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Trisecting 4–manifolds

DAVID T GAY

ROBION KIRBY

We show that any smooth, closed, oriented, connected 4–manifold can be trisected
into three copies of \k.S1 �B3/ , intersecting pairwise in 3–dimensional handle-
bodies, with triple intersection a closed 2–dimensional surface. Such a trisection is
unique up to a natural stabilization operation. This is analogous to the existence, and
uniqueness up to stabilization, of Heegaard splittings of 3–manifolds. A trisection
of a 4–manifold X arises from a Morse 2–function GW X ! B2 and the obvious
trisection of B2 , in much the same way that a Heegaard splitting of a 3–manifold Y

arises from a Morse function gW Y ! B1 and the obvious bisection of B1 .

57M50, 57M99; 57R45, 57R65

1 Introduction

Consider first the 3–dimensional case of an oriented, connected, closed 3–manifold Y 3 .
From a Morse function f W Y ! Œ0; 3� with only one critical point of index 0 and one
of index 3, and all critical points of index i mapping to i , we see that f �1

��
0; 3

2

��
and f �1

��
3
2
; 3
��

are solid handlebodies, \g.S1 �B2/.

For uniqueness, we use Cerf theory [3] to get a homotopy ft W Y ! Œ0; 3� between
f0 and f1 (each giving Heegaard splittings) where this homotopy introduces no new
critical points of index 0 or 3. There are births and deaths of cancelling pairs of
index-1 and -2 critical points, but these stabilize the Heegaard splittings by connected
summing with the standard genus-1 splitting of S3 . The homotopy ft can be chosen
to keep the index-1 critical values below 3

2
and the index-2 above. Then handle slides

between 1–handles, or 2–handles, take one Heegaard splitting to the other. (This is
a now well-known Cerf-theoretic proof of the Reidemeister–Singer theorem (see eg
Saveliev [10]), which was originally proved combinatorially; see Reidemeister [9] and
Singer [11].)

Recall that a Heegaard diagram for a Heegaard splitting is a triple .Fg; ˛; ˇ/, where
Fg is the Heegaard surface and each of ˛ and ˇ is a g–tuple of simple closed curves
in Fg which bounds a basis of compressing disks in each of the two handlebodies. Thus
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every 3–manifold is described by a Heegaard diagram, and two Heegaard diagrams
describe diffeomorphic 3–manifolds if and only if they are related by stabilization,
handle slides, and diffeomorphisms of Fg .

We now set up an analogous story in dimension four: Let Zk D \
k.S1 �B3/ with

Yk D @Zk D ]k.S1 � S2/. Given an integer g � k , let Yk D Y C
k;g
[ Y �

k;g
be the

standard genus-g Heegaard splitting of Yk obtained by stabilizing the standard genus-k
Heegaard splitting g� k times.

Definition 1 Given integers 0� k � g , a .g; k/–trisection (see Figure 1) of a closed,
connected, oriented 4–manifold X is a decomposition of X into three submanifolds
X DX1[X2[X3 satisfying the following properties:

(1) For each i D 1; 2; 3, there is a diffeomorphism �i W Xi!Zk .

(2) For each i D 1; 2; 3, taking indices mod 3,

�i.Xi \XiC1/D Y �k;g and �i.Xi \Xi�1/D Y C
k;g
:

Remark 2 Note that the triple intersection X1\X2\X3 is a surface of genus g and
that �.X /D 2Cg� 3k . Thus k is determined by X and g , and for this reason we
will often refer to a .g; k/–trisection of X simply as a genus-g trisection of X . Also
note that, for a fixed X , different trisections thus have the same genera mod 3.

Given a .g; k/–trisection X DX1[X2[X3 , consider the handlebodies Hij DXi\Xj

and the central genus-g surface Fg DX1\X2\X3 D @Hij . A choice of a system of
g compressing disks on Fg for each of the three handlebodies gives three collections
of g curves: ˛ D .˛1; : : : ; ˛g/, ˇ D .ˇ1; : : : ; ˇg/ and 
 D .
1; : : : ; 
g/, such that
compressing along ˛ gives H12 , compressing along ˇ gives H23 and compressing
along 
 gives H31 . Furthermore, each pair .˛; ˇ/, .ˇ; 
 / and .
; ˛/ is a Heegaard
diagram for ]k.S1 �S2/.

Definition 3 A .g; k/–trisection diagram is a 4–tuple .Fg; ˛; ˇ; 
 / such that each
triple .Fg;˛;ˇ/, .Fg;ˇ;
 /, .Fg;
;˛/ is a genus-g Heegaard diagram for ]k.S1�S2/.
The 4–manifold determined in the obvious way by this trisection diagram will be
denoted X.Fg; ˛; ˇ; 
 /.

Theorem 4 (existence) Every closed, connected, oriented 4–manifold X has a
.g; k/–trisection for some 0� k � g . Moreover, g and k are such that X has a handle-
body decomposition with 1 0–handle, k 1–handles, g�k 2–handles, k 3–handles
and 1 4–handle.

Remark 5 There are two trivial consequences of the handle decomposition mentioned
in the theorem which are worth noting:
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X1

X2

X3

Figure 1: How the pieces of a trisection fit together

(1) If k D 0, ie X1 , X2 and X3 are each 4–balls, then X has no 1– or 3–handles,
and is thus simply connected.

(2) If g D k , then X has no 2–handles, so X Š ]kS1 �S3 .

The following is immediate:

Corollary 6 Every closed 4–manifold is diffeomorphic to X.Fg; ˛; ˇ; 
 / for some
trisection diagram .Fg; ˛; ˇ; 
 /.

Remark 7 Readers familiar with the Heegaard triples used by Ozsváth and Szabó [8]
to define the Heegaard Floer 4–manifold invariants will see that a trisection diagram is a
special type of Heegaard triple and may suspect that this corollary follows fairly quickly
from the Heegaard triple techniques in [8]. In all fairness this is probably true; we will
present two proofs of Theorem 4, one of which tells the story of how we discovered
the result using Morse 2–functions, while the other is more in the spirit of [8], directly
using ordinary handle decompositions. In some sense, then, our existence result can be
thought of as a particularly nice packaging of the topological setup for [8].

Exactly as with Heegaard splittings in dimension 3, our uniqueness result for trisections
of 4–manifolds is uniqueness up to a stabilization operation, which we now define.
The idea is illustrated in Figure 2, in dimension 3.

Definition 8 (stabilization) Given a 4–manifold X with a trisection .X1;X2;X3/,
we construct a new trisection .X 0

1
;X 0

2
;X 0

3
/, as follows: For each i; j 2f1; 2; 3g, let Hij

be the handlebody Xi\Xj , with boundary FDX1\X2\X3 . Let aij be a properly em-
bedded boundary parallel arc in each Hij , such that the end points of a12 , a23 and a31

are disjoint in F . Let Nij be a closed 4–dimensional regular neighborhood of aij

in X (thus diffeomorphic to B4 ), with N12 , N23 and N31 disjoint. Then we define

� X 0
1
D .X1[N23/ n . VN31[

VN12/,

� X 0
2
D .X2[N31/ n . VN12[

VN23/,

� X 0
3
D .X3[N12/ n . VN23[

VN31/.
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X1

X2

X3

H31

H12

H23

Figure 2: Stabilizing a trisection in dimension 3

The operation of replacing .X1;X2;X3/ with .X 0
1
;X 0

2
;X 0

3
/ is called stabilization.

Since any two boundary parallel arcs in a handlebody are isotopic, it is clear that this
operation does not depend on the choice of arcs or neighborhoods.

In terms of trisection diagrams we have:

Definition 9 Given a trisection diagram .Fg; ˛; ˇ; 
 /, the trisection diagram .F 0g0 D

FgC3; ˛
0; ˇ0; 
 0/ obtained by connected summing .Fg; ˛; ˇ; 
 / with the diagram in

Figure 3 is called the stabilization of .Fg; ˛; ˇ; 
 /.

Figure 3: Stabilizing a trisection diagram means connected summing with
this diagram. By itself, this describes the simplest nontrivial trisection of S4 ,
of genus 3 . Red, blue and green indicate ˛ , ˇ and 
 curves, respectively.

We prove the following fact at the beginning of Section 5:

Lemma 10 If .X1;X2;X3/ is a genus-g trisection of X 4 with diagram .Fg; ˛; ˇ; 
 /,
and .X 0

1
;X 0

2
;X 0

3
/ is a stabilization of .X1;X2;X3/, then .X 0

1
;X 0

2
;X 0

3
/ is also a trisec-

tion of X , with genus g0 D gC 3 and diagram .Fg0 ; ˛
0; ˇ0; 
 0/, the stabilization of

.Fg; ˛; ˇ; 
 /.
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The reader may find Figure 2 useful in proving this lemma before reading our proof.

Theorem 11 (uniqueness) Given two trisections .X1;X2;X3/ and .X 0
1
;X 0

2
;X 0

3
/

of X , after stabilizing each trisection some number of times there is a diffeomorphism
hW X ! X isotopic to the identity with the property that h.Xi/D X 0i for each i . In
particular, h.Xi \Xj / D X 0i \X 0j for i ¤ j in f1; 2; 3g, and h.X1 \X2 \X3/ D

h.X 0
1
\X 0

2
\X 0

3
/.

Corollary 12 Given trisection diagrams .Fg; ˛; ˇ; 
 / and .Fg0 ; ˛
0; ˇ0; 
 0/, the corre-

sponding 4–manifolds X.Fg; ˛; ˇ; 
 / and X.Fg0 ; ˛
0; ˇ0; 
 0/ are diffeomorphic if and

only if .Fg; ˛; ˇ; 
 / and .Fg0 ; ˛
0; ˇ0; 
 0/ are related by stabilization, handle slides, and

diffeomorphism. (Handle slides are slides of ˛s over ˛s, ˇs over ˇs and 
 s over 
 s.)

Proof Any two handle decompositions of a fixed genus-g handlebody, each with one 0–
handle and g 1–handles, are related by handle slides; this is proved in Johannson [5].

2 Discussion and examples

We begin with a few explicit examples of trisections and corresponding trisection
diagrams.

� S4 �C �R3 can be explicitly divided into three pieces

Xj D f.rei� ;x3;x4;x5/ j 2�j=3� � � 2�.j C 1/=3g;

giving a genus-0 trisection of S4 . The diagram is S2 with no curves.

� Stabilizing the genus-0 trisection of S4 gives a genus-3 trisection, with trisection
diagram shown in Figure 3. Since it is not known if the mapping class group of S4

is trivial, we cannot say that the diagram determines the trisection up to isotopy, but
the original description of stabilization of trisections (as opposed to stabilization of
trisection diagrams) does determine this trisection up to isotopy, and thus we call this
the standard genus-3 trisection of S4 .

� There is an obvious connected sum operation on trisected 4–manifolds, obtained
by removing standardly trisected balls from each manifold and gluing along the bound-
ary spheres so as to match the trisections. Stabilization can then also be defined as
performing a connected sum with S4 with its standard genus-3 trisection.

� The standard toric picture of CP2 as a right triangle gives a natural trisection into
three pieces X1;X2;X3 as the inverse images under the moment map of the three
pieces of the right triangle shown in Figure 4. These pieces are diffeomorphic to B4

Geometry & Topology, Volume 20 (2016)
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but they intersect along solid tori all meeting along a central fiber diffeomorphic to T 2 ,
so that this is a genus-1 trisection of CP2 . The trisection diagram shows a .1; 0/–, a
.0; 1/– and a .1; 1/– curve; this is because the normals to the edges of the moment
polytope tell us the direction in the torus which collapses along that edge. Alternatively,
this trisection can be seen simply as the 0–handle, 2–handle and 4–handle in the
standard handle decomposition of CP2 , and the C1 framing on the 2–handle can be
seen in the .1; 1/–curve.

X1

X2 X3 ˛

ˇ 


Figure 4: Trisection of CP 2

� Reversing the orientation of the central surface in a trisection diagram reverses the
orientation of the 4–manifold; ie X.Fg; ˛; ˇ; 
 /D�X.�Fg; ˛; ˇ; 
 /. Thus CP2 has
a genus-1 trisection, with trisection diagram given by a .1; 0/–, .0; 1/– and .1;�1/–
curve.

� Looking at the standard toric picture of S2 �S2 as a square also leads to a natural
trisection of S2 �S2 as follows: We divide the square into four regions labelled X1 ,
X2a , X2b and X3 as indicated in Figure 5, and label the inverse images of these
regions in S2 �S2 with the same labels. Each of X1 , X2a , X2b and X3 is a 4–ball,

X1
X2a

X2b X3

Figure 5: Trisection of S2 �S2

and in fact they give the standard handle decomposition of S2 �S2 , with X1 being
the 0–handle, X2a and X2b being the 2–handles and X3 being the 4–handle. Note
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that X1\X3 is T 2� Œ0; 1�, with T 2�f0g being X1\X3\X2a and T 2�f1g being
X1\X3\X2b . Let p be a point in T 2 and let a be the arc fpg � Œ0; 1��X1\X3 .
Remove a tubular neighborhood of this arc from X1 and X3 and add it as a tube joining
X2a to X2b . The union of X2a and X2b with this tube is the X2 of our trisection,
and the new X1 and X3 are the results of removing the tube from the original X1

and X3 . A little thought shows that this is a trisection with k D 0 (each piece is a
4–ball) and g D 2. (Thanks to Bob Edwards for giving us the initial picture that led to
this description.)

� It may not be entirely obvious how to draw the trisection diagram for the above
trisection of S2 �S2 . However, it is not hard to draw a genus-2 trisection diagram
from scratch that does give S2 �S2 . In Figure 6 we show this diagram, as well as a
diagram for S2 z�S2 and a diagram for S1�S3 . We leave it to the reader to see how to
relate these diagrams to the standard handle diagrams for these 4–manifolds. It is also
an illuminating exercise, knowing that S2 z�S2ŠCP2 ]CP2 , to verify Corollary 12in
this case. The earlier discussion of connected sums and of ˙CP2 gives a trisection
diagram for CP2 ]CP2 and one checks that this is equivalent to that in Figure 6 for
S2 z�S2 via handle slides and diffeomorphism of Fg . (It turns out that in this case we
do not need stabilization.)

S2 �S2 S2 z�S2 S1 �S3

Figure 6: Various genus-2 trisection diagrams

Now we briefly discuss trisection diagrams more generally. Given a trisection di-
agram .Fg; ˛; ˇ; 
 /, the 4–manifold X.Fg; ˛; ˇ; 
 / is constructed by attaching 4–
dimensional 2–handles to Fg�D2 along ˛�f1g, ˇ�fe2�i=3g and 
 �fe4� i=3g, with
framings coming from Fg �fpg, and the remainder of X is 3– and 4–handles. Recall
that there is a unique way, up to diffeomorphism, to attach the 3– and 4–handles [6].

Since each of .Fg; ˛; ˇ/, .Fg; ˇ; 
 /, .Fg; 
; ˛/ is a Heegaard diagram for ]k.S1�S2/,
each can, after a sequence of handle slides, be made to look like the standard genus-g
Heegaard diagram of ]k.S1 �S2/ [12; 5]. However, there is no reason to expect that
we can simultaneously arrange for all three pairs of sets of curves to be standard.

Figure 7 illustrates a general trisection diagram (except that only one 
 curve is shown)
where we have made the .Fg; ˛; ˇ/ standard, where ˛ is red and ˇ is blue; the reds
and blues give the standard genus-g Heegaard diagram for ]k.S1�S2/. The important
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point is that most of the information about the 4–manifold X is then carried by the

 curves (one of which is drawn here in green). These green curves can be drawn
anywhere with the proviso that some sequence of handle slides of the greens amongst
the greens and the reds amongst reds, followed by a diffeomorphism of Fg , can make
the reds and greens look like the reds and blues. The same proviso holds for the greens
and blues, but a different sequence of handle slides and a different diffeomorphism
may be required.

k g� k

˛1 ˇ1


1

˛kC1

ˇkC1

Figure 7: A general trisection diagram; only one 
 curve is drawn, although
there should be g of them.

In fact, if a trisection diagram is drawn so that ˛s and ˇs are standard as in Figure 7,
then a framed link diagram for X.Fg; ˛; ˇ; 
 / is obtained by erasing the last .g� k/

˛s and ˇs (which appear as meridian–longitude pairs) and then replacing each of the
first k parallel pairs of ˛s and ˇs by a parallel dotted circle (1–handle) pushed slightly
out of Fg . The 
 s remain as the attaching maps for 2–handles, and their framings
come from the surface Fg .

An extended example: 3–manifold bundles over S 1 (Thanks to Stefano Vidussi
for asking interesting questions that led to this example.) Suppose X 4 fibers over S1 ,
M ,!X ! S1 , with fiber a closed, connected, oriented 3–manifold M 3 , and mon-
odromy �W M !M .

A trisection of X is not immediately obvious, just as a bisection (Heegaard splitting)
is not immediate when a 3–manifold fibers over a circle: Fg ,!M ! S1 .

In the latter case, one takes two fibers over distinct points of S1 , separating M into
two copies of I �F . Choose a Morse function on F with one critical point of index 2

and thus one 2–handle H . Remove I �H from one I �F and add it to the other
copy of I �F . This turns the first copy into a handle body with 2g 1–handles, and
adds a 1–handle to the second copy. Again let H be the 2–handle of the second copy
(disjoint from the first H ), and remove I �H from the second copy of I �F and add
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it to the first copy. Now both copies are handle bodies with 2gC 1 1–handles and we
have the desired Heegaard splitting.

In the 4–dimensional case, X 4 D S1 �� M , pick a Morse function �0W M ! Œ0; 3�

with only one critical point yx of index 3 and only one xx of index 0 (�0 could give a
minimal genus Heegaard splitting if desired).

Then �0� is another Morse function on M with the same kind of critical points, and
� can be isotoped so as to fix the maximum yx and the minimum xx . Then there is a
homotopy �t W M ! Œ0; 3�, t 2 Œ0; 1�, such that

(1) �1 D �0�,

(2) �t D �0 D �0� on yx and xx and there are no other definite critical points of �t ,

(3) �t is a Morse function for all but a finite number of values of t at which �t has
a birth or a death of a cancelling pair of indefinite critical points.

Since S1 D Œ0; 1�=0� 1, property (1) allows us to define

� W X 4
D .Œ0; 1��M /=.1;x/� .0; �.x//! S1

� Œ0; 3�

by setting �.t;x/D .t; �t .x//. To check, note that

�.1;x/D .1; �1.x//D .0; �0.�.x///D �.0; �.x//:

Thus we have a smoothly varying family of Morse functions on the fibers of X , except
for the births and deaths. There are an equal number of births and deaths because �0

and �0� have the same number of critical points. Then we can make all the births
happen earlier at t D 0 and the deaths later at t D 1, and furthermore by an isotopy
of �, the births and deaths can be paired off and happen at the same points of M . In
that case the pairs can be merged and then � is a family of Morse functions of the fibers
of X with only one fixed maximum and minimum and g critical points of indices 1

and 2. Furthermore, it is straightforward to arrange that all critical points of index 1

(resp. 2) take values in a small neighborhood of 1 (resp. 2) for each t 2 S1 .

Now draw a hexagonal-like grid on Œ0; 1�� Œ0; 3� as in Figure 8 and label the boxes
with Xi ; i D 1; 2; 3. Recall that the left and right ends are identified so as to have
S1 � Œ0; 3�.

The trisection of X into X1[X2[X3 is to be made by tube-connect summing the
preimages under � of the Xi in Figure 8. Over each vertical line segment in Figure 8
is Hg which is defined to be a 3–dimensional handle body with g 1–handles, so over
the interior vertices lie surfaces Fg . Over the diagonally sloped line segments lie
3–manifolds I �Fg .
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X1 X2 X3 X1

X3 X1 X2

.0; 0/

.0; 1/

.0; 2/

.0; 3/

.1; 0/

.1; 3/

Fg

Hg D \
gS1 �B2

I �
Fg

Figure 8: Fibering over S1

Let H be the 2–handle in Fg and define a 4–dimensional 1–handle to be a thickening
of I �H into the bounding Xi on either side of I �Fg . Add such a 1–handle to
connect each Xi to another Xi across a sloping line segment, for i D 1; 2; 3. Doing
this twice for X1 , once along a SW-NE sloping line and once along a NW-SE sloping
one as in Figure 9, we see that X1 has become connected and is a 4–dimensional
handlebody with 2gC 1 1–handles. Similarly with X2 and X3 .

\gS1 �B3 X2 X3

X3 \gS1 �B3 X2

1–h
1–h

Figure 9: Connect the regions with 1–handles; here the 1–handles connecting
the X1 s are highlighted.

Next we calculate X1 \X2 . Its various parts are shown in Figure 10. Note that the
sloping edges with labels H2g arise from I�Fg by having removed the I�H . Thus we
have Hg[H2g[Hg[H2g[4 1–handles, and three of the 1–handles cancel 0–handles
leaving H6gC1 DX1\X2 DX2\X3 DX3\X1 . Then the central fiber Fg0 of the
trisection has genus g0D6gC1 and gives a Heegaard splitting of @XiD #2gC1S1�S2 .
Note that k D 2gC 1 and we can check that �.X /D 0D 2Cg0� 3k .

(The referee for this paper pointed out an alternative, perhaps simpler, construction:
By the Reidemeister–Singer theorem for 3–manifolds, there is a Heegaard splitting
of M which is invariant under the monodromy �. Then, by splitting the base S1 into
two intervals, we split X into four pieces, each a 3–dimensional handlebody crossed
with an interval, or, in other words, a 4–dimensional 1–handlebody. Tubing two of
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X1 X2 X3 X1

X3 X1 X2

1–h
1–h 1–h

1–h

Hg

Hg

H2g

H2g

Figure 10: Understanding the pairwise intersections when fibering over S1

these together as in Figure 5 produces a trisection, which may need a few more tubes
to get the same k in each piece.)

Surface bundles over S 2 Now suppose that X 4 fibers over S2 with fiber F a closed
surface of genus gF . We construct a trisection in a similar fashion to the preceding
example.

Let � W X ! S2 be the fibration. Identify S2 with a cube and trisect S2 as S2 D

A1[A2[A3 , where each Ai is the union of two opposite (closed) faces of the cube.
Choose disjoint sections �1 , �2 and �3 over A1 , A2 and A3 , respectively, and let Ni

be a closed tubular neighborhood of �i , for i D 1; 2; 3, with the Ni also disjoint. The
trisection of X is X DX1[X2[X3 where

Xi D .�
�1.Ai/ n VNi/[NiC1;

with indices taken mod 3.

We now verify that this is indeed a trisection, and compute g and k along the way.
First, ��1.Ai/ is two copies of D2�F . Next, removing VNi leaves us with two copies
of D2�F 0 , where F 0 has genus gF and one boundary component. Thus ��1.Ai/n VNi

has two 0–handles and 4gF 1–handles. Finally, NiC1 is two 1–handles connecting
the two components of ��1.Ai/n VNi . Thus one of the 0–handles is cancelled by one of
these two 1–handles, and we are left with one 0–handle and k D 4gF C 1 1–handles.

Now we consider the pairwise intersections. The 3–dimensional intersection X1\X2

is the union of four pieces:

� .��1.A1/ n VN1/ \ .�
�1.A2/ n VN2/: Since A1 and A2 intersect along four

edges of the cube, this is four copies of Œ0; 1��F 00 , where F 00 has genus gF

and two boundary components. In other words, this 3–manifold is built from
four 0–handles and 4.2gF C 1/D 8gF C 4 1–handles.

� .��1.A1/ n VN1/\N3 : This sits over the four edges making up A1\A3 , and
thus contributes four 1–handles, two connecting two of the components above,
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and two connecting the other two. Cancelling two of the 0–handles from the
preceding step with two of these 1–handles, we are left with two 0–handles and
8gF C 6 1–handles.

� N2 \ .�
�1.A2/ n VN2/: This is just @N2 , which is two copies of D2 � S1 ,

joining up the four copies of Œ0; 1��F 00 , from the first step above, in pairs, with
the S1 factor in D2�S1 lining up with one of the boundary components of the
F 00 factor of Œ0; 1��F 00 . Thus we get two new 1–handles and two new 2–handles.
One of the 1–handles cancels a 0–handle, and both 2–handles cancel 1–handles.
This leaves us with one 0–handle and 8gF C 6C 1� 2D 8gF C 5 1–handles.

� N2\N3 : This is empty.

Thus X1\X2 is a 3–dimensional handlebody with genus gD 8gF C 5, and the same
holds for X2\X3 and X3\X1 .

The triple intersection is necessarily the boundary of each pairwise intersection, so
we see that we have a trisection with k D 4gF C 1 and g D 8gF C 5. This gives
�D 2Cg� 3k D 4� 4gF , which is what we expect for a genus-gF bundle over S2 .

When this technique is applied to S2 �S2 we get the genus-5 diagram in Figure 11.
With some work this can be shown to be handle slide and diffeomorphism equivalent
to a single stabilization of the genus-2 diagram of S2 �S2 in Figure 6.

Gluing maps A 4–manifold X with a trisection .X1;X2;X3/ is determined up to
diffeomorphism by the data of k , g and three gluing maps between the sectors; see
Figure 12. Here we discuss this gluing data carefully and show how to reduce the data

Figure 11: A genus-5 trisection diagram for S2 � S2 obtained by seeing
S2 �S2 as an S2 bundle over a cube. The surface shown here is naturally
the boundary of a tubular neighborhood of the 1–skeleton of a cube.
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X1

X2

X3

�1 �2

��1
1
��1

2

 1  2

 3

Y C
k;g

Y �
k;g

Y C
k;g

Y �
k;g

Y C
k;g

Y �
k;g

Fg

Figure 12: Gluing maps

to two elements of the mapping class group of a closed genus-g surface satisfying
certain constraints.

Let X1 , X2 and X3 be copies of Zk D \
k.S1�B3/. Let Yk D @Zk D Y C

k;g
[Y �

k;g
be

the standard genus-g Heegaard splitting of Yk D ]
k.S1�S2/ with Hk;gDY C

k;g
\Y �

k;g

the Heegaard surface, with a fixed identification Hk;g Š Fg . We can then construct
a 4–manifold with three diffeomorphisms  i W Y

�
k;g
! �Y C

k;g
, for i D 1; 2; 3, such

that  i glues Xi to XiC1 (indices taken mod. 3) by gluing the copy of Y �
k;g

in @Xi

to the copy of Y C
k;g

in @XiC1 . Let �i D  i jFg
W Fg ! Fg and note that we need

�3 ı�2 ı�1 to be isotopic to the identity in order for the resulting manifold to close
at the central fiber Fg . Furthermore, since an automorphism of a 3–dimensional
handlebody is completely determined up to isotopy by its restriction to the boundary
surface, this entire construction is actually determined by the two (isotopy classes of)
maps �1; �2W Fg! Fg , with �3 D �

�1
1
ı��1

2
.

However, this characterization is slightly misleading because an arbitrary pair �1; �2 of
mapping classes of Fg does not necessarily produce a trisected 4–manifold: we need
that each of �1 , �2 and ��1

1
ı��1

2
extends to a diffeomorphism  i W Y

�
k;g
!�Y C

k;g
,

a slightly messy condition that is not entirely trivial to check.

Gluing maps from model manifolds In fact we can reduce the gluing map data to a
single gluing map if we construct trisected 4–manifolds by cutting open and regluing
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fixed model trisected manifolds. For each 0� k � g let

X k;g
D .]kS1

�S3/ ] .]g�kCP2/:

Note that X k;g has a standard .k;g/–trisection X k;g D .X k;g
1
;X k;g

2
;X k;g

3
/, because

S1 � S3 has a standard .1; 1/–trisection and CP2 has a standard .0; 1/–trisection.
Also, for each such .k;g/, fix an identification of X k;g

1
\X k;g

2
with the standard

genus-g handlebody Hg D \
gS1 �B2 . Then any other 4–manifold X with a .k;g/–

trisection is obtained from X k;g by cutting X k;g
1

, X k;g
2

and X k;g
3

apart, regluing
X k;g

1
to X k;g

2
by some automorphism � of X k;g

1
\X k;g

2
DHg , and then observing that

gluing in X k;g
3

amounts to attaching a collection of 3–handles and a 4–handle, so that
no other gluing data needs to be specified. Again, not any automorphism �W Hg!Hg

will work, but now one needs to verify that @.X k;g
1
[� X k;g

2
/ is diffeomorphic to

]k.S1 �S2/ in order to verify that � actually produces a closed trisected 4–manifold.

Lagrangians, Maslov index, signature and intersection triples Given a genus-g
trisection diagram .Fg; ˛; ˇ; 
 /, one can write down a triple .Q˛ˇ;Qˇ
 ;Q
˛/ of
g�g integer matrices, giving the intersection pairing between curves. Our uniqueness
theorem tells us that this intersection triple is uniquely determined by the diffeomor-
phism type of X.Fg; ˛; ˇ; 
 / up to elementary row-column operations and stabilization.
Here, the row-column operations are precisely those corresponding to handle slides.
Thus, for example, sliding ˛1 over ˛2 corresponds to adding row 2 to row 1 in Q˛ˇ

while simultaneously adding column 2 to column 1 in Q
˛ . Stabilization replaces
.Q˛ˇ;Qˇ
 ;Q
˛/ with the following triple:0BBB@

26664
Q˛ˇ 0

0
1 0 0

0 1 0

0 0 0

37775 ;
26664

Qˇ
 0

0
1 0 0

0 0 0

0 0 1

37775 ;
26664

Q
˛ 0

0
0 0 0

0 1 0

0 0 1

37775
1CCCA

The fact that each pair of collections of curves gives a Heegaard diagram for ]kS1�S2

tells us that each of the three matrices is, independently, row-column equivalent to�
0k

0
0

Ig�k

�
. We thus have an invariant of 4–manifolds taking values in this set of triples,

subject to this ]kS1 �S2 condition, modulo an interesting equivalence relation. Of
course, this invariant may contain nothing more than homological information, for
example, but even if that were true it would be interesting to understand exactly how
this works.

Alternatively, one can define three Lagrangian subspaces .L˛;Lˇ;L
 / in the sym-
plectic vector space V DH1.FgIR/; ie L˛ is the kernel of the map H1.FgIR/!
H1.H˛IR/ where H˛ is the handlebody determined by the ˛ curves, and so on.
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One immediately recovers the three intersection matrices above as the symplectic
form on V restricted to each pair of Lagrangians, relative to chosen bases on the
Lagrangians. Thus our uniqueness theorem also gives us a 4–manifold invariant taking
values in the set of quadruples .V;L˛;Lˇ;L
 /, where V is a symplectic vector
space and the Ls are linear Lagrangian subspaces, subject again to the ]kS1 � S2

condition, modulo an equivalence relation. This equivalence relation is linear sym-
plectomorphism and stabilization, which in this case means taking the direct sum with
.R6; hx1;x2;y3i; hx1;y2;x3i; hy1;x2;x3i/.

This Lagrangian setup has in fact been studied in the more general context of Wall’s [13]
nonadditivity of the signature. A direct application of the interpretation in [2] of Wall’s
nonadditivity result shows that the signature of a closed 4–manifold with a trisection is
precisely the Maslov index of this associated triple of Lagrangians.

However, one expects more information to be encoded in these Langrangians triples
than just the signature. In particular, the Maslov index ignores the integer lattice
structure of H1.Fg;Z/�H1.Fg;R/. Quotienting out by this lattice gives us a triple
of Lagrangian g–tori in a symplectic 2g–torus, and one again gets a 4–manifold
invariant taking values in these triples mod symplectomorphism and stabilization. It
seems that a further study of this setup could be fruitful.

Curve complex perspective To record much more data than simply the homology
classes of curves which bound disks in the three handlebodies, we can consider, for each
handlebody H12 , H23 and H31 , the subsets U12 , U23 and U31 , respectively of the
curve complex for Fg given by those essential simple closed curves which bound disks
in the respective handlebody. Because each pair of handlebodies gives ]k.S1�S2/, we
know that the three intersections U12\U23 , U23\U31 and U31\U12 are nonempty.
This perspective raises many interesting questions, such as: What is the minimal area
of a triangle with vertices in the three intersections? If U12\U23\U31 is nonempty,
what does that tell us about X ? If the gluing map coming from the model manifold
construction described above is, for example, pseudo-Anosov, does this tell us that the
three subcomplexes are “far apart” in any sense?

3 Existence via Morse 2–functions

The proof presented in this section is an application of tools developed in [4], using
Morse 2–functions. In the following section we will rewrite the proof entirely in terms
of ordinary Morse functions and handle decompositions, but the trisection is so natural
from the point of view of Morse 2–functions that we feel this proof is worth presenting.
However, to give the basic idea for those most comfortable with the language of handle
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decompositions, our construction ends up putting the 0– and 1–handles of X into X1 ,
the 3– and 4–handles into X3 , and the 2–handles together with some “connective
tissue” into X2 .

A Morse 2–function is a smooth, stable map GW X n ! †2 ; in this paper we will
always map to R2 . (Stable implies generic when mapping to dimension two.) Just like
Morse functions, Morse 2–functions can be characterized by local models, and we now
give these local models only in the case of nD 4, ie we are considering an R2–valued
Morse 2–function G on a 4–manifold X :

(1) Each regular value q 2R2 has a coordinate neighborhood over which G looks
like F2 �B2! B2 for some closed fiber surface F .

(2) The set of critical points of G is a smooth 1–dimensional submanifold CritG�X

such that GW CritG!R2 is an immersion with isolated semicubical cusps and
crossings. The noncusp points of CritG are called fold points, and arcs of such
points are called folds.

(3) Each point q 2 G.CritG/ which is not a cusp or crossing has a neighborhood
U D I � I with coordinates .t;y/, with G�1.U / diffeomorphic to I �M 3 for
a 3–dimensional cobordism M , so that G.t;p/D .t;g.p//, where gW M ! I

is a Morse function on M with one critical point. The index of this critical
point is then called the index of the fold, although this is only well-defined up to
i 7! 3� i . When the image of the fold is co-oriented, the index is well-defined
by insisting that the y–coordinate on I � I increases in the direction of this
co-orientation.

(4) Each cusp point q 2G.CritG/ has a neighborhood U D I � I with coordinates
.t;y/, with G�1.u/ D I �M 3 , so that G.t;p/ D .t;gt .p//, where gt is a
1–parameter family of Morse functions on M with no critical points for t D 0

and a birth of a cancelling pair of critical points at t D 1
2

. In our examples, these
two critical points will always be of index 1 and 2.

(5) Each crossing point q2G.CritG/ has a neighborhood U DI�I with coordinates
.t;y/, with G�1.u/ D I �M 3 , so that G.t;p/ D .t;gt .p//, where gt is a
1–parameter family of Morse functions on M with two critical points for all t ,
such that the critical values cross at t D 1

2
. In our examples, these two critical

points will never be of index 0 or 3.

The basic example of a Morse 2–function is .t;p/ 7! .t;gt .p// for an arbitrary
generic homotopy gt between two given Morse functions g0;g1W M

3! Œ0; 1�, and
the message of the above local models is that Morse 2–functions look locally like
homotopies between Morse functions, but globally we may not have a preferred “time”
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z

t

Figure 13: The “eye”, a Cerf graphic in which a pair of cancelling critical
points is born and then dies.

direction. When G is of the form .t;p/ 7! .t;gt .p//, we call G.CritG/ a Cerf
graphic [3]. Conversely, given a Morse 2–function GW X 4 ! R2 and a rectangle
I � I �R2 in which G.CritG/ has no vertical tangencies, we can find coordinates in
which G is of this form .t;p/ 7! .t;gt .p//, and so again we will say that G.CritG/
is a Cerf graphic in this rectangle.

There is one move on Morse 2–functions (ie local model for a generic homotopy
between Morse 2–functions) that is central to this paper, which we call the “introduction
of an eye”. In a local chart in which a given Morse 2–function G on a 4–manifold has
no critical points, we can assume G has the form .t;x;y; z/ 7! .t;x/ or, equivalently,
.t;x;y; z/ 7! .t;x3C .t2C 1/x�y2C z2/ with t 2 Œ�2; 2�. Introducing a parameter
s 2 Œ�1; 1� we get a homotopy .t;x;y; z/ 7! .t;x3C.t2�s/x�y2Cz2/, with sD�1

corresponding to the given map and s D 1 the end result of “introducing an eye”.
Figure 13 shows the image of the critical locus at s D 1, justifying the terminology.
Note that this is a Cerf graphic in which, as t increases from �2 to 2, we see a Morse
function on x;y; z space which starts with no critical points, develops a cancelling
pair of index-1 and -2 critical points, and then the cancelling pair disappears again so
that at t D 2 there are again no critical points. Note also that the introduction of an eye
takes place in a ball and is localized to a disk in the fiber cross a disk in the base; thus,
as long as fibers are connected, we need only specify a disk in the base without critical
points and then there is a unique, up to isotopy, way to introduce an eye in that disk.

Proof of Theorem 4 (existence) Throughout we will use coordinates .t; z/ on R2 ,
with t horizontal and z vertical. Here is an outline of the proof:

(1) First we will show that there is a Morse 2–function G1W X !R2 such that the
image of the fold locus is as in Figure 14. In this and the following figures, three dots
between two curves indicate that there are some number of parallel copies of the two
curves in between. Fold indices are indicated with labelled transverse arrows. Boxes
with folds coming in from the left and out at the right represent arbitrary Cerf graphics,
with the left-right axis being time. Note that a Cerf graphic may contain left-cusps,
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Figure 14: The image of the fold locus for G1

right-cusps and crossings, but may not contain any vertical tangencies on the image of
the fold locus.

(2) In Figure 14, the vertical tangencies of the folds are highlighted in red; these
become critical points of the projection t ıG1W X !R. These critical values in R are
also indicated at the bottom of the diagram along the t–axis, with their indices.

(3) After constructing G1 , we will show how to homotope G1 to G2 such that the
image of the fold locus for G2 is as in Figure 15. Here the two Cerf graphics have no
cusps. We have achieved two goals here: (1) Splitting the Cerf graphic into two, each
involving only critical points of the same index and no cusps. (2) Replacing each kink
that corresponds to an index-2 critical point of t ıG1 with a pair of cusps.

(4) Figure 16 is simply a redrawing of Figure 15 that highlights a natural trisection
of R2 into three sectors R2

1
, R2

2
and R2

3
. Note that the critical locus over each sector

consists of g components, where g is the genus of the central fiber. Also, each such
component has at most one cusp. We no longer indicate the indices of the folds; the
outermost fold is index-0 pointing inwards, and all other folds are index-1 pointing in.

(5) The form of the folds in Figure 16 is a special case of the form shown in Figure 17,
where now we are not paying attention to which folds in a given sector, with or without
cusps, connect to which folds in the next sector, with or without cusps, and we allow
for arbitrary Cerf graphics (without cusps) between the sectors.
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Figure 15: The image of the fold locus for G2

R2
1

R2
2

R2
3

Figure 16: A more symmetric drawing of the image of the fold locus for G2 .
We no longer indicate the indices of the folds; the outermost fold is index-0
going inwards, the others are index-1 going inwards.

(6) Now we have G2 such that the image of the fold locus is as in Figure 17. At this
point we could take Xi D G�1

2
.R2

i / and we would have each Xi diffeomorphic to
\ki S1 �B3 for different ki . There is one last step to arrange that the ki are equal: In
fact, ki is equal to the number of folds in sector Xi without cusps. We will show how
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Figure 17: A slightly more general form for the image of the fold locus,
which fits G2 .

to add a fold without a cusp to any one sector while adding a fold with a cusp to each
of the other two sectors. This allows us to construct a homotopy from G2 to G3 , such
that G3 has the image of its fold locus of the same form as G2 (ie as in Figure 17),
with the same number of folds without cusps in each sector, ie k1 D k2 D k3 D k .

(7) Finally we will justify the claim that each Xi D G�1
3
.R2

i / is diffeomorphic to
\kS1 �B3 with overlap maps as advertised.

We now fill in the details.

Begin with a handle decomposition of X with one 0–handle, i1 1–handles, i2 2–
handles, i3 3–handles and one 4–handle. The union of the 0– and 1–handles, X1 is
diffeomorphic to I � .\i1S1 �B2/. Map this to I � I by .t;p/ 7! .t;g.p// where
gW \i1S1 �B2! I is the standard Morse function with one index-0 critical point and
i1 index-1 critical points. Postcompose this map with a diffeomorphism from I � I to
a half-disk and we have constructed G1 on the union of the 0– and 1–handles so that
the image of the fold locus is as in the right half of Figure 18.

Now note that @X1D ]
i1.S1�S2/ sits over the right edge of the half disk in Figure 18

and that the vertical Morse function on @X1 , ie z ı G1j@X1
is the standard Morse

function with i1 index-1 critical points and i1 index-2 critical points, inducing the
standard genus-i1 splitting of @X1 , with Heegaard surface F .
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0

1

0

1

Figure 18: The first Morse 2–function, G1 , on the 0– and 1–handles of X .

Consider the framed attaching link L� @X1 for the 2–handles of X . Generically L

will be disjoint in @X1 from the ascending 1–manifolds of the index-2 critical points of
z ıG1j@X1

as well as the descending 1–manifolds of the index-1 critical points. Thus
L can be projected onto the Heegaard surface F along gradient flow lines to give an
immersed curve L in F with at worst double points. By adding kinks if necessary, we
can assume that the handle framing of L agrees with the “blackboard framing” coming
from L� F . Then by stabilizing this Heegaard splitting once for each crossing of L,
we can resolve these crossings and get L to lie in the Heegaard surface with framing
coming from the surface. This process translates into an extension of the thus-far
constructed G1 from X1 to X1[ .Œ0; 1�� @X1/ with fold locus as in Figure 19, with
one cusp for each stabilization. In other words, the sequence of stabilizations translates
into a homotopy gt from g0 , the standard Morse function on ]i1.S1�S2/, to g1 , the
stabilized Morse function. This homotopy then becomes a Morse 2–function on the
collar Œ0; 1�� @X1 .

Now let F refer to the stabilized Heegaard surface, in which L lies. Attaching a
4–dimensional 2–handle to X1 along a component K of L is the same as attaching I

times a 3–dimensional 2–handle to X1 along I �K � I �F � @X1 . In Figure 20 we
show the resulting Morse 2–function at the left, where the handle sits over a vertical
rectangle. Next we bend this rectangle to make the image again a half-disk. Finally,
noting that the vertical Morse function at the right edge now has an index-2 critical value
below an index-1 critical value, we switch these values to get the Morse 2–function at
the right side of Figure 20.

Note that everything in the preceding paragraph happened in a neighborhood of K , so
that the rest of L still lies in the middle Heegaard surface for the Morse function at the
right edge of the final diagram in Figure 20. Thus we can attach each 4–dimensional
2–handle this way to get the Morse 2–function at the left side of Figure 21. Each
2–handle of X corresponds to a kink in the image of the folds, ie a smoothly immersed
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0
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2

Figure 19: G1 extended to a collar on @X1 . In the two vertical slices shown,
both diffeomorphic to ]n.S1 �S2/ , the Heegaard surface sits over the high-
lighted red points. The framed attaching link L for the 2–handles of X

lies in the Heegaard surface for the right-most Morse function, ie over the
right-most red point, with framing coming from the surface.
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Figure 20: G1 after attaching a 4–dimensional 2–handle

arc with a single transverse double point. Repeating our construction for X1 with the
union of the 3– and 4–handles, we construct the Morse 2–function at the right side of
Figure 21. The two halves give vertical Morse functions on the boundary of the union
of the 3– and 4–handles, which are related by some Cerf graphic. Putting this Cerf
graphic in between the two parts of Figure 21 gives us G1 as in Figure 14.

To get to Figure 15, first we take the Cerf graphic section of Figure 14 and pull the
births (left-cusps) to the left of the Cerf graphic and the deaths (right-cusps) to the
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Figure 21: Two halves of G1 : the 0–, 1– and 2–handles on the left and the
3– and 4–handles on the right. Connecting them with a Cerf graphic gives
Figure 14.

1 2

3 4

Figure 22: Pulling cusps out of the Cerf graphic. Here we suppress the “three
dots” notation as well as the indices of the folds, as these are understood from
earlier figures.

right, and then pull all index-1 critical points below all index-2 critical points. Then the
left-cusps can be pulled further left, past the kinks which correspond to 4–dimensional
2–handles, because the 4–dimensional 2–handle attachments are independent of the
3–dimensional stabilizations corresponding to the cusps. This is shown in Figure 22.
Next we homotope the kinks into pairs of cusps as in Figure 23. The first step of
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Figure 23 introduces a swallowtail at the vertical tangency of the kink; this move has
been discussed extensively elsewhere [7] and is a standard singularity that occurs in a
homotopy between homotopies between Morse functions. The second step moves an
arc of index-1 critical points in a homotopy (Cerf graphic) below an arc of index-2
critical points. This is also standard and is possible because the descending manifold
for the index-1 point remains disjoint from the ascending manifold for the index-2
point throughout the homotopy. (Equivalently, in homotopies between Morse functions
we never expect 1–handles to slide over 2–handles.)

2 1 1

1

2

1

2

1

2

1

2

Figure 23: Turning kinks into pairs of cusps

Finally, Figure 24 shows how to add folds and cusps to a Morse 2–function as in
Figure 17 so as to increase the number of folds without cusps in one of the three sectors.
Here we are introducing an eye, as in Figure 13, modified by a slight isotopy. Note
that the transition from the second to the third diagram in the figure is not essential,
but only serves to put the resulting diagram in the form of Figure 17. Depending on
how we orient the new eye with respect to the trisection of R2 , we either add the fold
without cusps to R2

1
, R2

2
, or R2

3
.

Figure 24: Adding an extra fold without cusps in one sector; again we
suppress the “three dots” notation and the fold indices.

(Note that if we do this operation three times, once for each sector, we increase k

by 1 and g by 3; this is precisely a stabilization of the trisection, as will be shown in
Section 5.)

Now we need to show that, having put our Morse 2–function finally into the form of
Figure 17, with k folds in each sector without cusps and g� k folds with cusps, then
for each i , G�1.R2

i /DXi Š \
k.S1�B3/. However, we have already seen this: Each
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sector, ignoring the Cerf graphic block, looks just like Figure 19, which we already
know is \k.S1 �B3/ with a .g� k/–times stabilized standard Heegaard splitting on
the boundary. The Cerf graphic block connecting one sector to another is a product
which does not interfere with the Heegaard splitting.

4 Trisections and handle decompositions

The techniques of the previous section lead to a relationship between trisections and
handle decompositions equipped with certain extra data. We will use this relationship
both to provide an alternate proof of Theorem 4 and to prove Theorem 11.

By a system of compressing disks for a 3–dimensional handlebody H of genus g , we
mean a collection of properly embedded disks D1; : : : ;Dg �H such that cutting H

open along D1[ � � � [Dg yields a 3–ball.

Lemma 13 If X DX1[X2[X3 is a trisection of a 4–manifold X , then there is a
handle decomposition of X as in Theorem 4 satisfying the following properties:

(1) X1 is the union of the 0– and 1–handles.

(2) Considering the Heegaard splitting @X1 DH12[H31 with Heegaard surface F ,
the attaching link L for the 2–handles lies in the interior of H12 .

(3) The framed attaching link LDK1[ � � � [Kg�k is isotopic in H12 to a framed
link L0 DK0

1
[ � � � [K0

g�k
� F , with framings equal to the framings induced

by F .

(4) There is a system of compressing disks D1; : : : ;Dg for H12 such that the curves
K0

1
; : : : ;K0

g�k
are geometrically dual in F to the curves @D1; : : : ; @Dg�k . In

other words, each K0j intersects @Dj transversely once and is disjoint from all
other @Di .

(5) There is a tubular neighborhood N D Œ��; ���H12 of H12 with Œ��; 0��H12D

N \X1 , such that X2 is the union of Œ0; ���H12 with the 2–handles.

Proof Each sector of the trisection of X is diffeomorphic to \k.S1 �B3/ with a
genus-g splitting of its boundary. Thus it has a standard Morse 2–function onto a
wedge in R2 ; see Figure 17. Two sectors meet at Xi \XiC1 D \

k.S1 �B2/, and the
two Morse 2–functions on the two sectors give two Morse functions on the intersection
Xi \XiC1 . The two Morse functions are homotopic and thus give a Cerf diagram
which can be inserted into the little wedges in Figure 17. In the existence proof from
the previous section we avoided cusps in the Cerf graphic boxes, but at this point we
do not care; any Cerf graphic will do.
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An isotopy of R2 makes the picture look like Figure 25. Now projection to the
horizontal axis gives a Morse function in which the vertical tangencies become Morse
critical points. X1 , to the left of the vertical red line, is clearly the union of the 0– and
1–handles. X2 , between the legs of the red letter h is then a handlebody H12 , cross I ,
with g� k 2–handles attached. And X3 is obviously what remains.

X1

X2

X3

Figure 25: Extracting a handle decomposition from a trisection

We only need to show now that the attaching link for the 2–handles is as advertised.
This can be seen from the fact that the attaching circle for each 2–handle, between the
legs of the h, is one of a dual pair of curves on the fiber near a cusp. The other curve
in the dual pair is the attaching curve for the fold that cuts across H12 and gives one
of the compressing disks for this handlebody. This is illustrated in Figure 26, which
shows a zoomed in region of Figure 25. The fiber over a specific point is drawn as a
once punctured torus; this is just part of the fiber, but the rest of the fiber does not play
a role in this local picture. The attaching circles for the two folds are drawn as green
and blue circles on the fiber. This is just the usual picture of the fiber between the two
arms of a cusp, with attaching circles being geometrically dual. Here, however, we
reinterpret this picture to see the blue circle as the boundary of a compressing disk for
the handlebody lying over the vertical dotted red line, and to see the green circle as the
attaching circle for the 4–dimensional 2–handle coming from the vertical tangency in
the fold.

Lemma 14 Consider a handle decomposition of a 4–manifold X 4 with one 0–handle,
k 1–handles, g�k 2–handles, k 3–handles and one 4–handle. Let X1 be the union of
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Figure 26: Zooming in on a region of Figure 25.

the 0– and 1–handles. Suppose there is a genus-g Heegaard splitting @X1DH12[H31

of @X1 satisfying the following properties in relation to the framed attaching link L for
the 2–handles:

(1) L lies in the interior of H12 .

(2) L is isotopic in H12 to a framed link L0 �F , with framing equal to the framing
induced by F .

(3) There is a system of compressing disks D1; : : : ;Dg for H12 such that the
g� k components of L0 are, respectively, geometrically dual in F to the curves
@D1; : : : ; @Dg�k .

Let N D Œ��; ���H12 be a small tubular neighborhood of H12 with Œ��; 0��H12 D

N \X1 , which the 2–handles intersect as Œ0; ��� �L , where �L is a tubular neighbor-
hood of L in H12 . Declare X2 to be the union of Œ0; ���H12 with the 2–handles, and
declare X3 to be what remains (the closure of X n.X1[X2/). Then X DX1[X2[X3

is a trisection.

Proof Almost everything we need for X1[X2[X3 to be a trisection is immediate:

(1) X1 and X3 are both diffeomorphic to \k.S1 �B3/.

(2) H31 DX3\X1 and H12 DX1\X2 are genus-g handlebodies.

(3) F DX1\X2\X3 is a genus-g surface.

It remains to verify that X2 Š \
k.S1 �B3/ and that H23 D X2 \X3 is a genus-g

handlebody.

In fact X2 is built by attaching g� k 2–handles to X12 Š \
k.S1 �B2/ along g� k

copies of S1�f0g�S1�B2 in the first g�k S1�B3 summands. Thus the 2–handles
“cancel” g� k copies of S1 �B3 , giving both desired results immediately.
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Using Lemma 14, we now present a proof of the existence of trisections in the spirit
of [8]:

Proof of Theorem 4 (existence) Start with a handle decomposition of X 4 with
one 0–handle, k1 1–handles, k2 2–handles, k3 3–handles and one 4–handle. Add
cancelling 1–2 and 2–3 pairs if necessary so as to arrange that k1 D k3 . Let X1 be
the union of the 0–handle and the 1–handles. Note that @X1 is a connected sum of k1

copies of S1 �S2 . Let L� @X1 be the framed attaching link for the 2–handles.

Consider the genus-k1 Heegaard splitting of @X1 as @X1 D H12 [H31 with F D

H12 \ H31 . (We will soon be stabilizing this Heegaard splitting, but after each
stabilization we will use the same names for the surface and the handlebodies.) The
attaching link L� @X1 can be projected onto the Heegaard surface F with transverse
double points (crossings), so that the handle framing is the surface framing. (Add kinks
to get the framing right.) Make sure that each component has at least one crossing
using Reidemeister 2 moves if necessary. Let c be the number of crossings in this
projection.

If c � k2 then we are almost done. Stabilize the Heegaard splitting exactly k2 times,
with c of these stabilizations occuring at the crossings. Then L can be isotoped so
as to resolve all the crossings by sending the over strand at each crossing over the
new S1 �S1 summand in F coming from the stabilization at that crossing. Now we
have a genus-g D k1C k2 Heegaard splitting. Letting k D k1 and g D k1C k2 , and
pushing L into the interior of H12 , we now satisfy the hypotheses of Lemma 14 and
apply that lemma to produce our trisection. (We get duality to a system of meridians as
follows: Each component K of L goes over at least one stabilization which no other
components go over, and therefore is the unique component intersect the meridian for
that stabilization. For every other meridian which K intersects, slide that meridian’s
compressing disk over the compressing disk corresponding to the stabilization singled
out in the preceding sentence.)

If c > k2 then add c�k2 cancelling 1–2 pairs and c�k2 cancelling 2–3 pairs to the
original handle decomposition of X . Now we have k 0

1
Dk1Cc�k2 1–handles, and the

same number of 3–handles, as well as k 0
2
D 2c � k2 2–handles. We consider the new

X 0
1
DX1\

c�k2S1�B3 with the natural genus-k 0
1

Heegaard splitting @X 0
1
DH 0

12
[H 0

31

with F 0DH 0
12
\H 0

31
. The original attaching link L still projects onto F 0 in the same

way, with the same crossings, since F 0 is naturally F]c�k2S1 �S1 .

However, we also have 2.c � k2/ new 2–handles. Half of these, coming from the 1–2

pairs, are attached along the meridians of the c � k2 new S1 �S1 summands in F 0

and thus immediately satisfy the conditions in Lemma 14. The other half, coming from
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the 2–3 pairs, are attached along 0–framed unknots, which project onto F 0 as circles
bounding disks in F 0 .

Now stabilize the new Heegaard splitting 2c � k2 times: The first c of these stabi-
lizations should happen at the crossings of L, allowing us to resolve crossings as
before. The other c�k2 of the stabilizations should occur next to the c�k2 0–framed
unknots. Then each of these unknots is isotoped to go over the new S1�S1 summand
coming from the adjacent stabilization. Now the entire attaching link satisfies the
hypotheses of Lemma 14. The new genus of the stabilized Heegaard splitting of @X 0

1

is g0 D k 0
1
C 2c � k2 . To conclude the theorem by applying Lemma 14 we need that

k 0
2
D g0� k 0

1
, and this is precisely what we have arranged.

5 Uniqueness

We first prove that the stabilization operation of Definition 8 really does produce a new
trisection. This can be done directly, but instead we will do so by showing that, from a
Morse 2–function point of view, this stabilization corresponds to adding three eyes at
the center of a trisected Morse 2–function. After that we can proceed with the proof of
uniqueness.

Proof of Lemma 10 We are given a trisection .X1;X2;X3/ of X , with handlebodies
Hij D Xi \Xj , properly embedded arcs Aij � Hij , and regular neighborhoods of
these arcs Nij �X .

As we will see at the beginning of the proof of Theorem 11, it is easy to construct a
Morse 2–function as in Figure 17 which recovers this trisection. We claim that adding
three eyes arranged as in Figure 27 modifies each sector Xi exactly as in Definition 8,
and since the new Morse 2–function again gives a trisection, then stabilization as
defined in Definition 8 produces a trisection.

We see that the claim is true one eye at a time. Each time we add an eye, first add
it away from the center straddling the intersection of two sectors, such as H31 , as
on the left in Figure 28. We will then pull the lower fold across the central fiber to
achieve the right-hand diagram in Figure 28. Up to isotopy, moving from the left to the
right in this figure is the same as not moving the eye, but instead enlarging the lower
sector X2 by attaching the inverse image of the green region labelled N . This inverse
image is in fact a 1–handle cobordism attached to X2 , since this fold is an index-1
fold going in towards the middle of the eye. Furthermore, the 1–handle is cancelled
by a 2–handle immediately above it. The 1–handle and 2–handle are actually I cross
3–dimensional 1– and 2–handles, respectively, and thus we see that we have simply
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Figure 27: Stabilizing a Morse 2–function by adding three “eyes”

X2

N

H31

X 02

Figure 28: Adding one eye to a trisected Morse 2–function

removed a neighborhood of an arc in H31 from both X1 and X3 and added it to X2 .
Repeat this for each of the three eyes.

Proof of uniqueness, Theorem 11 Consider two trisections of the same 4–manifold:
X 4 DX1[X2[X3 DX 0

1
[X 0

2
[X 0

3
. Apply Lemma 13 to each trisection to get two

handle decompositions D and D0 of X , respectively, with corresponding Heegaard
splittings of @X1 , with attaching links L and L0 behaving as in Lemma 13. Cerf theory
tells us that we can get from D to D0 by the following operations:

(1) Add cancelling 1–2 and 2–3 pairs to both D and D0 .

(2) Slide 1–handles over 1–handles, 2–handles over 2–handles and 3–handles over
3–handles.

(3) Isotope the handles and their attaching maps without sliding over any handles.

From the description of trisection stabilization in the proof of Lemma 10 above, we can
see that trisection stabilization adds both a 1–2 pair and a 2–3 pair to an associated
handle decomposition. Thus, after arranging that we add the same number of 1–2
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pairs as 2–3 pairs, we can stabilize the two original trisections to take care of the first
operation above.

Clearly sliding 1–handles over 1–handles and 3–handles over 3–handles, as well
as isotoping 1–handles and 3–handles without handle slides, does not change the
associated trisection.

Thus we are left to investigate the effect of 2–handle slides and 2–handle isotopies.

Suppose that we wish to perform a single 2–handle slide to the handle decomposition D .
Associated to the trisection T which gives rise to D we have a Heegaard splitting
H12[H31 for @X1 , with the attaching link L for the 2–handles of D lying in H12 .
Isotope L into @H12 D F so that the components of L are dual to the g� k curves
in a system of g meridinal curves (boundaries of compressing disks), as in Lemma 13.
The handle slide involves a framed arc connecting two components K1 and K2 of L.
This arc can be projected (following the flow of a Morse function of @X1 for the given
Heegaard splitting) onto F , but with crossings. We can arrange for its framing to agree
with the surface framing with kinks, as usual. We want to avoid self-crossings as well
as crossings between the arc and L and between the arc and the system of meridinal
curves.

Stabilizing the Heegaard splitting, however, allows us to resolve the crossings. In other
words, we get a new Heegaard splitting @X1DH 0

12
[H 0

31
obtained from H12[H31 by

Heegaard splitting stabilizations and isotopy such that L and the band lie in @H 0
12
DF 0 ,

still maintaining the property that the components of L are dual to the first g � k

meridinal curves in a system of meridinal curves of H 0
12

. In addition, the bands are
disjoint from these g�k meridinal curves. (Note that we can do this without moving L

or the bands, but just by stabilizing and isotoping the Heegaard splitting.) Then sliding
one component of L over another along the chosen band maintains this property; we
have to change one of the meridinal curves in the system of compressing disks by a
handle slide as well.

Again, from the proof of Lemma 10, we see that stabilization of the Heegaard splitting
of @X1 can be achieved by stabilizing the trisection, at the expense of introducing
cancelling 1–2 and 2–3 pairs to the associated handle decomposition.

Thus we have shown that, if D and D0 are related by handle slides supported in small
neighborhoods of arcs in @X1 , then they are adapted to trisections related by trisection
stabilization and isotopy.

Finally, suppose that D and D0 are related only by an isotopy of the 2–handles and
their attaching maps, without any handle slides. Then this isotopy extends to an isotopy
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of X with the result that we can assume that the handle decompositions are identical,
and the only difference between the trisections is the Heegaard splitting of @X1 .

So we have two Heegaard splittings @X1 D H12 [H31 D H 0
12
[H 0

31
, respectively,

coming from T and T 0 . The fixed attaching link L for the 2–handles lies in both H12

and H 0
12

, in both cases satisfying the condition of being dual to meridinal curves.

Note that both H12[H31 and H 0
12
[H 0

31
are genus-g Heegaard splittings of @X1 Š

\k.S1 �S2/, so that Waldhausen’s theorem [12] gives us an isotopy of @X1 taking
H12 to H 0

12
. However, this does not imply that the trisections T and T 0 are isotopic,

because this isotopy will in general move the link L. If we can find an isotopy that
does not move L, then we will be done, but first we will probably need to stabilize.

To see how to do this, construct two Morse functions f and f 0 on @X1 with regular
values a< b such that

(1) f and f 0 agree on f �1.�1; a�D f 0�1.�1; a�, which is a tubular neighbor-
hood of L (thus each has g�k index-0 critical points and g�k index-1 critical
points),

(2) f �1.�1; b�DH12 ,

(3) f 0�1.�1; b�DH 0
12

,

(4) f and f 0 have only critical values of index 1 in Œa; b� and critical values of
index 2 and 3 in Œb;1/.

Now Cerf theory gives us a homotopy ft from f0 D f to f1 D f
0 which involves

1–2 births and deaths on f �1.b/ and otherwise no critical values crossing b , and such
that ft D f D f

0 on f �1.1; a�. Thus, after stabilizing the Heegaard splittings away
from L, there is an isotopy fixing L taking the one Heegaard splitting to the other.

Again, the Heegaard splitting stabilizations are achieved by trisection stabilizations.

Remark 15 Morally it seems that there should be a Morse 2–function proof of
uniqueness that starts with a generic homotopy between two Morse 2–functions cor-
responding to two given trisections. Then the proof would homotope this homotopy
so as to arrange that the Cerf 2–graphic in Œ0; 1��R2 , a surface of folds with cusps
and higher codimension singularities, is in a nice position with respect to the standard
trisection of Œ0; 1��R2 . This surface of folds is, however, not trivial to work with. A
good model might be the method of braid foliations used by Birman and Menasco to
prove Markov’s theorem in [1].

Geometry & Topology, Volume 20 (2016)



Trisecting 4–manifolds 3129

6 The relative case

When @X ¤∅, we should define a trisection as the kind of subdivision of X which
naturally arises from a Morse 2–function GW X ! B2 where B2 is trisected as in
Figure 1, the locus of critical values behaves well with respect to this trisection of B2 ,
and the trisection of X is just G�1 of the three sectors of B2 . “Behaving well” should
mean that the folds all have index 1 when transversely oriented towards the center of
B2 , that the only tangencies to rays of B2 are the cusps, that there is at most one cusp
per fold in each sector, and that each sector has the same number of cusps. We now
formulate this without mention of a Morse 2–function.

First, when M 3 has a boundary @M , then a Heegaard splitting is a splitting into
compression bodies rather than solid handlebodies. Traditionally, a compression body
is the result of attaching n� k 3–dimensional 2–handles to f1g�Fk � Œ0; 1��Fk so
as to get a cobordism from Fk to Fk�n , where Fk is a closed surface of genus k . In
fact, we can even consider the case where F is a compact surface Fk;b of genus k

with b � 0 boundary components, in which case we get a cobordism to F.k�n/;b . Note
that the diffeomorphism type of such a cobordism is completely determined by k , b

and n; let Ck;b;n denote a standard model for this compression body. To summarize,
both ends of Ck;b;n are surfaces with b boundary components, the higher genus end
has genus k and there are n compression disks yielding a lower genus end with genus
k � n.

Now consider Zk;b;n D Œ0; 1��Ck;b;n . Part of @Zk;b;n is

Yk;b;n D .f0g �Ck;b;n/[ .Œ0; 1��Fk;b/[ .f1g �Ck;b;n/;

which has a natural genus-k Heegaard splitting into two compression bodies

Y C
k;b;n
D
��

1
2
; 1
�
�Fk;b

�
[.f1g�Ck;b;n/ and Y �k;b;nD .f0g�Ck;b;n/[

��
0; 1

2

�
�Fk;b

�
:

Finally, given any g � k , let Yk;b;n D Y C
k;b;n;g

[ Y �
k;b;n;g

be the genus-g Heegaard
splitting obtained from the natural genus-k splitting by stabilizing g� k times.

Definition 16 A trisection of a 4–manifold X with boundary is a splitting X D

X1 [ X2 [ X3 and integers 0 � k; b; n;g with n � k � g such that each Xi is
diffeomorphic to Zk;b;n via a diffeomorphism �i W Xi!Zk;b;n for which

�i.Xi \XiC1/D Y C
k;b;n;g

and �i.Xi \Xi�1/D Y �k;b;n;g:

We leave the proof of the following to the reader:
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Lemma 17 A trisection of a 4–manifold X with nonempty boundary restricts to the
boundary M 3 D @X as either a fibration over S1 (when b D 0) or an open book
decomposition (when b ¤ 0). In the first case, Xi \ @X is the inverse image under the
fibration of Œ2� i=3; 2�.i C 1/=3� � S1 . In the second case, Xi \ @X is the union of
this inverse image and the binding.

Remark 18 Lefschetz fibrations over B2 can be perturbed to give examples of tri-
sections in this relative setting. Assume that f W X 4! B2 is a bundle with fiber Fk;b

except for exceptional fibers which have nodes where f is given in local coordinates
.z; w/ by f .z; w/Dzw . Lekili showed in [7] that the map f could be locally perturbed
so that the node is replaced by three 1–folds in the shape of a hyperbolic triangle, as in
Figure 29. We need such a triangle to go around the central fiber of our trisection, so
we move a cusp up to and past the central fiber. This ups the genus of the central fiber
by one. Now it is easy to trisect X for the only folds are these triangles.

node

1 1

1

Figure 29: Perturbation of a Lefschetz node singularity

Remark 19 Given two 4–manifolds X and X 0 , with diffeomorphic boundary, both
trisected with bD 0, and with a gluing map @X !�@X 0 respecting trisections, gluing
along the boundary does not immediately produce a trisection of the closed manifold
X [X 0 . However, we naturally have six pieces which fit together like the faces of a
cube. From this, the technique described in Section 2 for producing a trisection of a
bundle over S2 can be generalized to give a natural trisection of X [X 0 .

Theorem 20 Given a 4–manifold X with an open book decomposition or fibration
over S1 on @X , there exists a trisection of X restricting to @X as the given fibration
or open book.

Proof Use the given boundary data to see X as a cobordism from F � Œ0; 1� to
F � Œ0; 1�, where F is either the fiber or the page. Using a handle decomposition of X

compatible with this cobordism structure, repeat the second version of the proof of
Theorem 4.

Stabilization of trisections makes sense in the relative case, since it takes place inside a
ball in the interior of X .

Geometry & Topology, Volume 20 (2016)



Trisecting 4–manifolds 3131

Theorem 21 Any two trisections of a fixed 4–manifold X which agree on @X are
isotopic after stabilizations.

Proof Again, the proof of Theorem 11 works verbatim in this case, once we fix the
appropriate cobordism structure on X . The key idea is that Cerf theory works perfectly
well when we fix behavior on compact subsets.
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