gnCmk�1/i:

Since jk�1 � ik�1 , we have h"jk�1 ; �.g/i � h"ik�1 ; �.g/i for all g 2G , hence

(5-10) log jHi ;j ;mj � sr C
sX

kD1

h"ik�1 � "ik ; �.gnCmk�1/i:

We now sum by parts, using the fact that is D 1: the right-hand side of (5-10) equals

sr � h"1� "i0 ; �.gnCm1�1/i �

s�1X
kD1

h"1� "ik ; �.gnCmkC1�1/��.gnCmk�1/i:
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Using the CLI assumption and writing

h"1� "i0 ; �.gnCm1�1/i D h"1� "i0 ; �.gn/iC h"1� "i0 ; �.gnCm1�1/��.gn/i;

we deduce

log jHi ;j ;mj � sr � h"1� "i ; �.gn/i � .�.m1�1/� �0/�
s�1X
kD1

.�.mkC1�mk/� �
0/

D sr � h"1� "i ; �.gn/iC s�
0
� �msC �:

Going back to the formula (5-9) for Hm
n .i; 1/, we obtain

j.a�1n Hm
n an/.i; 1/j D e

h"1�"i ;�.gn/ijHm
n .i; 1/j �

i�1X
sD1

es.rC�
0/C�

X
i ;j ;m

e��ms :

Observe now that for a fixed q 2 N there is at most a polynomial number P.q/ of
possible i , j and m with msD q , hence the above sum is bounded by a multiple of the
converging series

P
q P.q/e

��q . The real numbers .a�1n Hm
n an/.i; 1/ are therefore

uniformly bounded for .n;m/ 2N2 .

5.6.2 Transversality in general We now prove Theorem 5.3(4) in full generality.
Recall the subset †C

�
�†C of the positive restricted roots from (2-3).

Proposition 5.17 Let � be a word hyperbolic group, G a real reductive Lie group,
� � � a nonempty subset of the simple restricted roots of G , and �W � ! G a
representation. Suppose that the maps �C and �� of Theorem 5.3(1) are well defined
and �–equivariant, and that „� t �� D .„�? ı �/ t �

�W � [ @1� ! G=P�? is
continuous. Let .
n/n2N be a geodesic ray in the Cayley graph of � , with endpoint
� 2 @1� . If the sequences

�
h˛;�.�.
n//i

�
n2N for ˛ 2†C

�
are CLI, then �C.�/ and

��.�0/ are transverse for all �0 2 @1� X f�g.

To prove Proposition 5.17 (and also later Proposition 5.20), we shall use the following
lemma:

Lemma 5.18 Let � , �0>0. For 1� i �D , let .x.i/n /n2N and .y.i/n /n2N be sequences
of real numbers. Suppose that the D sequences .x.i/n /n2N , for 1 � i � D , are all
.�; �0/–lower CLI, and that for any n2N there exists �n2SD such that y.i/n Dx

.�n.i//
n

for all 1� i �D . Suppose also that we are in one of the following two cases:

(�) y
.1/
n � � � � � y

.D/
n for all n 2N ; or

(��) there exists M > 0 such that jy.i/nC1�y
.i/
n j �M for all n 2N and 1� i �D .
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Then the D sequences .y.i/n /n2N , for 1� i �D , are all .�; z�0/–lower CLI, where we
set

z�0 WD

�
�0 in case (�);
�0CD.�C �0CM/ in case (��):

Remark 5.19 An analogous statement holds for the .�00; �000/–upper CLI property
of sequences .x.i/n /n2N and .y.i/n /n2N ; this follows from Lemma 5.18 applied to the
sequences .Rn� x.i/n / and .Rn�y.i/n /, where R is any real at least �00 .

Proof of Lemma 5.18 Suppose we are in case (�). Then for any n2N and 1� i �D
the number y.i/n can be defined as the largest real number y such that at least i of the
D numbers x.1/n ; : : : ; x

.D/
n are �y . By the CLI hypothesis, for any m� 0, at least i of

the D numbers x .1/nCm; : : : ; x
.D/
nCm are �y.i/n C�m��0 , and so y.i/nCm�y

.i/
n C�m��

0 .
This proves that .y.i/n /n2N is lower CLI with constants .�; �0/.

We now treat case (��). By case (�), up to reordering the x.i/n for each n 2 N ,
we may assume that x.1/n � � � � � x

.D/
n for all n 2 N . Fix an integer 1 � i � D

and an integer n 2 N , and focus on the sequence .y.i/nCm/m�0 . For any m � 0, let
rm WD �nCm.i/ 2 Œ1;D�, so that y.i/nCm D x

.rm/
nCm is the .rm/th largest number in the

family .y.1/nCm; : : : ; y
.D/
nCm/. There exist an integer s � D and a finite maximal list

0Dm0 <m1 < � � �<msC1 DC1 such that

rm0 < rm1 < � � �< rms �D and rm � rmj for all m<mjC1:

For any mj �m<mjC1 ,

y
.i/
nCm�y

.i/
nCmj

D x
.rm/
nCm� x

.rmj /

nCmj
� x

.rmj /

nCm � x
.rmj /

nCmj
� �.m�mj /� �

0;

where the first inequality comes from the assumption x.1/nCm � � � � � x
.D/
nCm and the

second inequality from the CLI hypothesis. Then, for any mj �m<mjC1 , using the
CLI hypothesis again as well as (��), we can bound

y
.i/
nCm�y

.i/
n D y

.i/
nCm�y

.i/
nCmj

C

jX
kD1

..y
.i/
nCmk

�y
.i/
nCmk�1

/C.y
.i/
nCmk�1

�y
.i/
nCmk�1

//

� �.m�mj /��
0
C

jX
kD1

.�M C�.mk�1�mk�1/��
0/

D �m�j.M C�/�.j C1/�0:

Since j � s �D , this produces the desired bounds.
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Proof of Proposition 5.17 Let .�; V / be an irreducible, proximal, � –compatible
linear representation of G (Lemma 3.2). By Proposition 3.3(b), it induces embeddings
�CW G=P� ! PR.V / and ��W G=P�

�
! PR.V

�/. We identify GLR.V / with GLd .R/
for some d 2N , and denote by aGLd the set of diagonal matrices in gld .R/ and aCGLd
its subset with entries in nonincreasing order. Up to conjugating � , we may assume that
the Cartan decomposition of G is compatible with the Cartan decomposition of GLd .R/
of Example 2.14, in the sense that �.K/�O.d/ and de�.a/�aGLd . We distinguish the
corresponding Cartan projections �W G! aC and �GLd W GLd .R/! aCGLd

. For any
g 2G , the matrix de�.�.g// is diagonal with entries h�;�.g/i, where � 2 a� ranges
through the weights of � . The matrix �GLd .�.g// is the diagonal matrix with the
previous entries ordered: h"1; �GLd .�.g//i D h�� ; �.g/i, and for any 2� i � d there
is a weight �¤ �� (depending on g and i ) such that h"i ; �GLd .�.g//i D h�;�.g/i.

By Lemma 3.7, for any weight �¤ �� of � , we can write �� � �D
P
˛2†

C

�

m˛˛ ,
where m˛ � 0 for all ˛ . Using that sums of CLI sequences are again CLI and applying
case (�) of Lemma 5.18 to the sequences x�D

�
h����;�.�.
n//i

�
n2N for � ranging

through the set of weights of � different from �� and

y.i/ D
�
h"1� "i ; �GLd .� ı �.
n//i

�
n2N

for i ranging through f2; : : : ; dg, we see that if the sequences
�
h˛;�.�.
n//i

�
n2N for

˛ 2†C
�

are CLI, then so are the sequences y.i/ , for all 2� i � d . By Proposition 5.12,
�C ı �C.�/ and �� ı ��.�0/ are transverse for all �0 ¤ �. Therefore, �C.�/ and ��.�0/
are transverse for all �0 ¤ � by Proposition 3.3(b).

This concludes the proof of Theorem 1.1, hence also of the implication (4)D)(1) of
Theorem 1.3.

5.7 Contraction properties for Anosov representations

We now establish the implication (1)D)(4) of Theorem 1.3.

Proposition 5.20 Let � be a word hyperbolic group, G a real reductive Lie group,
� � � a nonempty subset of the simple restricted roots of G , and �W � ! G a
P� –Anosov representation. Then there exist � , �0 > 0 such that, for any ˛ 2 †C

�

and any geodesic ray .
n/n2N with 
0 D e in the Cayley graph of � , the sequence�
h˛;�.�.
n//i

�
n2N is .�; �0/–lower CLI.

To prove Proposition 5.20, we shall use the following lemma:

Lemma 5.21 If an ellipsoid B is contained in an ellipsoid B0 in Rd then, for any
1� i � d , the i th principal axis of B is no longer than the i th principal axis of B0 .
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Proof It suffices to show that the length ri of the i th largest axis of B is the diameter
of the largest possible copy of the Euclidean ball of an i –dimensional subspace (or
i –ball) of Rd that fits into B . Clearly, an i –ball of diameter ri fits into B , for instance
inside the i –dimensional vector space Vi spanned by the i largest axes. Since the
orthogonal V ?i�1 of Vi�1 in Rd intersects B along a .d�iC1/–dimensional ellipsoid
whose axes are all of length � ri , it is also clear that no larger i –ball can fit into B ,
since it would have a diameter in V ?i�1 by a simple dimension count.

Proof of Proposition 5.20 By Fact 2.34, we may assume without loss of generality
that � D �? , so that †C

�
D .†C

�
/? . Let z� W G� ! G=L� be the section associated

with the P� –Anosov representation � . As in Section 4.1, we choose a �–equivariant
continuous lift žW G�!G=K� of z� and a �–equivariant set-theoretic lift M̌W G�!G

of ž. For any .t; v/ 2R�G� the element lt;v D M̌.v/�1 M̌.'t � v/ belongs to L� .

By Proposition 2.8, Lemma 4.4 and Proposition 4.8, there are a compact subset D of G�
and constants K , n0 , �0 , �00 > 0 with the following property: for any geodesic ray
.
n/n2N with 
0D e in the Cayley graph of � , there exist v 2D and a .�0; �00/–lower
CLI sequence .tn/ 2RN such that, for all n� n0 ,

k�.�.
n//��� .ltn;v/k � K:

Therefore, it is enough to prove the existence of � , z�0 > 0 such that, for any ˛ 2†C
�

,
any t , s 2R and any v 2 D ,

(5-11) h˛;�� .ltCs;v/��� .lt;v/i � �s� z�
0:

In fact, we only need to establish (5-11) for t , s 2N . Indeed, lt;v is uniformly close
to lbtc;v for t 2R and v 2 D , by the cocycle property (4-2) of the map .t; v/ 7! lt;v ,
the � –invariance property (4-1) and the fact that the set fls;v j s 2 Œ0; 1�; v 2 Dg is
bounded in G , since f M̌.'s � v/ j s 2 Œ0; 1�; v 2 Dg is bounded by Lemma 4.4.

Recall the subbundle EC of T .G=L� / from (2-7). Since M̌W G� ! G is a lift of
z� W G� !G=L� , we have EC

z�.v/
D M̌.v/ �Tx� .G=P� / for all v 2 G� , where we write

M̌.v/ for the derivative of the action of M̌.v/ by left translation, and x� D eP� 2G=P� .
Fix a K� –invariant Euclidean norm k � k0 on Tx� .G=P� /' u�

�
. For any v 2 G� ,

(5-12) w 7! kwkv WD k M̌.v/
�1
�wk0

defines a Euclidean norm on EC
z�.v/

. The norm k � kv does not depend on the lift
M̌.v/2G of ž.v/2G=K� since k�k0 is K� –invariant. As ž is continuous, the family
.k � kv/v2G� is continuous and �–equivariant. By Definition 2.30(ii) of a P� –Anosov
representation, there exist � , �0 > 0 such that

kwkv � e
��sC�0

kwk's �v
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for all v 2 G� and all w 2EC
z�.v/

. In other words, for any v 2 G� , the unit ball BtCs;v
of k � k'tCs �v in EC

z�.v/
is contained in e��sC�

0

times the unit ball Bt;v of k � k't �v ,
for all t , s � 0. We now apply Lemma 5.21 to EC

z�.v/
endowed with the Euclidean

norm k � kv : for any 1� i � dimG=P� , the length of the i th principal axis of BtCs;v
is at most e��sC�

0

times that of the i th principal axis of Bt;v . By construction, the
lengths of the principal axes of Bt;v are the e�h˛;�� .l

�1
t;v /i for ˛ ranging through †C

�
,

or in other words the e�h˛;�� .lt;v/i for ˛ ranging through .†C
�
/? D†C

�
; see (2-10).

Since k�� .ltC1;v/��� .lt;v/k is bounded, we may apply case (��) of Lemma 5.18:
there exists z�0 > 0 such that, for any ˛ 2†C

�
, any t , s 2N and any v 2 D ,

h˛;�� .ltCs;v/��� .lt;v/i � �s� z�
0:

Thus (5-11) holds, which completes the proof.

6 Anosov representations and proper actions

In view of the properness criterion of Benoist [4] and Kobayashi [54] (see Section 1.5),
our characterizations of Anosov representations �W � ! G in terms of the Cartan
projection � (Theorem 1.3) provide a direct link with the properness of the action of �
(via �) on homogeneous spaces of G , and immediately imply Corollary 1.9. In this
section we illustrate the proofs of Corollaries 1.10 and 1.11 in some cases of Tables 1
and 2, and provide a proof of Corollary 1.12.

6.1 Hitchin representations

We first consider Corollary 1.10, which concerns Hitchin representations of fundamental
groups of closed hyperbolic surfaces † into split real semisimple Lie groups G .
The point is that any Hitchin representation �W �1.†/! G is P�–Anosov [58; 26,
Theorem 1.15]. Thus, in order to deduce Corollary 1.10 from Corollary 1.9, it is
sufficient to check that �.H/�

S
˛2� Ker.˛/ for every pair .G;H/ in Table 1. Let

KH be a maximal compact subgroup of H and aCH a closed Weyl chamber in a
Cartan subspace aH of h such that H DKH .exp aCH /KH . We may assume that the
maximal compact subgroup K of G contains KH and that the Cartan subspace a

of g contains aH [46; 62]. Let �W G! aC and �H W H ! aCH be the corresponding
Cartan projections.

Lemma 6.1 In order to prove that �1.†/ acts sharply on G=H for any Hitchin
representation �W �1.†/!G , it is sufficient to verify that

aH �
[
˛2†

Ker.˛/� a:
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Proof For any h2H, the element �.h/2aC is the unique W –translate of �H .h/2aCH
contained in aC . Thus, if aH �

S
˛2† Ker.˛/, then �.H/� aC \

S
˛2† Ker.˛/D

aC\
S
˛2� Ker.˛/. We conclude using Corollary 1.9.

For the pairs .G;H/ in Table 1, the embedding H ,!G is the natural one, ie H is
the stabilizer of a decomposition of the standard G–module or of an endomorphism
of it. For instance, in case (iii), the identification Cd ' R2d gives an embedding
j W GLd .C/!GL2d .R/ which restricts to an embedding SLd .C/�U.1/ ,!SL2d .R/
since det.j.A//D jdet.A/j2 for any A 2 GLd .C/.

As an example, let us exhibit aH � a as in Lemma 6.1 for case (vi) of Table 1, where
.G;H/D .SO.d; d/;GLk.R//. Let

aD fdiag.a1; : : : ; ad ;�a1; : : : ;�ad / j a1; : : : ; ad 2Rg

be the set of diagonal matrices contained in g, where G D SO.d; d/ is defined by the
quadratic form x1xdC1C � � �C xdx2d . Let

aH D fdiag.b1; : : : ; bk/ j b1; : : : ; bk 2Rg

be the set of diagonal matrices contained in h D glk.R/. The action of GLd .R/
on the vector space Rd ˚ .Rd /� preserves the natural pairing between Rd and
.Rd /� , which is a symmetric bilinear form of signature .d; d/. This defines an
embedding GLd .R/ ,! G D SO.d; d/; composing it with the natural inclusion
H D GLk.R/ ,! GLd .R/ gives the embedding H ,!G . The corresponding embed-
ding aH ,! a is given by

diag.b1; : : : ; bk/ 7! diag.b1; : : : ; bk; 0; : : : ; 0;�b1; : : : ;�bk; 0; : : : ; 0/:

The pair .aH ; a/ satisfies the condition of Lemma 6.1 since the restricted root

˛W diag.a1; : : : ; ad ;�a1; ; : : : ;�ad / 7! ad�1� ad

of a in G is zero on aH under the condition k < d � 1.

Remark 6.2 In all examples of Table 1 except (i), (vi) and (vii), the homogeneous
space G=H is an affine symmetric space. We obtained these examples by checking the
condition of Lemma 6.1 in Okuda’s classification [63, Appendix A] of affine symmetric
spaces admitting a properly discontinuous action by a discrete group which is not
virtually abelian. Examples (i), (vi) and (vii) of Table 1 were obtained by checking
the condition of Lemma 6.1 in a list of examples of nonsymmetric G=H admitting
properly discontinuous actions by nonvirtually abelian groups given in [9].
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6.2 Maximal representations

We now address Corollary 1.11. Let G be a simple Lie group of Hermitian type, of
real rank d � 1. Then the restricted root system of G is of type Cd or BCd . This
means that there is a system of simple restricted roots � D f˛1; : : : ; ˛d g such that
.˛i ; j̨ /¤ 0 if and only if ji�j j � 1 and k˛dk> k˛1kD � � �D k˛d�1k. The restricted
root system is of type BCd if and only if 2˛1 is a root.

Let † be a closed hyperbolic surface. The point is that any maximal representation
�W �1.†/!G is P˛d –Anosov [18; 19]. Similarly to Lemma 6.1, we thus only need
to check the following for each pair .G;H/ of Table 2. As above we assume that the
maximal compact subgroup KH of H is contained in K and that the Cartan subspace
aH of H is contained in a.

Lemma 6.3 In order to prove that �1.†/ acts sharply on G=H for any maximal
representation �W �1.†/!G , it is sufficient to check that

aH �
[
w2W

Ker.w �˛d /D
[

1�i�d

Ker.˛i C � � �C˛d /� a:

As an example, let us exhibit aH � a as in Lemma 6.3 for case (ii) in Table 2, where
.G;H/D .Sp.2d;R/;U.d � k; k//. By symmetry, we may assume k < d � k . Let

aD fdiag.a1; : : : ; ad ;�a1; : : : ;�ad / j a1; : : : ; ad 2Rg

be the set of diagonal matrices contained in g, where G D Sp.2d;R/ is defined by the
symplectic form x1 ^ xdC1C � � �C xd ^ x2d . Let

aH D fdiag.b1; : : : ; bk; 0; : : : ; 0;�bk; : : : ;�b1/ j b1; : : : ; bk 2Rg

be the set of real diagonal matrices contained in h, where H DU.d�k; k/ is defined by
the Hermitian form z1xzdC� � �Czkxzd�kC1CjzkC1j

2C� � �Cjzd�kj
2 . The embedding

of H into G is given by identifying Cd with R2d and observing that the imaginary
part of the Hermitian form above is symplectic. The corresponding embedding aH ,! a

is given by

diag.b1; : : : ; bk; 0; : : : ; 0;�bk; : : : ;�b1/

7! diag.b1; : : : ; bk; 0; : : : ; 0;�bk; : : : ;�b1;�b1; : : : ;�bk; 0; : : : ; 0; bk; : : : ; b1/:

Since k < d � k , the restricted root

˛kC1C � � �C˛d W diag.a1; : : : ; ad ;�a1; : : : ;�ad / 7! akC1

is zero on aH , and so the condition of Lemma 6.3 is satisfied.
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6.3 Proper actions of rank-1 reductive groups yield Anosov representa-
tions

In order to prove Corollary 1.12, we first establish the following easy consequence of
Theorem 1.3; see also [58, Proposition 3.1; 37, Proposition 4.7] for similar criteria.

Corollary 6.4 Let G be a real reductive Lie group, � �� a nonempty subset of the
simple restricted roots of a in G , and G1 a reductive subgroup of G of real rank 1.
Suppose that a\ g1 is a Cartan subspace of g1 satisfying .a\ g1/\Ker.w �˛/D f0g
for all w 2 W and ˛ 2 � . Then, for any convex cocompact subgroup � of G1 , the
inclusion of � into G is P� –Anosov.

Example 6.5 Let � be a convex cocompact subgroup of SL2.R/ (for instance the im-
age of a Fuchsian representation �1.†/! SL2.R/ for a closed hyperbolic surface †).
For k � 1, let �k W SL2.R/ ,! SL2.R/k be the diagonal embedding. For d � 2k , if we
see SL2.R/k as a subgroup of G D SLd .R/ by embedding it in the upper left corner
of SLd .R/, then �k W �!G is P"k�"kC1 –Anosov.

Proof of Corollary 6.4 Up to conjugation, we may assume that G1 admits the
decomposition

(6-1) G1 D .K \G1/.exp.a/\G1/.K \G1/:

The set �.G1/D�.exp.a/\G1/D aC\W � .a\g1/ is then a union of two (possibly
equal) rays L1 and L2 starting at 0. By assumption, for any i 2 f1; 2g and ˛ 2 � we
have Li \Ker.˛/D f0g; this is also true for any ˛ 2†C

�
X� since aC\Ker.˛/D f0g.

Therefore, for any ˛ 2†C
�

there is a constant C˛;i > 0 such that h˛; Y i D C˛;ikY k
for all Y 2 Li .

Let � be a convex cocompact subgroup of G1 . Let us prove that the natural inclusion
of � in G is P� –Anosov.

We first assume that G1 is semisimple of real rank 1, so there is only one ray L1DL2 .
Let �G1 be a Cartan projection for G1 associated with the decomposition (6-1). Since
G1 has real rank 1, we may see �G1 as a map from G1 to RC , and there is a constant
C > 0 such that k�.g/k D C�G1.g/ for all g 2G1 ; thus, for all g 2G1 ,

(6-2) h˛;�.g/i D C˛;1C�G1.g/:

Since � is convex cocompact in G1 , its inclusion in G1 is Anosov with respect to a
minimal parabolic subgroup of G1 (Remark 2.36). By Theorem 1.3 (or Corollary 2.20),
for any geodesic ray .
n/n2N in the Cayley graph of � , the sequence .�G1.
n//n2N
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is CLI, and the CLI constants are uniform over all geodesic rays .
n/n2N with 
0D e .
By (6-2), the sequence .h˛;�.
n/i/n2N is CLI as well for all ˛ 2†C

�
, with uniform

CLI constants, and so the inclusion of � in G is P� –Anosov by Theorem 1.3.

We now assume that G1 is not semisimple. It is then a central extension of the compact
group K \G1 by the one-parameter group exp.a/\G1 , and � is virtually the cyclic
group generated by some element 
 2G1XK . Let �G1 be a Cartan projection for G1
associated with the decomposition (6-1). We may see �G1 as a map from G1 to R,
and there is a constant C > 0 such that k�.
n/k D C jnjj�G1.
/j for all n 2 Z. For
any ˛ 2 †C

�
, the estimates h˛; Y i D C˛;ikY k for Y 2 Li imply that the sequences

.h˛;�.
n/i/n2N and .h˛;�.
�n/i/n2N are CLI, and so the inclusion of � in G is
P� –Anosov by Theorem 1.3.

Proof of Corollary 1.12 Up to conjugation, we may assume that G1 admits the decom-
position (6-1). Then a\g1 is a Cartan subspace of g1 and �.G1/D�.exp.a/\G1/D
aC\W � .a\ g1/. Since G1 acts properly on G=H and �.H/�

S
˛2� Ker.˛/\ aC

by assumption, the properness criterion of Benoist and Kobayashi of Section 1.5 (see
also Kobayashi’s earlier paper [53]) implies that .a\ g1/\Ker.w � ˛/D f0g for all
w 2W and ˛ 2 � . By Corollary 6.4, for any convex cocompact subgroup � of G1 ,
the natural inclusion of � in G is P� –Anosov.

7 Proper actions on group manifolds

In this section, we consider properly discontinuous actions on group manifolds and
deduce Theorems 1.14 and 1.16 and Corollary 1.18 from Theorems 1.3 and 1.7.

7.1 Proper actions on group manifolds, uniform domination, and Anosov
representations

Before stating our main Theorem 7.3, we introduce some notation and terminology.

7.1.1 Uniform P� –domination Let � be a discrete group, G a real reductive Lie
group and � �� a nonempty subset of the simple restricted roots of a in G . Recall
that !˛ denotes the corresponding fundamental weight (3-1) of a simple root ˛ 2�.
We adopt the following terminology:

Definition 7.1 A representation �L 2 Hom.�;G/ uniformly P� –dominates a repre-
sentation �R 2 Hom.�;G/ if there exists c < 1 such that, for all ˛ 2 � and 
 2 � ,

h!˛; �.�R.
//i � ch!˛; �.�L.
//i:
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If G has real rank 1, then � D� is a singleton and we say simply that �L uniformly
dominates �R .

Note that uniform P� –domination is equivalent to uniform P�[�? –domination, by
(2-15). We shall use uniform P –domination both in G and in the setting of the next
paragraph.

7.1.2 Automorphism groups of bilinear forms Let K be R, C or the ring H of
quaternions. Let V be a K–vector space (where K acts on the right in the case of H),
and let bW V ˝R V !K be a nondegenerate R–bilinear form which is symmetric or
antisymmetric (if K is R or C ), or Hermitian or anti-Hermitian (if K is C or H).
Let AutK.b/ be the subgroup of GLK.V / preserving b ; we shall always assume it is
noncompact. Table 4 gives a list of all possible examples.

AutK.b/ K dimK.V / description of b

O.p; q/ R pC q symmetric
U.p; q/ C pC q Hermitian
Sp.p; q/ H pC q Hermitian
O.d;C/ C d symmetric

Sp.2d;R/ R 2d antisymmetric
Sp.2d;C/ C 2d antisymmetric

O�.2d/ H 2d anti-Hermitian

Table 4: In these examples, p , q and d are any integers � 1 .

We denote by Q0.b/ � AutK.b/ the stabilizer of a b–isotropic line of V . It is a
maximal proper parabolic subgroup, and F0.b/ WDAutK.b/=Q0.b/ identifies with the
set of b–isotropic K–lines of V inside the projective space PK.V /D .V X f0g/=K

� .
As in Section 3.2 we say that a representation � W G! AutK.b/ is proximal if some
element of �.G/ has an attracting fixed point in PK.V /.

Remark 7.2 We have assumed since Section 2.2 that the reductive group G acts on g

by inner automorphisms, to simplify the description of the parabolic subgroups of G
and ensure that the Cartan projection �W G! aC is well defined. However, some of
the groups AutK.b/ in Table 4 — namely O.p; q/ for pDq and O.d;C/ for even d —
have elements acting on g via outer automorphisms. For these groups G D AutK.b/,
we can still define notions of

� P� –Anosov representation �W �!G ;
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� uniform P� –domination of �RW �!G by �LW �!G ;

� sharpness (see (1-2)) for the action of � via �W �!G on some homogeneous
space G=H .

Indeed, for any representation �W � ! G there is a finite-index subgroup � 0 of �
such that �.� 0/ is contained in the identity component of G , which acts on g by
inner automorphisms. We define the properties above to hold when they hold for the
restriction to � 0 . This does not depend on the finite-index subgroup � 0 ; see property (3)
of Section 2.5.3 for Anosov representations and Fact 2.18 for sharpness.

7.1.3 A useful normalization We shall use the following normalization, to avoid
having to switch �L and �R in Theorem 7.3.

Let � W G! AutK.b/ be an irreducible representation of G with highest weight �� .
For any �L , �R 2Hom.�;G/, the following always holds, up to switching �L and �R :

(7-1) sup

2�

of infinite order

h�� ; �.�L.
//��.�R.
//i � 0:

If G is semisimple of real rank 1, then � D� is a singleton f˛g and (assuming � to
be nonzero) the inequality (7-1) is equivalent to

sup

2�

of infinite order

h!˛; �.�L.
//��.�R.
//i � 0:

For G of arbitrary real rank, (7-1) always holds when �L uniformly P� –dominates �R
and � is � –compatible (Definition 3.1).

7.1.4 The main theorem Here is the main result of this section:

Theorem 7.3 Let � be a discrete group, G a real reductive Lie group, and � � �
a nonempty subset of the simple restricted roots of G , with � D �? . For KD R, C
or H , let V be a K–vector space and � W G! GLK.V / an irreducible, � –proximal
representation preserving a nondegenerate R–bilinear form bW V ˝R V !K which is
symmetric, antisymmetric, Hermitian or anti-Hermitian over K. Let b0 be a nonzero
real multiple of b . For a pair .�L; �R/ 2 Hom.�;G/2 with the normalization (7-1),
consider the following conditions:

(1) � is word hyperbolic and �L is P� –Anosov and uniformly P� –dominates �R ;

(2) � is word hyperbolic, �L is P� –Anosov, and � ı �LW �! AutK.b/ uniformly
Q0.b/–dominates � ı �R ;
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(3) � is word hyperbolic and �ı�LW �!AutK.b/ is Q0.b/–Anosov and uniformly
Q0.b/–dominates � ı �RW �! AutK.b/;

(4) � is word hyperbolic and � ı �L˚ � ı �RW � ! AutK.b˚ b0/ is Q0.b˚b0/–
Anosov;

(5) �L is a quasi-isometric embedding and the action of � on .G �G/=Diag.G/
via .�L; �R/ is sharp (see (1-2));

(6) �L is a quasi-isometric embedding and the action of � on .G �G/=Diag.G/
via .�L; �R/ is properly discontinuous;

(7) .�L; �R/W � ! G �G is a quasi-isometric embedding and the action of � on
.G �G/=Diag.G/ via .�L; �R/ is properly discontinuous.

The following implications always hold:

.1/ D) .2/ () .3/ () .4/ D) .5/ D) .6/ D) .7/:

If � is a singleton, then (2)D)(1) holds as well. If G has real rank 1, then all conditions
are equivalent.

Remarks 7.4 (a) An irreducible, � –proximal representation � W G! AutK.b/ as in
conditions (2), (3) and (4) always exists when � D �? ; see Proposition 7.8 below. On
the other hand, conditions (1), (5), (6) and (7) do not involve � .

(b) The condition � D �? is not restrictive; see Fact 2.34.

(c) In condition (4) there are essentially two choices for b0 : either b0D b or b0D�b .
The groups AutK.b˚ b/ and AutK.b˚ .�b// both sit inside GLK.V ˚V / and their
intersection is AutK.b/�AutK.b/. These groups are not isomorphic in general; see
Example 7.5. Even when they are isomorphic, the corresponding two embeddings of �
via .�L; �R/ tend to be of a quite different nature; this is the case for instance when b
is a real symplectic form.

Example 7.5 For G D O.1; d/, which has real rank 1, the set � is necessarily equal
to �, which is a singleton. We may take AutK.b/ to be G and � W G!AutK.b/ to be
the identity map. Theorem 7.3 then states the equivalence of the following conditions,
for a discrete group � and a pair .�L; �R/ 2 Hom.�;G/2 of representations:

(1) � is word hyperbolic and one of the representations �L or �R is convex cocom-
pact and uniformly dominates the other.

.4C/ � is word hyperbolic and �L˚ �RW �! O.2; 2d/ is Anosov with respect to
the stabilizer of an isotropic line in R2;2d .
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.4�/ � is word hyperbolic and �L˚�RW �!O.dC1; dC1/ is Anosov with respect
to the stabilizer of an isotropic line in RdC1;dC1 .

(5) One of the representations �L or �R is a quasi-isometric embedding and the
action of � on .G �G/=Diag.G/ via .�L; �R/ is sharp.

(6) One of the representations �L or �R is a quasi-isometric embedding and the
action of � on .G �G/=Diag.G/ via .�L; �R/ is properly discontinuous.

(7) .�L; �R/W �!G �G is a quasi-isometric embedding and the action of � on
.G �G/=Diag.G/ via .�L; �R/ is properly discontinuous.

Here we see O.2; 2d/ and O.d C 1; d C 1/ as the stabilizers in GL2dC2.R/ of the
quadratic forms

x20 � x
2
1 � � � � � x

2
d Cy

2
0 �y

2
1 � � � � �y

2
d ;

x20 � x
2
1 � � � � � x

2
d �y

2
0 Cy

2
1 C � � �Cy

2
d ;

respectively. Similar equivalences are true after replacing

.O.1; d/;O.2; 2d/;O.d C 1; d C 1/;R2dC2/
with

.U.1; d/;U.2; 2d/;U.d C 1; d C 1/;C2dC2/

or with
.Sp.1; d/;Sp.2; 2d/;Sp.d C 1; d C 1/;H2dC2/;

or after taking compact extensions of these groups.

We refer to Goldman [28], Ghys [27], Kobayashi [55], Salein [66], Kassel [48], Guéri-
taud and Kassel [34], Guéritaud, Kassel and Wolff [35], Deroin and Tholozan [23],
Tholozan [67] and Danciger, Guéritaud and Kassel [22] for examples of discrete
subgroups of O.1; d/�O.1; d/ satisfying the equivalent conditions of Example 7.5.

Theorems 1.14 and 1.16 are contained in Theorem 7.3; namely, conditions (1), (2)
and (3) of Theorem 1.14 correspond to conditions (7), (5) and (1) of Theorem 7.3
(see Example 7.5 for classical G ), while conditions (3), (4) and (5) of Theorem 1.16
correspond to conditions (1), (4) with .�; b0/D .id; b/, and (4) with .�; b0/D .id;�b/
of Theorem 7.3.

Remark 7.6 When G has higher real rank, the implication (5)D)(4) of Theorem 7.3
is false. Indeed, if � is quasi-isometrically embedded in G �G and acts sharply on
.G � G/=Diag.G/, it does not need to be word hyperbolic; for instance, for G D
O.2; 2d/ any discrete subgroup of O.1; 2d/ � U.1; d/ � G � G acts sharply on
.G �G/=Diag.G/. The implication is actually false even if we assume � to be word
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hyperbolic; for instance, take �L to be any quasi-isometric embedding which is not
P� –Anosov (see eg the appendix) and �R to be the constant representation.

7.1.5 A complement to the main theorem In Theorem 7.3, we may replace the
notion of Anosov representation into AutK.b/ with that of Anosov representation into
GLK.V /, as follows:

Proposition 7.7 In the setting of Theorem 7.3, let P"1�"2.V / be the stabilizer in
GLK.V / of a line of V and P"1�"2.V ˚ V / the stabilizer in GLK.V ˚ V / of a line
of V ˚V . Condition (3) of Theorem 7.3 is equivalent to

(3 0 ) � is word hyperbolic and � ı �LW � ! GLK.V / is P"1�"2.V /–Anosov and
uniformly P"1�"2.V /–dominates � ı �R .

Condition (4) of Theorem 7.3 is equivalent to

(4 0 ) � is word hyperbolic and � ı�L˚� ı�RW �!GLK.V ˚V / is P"1�"2.V ˚V /–
Anosov.

7.2 Linear representations into automorphism groups of bilinear forms

Before proving Theorem 7.3 and Proposition 7.7, we make a few useful observations
and fix some notation.

7.2.1 Existence of representations The following proposition justifies the assump-
tions in Theorem 7.3:

Proposition 7.8 Let G be a noncompact, real, reductive Lie group and � � � a
nonempty subset of the simple restricted roots of G . For KDR, C or H , there exists
an irreducible, � –proximal representation � W G!GLK.V / preserving a nondegenerate
R–bilinear form bW V ˝R V !K if and only if � D �? .

Note that in this case the group AutK.b/ is necessarily noncompact since it contains
an element which is proximal in PK.V /.

One implication of Proposition 7.8 is given by the following observation:

Lemma 7.9 For KDR, C , H , let � W G!GLK.V / be an irreducible representation
with highest weight �� . If the group �.G/ preserves a nondegenerate R–bilinear form
bW V ˝R V !K, then �� D �?� ; moreover, b is unique up to scale. When KDR and
� is proximal, the converse also holds.
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Proof of Lemma 7.9 The dual representation .��; V �DHomK.V;K// has highest
weight �?� . Therefore, if there exists a .�; ��/–equivariant isomorphism  W V ! V �

then ��D�?� ; in this case  is unique up to scale by the Schur lemma. We then note that
the space of nondegenerate �.G/–invariant bilinear forms bW V ˝K V !K identifies
with the space of .�; ��/–equivariant isomorphisms V ! V � by sending b to the
isomorphism v 7! b.v; � /. This treats the case of a symmetric or antisymmetric form.

For the case of Hermitian and anti-Hermitian forms (where K is C or H), we observe
that the (real vector) space of forms bW V ˝R V !K that are K–linear in the second
variable and antilinear in the first variable identifies with the space of .�; x��/–equivariant
homomorphisms V ! V � , where x�� is the representation of G on the space V � of
antilinear forms uW V !K, ie u.vz/D xzu.v/ for all v 2 V and z 2K. The highest
weight of V � is also �?� .

When K D R and � is proximal, the equality �� D �?� implies the existence of an
equivariant isomorphism V !V � , hence of a nondegenerate invariant bilinear form.

Proof of Proposition 7.8 Suppose there exists an irreducible, � –proximal representa-
tion � W G! GLK.V / preserving a nondegenerate R–bilinear form bW V ˝R V !K.
By Lemma 7.9, the highest weight �� of � satisfies �� D �?� . By definition of � –
compatibility, � is the set of ˛ 2 � such that .�� ; ˛/ > 0. Since the W –invariant
scalar product . � ; � / on a� is invariant under ˛ 7! ˛? , we conclude that � D �? .

Conversely, suppose � D �? . By Lemma 3.2, we can find an irreducible proximal real
representation .�; V / of G with highest weight �� 2

P
˛2� N�!˛ satisfying �� D�?� ;

it is � –compatible by definition. By Lemma 7.9, the group �.G/ preserves a non-
degenerate real bilinear form. Tensoring with K gives an irreducible, � –proximal
K–representation V together with an invariant bilinear form bW V ˝R V !K.

Remark 7.10 For K D R or C , we can always assume b to be symmetric up to
replacing V with the irreducible representation of highest weight 2�� , which is a
subrepresentation of Sym2.V /.

7.2.2 Cartan and Lyapunov projections for G , AutK.b/ and GLK.V / As in
Theorem 7.3, let bW V ˝R V !K be a nondegenerate R–bilinear form on a K–vector
space V and � W G! AutK.b/� GLK.V / an irreducible, � –proximal representation.
We identify GLK.V / with GLd .K/, where d D dimK.V /, and use the notation of
Example 2.14. Up to conjugating, we may assume that the real Lie groups G , AutK.b/
and GLK.V / have compatible Cartan decompositions, in the sense of inclusion of the
corresponding maximal compact subgroups and inclusion of the corresponding Cartan
subspaces (see Remark 3.6). We denote the corresponding Cartan projections by �,
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�b and �GLK.V / , and the corresponding Lyapunov projections by �, �b and �GLK.V / .
Let ˛0.b/ be a simple restricted root of AutK.b/, determining the parabolic subgroup
Q0.b/ of Section 7.1.2; then ˛0.b/ D ˛0.b/

? . Let !˛0.b/ be the corresponding
fundamental weight. We use similar notation for b˚b0 on V ˚V . Then the following
equalities hold:

Lemma 7.11 Let � be either the Cartan projection � or the Lyapunov projection �.
For any g 2G ,

(1) h!˛0.b/; �b.�.g//i D h"1; �GLK.V /.�.g//i D h�� ; �.g/i,

(2) h˛0.b/; �b.�.g//i D h"1� "2; �GLK.V /.�.g//i.

For any g , g0 2G with h�� ; �.g/i � h�� ; �.g0/i,

(3) h˛0.b˚ b0/; �b˚b0.�.g/˚ �.g0//i
D h"1� "2; �GLK.V˚V /.�.g/˚ �.g

0//i

Dmin
˚
h˛0.b/; �b.�.g//i; h!˛0.b/; �b.�.g//� �b.�.g

0//i
	
:

The space F0.b/D AutK.b/=Q0.b/ identifies with the subset of PK.V / consisting
of b–isotropic lines, and similarly for F0.b˚ b0/ inside PK.V ˚V /. The embedding
V ' V ˚f0g ,! V ˚V induces a natural embedding F0.b/ ,! F0.b˚ b0/.

Similarly to Lemma 7.11(3) for �, the following holds:

Remark 7.12 Let g , g0 2 G satisfy h�� ; �.g/ � �.g0/i > 0. Then the element
�.g/˚ �.g0/ 2AutK.b˚b0/ is proximal in F0.b˚b0/ if and only if �.g/ 2AutK.b/
is proximal in F0.b/. In this case the attracting fixed point of �.g/˚�.g0/ in F0.b˚b0/
is the image of the attracting fixed point of �.g/ under the natural embedding F0.b/ ,!
F0.b˚ b0/, and the same holds with .g�1; g0�1/ instead of .g; g0/, by (2-15) and the
fact that �� D �?� (Lemma 7.9).

7.2.3 The properness criterion of Benoist and Kobayashi for group manifolds If
�W G! aC is a Cartan projection for G as above, then

(7-2) ���W G �G! aC � aC

is a Cartan projection for G �G . It sends Diag.G/ to the diagonal of aC � aC . Let
k � k be a W –invariant Euclidean norm on a as in Section 2.3.1. In this setting the
properness criterion of Benoist and Kobayashi (see Section 1.5) can be expressed as
follows:
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Properness criterion for group manifolds [4; 54] A discrete subgroup � 0 of G�G
acts properly discontinuously on .G �G/=Diag.G/ if and only if

k�.
 01/��.

0
2/k!C1 as 
 0 D .
 01; 


0
2/!1;

where 
 0!1 means that 
 0 exits every finite subset of � 0 .

The action of � 0 on .G �G/=Diag.G/ is sharp, in the sense of (1-2), if and only if
there exist c , C > 0 such that, for any 
 0 D .
 01; 


0
2/ 2 �

0 ,

k�.
 01/��.

0
2/k � c

�
k�.
 01/kCk�.


0
2/k
�
�C:

7.3 Proof of Theorem 7.3

In Theorem 7.3, the implication (5)D)(6) is immediate from the definition (1-2)
of sharpness and the properness criterion of Benoist and Kobayashi. Remark 2.19,
with (7-2), yields the implication (6)D)(7).

We now prove the other implications in Theorem 7.3, using the notation of Section 7.2.
Note that our proofs of (6)D)(4) for G of real rank 1 and (3)D)(4) rely on our
characterizations of Anosov representations given by Theorems 1.3(2) and 1.7(2),
while (4)D)(5) and (4)D)(3) rely on Theorems 1.3(3) and 1.7(3).

Proof of (1)D)(2) in Theorem 7.3 By definition of � –compatibility, we can write
�� D

P
˛2� n˛!˛ where n˛ > 0 for all ˛ 2 � . Lemma 7.11(1) for the Lyapunov

projection � then yields, for any 
 2 � ,

h!˛0.b/; �b.� ı �L.
//i D
X
˛2�

n˛h!˛; �.�L.
//i;

h!˛0.b/; �b.� ı �R.
//i D
X
˛2�

n˛h!˛; �.�R.
//i:

Therefore, if �L uniformly P� –dominates �R , then �ı�L uniformly Q0.b/–dominates
� ı �R .

If � is a singleton (eg if G is semisimple of real rank 1), then the previous proof
shows that the uniform P� –domination of �R by �L is equivalent to the uniform
Q0.b/–domination of � ı �R by � ı �L , ie (2)D)(1) holds as well.

Proof of (2)()(3 0 )()(3) and (4)()(4 0 ) in Theorem 7.3 and Proposition 7.7
Suppose � is word hyperbolic. The natural inclusion j W AutK.b/ ,!GLK.V / is ˛0.b/–
proximal, hence Proposition 3.5(2) applies: a representation � ı �LW � ! AutK.b/
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is Q0.b/–Anosov if and only if j ı .� ı �L/W � ! GLK.V / is P"1�"2.V /–Anosov.
Moreover, Lemma 7.11(1) for the Lyapunov projection � yields that � ı �L uniformly
Q0.b/–dominates � ı �R if and only if j ı .� ı �L/ uniformly P"1�"2.V /–dominates
j ı .� ı �R/. Thus (3)()(3 0 ) holds.

The equivalence (4)()(4 0 ) follows from the same argument, using b˚ b0 on V ˚V
instead of b on V .

Similarly, �L is P� –Anosov if and only if .j ı �/ ı �L is P"1�"2.V /–Anosov by
Proposition 3.5(2); thus (2)()(3 0 ) holds.

In order to prove the equivalence (3)()(4) in Theorem 7.3, we first establish the
following:

Proposition 7.13 In the setting of Theorem 7.3, suppose � is word hyperbolic. Then
the following are equivalent:

(iii) There exists a continuous, .� ı�L/–equivariant, transverse, dynamics-preserving
map �V W @1�! F0.b/ and for all 
 2 � ,

(7-3) h!˛0.b/; �b.� ı �R.
//i< h!˛0.b/; �b.� ı �L.
//i:

(iv) There exist a continuous, .� ı �L˚ � ı �R/–equivariant, transverse, dynamics-
preserving map �V˚V W @1�! F0.b˚ b0/.

Proof Suppose (iii) holds. By Remark 2.32(a), for any 
 2 � of infinite order,
� ı�L.
/ is proximal in F0.b/. Remark 7.12 and (7-3) imply that .� ı�L˚� ı�R/.
/
is proximal in F0.b˚ b0/ and �V sends the attracting fixed point of 
 in @1� to the
attracting fixed point of .� ı �L˚ � ı �R/.
/ in F0.b˚ b0/, after embedding F0.b/
into F0.b˚ b0/. Thus we obtain a continuous, .�ı�L˚�ı�R/–equivariant, transverse,
dynamics-preserving maps �V˚V W @1�! F0.b˚b0/ by postcomposing �V with the
natural inclusion F0.b/ ,! F0.b˚ b0/, and (iv) holds.

Conversely, suppose (iv) holds. By Remark 2.32(a), for any 
 2 � of infinite order,
.� ı �L˚ � ı �R/.
/ is proximal in F0.b˚ b0/. By the normalization (7-1), Lemma
7.11(1) and Remark 7.12, there exists 
 2 � of infinite order for which � ı �L.
/ is
proximal in F0.b/ and the attracting fixed point of .� ı�L˚ � ı�R/.
/ in F0.b˚b0/
is the image of the attracting fixed point of �.�L.
// under the natural embedding
F0.b/ ,! F0.b˚ b0/; the same holds for 
�1 instead of 
 . In particular, the closed
� –invariant set

f� 2 @1� j �V˚V .�/ 2 F0.b/� F0.b˚ b0/g
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contains the attracting fixed points �C
 and �C

�1

of 
 and 
�1 , hence is nonempty. This
set is equal to @1� , by minimality of the action of � on @1� if � is nonelementary,
and by the fact that @1� D f�C
 ; �

C


�1
g if � is elementary. Therefore, �V˚V defines

a continuous map from @1� to F0.b/ which is equivariant and dynamics-preserving
for � ı �L . Moreover, (7-3) holds by Lemma 7.11(3) for the Lyapunov projection �.
Thus (iii) holds.

Proof of (3)()(4) in Theorem 7.3 Suppose condition (3) of Theorem 7.3 holds, ie �
is word hyperbolic and �ı�L is Q0.b/–Anosov and uniformlyQ0.b/–dominates �ı�R .
By Proposition 7.13, there exists a continuous, .�ı�L˚�ı�R/–equivariant, transverse,
dynamics-preserving map �V˚V W @1�!F0.b˚�b/. Since �ı�L is Q0.b/–Anosov,
Theorem 1.7(2) implies

h˛0.b/; �b.� ı �L.
//i !C1 as j
 j1!C1:

Moreover, uniform Q0.b/–domination implies

h!˛0.b/; �b.� ı �L.
//��b.� ı �R.
//i !C1 as j
 j1!C1:

By Lemma 7.11(3) for the Lyapunov projection �,

h˛0.b˚ b
0/; �b˚b0..� ı �L˚ � ı �R/.
//i !C1 as j
 j1!C1:

Therefore � ı �L˚ � ı �R is Q0.b˚ b0/–Anosov by Theorem 1.7(2), ie condition (4)
of Theorem 7.3 holds.

Conversely, suppose condition (4) of Theorem 7.3 holds, ie � is word hyperbolic and
� ı �L ˚ � ı �RW � ! AutK.b ˚ b0/ is Q0.b ˚ b0/–Anosov. By Proposition 7.13,
there exists a continuous, .� ı �L/–equivariant, transverse, dynamics-preserving map
�V W @1� ! F0.b/. Since � ı �L˚ � ı �R is Q0.b˚ b0/–Anosov, Theorem 1.7(2)
implies

h˛0.b˚ b
0/; �b˚b0..� ı �L˚ � ı �R/.
//i !C1 as j
 j1!C1:

By Lemma 7.11(3) for the Lyapunov projection �,

h˛0.b/; �b.� ı �L.
//i !C1 as j
 j1!C1:

Therefore � ı �L is Q0.b/–Anosov by Theorem 1.7(2). On the other hand, using
Theorem 1.7(3) and Lemma 7.11(3), we see that there exist c , C > 0 such that, for
any 
 2 � ,

h!˛0.b/; �b.� ı �L.
//��b.� ı �R.
//i � ch!˛0.b/; �b.� ı �L.
//i �C:
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Applying this to 
n , dividing by n, and taking the limit, we obtain

h!˛0.b/; �b.� ı �R.
//i � .1� c/h!˛0.b/; �b.� ı �L.
//i:

Thus � ı�L.
/ uniformly Q0.b/–dominates � ı�R.
/, ie condition (3) of Theorem 7.3
holds.

Proof of (2), (4)D)(5) in Theorem 7.3 Suppose that (2) and (4) hold (we have seen
that they are equivalent). Since �L is P� –Anosov, it is a quasi-isometric embedding
(see Section 2.5.3). Since � ı �L˚ � ı �R is Q0.b˚ b0/–Anosov, Theorem 1.3(3),
Lemma 7.11(1)–(3) for the Cartan projection �, and the normalization (7-1) show that
there exist c , C > 0 such that, for any 
 2 � ,

h�� ; �.�L.
//��.�R.
//i � cj
 j� �C:

Using (2-11), we see that there exist c0 , C 0 > 0 such that, for any 
 2 � ,

k�.�L.
//��.�R.
//k � c
0
�
k�.�L.
//kCk�.�R.
//k

�
�C 0;

where k � k is the W –invariant Euclidean norm on a from Section 2.3.1. Thus the
action of � on .G �G/=Diag.G/ via .�L; �R/ is sharp (see Section 7.2.3).

Note that any subgroup of G �G is always of the form

(7-4) ��L;�R D f.�L.
/; �R.
// j 
 2 �g;

where � is a group and �L , �R 2 Hom.�;G/ two representations, corresponding to
the two projections of G �G onto G .

In the case that G is semisimple of real rank 1, the implication (7)D)(6) of Theorem 7.3
is an immediate consequence of the following result of Kassel [47]. (Since G has real
rank 1, we identify aC with RC and view � as a function G!RC .)

Theorem 7.14 [47] Let G be a semisimple Lie group of real rank 1. Then any
discrete subgroup of G �G acting properly discontinuously on .G �G/=Diag.G/ is
of the form ��L;�R as in (7-4) where, under the normalization (7-1), the representation
�L has finite kernel and discrete image and �.�R.
// <�.�L.
// for almost all 
 2� ,
and

(7-5) �.�R.
// < �.�L.
// for all 
 2 � of infinite order.

In particular, if ��L;�R is finitely generated and quasi-isometrically embedded in
G �G , then �LW � ! G is a quasi-isometric embedding and � is word hyperbolic
(see Remark 2.36).
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We now use this result to prove the implication (6)D)(4) of Theorem 7.3.

Proof of (6)D)(4) in Theorem 7.3 for G semisimple of real rank 1 Suppose G
is semisimple of real rank 1 and (6) holds. By Remark 2.36 the group � is word
hyperbolic and �L is P� –Anosov. The boundary map of �L induces a boundary map
�W @1�! F0.b˚ b0/ that is continuous, .�ı�L˚�ı�R/–equivariant and transverse.
By (7-5) in Theorem 7.14 and Remark 7.12, the map � is dynamics-preserving. By the
properness criterion of Benoist and Kobayashi (Section 7.2.3), we have

k�.�L.
//��.�R.
//k!C1 as 
 !1:

Since G is semisimple of real rank 1, this also holds if we replace the norm k � k on a

with h�� ; � i. Using Lemma 7.11(3) for the Cartan projection �, as well as the fact that
�L is a quasi-isometric embedding and Remark 2.19, we deduce that

h˛0.b˚ b
0/; �b˚b0..� ı �L˚ � ı �R/.
//i !C1 as 
 !1:

Therefore, � ı �L˚ � ı �R is Q0.b˚ b0/–Anosov by Theorem 1.3(2).

7.4 Proofs of Corollaries 1.17 and 1.18

We use the following classical cohomological arguments (see eg [53, Corollary 5.5]):

(i) When a torsion-free discrete subgroup of G �G acts properly discontinuously
on .G �G/=Diag.G/, it acts cocompactly on .G �G/=Diag.G/ if and only if
its cohomological dimension is equal to dimR.G=K/.

(ii) A torsion-free discrete subgroup of G is a uniform lattice in G if and only if its
cohomological dimension is equal to dimR.G=K/.

Proof of Corollary 1.17 Suppose the action of � on .G �G/=Diag.G/ is properly
discontinuous and cocompact. Then � is finitely generated (using the Milnor–Švarc
lemma), and so up to passing to a finite-index subgroup we may assume that � is
torsion-free (using the Selberg lemma). By Theorem 7.14, one of the projections of �
onto G is injective and discrete; its image is a uniform lattice of G by (i) and (ii),
hence it is a quasi-isometric embedding. We conclude using the implication (6)D)(5)
of Theorem 7.3 (or the implication (1)D)(2) of Theorem 1.14).

Proof of Corollary 1.18 The first statement (openness) follows from the equivalence
(4)()(7) of Theorem 7.3 and the fact that being Anosov is an open property [37; 58].
For the second statement (compactness), note that up to passing to a finite-index
subgroup we may again assume � to be torsion-free, by the Selberg lemma; there is a
neighborhood U �Hom.�;G �G/ consisting of injective and discrete representations
and we use (i) above.
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7.5 Example of a non-Anosov representation with nice boundary maps

We now construct an example of a representation �W � ! G which admits con-
tinuous, dynamics-preserving, transverse boundary maps �CW @1� ! G=P� and
��W @1�!G=P�

�
, but which is not P� –Anosov.

Example 7.15 Let � be a finitely generated discrete group and �L , �RW �! G D

SO.1; 2/DAutR.b/ two representations such that �L is convex cocompact, �.�R.
//<
�.�L.
// for all 
 2 � of infinite order, but

(7-6) sup

2�

of infinite order

�.�R.
//

�.�L.
//
D 1:

By Proposition 7.13 with �D id, the representation � WD�L˚�RW �!AutR.b˚b/ ad-
mits a continuous, dynamics-preserving, transverse boundary map �W @1�!F0.b˚b/.
However, �L does not uniformly Q0.b/–dominate �R , and so Theorem 7.3 shows
that � is not Q0.b˚ b/–Anosov.

Here is one construction of a pair .�L; �R/ as in Example 7.15 for � a free group on
two generators, following a key idea of Goldman, Labourie, Margulis and Minsky [29].
Let S be a hyperbolic one-holed torus with infinite area and compact convex core S0 ,
and let ‡ � S0 be a transversely measured geodesic lamination with irrational support.
Then ‡ intersects every nonperipheral closed curve of S , and every half-leaf of ‡ is
dense in ‡ .

Let .`.t//t2R be an injectively immersed geodesic of S parametrized by arc length,
with `.0/ 2 @S0 and `.t/ spiraling asymptotically to ‡ as t !C1. We can find
a one-parameter family of (distinct) small deformations f`sgs2Œ�";"� of `, with each
`s an injectively immersed geodesic of S parametrized by arc length, satisfying
limt!C1 d.`s.t/; `.t//D 0. The map `W .s; t/ 7! `s.t/ from Œ�"; "��R to S is then
injective. Let S 0 be the hyperbolic surface obtained from S by collapsing each arc
`.Œ�"; "�� ftg/ to a point. The collapsing map  W S ! S 0 is 1–Lipschitz and allows
us to identify the fundamental groups of both S and S 0 with � .

We can take for �L and �R holonomy representations of S and S 0 respectively. For
any 
 2 � X feg, the inequality �.�R.
// < �.�L.
// follows from the fact that the
geodesic representative of the loop in S associated with 
 crosses the collapsing region
`.Œ�"; "��R/ (because it crosses ‡ ), hence is taken by  to a shorter rectifiable loop.
The supremum (7-6) is approached when 
 follows ‡ for most of its length.
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Appendix: An unstable quasi-isometrically embedded
subgroup

In this appendix we give an example (Proposition A.1) of a quasi-isometric embedding
�0 of a free group � into a semisimple Lie group of higher real rank which is not stable
under small deformations; in particular �0 is not an Anosov representation of � . This
example was first described by Guichard [36]. We use it to construct a non-Anosov
representation of � into SL6.R/ with interesting properties (Example A.6).

Proposition A.1 Let � be a free group on two generators. Then there is a continuous
family f�tgt2Œ0;1� of representations �! SL2.R/�SL2.R/ such that

� �0 is a quasi-isometric embedding;

� for any t … Q, the group �t .�/ is dense in SL2.R/ � SL2.R/ (for the real
topology).

In order to prove Proposition A.1, we consider a free generating subset fa; bg of � . For
any 
 D am1bn1 � � � amN bnN 2 � with mi ¤ 0 for all i > 1 and ni ¤ 0 for all i < N ,
we set �

j
 ja D jm1jC � � �C jmN j;

j
 jb D jn1jC � � �C jnN j:

Then the word length function j � j� W �!N with respect to fa; bg satisfies

j
 j� D j
 jaCj
 jb

for all 
 2 � . We identify the Weyl chamber aC with RC , so that the Cartan pro-
jection �W SL2.R/! aC of Section 2.3.1 takes values in RC . With this notation,
Proposition A.1 is an easy consequence of the following:

Proposition A.2 Let � be a free group on two generators a and b and let � > 0.
Then there is a continuous family f�˛;tgt2Œ0;1� of representations �! SL2.R/ such
that

� �.�˛;0.
//� �j
 ja for all 
 2 � ;

� for any t …Q, the group �˛;t .�/ is dense in SL2.R/ (for the real topology), the
element �˛;t .a/ is hyperbolic and �˛;t .b/ is elliptic.

Proof of Proposition A.1 using Proposition A.2 Let f�˛;tgt2Œ0;1� be the continuous
family of representations �! SL2.R/ given by Proposition A.2 (for � D 1 say), and
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let f�ˇ;tgt2Œ0;1� be defined by �ˇ;t D �˛;t ı & , where & is the automorphism of �
switching a and b . For any t 2 Œ0; 1�, consider the representation

�t D .�˛;t ; �ˇ;t /W �! SL2.R/�SL2.R/:

Then �0 is a quasi-isometric embedding because

�.�˛;0.
//C�.�ˇ;0.
//� �.j
 jaCj
 jb/D �j
 j�

for all 
 2 � . Let Gt be the closure of �t .�/ in SL2.R/� SL2.R/. If t …Q, then
the two projections of Gt to SL2.R/ are equal to the full group SL2.R/. In that
case, by Goursat’s lemma (see eg Petrillo [64]), either Gt D SL2.R/ � SL2.R/ or
Gt D f.h; ghg

�1/ j h 2 SL2.R/g for some g in GL2.R/. The second case cannot
occur since it would imply that the hyperbolic element �˛;t .a/ is conjugate to the
elliptic element �ˇ;t .a/.

Proof of Proposition A.2 We define �˛;t .a/ to be a hyperbolic element A 2 SL2.R/,
independent of t , whose properties will be specified in a moment. For t > 0, we also
define

�˛;t .b/D

�
cos�t 1

�t
sin�t

��t sin�t cos�t

�
;

and extend this by continuity to �˛;0.b/D B WD
�
1 1
0 1

�
.

For t in Œ0; 1�XQ, the element �˛;t .b/ is conjugate to an irrational rotation, hence
the closure of the group spanned by �˛;t .b/ is a conjugate of SO.2/; since SL2.R/ is
generated by any hyperbolic element and SO.2/, we conclude that �˛;t .�/ is dense
in SL2.R/.

We now show that, for some appropriate choice of the hyperbolic element A, we have
�.�˛;0.
//� �j
 ja for all 
 2� . Endow P1.R/DR[f1gD @1H2 with the round
metric centered at

p
�1 2 H2 . The parabolic element B D �˛;0.b/ fixes the point

1 2 P1.R/, and the two compact intervals VC WD
�
1
2
;1

�
and V� WD

�
1;�1

2

�
of

P1.R/ (intersecting only at the point 1) satisfy

� B.P1.R/XV�/D VC and BjP1.R/XV� is 1–Lipschitz;

� B�1.P1.R/XVC/D V� and B�1jP1.R/XVC is 1–Lipschitz.

Choose two disjoint compact intervals U� and UC in P1.R/X.V�[VC/ (see Figure 4).
There exists a hyperbolic element AD �˛;0.a/ such that

� A.P1.R/XU�/� UC and AjP1.R/XU� is e�� –contracting;

� A�1.P1.R/XUC/� U� and A�1jP1.R/XUC is e�� –contracting.

Geometry & Topology, Volume 21 (2017)



578 François Guéritaud, Olivier Guichard, Fanny Kassel and Anna Wienhard

�1=2 1=2

1

A

B

H2

U� UC

V� VC

Figure 4: The parabolic element B fixes 1 and takes �1
2

to 1
2

. For A
we can choose any hyperbolic element with large enough translation length
whose translation axis contains the shortest segment connecting the hyperbolic
half-plane bordered by U� to the one bordered by UC .

Then, for any 
 2 � , the element �˛;0.
/ is e��j
 ja –contracting at every point in
P1.R/X .V� [ VC [U� [UC/. We obtain that �.�˛;0.
// � �j
 ja for all 
 2 �
from the following lemma.

Lemma A.3 For any g 2 SL2.R/ and ` � 0, if g is e�`–contracting at some point
of P1.R/, then �.g/� `.

Proof The assumptions do not change if we multiply g by elements of SO.2/ on either
side. Thus we can assume that g D

�
e�s=2 0
0 es=2

�
with s � 0 (so that �.g/D s ). Let

x0 2P1.R/ be a point where the differential dg is e�`–contracting. Then x0¤1. Let
@=@u be the translation-invariant vector field on R. Denoting by k � kx the Riemannian
norm (for the round metric) of tangent vectors at a point x 2P1.R/, the norm k@=@ukx
is a decreasing function of jxj, and the contraction of dg at x0 is

kdg � @=@ukg �x0
k@=@ukx0

D
ke�s@=@ukg �x0
k@=@ukx0

� e�`:

Since k@=@ukg �x0=k@=@ukx0 � 1, the conclusion �.g/D s � ` follows.

Remark A.4 For t 2 Q \ .0; 1�, the representation �t has a nontrivial kernel: a
power bn of b is in the kernel of �˛;t and an is in the kernel of �ˇ;t and therefore
the commutator anbna�nb�n is in the kernel of �t . Thus �0 is the endpoint of a
continuous family of representations, all of them being nondiscrete or nonfaithful.
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Remark A.5 The representation �W �! SL2.R/�SL2.R/, seen as a representation
into SL4.R/, does not admit any continuous, dynamics-preserving boundary map
�CW @1�! P3.R/. Indeed, suppose by contradiction that such a map �C exists. By
construction, the closed �.�/–invariant sets

˚
� 2 @1� j �

C.�/� P .R2˚f0g/
	

and˚
�2 @1� j �

C.�/2PR.f0g˚R2/
	

are both nonempty: this contradicts the minimality
of the action of � on @1� .

We can use the representation �0 of Proposition A.1 to construct an example of a
representation �W �!G and a set � �� with the following properties:

� There exist continuous, �–equivariant, transverse maps �CW @1�!G=P� and
��W @1�!G=P�

�
such that, for any � 2 @1� , the points �C.�/ 2G=P� and

��.�/ 2G=P�
�

are compatible in the sense of Definition 2.10.

� No such maps can be dynamics-preserving for � .

Example A.6 Let � be a free group on two generators and �0W � ! SL2.R/ a
convex cocompact representation. We see SL2.R/ as a subgroup of G D GL6.R/ by
embedding it into the lower right corner of G , and use the notation of Example 2.14
for G . By (2-11), there exists k > 0 such that

h"1; �.�
0.
//i � kj
 j�

for all 
 2 � . On the other hand, if we choose � > k in Proposition A.2, then the
representation �0W �! SL2.R/� SL2.R/ constructed in Proposition A.1, seen as a
representation into G D SL6.R/ by embedding SL2.R/� SL2.R/ into the upper left
corner of G , satisfies

h"1; �.�0.
//i � �j
 j�

for all 
 2� . In particular, using (2-14), we see that �0 uniformly Pf"1�"2g–dominates
�0 as representations into G : there is a constant c < 1 such that h"1; �.�0.
//i �
ch"1; �.�0.
//i for all 
 2 � . Consider the representation

� WD .�0; �
0/W �! .SL2.R/�SL2.R//�SL2.R/ ,!G:

It admits continuous, �–equivariant, transverse boundary maps �CW @1�! P .R6/D
G=Pf"1�"2g and ��W @1� ! P ..R6/�/ D G=P�f"1�"2g , obtained by composing the
boundary maps of the Anosov representation �0W �! SL2.R/ (Section 2.5.3(a)) with
the inclusion of P .R2/ ' P .f0g � R2/ into P .R6/. However, � does not admit
any continuous, dynamics-preserving boundary map, since �0 uniformly Pf"1�"2g–
dominates �0 and �0 does not admit any continuous, dynamics-preserving boundary
map (Remark A.5).

Geometry & Topology, Volume 21 (2017)



580 François Guéritaud, Olivier Guichard, Fanny Kassel and Anna Wienhard

References
[1] H Abels, G A Margulis, G A Soı̆fer, Semigroups containing proximal linear maps,

Israel J. Math. 91 (1995) 1–30 MR

[2] T Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Dif-
ferential Geom. 101 (2015) 1–46 MR

[3] T Barbot, Q Mérigot, Anosov AdS representations are quasi-Fuchsian, Groups Geom.
Dyn. 6 (2012) 441–483 MR

[4] Y Benoist, Actions propres sur les espaces homogènes réductifs, Ann. of Math. 144
(1996) 315–347 MR

[5] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7
(1997) 1–47 MR

[6] Y Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149–193
MR

[7] Y Benoist, Convexes divisibles, I, from “Algebraic groups and arithmetic” (S G Dani,
G Prasad, editors), Tata Inst. Fund. Res., Mumbai (2004) 339–374 MR

[8] Y Benoist, F Labourie, Sur les difféomorphismes d’Anosov affines à feuilletages stable
et instable différentiables, Invent. Math. 111 (1993) 285–308 MR
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