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On the uniqueness of the contact structure
approximating a foliation

THOMAS VOGEL

According to a theorem of Eliashberg and Thurston, a C 2 –foliation on a closed
3–manifold can be C 0 –approximated by contact structures unless all leaves of the
foliation are spheres. Examples on the 3–torus show that every neighbourhood of a
foliation can contain nondiffeomorphic contact structures.

In this paper we show uniqueness up to isotopy of the contact structure in a small
neighbourhood of the foliation when the foliation has no torus leaf and is not a
foliation without holonomy on parabolic torus bundles over the circle. This allows
us to associate invariants from contact topology to foliations. As an application we
show that the space of taut foliations in a given homotopy class of plane fields is not
connected in general.

53D10, 57R30, 57R17

1 Introduction and results

The purpose of this paper is to determine which foliations on closed 3–manifolds have
the property that all positive contact structures in a sufficiently small neighbourhood of
the foliation are isotopic (for definitions and basic results see Section 2A). According
to the following theorem of Y Eliashberg and W Thurston, most foliations can be
approximated by contact structures:

Theorem 1.1 [12] Let F be an oriented C 2 –foliation by surfaces on a closed ori-
ented 3–manifold. If F is not isomorphic to a foliation by spheres on S2 �S1 , then
every C 0 –neighbourhood of F contains a positive contact structure.

It can be shown quite easily [12] that the foliation by the first factor on M D S2 �S1

cannot be approximated by a contact structure, ie there is a C 0 –neighbourhood of the
foliation which does not contain a contact structure.

Theorem 1.1 provides a first link between foliations and contact structures. Before the
appearance of [12] these fields developed independently. The approximation theorem
allows one to obtain potentially interesting contact structures from construction of
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foliations. For example, the work of D Gabai [17] on constructions of foliations from
sutured manifold decompositions provides a rich source of interesting contact structures.
Via this construction there is a connection between sutured manifolds and gauge theory;
see P Kronheimer and T Mrowka [40]. The most prominent application of this circle
of ideas is in the proof of the property P conjecture by Kronheimer and Mrowka [41].

In view of Theorem 1.1 it is natural to ask to what extent the foliation determines the
contact structures up to isotopy in sufficiently small neighbourhoods. The following
well-known example shows that the isotopy type of a contact structure in a small
neighbourhood of a foliation is not completely determined by the foliation.

Example 1.2 Let F be the foliation of T 2 �S1 DR3=Z3 by tori corresponding to
the first factor. Then for 0¤ "! 0 and k ¤ 0 the contact planes �k defined by the
1–forms

˛k;" WD dt C ".cos.2�kt/ dx1� sin.2�kt/ dx2/

converge to TF . Different " yield isotopic contact structures which we therefore
denote by �k . According to Y Kanda [39], the contact structure �k is isotopic to �l
if and only if k D l . They are distinguished by their Giroux torsion (we review the
definition of this invariant in Definition 2.34).

However, the question of whether or not torus leaves are the only source of ambiguity
was raised by V Colin as [8, Question 5.9]. Also, K Honda, W Kazez and G Matić
suggested [37, second paragraph on page 306] that

“. . . contact topology may ultimately be a discrete version of foliation
theory.”

One piece of evidence for this is the following theorem of Honda, Kazez and Matić:

Theorem 1.3 [37] Let  be an orientation-preserving pseudo-Anosov diffeomor-
phism of a hyperbolic surface and M the surface fibration over the circle with
monodromy  .

There is a unique tight contact structure � on M such that he.�/; Œ†�i D 2� 2g . In
particular, there is a C 0 –neighbourhood U of the foliation by fibres of M ! S1 in
the space of plane fields such that � Š � 0 for all pairs of positive contact structures
�; � 0 2 U .

The following theorem answers Colin’s question affirmatively up to a small set of
exceptions. It can be viewed as confirmation of the above remark from [37].
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Theorem 1.4 Let F be a coorientable C 2 –foliation (or a C 2 –confoliation) on a
closed oriented 3–manifold satisfying the following conditions:

(i) F has no closed leaf of genus g � 1,

(ii) F is not a foliation by planes,

(iii) F is not a foliation by cylinders.

Then there is a C 0 –neighbourhood U of F in the space of plane fields and a contact
structure � in U such that every positive contact structure in U is isotopic to � .

The case that a leaf of F is a sphere is excluded since the Reeb stability theorem
(under the orientation assumptions at hand) implies that a foliation with a spherical leaf
is a foliation by spheres on S2 �S1 . According to a theorem of H Rosenberg [51],
C 2 –foliations by planes exist only on the 3–torus. Later, G Hector [31] proved that
foliations by cylinders exist only on parabolic T 2 –bundles over the circle. This shows
that the foliations in (ii)–(iii) of Theorem 1.4 are very special. Thus torus leaves
are essentially the only source of nonuniqueness of the isotopy classes of contact
structure which are sufficiently close to a given confoliation. Foliations which satisfy
the assumptions of Theorem 1.4 will be called atoral and the isotopy class of positive
contact structures in the neighbourhood of Theorem 1.6 approximates F .

When a foliation has torus leaves, then every neighbourhood contains nonisotopic
contact structures distinguished by their Giroux torsion. If the torus leaves satisfy a
certain stability condition, then the Giroux torsion is the only source of ambiguity of the
contact structures in small neighbourhoods of F . In order to state the corresponding
theorem we need the following definition.

Definition 1.5 Two contact structures � 0; � 00 are stably equivalent with respect to a
finite collection of pairwise disjoint embedded tori if the following conditions hold:

(i) It is possible to isotope the tori and to choose a contact form ˛ such that the
restriction of ˛ to the isotoped tori is closed (such tori are called pre-Lagrangian).

(ii) � 0 and � 00 become isotopic after inserting a contact structure�
T 2
� Œ0; 1�; ker

�
cos.2�k.t C t0// dx1� sin.2�k.t C t0// dx2

��
with suitable parameters k > 0 and t0 2R along the pre-Lagrangian tori.
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Theorem 1.6 If the foliation (or confoliation) F satisfies only the weaker hypothesis

(i0 ) all torus leaves of � have attractive holonomy

and the assumptions (ii)–(iii) of Theorem 1.4, then there is a C 0 –neighbourhood U

of F such that any two contact structures � 0; � 00 in U are stably equivalent with respect
to the torus leaves of F .

As explained in Section 6, condition (i0 ) can be generalized somewhat further. We
explain the details in Section 6A. Examples show that foliations with torus leaves
violating (i0 ) do not satisfy the conclusion in the theorem above. However, the examples
known to the author in which this happens are rather special. In view of potential
applications of Theorem 1.6, the characterization of those foliations with torus leaves
which violate (i0 ) but still satisfy the conclusion of Theorem 1.6 is an interesting open
problem (see for example Proposition 9.13).

Theorem 1.4 allows us to associate invariants from contact topology (for example
the contact invariant from Heegaard Floer theory) to atoral foliations. Combining
Theorem 1.1 and Theorem 1.4, we obtain:

Theorem 9.3 Let Ft , t 2 Œ0; 1�, be a C 0 –continuous family of atoral C 2 –foliations.
Then the positive contact structures �0 and �1 approximating F0 and F1 , respectively,
are isotopic.

This provides an obstruction to finding a path of atoral foliations connecting two
atoral foliations. This is of interest since the work of H Eynard-Bontemps [14; 15]
shows that two atoral foliations are homotopic through foliations as soon as the two
foliations are homotopic as plane fields. The foliations in the homotopy constructed by
Eynard-Bontemps contain Reeb components and therefore violate the hypothesis of
Theorem 1.4.

In many interesting cases the class of atoral foliations on a manifold coincides with the
class of taut foliations. In Example 9.5 we show that the Brieskorn homology sphere
†.2; 3; 11/ has a taut foliation F that is not homotopic to the foliation F (this is F
with the opposite coorientation) through foliations without Reeb components, although
F and F are homotopic as oriented plane fields. After this article appeared in preprint
form J Bowden [3] gave other examples of this kind.

Other applications of Theorem 1.4 and Theorem 1.6 can be found in Section 9C.

Finally, let us note that when it is possible to prove a parametric version of Theorem 1.4
without too much additional difficulty, then we will do so. The parametric versions are
Theorem 4.2 and Theorem 5.1; they cover foliations with holonomy which do not have
closed leaves.
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1A Some ideas for the proof of the uniqueness result

The main tools used in this paper stem from Colin [6], Eliashberg and Thurston [12],
E Giroux [24] and Honda, Kazez and Matić [37].

Just like the proof of Theorem 1.1, the proof of the uniqueness theorem deals with
minimal sets and the rest of the manifold in separate steps. These steps are treated in
different order in the proofs of Theorem 1.1 and Theorem 1.4. First, we fix a pair of
neighbourhoods yN �N of the set of closed leaves and particular curves with linear
holonomy (Sacksteder curves; see Section 5A) and we choose a C 0 –neighbourhood
of F such that the restriction of every contact structure in the C 0 –neighbourhood to yN
is tight. Given two contact structures �; � 0 in an even smaller neighbourhood of F ,
we first deform � so that the resulting contact structure y� coincides with � 0 outside
of N and so that the contact structures remain tight on yN throughout the deformation.
Then we use classification results for tight contact structures in order to show that
y� and � 0 are isotopic on yN . A somewhat different procedure has to be used when F
is a foliation without holonomy.

The first step follows the structure of the proof of the following theorem of Colin:

Theorem 4.1 [6] Let � be a contact structure on the closed 3–manifold M . Then
there is a C 0 –neighbourhood of � in the space of smooth plane fields so that every
contact structure in U is isotopic to � .

Since we start with a confoliation and not with a contact structure several modifications
are needed. As in the proof of Theorem 4.1 one starts with a polyhedral decomposition
of M , and the main modification of the proof of Theorem 4.1 concerns extensions of
the polyhedra which lead to controlled modifications of the characteristic foliation on
the boundary.

The contact structures �; y�; � 0 are transverse to a rank 1–foliation on the tubular
neighbourhood yN . This can be used to show that the restrictions of y�; � 0 to yN are
tight. We then want to appeal to classification results for tight contact structures. In the
case when a connected component of yN is a solid torus and the characteristic foliation
on the boundary has exactly two nondegenerate closed leaves, the contact structure
is uniquely determined up to isotopy. If a connected component of yN is the tubular
neighbourhood of a closed leaf of F , then the contact structure on yN Š†� Œ�1; 1� is
not uniquely determined by the properties of y�; � 0 we have mentioned so far.

If † is a closed leaf then the Euler class e.F/ of F satisfies the extremal condition

(1-1) he.F/; Œ†�i D ˙.2� 2g/;
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where g is the genus of † and g � 2 since in the presence of a spherical leaf there
is nothing to prove and the case of torus leaves is excluded. We will assume in the
following that (1-1) holds with the plus sign on the right-hand side. (In the opposite case
one has to interchange positive/negative singularities and attractive/repulsive closed
leaves).

Following ideas in Giroux [24], we show that tight contact structures on †� Œ�1; 1� can
be distinguished using sheets of the movie of characteristic foliations on †t WD†�ftg

which contain attractive closed leaves of the characteristic foliation on †˙1 . A sheet A

is an embedded submanifold in M such that the characteristic foliation A.�/ is a
nonsingular foliation by circles; more details can be found in Section 3. The sheets we
will consider are formed by closed leaves of the characteristic foliations †t .�/ and
of simple closed curves formed by positive elliptic singularities and stable leaves of
positive hyperbolic singularities. (If � is sufficiently close to F , then †t .�/ has no
negative singularities.)

When the genus of † is larger than 1, we show in Section 7 using the pre-Lagrangian
extension lemma from Section 3C1 that a tight contact structure on yN is uniquely
determined by its restriction to yN nN when it is sufficiently close to F . Then it
follows that y� is isotopic to � 0 and therefore � is isotopic to � 0 .

If † is a closed surface of genus � 2 we rely on classification results for tight contact
structures from [37]. If † is a torus, then we can use the more complete classification of
tight contact structures on T 2� Œ�1; 1� in the form given in [24] to obtain Theorem 1.6

One of the most important points in the proof of these theorems is to ensure that there
is no sheet connecting the two boundary components of yN . This is done by choosing
the neighbourhood of F in the space of plane fields properly. In particular, all plane
fields are transverse to the foliation on yN Š†� Œ�1; 1� induced by the second factor.

Because of the position of the contact plane field with respect to the parts of sheets
consisting of attractive closed leaves of the characteristic foliation on level surfaces †t ,
restrictions on the C 0 –distance between the contact structures and F lead to restrictions
on the position of sheets. This is illustrated in Figure 1.

The figures on the left-hand side of Figure 1 show the intersection of F with an annulus
that is transverse to the line field yN .F/ when † is a stable (upper part of Figure 1)
or an unstable (lower part) torus leaf. In each case the right-hand side shows the
intersection of the same annulus with a sheet of a contact structure which could arise
when F is approximated by a contact structure � . The thickened arcs correspond to
those parts of sheets where †t \A is an attractive closed leaf of †t .�/ and the straight
segments correspond to the contact planes.
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Figure 1: Stable/unstable torus leaves and sheets of nearby contact structures

A difference between the case of torus leaves and the case of surfaces of higher genus
is that in the case of surfaces of higher genus an embedding of an annulus connecting
the two boundary components of yN Š†� Œ�1; 1� is determined up to isotopy by the
boundary curves, while this is not true if the leaf is a torus. If a torus leaf is stable
then one can still choose the neighbourhood U of F such that there are no sheets
connecting the two boundary components of @ yN . If the torus is not stable, then it may
happen that no such neighbourhood exists.

As we have already mentioned, foliations without holonomy have to be treated in a
different fashion. Recall from Eliashberg and Thurston [12] that foliations without
holonomy can be C 0 –approximated by fibrations. The most delicate part of the
proof of Theorem 1.4 for foliations without holonomy is to find a fibration which
approximates the foliation well enough so that one can exclude the appearance of
sheets which intersect every fibre of the fibration for contact structures close to F .
These approximations are constructed in Section 8C using a theorem of Dirichlet about
Diophantine approximations of real numbers.

1B Organization of the paper

This paper consists of nine sections. The author hopes that the results of this paper are
relevant for people interested in contact structures or foliations. In order to make it
more accessible we have included most of the relevant definitions and basic theorems in
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Section 2. However, we are very brief and we only prove statements which we did not
find in the literature. Also, some results (like Sacksteder’s theorem) from the theory of
foliations are stated in the section where they are used. In Section 3 we review Giroux’s
theory of movies of contact structures from [24] (some of this material can be found in
Geiges [18]). Again, most results we prove are modifications of theorems in [24] or
results which are probably well-known but which we did not find in the literature in the
required form. An exception is the pre-Lagrangian extension lemma in Section 3C1,
which is a new result.

The proofs of Theorem 1.4 and Theorem 1.6 are contained in Sections 4–8. The author
hopes that by dealing with increasingly more difficult situations in separate sections the
proofs become more transparent than a proof covering all possible types of minimal
sets at once.

� Section 4 deals with the case of transitive confoliations and its main purpose is
to extend the proof of Theorem 4.1 using ribbons. This technique will be used
in all subsequent cases, except in the case of foliations without holonomy.

� Section 5 contains a proof of the uniqueness theorem for confoliations which are
not foliations without holonomy and have no closed leaves. In this section we also
show how the subsequent proofs for foliations carry over to the confoliated case.

� Section 6 contains a proof of Theorem 1.6 in the case when there are no closed
leaves of higher genus.

� Section 7 completes the proofs of Theorem 1.4 and Theorem 1.6 for confoliations
which are not foliations without holonomy.

� Section 8 contains the proof of Theorem 1.4 when F is a foliation without holo-
nomy. We also discuss which torus bundles satisfy the conclusion of Theorem 1.6.

Finally, Section 9 contains a discussion of applications of the uniqueness result and
examples where the approximating contact structure is not well defined. In particular,
we show that neighbourhoods of foliations by planes and foliations by cylinders contain
many nonisotopic contact structures with vanishing Giroux torsion.

At the beginning of Sections 4.2–8 we give an informal outline of the main difficulties
arising in that section. The goal is to help the reader understand what certain arguments
and lemmas might be used for before they are applied in a formal way. Also, this is
a long paper and Section 1A as well as the introductions of the individual sections
can hopefully serve as a reminder for a reader who has read parts of the paper and
is returning to the paper at a later time. This author hopes that the benefits of these
outlines outweigh the confusion their informality might sometimes create.
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Notation The standard notation for the characteristic foliation of a contact structure �
on a surface † is �† (as in [24]). This is convenient when there is only one contact
structure and families of surfaces. When there are families of surfaces and families
of contact structures then I prefer to write †s.�1/ instead of �1†s , for example. The
convention used here will be †.�/.
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2 Preliminaries

Sections 2A–2C contain basic definitions from contact topology and the theory of
foliations in order to make this text more accessible. In Section 2D we review the
relevant classification results for tight contact structures.

2A Contact structures, foliations and confoliations

In this paper M will always denote a closed connected oriented 3–manifold. We fix an
auxiliary Riemannian metric on M . In this section we give some standard definitions
and fix some conventions used throughout this paper. We start with the definition of a
foliation. Usually, foliations are defined in terms of a foliated atlas. For our purposes
the following definition is more convenient.

Definition 2.1 A C k –smooth, k � 1, foliation F on M is a plane field such that
F D ker.˛/ for a locally defined C k –smooth 1–form ˛ and ˛^ d˛ � 0.

By the theorem of Frobenius and [49, Proposition 1.0.2] this is equivalent to the standard
definition of a foliation of codimension 1 when k � 1. When k D 0 it is not even true
in general that a foliation defined by an atlas corresponds to a subbundle of the tangent
bundle of M . But since we will only be interested in C 2 –foliations, we do not have
to discuss this (more information can be found in A Candel and L Conlon [4]).

Given a foliation F , there is a collection of immersed hypersurfaces which are every-
where tangent to F ; a maximal connected hypersurface with this property is a leaf
of F . We will often confuse the collection of leaves with the corresponding plane field.
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Definition 2.2 A positive contact structure on a 3–manifold is a C 1 –plane field �
such that every 1–form ˛ defined on an open set V with ker.˛/ D �jV satisfies
˛ ^ d˛ > 0. Negative contact structures are defined by requiring ˛ ^ d˛ < 0. A
positive confoliation � is a C 1 –smooth plane field on M such that ˛ ^ d˛ � 0 for
every 1–form defining � on an open set.

Note that if ˛ ^ d˛ > 0 holds somewhere, then the same is true for every other 1–
form defining the same distribution. All plane fields in this paper will be oriented
subbundles of TM , so we can assign an Euler class to each foliation, contact structure
or confoliation. We consider two plane fields to be different when they coincide but
have opposite orientations. If � is an oriented plane field, then x� denotes the same
plane field with its orientation reversed.

The condition that � is a positive confoliation has the following geometric interpreta-
tions:

� Fix a vector field X tangent to � and a disc D transverse to the flow lines of X .
The disc is oriented such that its orientation followed by the orientation of X

is the orientation of M . We denote the flow of X by 't . Then the line field
TD\'�t�.�/ rotates clockwise with nonnegative speed as t increases.

� Let � be a positive confoliation on D2 �R which is transverse to the second
factor and complete as a connection. Then the parallel transport hW R!R along
@D2 satisfies

(2-1) h.x/� x for all x 2R:

Theorem 1.1 and the second interpretation implies that the closure of the space of
positive contact structures in the space of C 1 –plane fields with respect to the C 0 –
distance is exactly the space of positive confoliations.

The following terminology is borrowed from contact topology.

Definition 2.3 Let � be a smooth plane field on M . A piecewise smooth curve 
in M is Legendrian if it is tangent to � .

Definition 2.4 If � is a confoliation, then the open set

H.�/D fx 2M j � is a positive contact structure on a neighbourhood of xg

is the contact region of � . We say that � is transitive if for every point of M there is a
Legendrian curve which connects x and H.�/. The fully foliated set of a confoliation
consists of those points which are not connected to H.�/ by a Legendrian curve.
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The fully foliated set of a confoliation is a closed subset of M containing immersed
hypersurfaces everywhere tangent to � . We will refer to these hypersurfaces as leaves.
The theorems from foliation theory which we shall use later carry over to fully foliated
sets of confoliations.

Definition 2.5 Let F be a foliation on M . A subset X �M is called minimal if

(i) X is closed,

(ii) X is a nonempty union of leaves of F , and

(iii) X contains no proper subset satisfying (i) and (ii).

If M is compact and carries a foliation, then there are minimal sets and the topological
closure of a leaf contains a minimal set. Moreover, every minimal set X of a foliation
belongs to one of three categories. In order to describe them we fix a point p 2X and
short interval I transverse to F containing p . These are the possibilities:

� X is a closed leaf. Then X \ I is a discrete set.

� X DM . Then every leaf is dense and X \ I D I .

� X is an exceptional minimal set, ie X \ I is a Cantor set (so no point of X \ I

is isolated and X \ I is nowhere dense).

This is true for foliations of codimension one regardless of the smoothness of the
foliation [4]. It also holds for the fully foliated set of a confoliation.

If L is an integral surface of a confoliation � (ie a surface tangent to � ) and  W S1!L

a smooth map, then the holonomy along � is defined as follows: Fix an immersed
annulus

'W S1
� .�ı; ı/!M

transverse to � such that '.z; 0/D  .z/. The characteristic foliation on this annulus
has a closed leaf, namely  .S1/, and the Poincaré return map h' defined by parallel
transport along the oriented curve  is well defined on a neighbourhood of 0 in .�ı; ı/.
The conjugacy class h of the germ of h' depends only on  ; it is independent
of ' . In particular, it makes sense to speak of attractive and repulsive holonomy (ie
jh .x/j< jxj etc) or of fixed points on both sides of  in the annulus.

Definition 2.6 The conjugacy class of this germ is the holonomy of � along  , and �
has nontrivial linear holonomy along  if h0 .0/ ¤ 1. A foliation F is a foliation
without holonomy if h is the germ of the identity for all closed curves  tangent to F .
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If � is a foliation, then the holonomy depends only on the free homotopy class of  in
the integral surface. If � is not a foliation, then we have at least the following lemma.

Lemma 2.7 Let L be an integral surface of a confoliation. If h has nontrivial linear
holonomy, then the same is true for all curves which are freely homotopic to  . Also,
if † is a closed surface and  is a nonseparating simple closed curve with attractive
holonomy, then every curve isotopic to  also has attractive holonomy.

Proof The first statement is proved in [12, Lemma 1.3.17] when † is a closed surface.
The general situation will be relevant when we consider applications of Sacksteder’s
theorem. Let  0 be a closed curve which is freely isotopic to  . Then the cycle
 \ .� 0/ bounds either an annulus or a collection of discs contained in L. Depending
on the side of  on which a disc from the collection or the annulus lies one applies (2-1)
to the confoliation on one side of L to conclude that the holonomy of  pushed across
the disc is decreasing more above/below L than  . If  [ .� 0/ bounds an annulus
one adds a Legendrian curve � connecting  and  0 so that  [ �[ .� 0/[ .��/
bounds a disc. The holonomy along the boundary is weakly decreasing by (2-1). It
follows that the linear holonomy of � along  and  0 has the same value.

The second statement also follows almost immediately from (2-1): Let ;  0 be isotopic
such that  has attractive holonomy. Consider a covering of † such that lifts of 
remain closed but ;  0 have disjoint lifts z ; z 0 and the annulus zA between the two
lifts has .�z [ z 0/ as its oriented boundary. Such a covering exists because  is
nonseparating in †.

As above we pick an embedded arc �� zA connecting z .0/; z 0.0/. Then (2-1) applied
to the disc bounding the concatenation of �; z 0; .��/; .�z / and the pulled back con-
foliation on a tubular neighbourhood †� .�ı; ı/ of † such that the second factor is
transverse to � implies

h 0.x/� h� ı h ı h�1
� .x/

since h D hz and h 0 D hz 0 . Also, we use the obvious definition of the holonomy h�
along arcs. This implies the claim for x > 0. An analogous argument proves the claim
for x < 0.

It is easy to construct confoliations on neighbourhoods of surfaces such that the second
conclusion of the lemma does not hold for a separating curve (when attractive is defined
by strict inequalities). Note also that for the first part of the previous lemma we needed
that the confoliation is defined on both sides of L.

Recall the Reeb stability theorem. It can be found eg in [4]. The last part in the
statement below is a consequence of the usual Reeb stability theorem (compare [12,
Proposition 1.3.7]).
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Theorem 2.8 (Reeb stability) Let F be a foliation and † a leaf of F diffeomorphic
to a sphere. Then F is diffeomorphic to the foliation by the first factor on S2 �S1 .
Every confoliation transverse to the fibres of S2 � S1 ! S2 is diffeomorphic to a
foliation by spheres.

This theorem holds with minimal smoothness assumptions on the foliation and is also
true for confoliations. Since the product foliation on S2 �S1 cannot be approximated
by contact structures, spherical leaves do not play any role in the uniqueness problem.

2B Gray’s theorem, surfaces in contact manifolds, convexity

In the proof of Theorem 1.4 will use Gray’s theorem:

Theorem 2.9 Let �t be a smooth family of smooth contact structures on a closed
manifold M . Then there is an isotopy  t of M so that  t�.�t /D �0 for all t .

The proof of this theorem is based on Moser’s method, which is described eg in [18].
Theorem 2.9 holds in the relative case (ie if �t is constant on some domain, the resulting
isotopy is then the identity on that domain) and it also works with parameters. By
Gray’s theorem, in order to prove Theorem 1.4, it suffices to find a neighbourhood of �
so that for every pair of contact structures in that neighbourhood there is a family of
contact structures interpolating between them.

The Moser method is omnipresent in all results producing contact isotopies, eg the
theory of convex surfaces outlined below.

2B1 Characteristic foliations and their singular points Let † be an oriented sur-
face embedded in a contact manifold. If † has boundary, then the boundary will be
assumed to be Legendrian.

Definition 2.10 The characteristic foliation †.�/ on † is determined by the singular
line field � \T† on †; the singularities are points where �.x/D Tx†. A singularity
is positive if �x D Tx† as oriented vector spaces, otherwise the singularity is negative.
If †.�/ is one-dimensional at x 2†, then †.�/.x/ is oriented so that this orientation
followed by the coorientation of � coincides with the orientation of the surface. An
isolated singular point of the characteristic foliation is elliptic or hyperbolic if its index
is C1 or �1, respectively.

The fact that � is a contact structure has strong consequences for the characteristic
foliation on a small neighbourhood of the singularities of †.�/. Recall that according
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to Giroux [21] the divergence of a singular point of †.�/ never vanishes, its sign is well
defined and coincides with the sign of the singularity. As the next lemma shows, this
is the only property which distinguishes characteristic foliations of contact structures
from general singular foliations:

Lemma 2.11 Let G be a singular foliation on † such that there is a defining form ˛

with d˛ ¤ 0 at all singular points. Then there is a contact structure � on †� .�1; 1/

such that †0.�/ D G . This contact structure is unique up to an isotopy on a small
neighbourhood of †0 and the isotopy is tangent to the characteristic foliation on †0 .

The following lemma shows that the dynamical properties of the characteristic foliation
are quite restricted near isolated singular points. A part of this lemma can be found in
[24, page 629].

Lemma 2.12 Let p 2 † be an isolated singular point of the characteristic foliation
†.�/. Then the index of p equals �1, 0 or C1 and the characteristic foliation on a
neighbourhood of p is topologically conjugate to a neighbourhood of a hyperbolic,
simply degenerate or elliptic singularity, respectively.

Proof We assume that p is positive. Choose local coordinates x1;x2 on † around p

with x1.p/D x2.p/D 0 and a 1–form defining ˛ on a small neighbourhood of p so
that there is a vector field V on † near p such that

iV .d˛j†/D ˛j†:

Since ˛ is a contact form, d˛ is an area form on † near p and the vector field V is
well defined near p . In terms of x1;x2 ,

V .x1;x2/D

�
a11.x1;x2/ a12.x1;x2/

a21.x1;x2/ a22.x1;x2/

��
x1

x2

�
C o.k.x1;x2/k/

for smooth functions aij .x1;x2/ with a11.0; 0/Ca22.0; 0/> 0 because the divergence
of V is positive at p . Hence the eigenvalues of A D ..aij .p//i;j / are either both
real and at least one of them is positive or both eigenvalues are complex with positive
real part.

Unless 0 is an eigenvalue of A the singularity is nondegenerate and the index depends
only on the sign of det.A/. If 0 is an eigenvalue of A, then p is degenerate and by
the centre manifold theorem (see eg [28, Theorem 3.2.1]) there is a 1–dimensional
unstable manifold (uniquely defined and of class C r ) tangent to the eigenspace of the
nonvanishing eigenvalue and a centre manifold Z (not necessarily unique and only
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of class C r�1 ) tangent to the kernel of A. Both submanifolds are invariant under the
flow of V .

The index of the singularity is now completely determined by the nature of the isolated
zero at p of the restriction of V to Z . The index of p is �1 or 1 if p is an attractive
or repelling singularity of V jZ , respectively. If the singularity is attractive on one side
while it is repelling on the other, then the index of p is 0.

This also shows that an isolated singularity with index ˙1 of the characteristic foliation
of a contact structure is topologically equivalent to a nondegenerate singularity with the
same index. If the index is 0, then the unstable manifold of the singularity decomposes
a neighbourhood of p into two parts, one half-space is filled with integral curves of V

whose ˛–limit set is p while the other half looks like the corresponding half-space of
a hyperbolic singularity and the centre manifold is unique on that side.

Let p be a singularity of †.�/ and U �† a neighbourhood of p such that d˛jU is
an area form. Assume that p is a positive singularity of index �1 or 0. Then p has a
stable leaf. Choose a point x 2 U on a stable leaf and a point y 2 U on the strong
unstable manifold of p . We fix half-open intervals �x and �y containing x and y ,
respectively, such that there are leaves of the characteristic foliation in U connecting
points in the interior of �x to �y (see Figure 2).

p

�y

�x

Figure 2: Holonomy near a positive singularity p with index �1

The positive divergence of p has consequences for the map ' from �x to �y defined
by following the leaves of the characteristic foliation:

Lemma 2.13 For all K 2R there is a neighbourhood of x in �x such that

'0.q/ >K

for all q ¤ x in that neighbourhood.

Proof Let X be the vector field satisfying iX dˇ D ˇ , where ˛ D dt Cˇ . Then the
time-t flow  t expands ˇ exponentially in t , ie  �t ˇ D etˇ . As q approaches x the
time the flow takes to move q to '.q/ goes to infinity because p is a singularity. This
implies the claim.
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As for closures of leaves in foliations, there is a classification of limit sets of leaves of
singular foliations on surfaces provided that the foliation has finitely many singular
points. According to [46, Theorem 2.6.1], the ˛–=!–limit set of a leaf  is one of the
following:

� The leaf  itself when  is periodic.

� A singular point.

� A closed leaf of the foliation or a cycle consisting of a chain of stable leaves of
singular points.

� A quasi-minimal set. These are ˛–=!–limit sets of leaves containing a nontrivial
recurrent leaf, ie a nonperiodic leaf y which is dense inside the quasi-minimal set.

2B2 Convexity In this section, we review the notion of convexity. The material
presented here was developed by Giroux in [21]. Since the notion of convexity is
standard in contact topology by now we will be very brief.

Definition 2.14 Let † � .M; �/ be an oriented surface in a contact manifold such
that @† is Legendrian. Then † is convex if there is a contact vector field transverse
to †.

Building on [48], Giroux showed that convexity can be achieved by C1–small per-
turbations of † when † is closed. If † has Legendrian boundary, then according to
Kanda [39], the same statement holds (at least for C 0 –small perturbations fixing the
boundary) if the twisting number of � along @† is not positive. When † is convex, a
lot of information about the contact structure near † is contained in the dividing set � .
In order to define it we fix a contact vector field X transverse to †. Then

� D fx 2† jX 2 �xg:

It turns out that � is always a submanifold transverse to †.�/ whose isotopy type does
not depend on the choice of X . Moreover, whether or not a surface is convex can be
determined using only the characteristic foliation on †.

Lemma 2.15 (Giroux [21]) † is convex if and only if it has a decomposition into
two subsurfaces †C; †� with boundary such that the boundary @†C D @†� which
is not part of @† is transverse to †.�/ and there are defining forms for the singular
foliation ˛C on †C and ˛� on †� such that d˛C > 0 and d˛� < 0.

In this case the dividing set is isotopic to the closure of the parts of @†˙ which are not
contained in @†.
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In other words, the dividing set of a convex surface separates the surface into two
domains such that the characteristic foliation on each part is tangent to a Liouville
vector field associated to an exact area form.

Given a closed convex surface one can compute the evaluation of the Euler class on
that surface via the formula

(2-2) he.�/; Œ†�i D �.†C/��.†�/;

a fact which is attributed to Kanda [39]. The following lemma shows that characteristic
foliations on convex surfaces can be manipulated effectively.

Definition 2.16 Let † be a compact oriented surface and � a collection of pairwise
disjoint simple closed curves and arcs which are transverse to the boundary separating †
into two surfaces with boundary †C; †� . A singular foliation G on † is adapted to �
(or G is divided by � ) if

(i) G is transverse to � , the boundary of † consists of leaves and singularities
of G , and

(ii) there are defining forms ˛˙ for G on †˙ such that d˛C > 0 and d˛� < 0.

Lemma 2.17 (Giroux [21]) Let † � .M; �/ be a convex surface, X a transverse
contact vector field, � the associated dividing set and G a singular foliation adapted
to � . Then there is an isotopy 'sW †!M , s 2 Œ0; 1�, such that '0 is the inclusion and
'1�.G/ is the characteristic foliation on '1.†/. Moreover, 's.†/ is transverse to X

for all s and the characteristic foliation on 's.†/ is divided by˚
's.†/\fx 2M jX 2 �.x/g

	
:

A somewhat stronger version of this statement is Lemma 3.3. An immediate conse-
quence of this lemma is the Legendrian realization principle [39; 34].

Lemma 2.18 Let † � .M; �/ be a convex surface, � a dividing set and C � † a
simple closed curve transverse to � such that every connected component of † nC

meets � . Then there is an isotopy as in Lemma 2.17 such that '1.C / is a Legendrian
curve in '1.†/.

A basic tool for controlling modifications of the dividing set on a given convex surface
used in particular in the work of K Honda and J Etnyre is the attachment of bypasses.

Definition 2.19 (Honda [34]) A bypass for the convex surface † � .M; �/ is an
oriented half-disc D which is embedded (except that the two corners of D may
coincide) with the following properties:
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(i) @D D 1 [ 2 is the union of two smooth Legendrian arcs such that 1 is
contained in † and intersects the dividing set � of † transversely in exactly
� three points, two of which are the endpoints of 1 , or
� two points, if the endpoints of 1 coincide.

The bypass is called singular in the latter case.

(ii) The interior of D and the interior of 2 are disjoint from †.

(iii) All singular points of D.�/ along 2 are positive. Apart from 1\ 2 there is
exactly one more singularity of D.�/ on 1 . It is negative elliptic.

One boundary component †0 of a neighbourhood of D[† can be chosen such that †0

is convex, diffeomorphic to † and the dividing set on †0 is obtained from the dividing
set on † by the operation shown in Figure 3 in Section 3A3. In that figure the dividing
set is dashed and 1 is the diagonal arc in the left-most figure. For more information
about bypasses and their applications we refer the reader to the papers [34; 35; 37] by
Honda and the references therein.

2B3 Basins of attractive orbits The notion of a Legendrian polygon was introduced
by Eliashberg in [10] as a framework to describe the closure of all leaves of the
characteristic foliation of a contact structure on a generic surface which come from a
fixed positive singularity. The situation for confoliations is slightly more complicated;
this is discussed in [58]. Here we recall the terminology in a lengthy definition without
restricting to unions of leaves coming from a particular singular point.

Definition 2.20 A Legendrian polygon .Q;V; ˛/ on an oriented surface in a contact
manifold .M; �/ is a smooth immersion

˛W Q nV !†

such that Q is an oriented surface with boundary and corners, V � @Q is a finite
subset, ˛ is an orientation-preserving embedding on the interior of Q, and each segment
of @QnV is mapped to a Legendrian arc. Smooth pieces of @Q are mapped to smooth
Legendrian curves of †.�/. The points of V are called virtual vertices and corners
correspond to singular points of the characteristic foliation.

For v 2 V we require that the two segments of @Q ending at v are mapped by ˛ to
two leaves of †.�/ such that the corresponding orientations of the two segments of
@Q nV both point away or towards v . In the first and the second cases the images of
these segments have the same ˛–limit set and !–limit set, respectively, denoted v ,
and v is not a singularity of †.�/.
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The preimage of a singularity p of †.�/ is a pseudovertex if it has index 0 or �1

and a neighbourhood (in @Q) of the preimage is mapped to two stable or two unstable
leaves of p . Corners of @Q are mapped to singular points. If a corner is mapped
to a hyperbolic singularity p of index 0 or �1, then one adjacent segment of @Q is
mapped to a stable leaf while the other adjacent segment is mapped to an unstable leaf
of p .

Let ˇ �† be a nondegenerate attractive closed orbit of †.�/. The following defini-
tions (except the notions upper/lower) and lemmas also apply when ˇ is a piecewise
smooth closed curve consisting of negative singularities and unstable leaves of negative
singularities.

Definition 2.21 Let Bˇ be the union of all leaves of †.�/ whose !–limit set is ˇ
and which accumulate on ˇ from a fixed side. This set is a basin of ˇ . We say that
Bˇ is the upper basin if it lies on the side of ˇ in U determined by the coorientation
of � ; Bˇ is the lower basin if it lies on the opposite side.

The proof of the following lemma is completely analogous to the proof of [58,
Lemma 3.2]. The assumptions made before the corresponding result [58, Lemma 3.4]
about the nondegeneracy of singular points are not necessary and were made in order
to facilitate the presentation (see also Lemma 2.12).

Lemma 2.22 Let Bˇ be a basin of an attractive closed leaf of †.�/. There is a
Legendrian polygon .Q;V; ˛/ on † with QD Œ0; 1��S1 such that

(i) ˛.f0g �S1/D ˇ , and

(ii) ˛.Q nV /[
S
v2V v D

xBˇ .

We say that the Legendrian polygon covers the basin.

2C Properties of contact structures and foliations

In this section we summarize definitions concerning geometric properties of foliations,
contact structures and confoliations.

Definition 2.23 A foliation F is taut if for every leaf L of F there is a closed curve
transverse to F which intersects L. A Reeb component is a foliation on S1 �D2

such that the boundary is a leaf. An oriented foliation of S1 � Œ0; 1� by lines is a
two-dimensional Reeb component if the boundary curves are leaves which are oriented
in opposite directions. A foliation is minimal if every leaf is dense.

In Figure 16 in Section 6 one can see a pair of two-dimensional Reeb components.
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The following definition of tight confoliations is an extension of the usual definition of
tightness for contact structures as introduced in [12].

Definition 2.24 An overtwisted disc in a confoliated manifold is an embedded closed
disc D such that @D is Legendrian and all singularities of D.�/ on @D have the
same sign. A contact structure is tight if there is no overtwisted disc, otherwise it is
overtwisted. A contact structure is universally tight if the pullback of � to the universal
covering zM of M is tight.

A confoliation is called tight if for every overtwisted disc D there is an integral D0

of � with the following properties:

(i) D0 is a disc, @D0 D @D , and

(ii) he.�/; ŒD[D0�iD 0, where e.�/2H 2.M IZ/ is the Euler class of � and D;D0

are oriented in such a way that their union is also oriented.

This definition interpolates between tight contact structures (in this situation there are
no integral discs D0 ) and foliations without Reeb components. Tight contact structures
(and foliations without Reeb components) satisfy the Thurston–Bennequin inequalities.
In order to state them, let † be an oriented compact embedded surface (whose boundary
is positively transverse to the plane field � ). Then

he.�/; Œ†�i D 0 if †Š S2;

jhe.�/; Œ†�ij � ��.†/ if † 6Š S2 is closed;

�he.�/; Œ†�i � ��.†/ if @†¤∅;

(2-3)

where the left-hand side of the last inequality is the obstruction for the extension of the
trivialization of � along the boundary of † given by †.�/ to the interior. As shown
in [58], the Thurston–Bennequin inequalities for tight confoliations do not hold in
general, while they are always satisfied for s-tight confoliations. Recall that H.�/ is
the open set where the confoliation � is a contact structure.

Definition 2.25 Let � be a confoliation on M . An overtwisted star on a compact
embedded surface † �M is a Legendrian polygon ˛W D2 n V ! † �M , where
V � @D is a finite set of points such that the following hold:
� ˛.@D nV / is a union of Legendrian arcs such that for all v 2 V the image of

the two arcs approaching v on @D have the same !–limit set v when the arcs
are oriented towards v , and v \H.�/D∅.

� All singularities of †.�/ on ˛.@D n V / have the same sign, and this sign is
opposite to all singularities in ˛.D̊/.

A tight confoliation without overtwisted stars is s-tight.

Geometry & Topology, Volume 20 (2016)



On the uniqueness of the contact structure approximating a foliation 2459

Tight contact structures are considered to be much more interesting than overtwisted
contact structures because of the following classification result of Eliashberg [9].

Theorem 2.26 For �0 a contact structure on a closed manifold M with an overtwisted
disc D , let Cont.M;D; �0/ be the space of contact structures which have D as an
overtwisted disc and are homotopic as plane fields to �0 relative to D .

The space Cont.M;D; �0/ is weakly contractible. In particular, two overtwisted contact
structures are isotopic if and only if they are homotopic as plane fields.

Moreover, there are interesting analogies between taut foliations and symplectically
fillable contact structures, and between foliations with Reeb components and overtwisted
contact structures.

It is easy to show that tightness implies s-tightness in the context of the following
theorem.

Theorem 2.27 (Eliashberg and Thurston [12]) Let � be a confoliation on R3 which
is transverse to the fibres of the projection R3!R2 and complete as a connection of
this bundle. Then � is tight (and s-tight).

Example 2.28 The 1–form dzCf .x;y; z/ dy defines a contact structure if @f=@x>0;
it defines a confoliation if @f=@x � 0. A simple case when � is a complete connection
of the bundle

R3
!R2; .x;y; z/ 7! .x;y/

is when f is an affine or bounded function.

Usually, tightness of a contact structure is shown by either embedding the contact
manifold into a contact structure which is already known to be tight, or by using
symplectic fillings or gluing theorems (eg from [5]).

Definition 2.29 Let M be a closed oriented manifold and � a confoliation. A sym-
plectic manifold .X; !/ is a weak symplectic filling of .M; �/ if

(i) M D @X as oriented manifolds (where X is oriented by !^! and the outward
normal first convention is used to orient the boundary), and

(ii) !j� is a symplectic vector bundle.

The following theorem is due to M Gromov (for the case when � is a confoliation
see [58]).
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Theorem 2.30 If a contact manifold .M; �/ admits a weak symplectic filling, then it
is tight.

This criterion is used in [12] to show the following result about contact structures
approximating taut foliations.

Theorem 2.31 Every contact structure which is sufficiently C 0 –close to a taut folia-
tion is universally tight.

In general a symplectically fillable contact structure does not have to be universally
tight but at least there is a very efficient criterion to decide whether or not there is a
universally tight neighbourhood of a convex surface.

Lemma 2.32 (Giroux’s criterion) Let † be a convex surface in a contact manifold
.M; �/ and � its dividing set. If † Š S2 , then we require that � is connected,
otherwise we ask that no component of � bounds a disc in †.

Then † has a neighbourhood so that the restriction of � to that neighbourhood is
universally tight.

This lemma applies to the case when † is a sphere in a contact manifold such that
†.�/ has exactly two singular points and all leaves of †.�/ connect the two singular
points. Such a sphere is automatically convex. The following corollary of Giroux’s
criterion can be found in [37].

Corollary 2.33 Let � be a tight oriented contact structure near an oriented closed
surface † with positive genus such that he.�/; Œ†�i D ˙�.†/ and † is convex. Then
†� or †C is a nonempty union of annuli.

Proof No component of the dividing set of † bounds a smooth disc. Hence all
components of †C and †� have nonpositive Euler characteristic. The claim is now
an easy consequence of the equalities

he.�/; Œ†�i D �.†C/��.†�/ and �.†/D �.†C/C�.†�/:

According to the Thurston–Bennequin inequalities (2-3) the situation considered in
the corollary corresponds to the maximal possible absolute value of the evaluation of
the Euler class on a closed surface in a tight contact manifold or a foliation without
Reeb components. A contact structure � on † � Œ0; 1� will be called extremal if
jhe.�/; Œ†�ij D ��.†/, where † is an oriented closed surface.

There is another invariant associated to contact structures which can distinguish diffeo-
morphism classes of tight contact structures.
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Definition 2.34 Let .M; �/ be a contact manifold. For every positive integer n we
consider the contact structures

�n D ker
�
cos.2�nt/ dx1� sin.2�nt/ dx2

�
on T 2 � Œ0; 1�. The Giroux torsion of .M; �/ is

sup
˚
mjmD0 or m2NC and there is a contact embedding .T 2

�Œ0;1�; �m/!.M; �/
	
:

In the previous definition one can specify the isotopy class of the embedding of
T D T � f0g. If such an embedding is specified (eg by a torus leaf of a foliation) then
we will sometimes refer to the Giroux torsion along T . The contact structures �k from
Example 1.2 have Giroux torsion k � 1 and are hence distinguished by this invariant.

2D Classification results for tight contact structures

There are several classification results for tight contact structures up to isotopy relative to
the boundary that we shall use. They concern B3;S1 �D2;T 2 � Œ0; 1� and †� Œ0; 1�,
where † is a surface with genus g � 2. The following result is fundamental. It
is usually stated in a weaker form covering only the connectedness of the space of
contact structures. The version given here is implicitly contained in Eliashberg [10,
Theorem 2.4.2] and stated in Giroux [22].

Theorem 2.35 The space of positive tight contact structures on .B3; @B3/ which
induce a fixed characteristic foliation G0 on @D is weakly contractible. It is nonempty
if and only if G0 admits a taming function.

Taming functions and their construction are the main tool that we use in the proof of
Theorem 2.35. For the definition of taming functions and other material we refer to [10]
and [58]. Admittedly, there are no proofs with parameters in these references. However,
note that by Lemma 2.12 there are taming functions on neighbourhoods of degenerate
isolated singularities of characteristic foliations. Moreover, the space of functions
taming a fixed characteristic foliation on a sphere is contractible [10, Remark 4.4.4].
Taming functions increase along leaves of the characteristic foliation and they can be
constructed parametrically provided that the contact structures are tight.

Finally, the proof of Theorem 2.35 also shows that for a family of characteristic folia-
tions Gs on @D there is a family of contact structures �s on B3 such that .@B3/.�s/DGs

for all s provided that there is a family of taming functions for the foliation Gs . Also,
this family of extensions is unique up to homotopy.
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2D1 Contact structures on solid and thickened tori A lot of information about the
classification of tight contact structures on the solid torus up to isotopy can be found in
[34; 24]. We will only need the following simple case but we give a parametric version.

Theorem 2.36 Let � be a tight contact structure on N D D2 � S1 with convex
boundary such that the dividing set has exactly two connected components and the
intersection number of each component with a meridional disc is ˙1.

Then the space of positive tight contact structures on N which coincide with � near @N
is weakly contractible.

Proof By Lemma 2.17 we may assume that @N.�/ has the following properties:

(i) There are two cancelling pairs of singularities, one negative and the other one
positive. There are no closed orbits and no connections between hyperbolic
singularities.

(ii) Both unstable leaves of the positive hyperbolic singularity are connected to the
negative elliptic singularity and their union bounds a meridional disc D in N .
The union of both stable leaves of the negative hyperbolic singularities also
bounds a meridional disc D0 and D0.�/ is convex with respect to � .

Let S be a compact manifold and let �s , s 2 S , be a smooth family of tight contact
structures on N with �s D � near @N . We will construct a family of contact structures
� 0s with � 0s D � near @N such that the characteristic foliation on D0 is constant while
D.�s/ D D.� 0s/ for all s 2 S . Then by Theorem 2.35 applied to the ball with (set-
theoretic) boundary @N [D0 , the family � 0s of contact structures is homotopic to
the constant family �� for a fixed � 2 S , ie the family �s , s 2 S , is homotopic to a
constant family.

We now construct the family � 0s , s 2 S . The properties of � near @N imply that we
can fix two curves 1; 2 on @N transverse to @N.�/ separating @D from @D0 . The
contact structure � naturally extends to a slightly thicker solid torus N 0 . We choose
two smooth embedded spheres †1; †2 such that

� †i contains a neighbourhood of i in @N for i D 1; 2,

� †1\†2 DD[D0 , and

� †i n .D[D0/ does not meet the interior of N .

The question whether or not a given singular foliation on †i which is transverse to i

admits a taming function depends only on the characteristic foliations on the discs
†i n i . Hence the singular foliations on †i given by � on †i nD and by D.�s/
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on D admit taming functions and by Theorem 2.35 there is a family of tight contact
structures on each of the balls bounded by these spheres. Together they form a family
of tight contact structures � 0s on N . By construction D.� 0s/DD.�/.

The theorem below contains the information from [24, Theorem 4.4] about the clas-
sification of tight contact structures on the thickened torus T 2 � Œ�1; 1� that we are
going to use. (The theorem is stated in a way which can be easily translated to the
terminology developed in [24]. This terminology is explained in Section 3A below.)

Theorem 2.37 (Giroux) Let G˙1 be two foliations on T 2 which have exactly
n˙1 > 0 attractive closed leaves such that there is no Reeb component of dimension 2

and all closed leaves are nondegenerate.

If the slopes of the closed leaves of G˙1 are different, then for a given integer k � 0

there is a contact structure � on T 2 � Œ�1; 1� whose Giroux torsion is k and

(i) T˙1.�/D G˙1 ,

(ii) for all t 2 Œ�1; 1� all singularities of the characteristic foliation on T 2 � ftg are
positive, and

(iii) there is an embedded torus T 0 � T 2 � .�1; 1/ isotopic to T0 such that T 0.�/ is
a foliation by closed leaves.

This contact structure is uniquely determined by these properties.

If the slopes of the closed leaves of G˙1 coincide then the same statement holds except
that for k D 0, the contact structure is I –invariant and there is no torus satisfying (iii).

We will see later in Section 3B3 that a contact structure satisfying the assumptions
(i)–(iii) of the theorem is automatically universally tight. Theorem 2.37 is then obtained
from [24, Theorem 4.4] using Remark 3.15. We will apply the uniqueness part of
Theorem 2.37; the case of I –invariant contact structures will not occur.

2D2 Contact structures on † � Œ�1; 1� with g.†/ � 2 Before we can state the
main classification result about tight contact structures on N D † � Œ�1; 1� with
jhe.�/; Œ†�ijD��.†/ and convex boundary, we need to recall the notion of the relative
Euler class from [37]. We will choose the orientation of � such that he.�/; Œ†�iD�.†/,
ie †�t is a nonempty union of disjoint annuli whenever †t is convex. The dividing set
of †˙1 will be denoted by �˙1 .

Let ˇ � †i , i D ˙1, be a closed curve. We say that ˇ is primped if the following
conditions hold:
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� ˇ is nonisolating in †i , ie ˇ is transverse to �i , and every boundary component
of †i n .ˇ[�i/ meets �i .

� The intersection ˇ\†�i consists only of arcs each of which does not separate
an annulus in †�i into two connected components.

Clearly every curve is isotopic to a primped curve. According to the Legendrian
realization principle (Lemma 2.18) there is a C 0 –small isotopy of †i through convex
surfaces so that ˇ is a Legendrian curve on the isotoped surface. In order to define the
relative Euler class ze.�/ on Œˇ � I � 2H2.N; @N;Z/ we proceed as follows: Isotope
ˇ�f˙1g to primped Legendrian curves in †˙1 . Then consider an annulus A bounded
by the two Legendrian curves (since † is not T 2 this annulus is uniquely determined
up to isotopy relative to the boundary). After a small perturbation we may assume that
the annulus is convex. In analogy to (2-2) one defines

(2-4) hze.�/; Œˇ� I �i WD �.AC/��.A�/:

The following is shown in [37]:

Proposition 2.38 The relative Euler class ze.�/ 2H 2.N; @N IZ/ is well defined and
extends the Euler class e.�/ viewed as a homomorphism e.�/W H2.N IZ/ ! Z to
H2.N; @N IZ/.

Now we can state [37, Theorem 1.1]:

Theorem 2.39 (Honda, Kazez and Matić) Let † be a closed oriented surface of
genus g � 2 and G˙1 singular foliations on †� f˙1g such that G˙1 is adapted to a
dividing set �˙1 consisting of exactly two nonseparating closed curves bounding an
annulus such that

�.†C
�1
/��.†�

�1/D �.†
C

1
/��.†�1 /:

If ��1 and �1 are not isotopic, then there are exactly four isotopy classes of tight
contact structures � on N so that †˙1.�/ D G˙1 . They are distinguished by the
relative Euler class ze.�/ which takes the values

PD.ze.�//D˙�1˙ C1 2H1.N;Z/

where ˙1 is a connected component of �˙1 .

If ��1 and �1 are isotopic, then there are exactly five isotopy classes of tight contact
structures on N inducing the given characteristic foliation on @N . Three of these
contact structures satisfy PD.ze.�//D 0, while the two remaining isotopy classes satisfy

PD.ze.�//D˙2�1 D˙21 2H1.N;Z/:

In all of the above cases the tight contact structures are universally tight.
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We still need to explain how to distinguish tight contact structures with PD.ze.�//D 0.
This is done by embedding properties. The following definition of a basic slice is
not quite the same as [37, Definition 5.12], but the two definitions are equivalent by
Theorem 2.39 (and the setup used in [37] to analyze what is called the base case in [37,
page 323]).

Definition 2.40 A basic slice is a tight contact structure on †� Œ�1; 1� such that

(i) †�1 and †1 satisfy all assumptions of Theorem 2.39,

(ii) �1 and 1 intersect exactly once, and

(iii) PD.ze.�//D˙.�1� 1/ when �1; 1 are oriented so that 1 � �1 D 1.

As in [37], we denote a basic slice by ŒŒ�1; 1I˙.�1� 1/�� depending on the value
of the relative Euler class.

The definition of a basic slice is independent of the orientation of �1; 1 satisfying
1 � �1 D 1.

Proposition 2.41 (Honda, Kazez and Matić [37]) Let � be a tight contact structure
on N such that ��1 D �1 D 2 . Then � is isotopic to a vertically invariant contact
structure if and only if there is no embedding of a basic slice ŒŒ;  0I˙. �  0/��. There
are two tight contact structures �C; �� such that there are contact embeddings

ŒŒ;  0IC. �  0/��! .N; �C/;

ŒŒ;  0I �. �  0/��! .N; ��/

mapping the boundary component †0 of the basic slice to †�1 , while there are no
contact embeddings

ŒŒ;  0I �. �  0/��! .N; �C/;

ŒŒ;  0IC. �  0/��! .N; ��/

with the same property.

The relative Euler class behaves well when †� Œ�1;C1� is decomposed along †0

provided that the contact structure on †� Œ�1; 1� is tight and †˙1; †0 are convex
such that the dividing set consists of two connected nonseparating curves. As in [37,
Theorem 6.1], this is best expressed as follows:

(2-5) PD.ze.�j†�Œ�1;0�//CPD.ze.�j†�Œ0;1�//D PD.ze.�j†�Œ�1;1�//:
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3 Movies and their properties

In this section we explain some of the material in Giroux’s work [24] about families
of characteristic foliations of positive contact structures on † � Œ�1; 1�, where †
is a closed oriented surface. Parts of this material can also be found in [18]. Our
main omission is that we do not discuss the turnaround locus (lieu de retournement
in [24]). The results from Section 3A and Section 3B were used by Giroux to obtain
a classification of tight contact structures on torus bundles and lens spaces. Some of
the results proved in Section 3A are probably folklore (like Lemma 3.16) but we did
not find a good reference. We will apply some of the techniques of Giroux to contact
structures on †� Œ�1; 1� with convex boundary: The main result from Section 3C1 is
new and will be used in combination with Theorem 2.39 in the proof of Theorem 1.4.

3A Movies associated to contact structures

Let � be a contact structure and †�M an embedded oriented surface with Legendrian
boundary such that there is a tubular neighbourhood †� Œ�1; 1� such that the boundary
of †t WD†� ftg is Legendrian.

According to the (strong) Thom transversality theorem we may assume that all singular
points of the characteristic foliation †.�/ D T†\ � on †, ie points p 2 † where
Tp† D �.p/, are isolated. This remains true for all surfaces appearing in compact
finite-dimensional families.

Fix a tubular neighbourhood † � Œ�1; 1� of † so that � is positive with respect to
the product orientation of †� Œ�1; 1�. We fix a 1–form ˛ defining � on †� Œ�1; 1�

so that

(3-1) ˛ D �t Cut dt;

where �t vanishes on @†t and ut is a smooth function. In particular, �t defines the
characteristic foliation of � on †t D†� ftg; t 2 Œ�1; 1�. This family will be referred
to as a movie of � .

The contact condition ˛^ d˛ > 0 is equivalent to

(3-2) ut d�t C�t ^ .dut �
P�t / > 0:

It has implications for the singular foliations appearing in the movie; see Lemma 3.7 and
Lemma 3.10 below. Recall also that the contact condition implies that the divergences
at positive and negative singular points of †t .�/ are positive and negative, respectively.
Although it is not clear which families of singular foliations are movies associated to a
positive contact structure, there is the following uniqueness result (Lemma 2.1 of [24]).
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Lemma 3.1 Let �0 and �1 be two positive contact structures on †� Œ�1; 1� such that
†t .�0/D†t .�1/ for all t 2 Œ�1; 1�. Then �0 and �1 are isotopic.

Proof The movie of a positive contact structure determines the family �t up to
multiplication with a nowhere-vanishing function when we consider only 1–forms
�t coming from a defining form as in (3-1). The set of functions ut satisfying (3-2)
for a given family of 1–forms �t is convex. Hence the lemma follows from Gray’s
theorem.

There are a few situations when it is easy to show that a given family of singular
foliations is the movie of a positive contact structure.

Lemma 3.2 Let Gt , t 2 Œ�1; 1�, be a family of singular foliations on † such that
there is a continuous family of curves �t dividing Gt , ie for every t there is a smooth
function vt on † such that

(3-3) vt d�t C�t ^ dvt > 0:

Then there is a contact structure � on †� Œ�1; 1� such that †t .�/D Gt .

Proof Notice that we made no assumption concerning the dependence of vt on t .
But the set of functions vt satisfying (3-3) for a given family of 1–forms �t on †
is convex. By compactness of the interval we can replace vt by a family of smooth
functions with the same properties as vt which in addition depends smoothly on t . We
use the notation vt for the new family. Then for k sufficiently large, the 1–form

kvt dt C�t

on †� Œ�1; 1� is a contact form with the desired properties.

The following lemma is the corresponding uniqueness result.

Lemma 3.3 [24, Lemma 2.7] Let �0; �1 be two contact structures on † � Œ�1; 1�

which coincide near the boundary such that the characteristic foliations †t .�0/ and
†t .�1/ are divided by �t , where �t varies continuously with t 2 Œ�1; 1�.

Then �0 and �1 are isotopic relative to the boundary.

Proof The contact structures �i , i D 0; 1, are defined by 1–forms ui
t dt C�i

t . Since
�t divides the characteristic foliations †t .�i/ there is a family of functions vi

t for
i D 0; 1 such that

� 0 is a regular value of vi
t and �t D .v

i
t /
�1.0/, and

� vi
t d�t C�

i
t ^ dvi

t > 0.
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Since we can multiply �1
t by the nowhere-vanishing function h D v0

t =v
1
t , we may

assume that v0
t D v

1
t DW vt . Then for every positive constant k the family of 1–forms

.sui
t C .1� s/kvt / dt C�i

t ; s 2 Œ0; 1�; i D 0; 1

on † � Œ�1; 1� is a family of contact forms. Moreover, for k sufficiently large the
1–forms

kvt dt C s�0
t C .1� s/�1

t ; s 2 Œ0; 1�

on †� Œ�1; 1� are contact. The conclusion follows again from Gray’s theorem.

We will need the following slight modification of Lemma 3.3 which gives a relative
version of the previous lemmas.

Lemma 3.4 Let �; � 0 be contact structures on †� Œ�1; 1� so that there is a family of
compact subsurfaces Ft �†t such that

(i) †t .�/D†t .�
0/ outside of Ft ,

(ii) @Ft is transverse to †t .�/, and

(iii) there are contact forms ˛; ˛0 defining �; � 0 such that d˛jFt
> 0 and d˛0jFt

> 0.

Then � and � 0 are isotopic.

Moreover, given a contact structure � defined by ˛ , a family of domains Ft with
properties (ii)–(iii) and a smooth family �t of 1–forms such that d�t > 0 on Ft with
˛jFt
D �t on a neighbourhood of the boundary of[

�1�t�1

Ft ;

there is a contact structure � 0 on †t � Œ�1; 1� which coincides with � outside of
S

t Ft

whose characteristic foliation is defined by �t inside of Ft .

Proof We begin with the existence part. We may assume that there is a domain with
boundary F �† so that Ft D F � ftg and the characteristic foliations of � near @Ft

are independent of t . Fix a collar C of @F . The part of @C in the complement of F

will be denoted by out , and we set in D @C n out .

Since @Ft is transverse to †t .�/ we may choose C so thin that every leaf of C.�/

connects two boundary components of C and ˛jCt\Ft
D�t . Without loss of generality,

assume that Ct .�/ is constant. By (ii)–(iii), the characteristic foliations point out of Ft

along the boundary.
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The angle between � and Ft along out is bounded away from 0 by a constant � .
Since d�t > 0 the 1–form �tCk dt defines a positive contact structure on F � Œ�1; 1�.
If k is sufficiently large, then the angle between Ft and � 0D ker.�tCk dt/ is smaller
than � along in . Since C.�/ is a product foliation, the contact structure � 0 defined
inside of F � Œ�1; 1� can be extended to a contact structure on †� Œ�1; 1� by twisting
along the leaves of C.�/.

The proof that the resulting contact structure � 0 on † � Œ�1; 1� is isotopic to � is
analogous to the proof of Lemma 3.3.

Before we proceed with manipulations of movies we state the result of an explicit
computation we will use later.

Assume that � is a contact structure on a family of annuli At , t 2 Œ0; 1�, defined by
˛ D dt C�t , such that the characteristic foliation is transverse to the boundary of At

for all t and points outwards. The contact condition implies that dA�t C
P�t ^�t is an

area form (here dA is the exterior differential on the annuli).

Let X be a vector field on A�Œ0; 1� without zeroes tangent to the characteristic foliation
but pointing in the opposite direction and let 's be the flow of X defined for s � 0.
The functions fX and hX are defined by

iX dA�t D hX �t ;

iX .dA�t C
P�t ^�t /D fX �t :

By the contact condition fX is bounded away from 0 and negative. Then

(3-4) '�s ˛ D exp
�Z s

0

'��hX d�

��
�t C exp

�
�

Z s

0

'��fX d�

�
dt

�
:

This shows that the contact structure defined by '�s ˛ converges to the tangent planes
of the annulus (this is probably familiar from [21]).

3A1 Elimination of singularities The following lemma is a translation of [24,
Lemma 2.15]. It is a version of the elimination lemma from [10] which also controls
the characteristic foliation not only on one surface † but also on nearby surfaces.

Lemma 3.5 Let � be a contact structure on † � Œ�1; 1� such that †0.�/ has two
singular points e0; h0 which have the same sign (we will assume it is negative) and
are connected by a leaf of †0.�/. Moreover, for �1 < t < 1, assume that there are
singularities et ; ht of †t .�/ such that ht is connected to et by a continuous family of
leaves Ct of †t .�/. We fix 0< ı < 1 and a neighbourhood U of

S
jt j�ı

xCt such that
et ; ht are the only singular points of †t .�/ inside †t \U .
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(i) There is an isotopy of †� Œ�1; 1� with support inside U such that the character-
istic foliation of the isotoped contact structure has no singular points in †t \U

for jt j � ı .

(ii) Given a family of points a0t 2†t n
xCt connected to et by a leaf of .†t \U /.�/

and another family b0t of points on the unstable leaf of bt which is opposite
to Ct , the isotopy in (i) can be chosen so that, for the isotoped contact structure,
the leaf of the characteristic foliation on †t through b0t passes arbitrarily close
to a0t .

(iii) Denote by Gt the union of all segments of leaves of †t .�/ with both endpoints
in U . Assume that for a given compact set ƒ � .�1; 1/ the restriction of the
characteristic foliation on †t to Gt can be defined by a 1–form with nowhere-
vanishing exterior derivative. Then the isotopy from (i)–(ii) can be chosen such
that the isotoped copy of †t is convex whenever †t is convex

Pairs of singular points of †.�/ like e0; h0 in the above lemma will be referred to as a
cancelling pair.

We will use a partial converse of this result which allows us to create cancelling pairs
of singular points. On a single surface it is possible to introduce a cancelling pair of
singularities without any restriction. But by Lemma 3.10 we cannot arbitrarily prescribe
the limit set of the (un-)stable leaf of the hyperbolic singularity which does not connect
the elliptic singularity of the pair.

3A2 Closed leaves in movies In this section we discuss a result from Giroux’s paper
[24] about closed leaves of characteristic foliations.

First, let  � †t be a nondegenerate closed leaf of the characteristic foliation. Let
V � †t be a tubular neighbourhood of  such that @V is transverse to †t .�/ and
 is the unique closed leaf of †t .�/ in V . Since  is nondegenerate, the characteristic
foliation is transverse to @V and points either outwards along both components or
inwards along both components. Because the characteristic foliation depends smoothly
on t the same is true for †t 0 for t 0 sufficiently close to t . Moreover, †t 0.�/ has a
unique closed leaf. The union of these leaves is a smooth submanifold transverse to †t .

Now let  �† be a degenerate closed leaf and ' the germ of the holonomy along 
with respect to a fixed segment � through  transverse to the characteristic foliation.
We assume that the degeneracy of  is finite, ie '.k/.0/¤ 1 for some k 2 f1; 2; : : : g

and '.j/.0/D 1 for j D 0; : : : ; k � 1. This is a C1–generic property.

We first discuss the case when k is even. Depending on the sign of '.k/.0/ there are
two possibilities.
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Definition 3.6 We say that  is positive or negative if the holonomy of  is repulsive
or attractive, respectively, on the side of  given by the coorientation of � while the
behaviour on the other side is the opposite.

The following lemma can be found by combining [24, Lemma 2.12 and following
remark].

Lemma 3.7 Let  be a positive degenerate closed orbit of †� .�/. Then for t > � and
t close to � there is a pair of nondegenerate closed leaves of †t .�/ close to  . One of
these orbits is repulsive while the other one is attractive. For t < � there is no closed
leaf of †t near  .

For negative degenerate orbits, the situation is opposite.

Thus positive and negative degenerate closed leaves indicate the birth and death,
respectively, of a pair of closed leaves of the characteristic foliation.

The case when k is odd is simpler. Following the proof of [24, Lemma 2.12], we
obtain:

Lemma 3.8 If  � †� has odd degeneracy, then the characteristic foliation on a
surface †t sufficiently close to †� has a single closed leaf t near  , and t is
attractive or repulsive if and only if the same is true for  and t is nondegenerate for
t ¤ � . The union of the closed leaves t is a smooth embedded surface in M .

So, to summarize this section, if  is a closed leaf †t .�/, then the union of nearby
closed leaves on nearby surfaces † is a smooth submanifold.

3A3 Retrograde saddle-saddle connections Let � be a contact structure on †�
Œ�1; 1�.

Definition 3.9 A stable leaf � of a positive hyperbolic singularity of the character-
istic foliation on †0 which coincides with the unstable leaf of a negative hyperbolic
singularity is a retrograde saddle-saddle connection.

The fact that � is a positive contact structure has consequences for the characteristic
foliation on †t when there is a retrograde saddle-saddle connection in †0.�/. In the
following lemma the words over and under refer to the coorientation of the leaves of
the characteristic foliation.
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Lemma 3.10 (Giroux [24]) A retrograde saddle-saddle connection � on †0 implies
that for t < 0 (resp. t > 0) sufficiently close to 0, the stable leaf � of the positive hyper-
bolic singularity passes under (resp. over) the unstable leaf of the negative hyperbolic
singularity.

A retrograde saddle-saddle connection is depicted in Figure 3. If the surface †t is
convex for t ¤ 0 then a bypass attachment along the thickened arc in the leftmost
figure has the same effect on the dividing set (represented by dashed curves) as the
retrograde saddle-saddle connection.

h� h� h�

hC hC hC

t < 0 t D 0 t > 0

Figure 3: Retrograde saddle-saddle connection

Later we will want to reduce the number of retrograde saddle-saddle connections. In
some situations, the classification of tight contact structures on the ball can be used
for this.

Lemma 3.11 Let � be a tight contact structure on †� Œ�1; 1� such that the charac-
teristic foliation on †0 has a single retrograde saddle-saddle-connection � between a
positive hyperbolic singularity hC and a negative hyperbolic singularity h� .

Assume that both unstable leaves of hC connect to the same negative elliptic singular-
ity e� , the retrograde saddle-saddle connection is the only unstable leaf of a negative
hyperbolic singularity of †0.�/ ending at e� and †t is convex for all t ¤ 0. Then
there is a contact structure � 0 isotopic to � with the following properties:

� †t .�
0/ is convex for all t 2 Œ�1; 1�. In particular, there are no retrograde saddle-

saddle connections.

� � 0 coincides with � outside of a tubular neighbourhood of the union of the
unstable leaves of †0.�/.
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The situation considered in this lemma is depicted in Figure 4. The dashed lines
represent the dividing set. Lemma 3.11 is tailored to one application. The assumptions
imply that the dividing set on †t .�/ does not change when one passes from t < 0 to
t > 0. Therefore the lemma is a consequence of the discussion of trivial bypasses in
[36, Lemma 2.10].

t < 0 hC t D 0

h�

e�

t > 0

Figure 4: The movie considered in Lemma 3.11

Let us describe how the movie of the contact structure with a retrograde saddle-saddle-
connection as in Lemma 3.11 can be replaced by a movie which is convex at all
levels.

Let V � †0 be a tubular neighbourhood of the two unstable leaves of hC whose
boundary is transverse to †0.�/. After adding pairs of cancelling positive singularities
and a small perturbation on the complement of a neighbourhood of the retrograde
saddle-saddle connection if necessary, we may assume that the basin of V is compact.
Then †t .�/ and Vt have the same properties as V for t 2 Œ�ı; ı� close to 0. Now
replace the movie Vt .�/ by a family of singular foliations obtained by rotating the
characteristic foliation in the annulus V clockwise starting with †�ı.�/ so that as t

increases no stable leaf of hC meets the point where the unstable leaf of h� enters Vt

and Vı � †ı.�/ makes a full twist. This is possible because there is exactly one
unstable leaf of a negative singularity entering V .

The singular foliations obtained in this way all admit dividing sets. By Lemma 3.2 the
movie of singular foliations is the movie of a contact structure � 0 on †� Œ�ı; ı� which
coincides with � on the boundary.

The assumption that e� is a negative elliptic singularity which is not connected to
any negative hyperbolic singularity can be replaced by the following assumption:
both unstable leaves of hC end on the same connected component e� of the graph
formed by negative elliptic singularities, attractive closed leaves and negative hyperbolic
singularities together with their unstable leaves, and e� is a closed tree. The annulus V

above then has to contain the entire tree.
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3A4 Sheets of movies Consider a contact structure on †� Œ�1; 1� and the movie of
characteristic foliations †t .�/ with t varying in Œ�1; 1�.

Definition 3.12 A sheet of the movie is a smooth embedded surface A�†� Œ�1; 1�

such that every connected component of A\†t is a smooth Legendrian curve and all
singularities of †t .�/ on the curve have the same sign.

These surfaces play a very important role in [24]. In that paper, a sheet is referred to as
feuille while the collection of all sheets is called feuillage. By definition, A is foliated
by circles. Therefore A is either a torus, an annulus, a Klein bottle, or a Möbius band.
In this paper A will always by orientable, so A will be either a torus or an annulus.
The following lemma is part of [24, Lemma 3.17]. It implies that a sheet A is really
foliated by closed Legendrian curves:

Lemma 3.13 Every sheet A is a pre-Lagrangian surface, ie A.�/ is a nonsingular
foliation by closed Legendrian curves.

Averaging the contact form using a flow which is tangent to A.�/ and periodic, we
obtain a contact form ˛ whose restriction to A is closed. Then A�M is a Lagrangian
submanifold of the symplectization .M �R; d.et˛// of .M; ˛/. Moreover, A is either
tangent to †t along a given closed Legendrian curve ˇ �†t \A or A is everywhere
transverse to †t along ˇ . More precisely, A is tangent to †t along a Legendrian
curve ˇ �A if and only if ˇ is a degenerate closed leaf of †t .�/.

We consider the situation when � is transverse to I , the foliation given by the second
factor of † � Œ�1; 1�. In this case the behaviour of a sheet relative to the product
decomposition †� Œ�1; 1� is subject to restrictions which we now describe.

Let ˛ be a contact form which is closed on A and ˇ�†t\A a nondegenerate attractive
closed leaf. Because ˛ is a contact form the 1–form .d˛/. P̌; � / is nonvanishing.
Moreover, d˛. P̌;X / is positive when . P̌;X / is an oriented basis of � (by the contact
condition and because of the fact that ˛ coorients � ). Since ˇ is attractive the 2–
form d˛ is a negative area form on T†jˇ . By Lemma 3.13 d˛. P̌; � / vanishes on A

and both � and † are cooriented by I . Therefore the lines

(3-5) Ip; �p= P̌; TpA= P̌; Tp†t= P̌

appear in this order in the projective line P .TpM= P̌/. Hence the slope of � is steeper
at p 2 ˇ than the slope of A in that point (we interpret the second factor in †� Œ�1; 1�

as height). This is shown in Figure 1 where the parts of sheets consisting of attractive
closed leaves of †t .�/ are thickened. If ˇ is repulsive, then �.p/ is closer to Tp†t
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than TpA. Moreover, if A is tangent to I at a point p 2†t , then the closed leaf p
of TpA is a Legendrian curve on †t which is either closed and repelling or which
contains some positive singularities, and after elimination of these singularities we
again obtain a closed repelling leaf.

Proposition 3.14 Let � be a contact structure on †� Œ�1; 1� which is transverse to
and cooriented by the second factor and ˇ a closed attractive leaf of †t .�/.

Then ˇ is contained in a sheet A.ˇ/ of the movie †t .�/ consisting of nondegenerate
attractive closed leaves of †t .�/. The restriction of the projection prW †� Œ�1; 1�!†

to this sheet is a submersion. As t increases the image of †t\A moves in the direction
opposite to the direction determined by the coorientation of � .

Proof Let ˇ be an attractive closed leaf of †t .�/. Then this curve is part of a
sheet A.ˇ/ by the implicit function theorem and this also implies that A.ˇ/ is transverse
to the surfaces †t . By (3-5) all vectors in the tangent space TA.ˇ/ which are not
tangent to ˇ lie in those connected components of TM n .� [ T†t / which do not
contain elements of T I . Since pr� is an isomorphism on T†t and �jˇ it is an
isomorphism on TA, too.

Hence sheets are transverse to †t away from degenerate closed leaves and they are
transverse to I along attractive pieces. According to Lemma 3.7 the locus where sheets
are not transverse to †t corresponds to degenerate closed leaves of †t .�/.

Remark 3.15 Proposition 3.14 has important consequences for how sheets are embed-
ded into †� Œ�1; 1� when the contact structure is transverse to the foliation I given
by the second factor.

Let ˇ be a nondegenerate attractive closed curve in †�1 (the following discussion for
ˇ � †C1 is completely analogous). If one moves on the sheet A.ˇ/ containing ˇ ,
then the t –coordinate increases until either a degenerate closed orbit or †C1 is reached.
We will consider only the first case. Moreover, we assume that this degenerate leaf is
of birth-death type since otherwise the sheet simply continues.

By Lemma 3.7 the degenerate closed orbit is negative and after we cross the degenerate
closed leaf the sheet consists of repulsive closed orbits of †t and the t –coordinate
decreases as we move on A away from ˇ .

Along the part of A.ˇ/ which consists of either closed repulsive leaves of †t .�/ or
of a graph consisting of unstable leaves of positive hyperbolic singularities connected
to positive elliptic singularities such that the graph is diffeomorphic to a circle, the
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t –coordinate decreases until a degenerate closed orbit of birth-death type or †�1 is
reached unless the sheet simply ends in a level surface †t (this happens for example if
an elliptic singularity of the movie lying on A forms a cancelling pair with a hyperbolic
singularity which does not lie on A such that these two singularities merge on †t ).
Now assume that a degenerate orbit in †t 0 is reached on A.ˇ/ and the orientation of
this orbit is opposite to the orientation of ˇ . Then the t –coordinate increases as we
move on the sheet A.ˇ/ away from ˇ , but the part of the sheet consisting of attractive
closed leaves of †t .�/ is now trapped inside a solid torus bounded by the sheet and an
annulus in †t 0 . Therefore the sheet A.ˇ/ reaches the highest level

t.A.ˇ//D supft 2 Œ�1; 1� jA.ˇ/\†t ¤∅g

along an attractive closed leaf of †t.A.ˇ//.�/ which is attractive or degenerate, and the
orientation of this leaf coincides with the orientation of ˇ provided that the supremum
above is actually attained. The next thing we show is that this is always the case.

The situation described here is depicted in Figure 5 (which contains some notation
and a dashed line that will be explained later). The parts of A.ˇ/ which consist of
attractive leaves of †t .�/ are thickened.

t.ˇ/
t 0.ˇ/

†C1

C1

�1
ˇ †�1

A0 A�

A00

A.ˇ/

Figure 5: Sheet in †� Œ�1; 1� containing ˇ �†�1

The following lemma shows that degenerate closed orbits are the only way in which
attractive closed orbits of a movie in a contact manifold appear or disappear (the
lemma is wrong when � is just a plane field) when � is transverse to the second factor
of †� Œ�1; 1�. This also provides a natural way to compactify sheets consisting of
attractive closed leaves of †s.�/.

Lemma 3.16 Let A be a sheet consisting of closed attractive leaves of †t .�/ such
that †t \A is nonempty for t 2 Œ�1; b/.

The annulus A � †� Œ�1; b/ can be compactified by adding a closed leaf b of the
characteristic foliation of †b . The holonomy of b is attractive on the side determined
by the coorientation of � . If A�†� .b; 1�, then the holonomy of b is attractive on
the side opposite to the coorientation of � .
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Proof We consider the case A � † � Œ�1; b/. The set L D xA\†b is nonempty,
closed and saturated (ie a union of leaves of the characteristic foliation).

If L contains a nontrivial recurrent leaf � , ie a nonclosed leaf which accumulates on
itself, then we can find a closed curve � on †b transverse to †b.�/ through a given
point of � . Because � is recurrent this leaf intersects � infinitely many times and all
intersection points are transverse with the same sign when � is oriented. Then the
intersection number of ˇt DA\†t with � is unbounded as t approaches b . But this
is absurd since the homology class of ˇt �†t Š† is constant. Therefore L does not
contain a nontrivial recurrent leaf.

Now assume that L contains a degenerate closed leaf as a proper subset (there could be
a chain of degenerate closed leaves connected by leaves of the characteristic foliation).
Then every degenerate closed leaf is positive because otherwise two closed leaves of
†t .�/ would intersect A for t < b by Lemma 3.7. Figure 6 depicts a configuration
with one positive and one negative degenerate orbit.

†

Figure 6: Impossible limit configuration

But when all degenerate closed leaves are positive then using the leaves of †b.�/

which connect the degenerate closed orbits in L one can construct a closed curve �
transverse to †b.�/ which intersects the degenerate closed leaves. This leads to the
same contradiction as above. Thus L is a closed attractive leaf, or it is degenerate,
or L contains a cycle. If L is an attractive leaf we compactify A by adding it. Also,
if L is degenerate, then it has to be negative by Lemma 3.7 and serves as a natural
compactification of A.

In order to finish the proof we have to exclude the possibility that L contains a cycle �
consisting of stable/unstable leaves of singularities of index 0 or �1. For this recall
that all singularities of †t .�/ are positive. Therefore the holonomy of the characteristic
foliation is strongly repelling (this is the property described in Lemma 2.13) when one
passes from a stable leaf to an unstable leaf of the characteristic foliation.

We choose short transversals �i , i 2 Zm , of †b.�/, one for each stable leaf in the
cycle �, in cyclic order and intersecting L exactly once (as the segments �x; �y in
Figure 2 in Section 2B). Let xi D �i \ � . The holonomy of †b.�/ along � is defined
on the side where the attractive closed leaves in †t accumulate on �. Thus we obtain
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homeomorphisms 'i from a half-open interval in �i to a half-open interval in �iC1 (the
boundary points of the half-open intervals are xi D �i \�). These homeomorphisms
are smooth away from xi , and '0i.xi/D1 for all i 2 Zm by Lemma 2.13.

Consider the attractive leaf ˇt D A \†t for t < b close to b and the holonomy
diffeomorphisms  t it induces on open sets of �i to open sets of �iC1 . Let yt;i WD

�i \ˇt . Since ˇt is attractive,

 0t;1.yt;1/ � � � � � 
0
t;m.yt;m/ < 1:

Therefore we may (after choosing sequences and subsequences) assume without loss
of generality that  0

t;1
.y1/ < 1. But on the side of � where the holonomy of †b.�/

is defined  t;1 converges uniformly to '1 . This contradicts the fact that '1 is very
repelling.

So L is either an attractive closed leaf or a negative degenerate orbit of †b.�/.

According to Lemma 3.7 one can extend the sheet beyond xA\†b . Whenever there are
conditions which ensure that there is a closed repulsive leaf or union of stable leaves
of singular points of the characteristic foliation such that this union is the boundary of
the basin of A\†t , we will assume that this circle is smooth and we extend the sheet
we are considering as far as possible. A condition which often ensures that sheets can
be extended easily is that

� the contact structure is tight, and

� the basin of A\†t is contained in an annulus bounded by attractive closed
leaves of †t .�/.

Finally, we fix some terminology. We could say that a connected sheet is maximal
if it is not a proper subset of a connected sheet. The problem with this definition is
that leaves of characteristic foliations in a smooth sheet A can contain singularities
(all of the same sign). Therefore, a smooth Legendrian curve in A\†t can be the
limit of a family of nonsmooth Legendrian curves (the nonsmooth points are elliptic
singularities of the characteristic foliation) which would naturally extend the sheet if
they were smooth. However, the nonsmoothness of the curves can be easily corrected
using for example Lemma 3.4.

Definition 3.17 A connected sheet A is maximal if it is not a proper subset of a
smooth connected sheet and no component of @A is the limit of nonsmooth Legendrian
curves in †t such that all singularities have the same sign.
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3A5 Simplifying the dynamics of characteristic foliations in movies Let † be a
closed surface with positive genus g� 1. The purpose of this section is to describe how
contact structures on †� Œ�1; 1� can be isotoped so that the characteristic foliations
on †t have relatively simple dynamical properties when †t is not convex with respect
to the isotoped contact structure.

Definition 3.18 A surface † in a contact manifold has the Poincaré-Bendixson prop-
erty if †.�/ has no nontrivial recurrent orbits.

If † has the Poincaré–Bendixson property and †.�/ has only finitely many singularities,
then according to [46] all limit sets of leaves of †.�/ are

� closed leaves, or

� singular points, or

� cycles formed by singularities and leaves connecting them.

An embedded closed surface in a contact manifold has this property after a C1–generic
perturbation. The point of [24, Lemma 2.10] is to ensure this property for all those
surfaces †t � †� Œ�1; 1� which are not convex. We are going to use the following
simple refinement of that lemma.

Lemma 3.19 Let � be a contact structure on N D†� Œ�1; 1� such that the boundary
surfaces are convex. Then there is an isotopy of � relative to the boundary such that after
the isotopy †t has the Poincaré–Bendixson property for all t 2 Œ�1; 1� for which †t is
not convex.

If there is a sheet A.ˇ/ such that one boundary component ˇC of A.ˇ/ is contained
in †1 while the other boundary component ˇ� is contained in †�1 and ˇC; ˇ� are
nondegenerate and both attractive or both repelling, then the isotopy can be chosen to
preserve the sheet A.ˇ/.

Proof The proof follows Giroux’s proof of [24, Lemma 2.10] closely. We summarize
the required changes and the main idea. Let us first recall that the Poincaré–Bendixson
theorem (see [30, page 154]) states that a singular foliation on the plane or the sphere
has no nontrivial recurrent orbits.

For concreteness we assume that ˇC and ˇ� are both attractive. Then there is a family
of annuli Pt �†t containing †t \A.ˇ/ (this intersection may have several connected
components) such that @Pt is transverse to †t .�/. We chose the identification N Š

†� Œ�1; 1� such that Pt D P �† is constant. Now fix a graph F so that
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(i) F [P is planar,
(ii) the complement † nF [P is also planar, and

(iii) F is nonisolating in †C1 and in †�1 .

Then F can be realized as graph consisting of Legendrian curves, negative elliptic and
positive hyperbolic singularities. There is a positive number ı such that all surfaces †t

with t 2 Œ�1;�1C 3ı�[ Œ1� 3ı; 1� are convex. Using Lemma 3.3 and the usual proof
of the Legendrian realization principle (Lemma 2.18) we can now isotope � near the
boundary of N so that
� the isotopy is supported in the interval determined by jt � 1j � 3ı ,
� the characteristic foliation on †t is constant for t 2 Œ�1C ı;�1C 2ı� and

t 2 Œ1� 2ı; 1� ı�, and
� F is a leaf of the characteristic foliation on †t for t 2 Œ�1C ı;�1C 2ı� and

t 2 Œ1� 2ı; 1� ı�,

where all surfaces †t are convex while keeping � constant on @N so that for suitable
small real numbers ı˙ > 0, the graph F is realized as a Legendrian graph in †1�ıC

and †�1Cı� . Clearly, this can be done without changing anything near A.ˇ/.

A thickening of F combined with P is a planar subsurface Fin of † whose complement
is also planar. In addition, choosing the thickening appropriately, we may assume that
the characteristic foliation on †1�ıC and †�1Cı� is transverse to @F in . Let F out be
the complement of F in with a collar of the boundary removed. The collar is chosen so
that, following leaves of the characteristic foliation on the collar, one gets a retraction
of the collar onto @F out . The characteristic foliations point out of F out and into F in

for t 2 Œ�1C ı;�1C 2ı�[ Œ1� 2ı; 1� ı�.

Now choose a strictly monotone function gW Œ0; 1�! Œ1� 2ı; 1� such that g D id on
Œ1� ı; 1�. Pick an isotopy �� of N which translates along leaves of I such that

�1.F
in
t /D F in

g.t/ for t � 0;

�1.F
out
t /D F out

�g.�t/ for t � 0:

The contact structure y� D ��1
1�
.�/ has the desired properties: for t 2 Œ�1C ı; 1� ı�

there are no nontrivial recurrent orbits in †t .y�/ by the Poincaré–Bendixson theorem,
and †t is convex with respect to y� D � when t 2 Œ�1;�1C ı� or t 2 Œ1� ı; 1�.

Of course, Lemma 3.19 also holds in the presence of several sheets with the same
properties as A.ˇ/. The proof above implies that the resulting contact structure can be
assumed to be C 1 –generic with respect to the surfaces †t , ie we can make genericity
assumptions concerning for example the nature of connections between hyperbolic
singularities.
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3B Manipulations and properties of sheets

In this section we explain how to manipulate sheets and circumstances under which it
is possible to find overtwisted discs from certain configurations of sheets.

3B1 Simplifying sheets The next lemma is part of the proof of [24, Proposition 3.22].
It allows us to isotope � so that the sheet contains fewer degenerate closed curves after
the isotopy. For example, the part A0[A�[A00 of A.ˇ/ in Figure 5 can be replaced
by collection of attractive closed leaves of †t .�/.

Lemma 3.20 Let A � .†� Œ�1; 1�; �/ be a sheet such that A is the union of three
sheets A0;A�;A

00 with the following properties:

(i)  0 D A0 \A� and  00 D A00 \A� are degenerate closed orbits with parallel
orientations.

(ii) A� \†t is a smooth attractive Legendrian curve unless t D tmin or t D tmax ,
with

tmin Dminft 2 Œ�1; 1� jA�\†t ¤∅g;
tmax Dmaxft 2 Œ�1; 1� jA�\†t ¤∅g:

(iii) For all t 2 .tmin; tmax/ there is a compact annulus St � †t whose unoriented
boundary consists of A� \†t and A0 \†t such that St intersects no other
sheets of � .

Then there is a family of contact structures �s , s 2 Œ0; 1�, with �0 D � which is constant
near @A such that, after the deformation, there is a new sheet A1 which coincides
with A0 near the boundary where A1\†t is either empty or an attractive closed leaf.

The next lemma shows that a given degenerate closed leaf of birth-death type can
be replaced by a retrograde saddle-saddle connection. However, without additional
assumptions it is not possible to exclude the formation of degenerate closed leaves
passing through a given neighbourhood of the original degenerate leaf.

Lemma 3.21 Let � be a contact structure on †� Œ�1; 1� and  �†t with t 2 .�1; 1/

a degenerate closed orbit which is attractive on one side while it is repelling on the
other side. Then there is a contact structure � 0 which is isotopic to � , coincides with �
outside of an arbitrarily small neighbourhood of †t and  is replaced by a retrograde
saddle-saddle connection such that there is no degenerate closed leaf of †t .�

0/ in a
neighbourhood of  .
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Proof We consider the case when the degenerate closed orbit is negative. We use the
following model contact structure on A� Œ�ı; ı�; ı > 0, where AD S1 � Œ�1; 1� is an
annulus. On A0 we fix the following singular foliation:

(i) Both boundary components are parallel nonsingular Legendrian curves, one of
which is repelling and the other one attractive. They are both nondegenerate.

(ii) There are four nondegenerate singular points e˙; h˙ . Here e˙ and h˙ are
elliptic and hyperbolic points, respectively, with the ˙ indicating the sign of the
divergence.

(iii) There is a retrograde saddle-saddle connection starting at h� and ending at hC
such that for t > 0 the stable leaf which participates in the retrograde saddle-
saddle connection comes from the boundary of the annulus.

(iv) The remaining stable leaf of hC comes from eC , the remaining unstable leaf
of h� ends at e� .

(v) One stable leaf of h� comes from the repulsive boundary component, the other
from eC . The unstable leaves of hC connect hC to e� and to the attractive
boundary component.

By Lemma 2.11 this singular foliation is the characteristic foliation on A0 of a contact
structure on A � Œ�ı; ı�. By Lemma 3.10 the stable leaf of hC in At .�/ which
participates in the retrograde connection comes from eC when t < 0 and from the
repulsive boundary for t ¤ 0. The only nonconvex level is A0 .

By Lemma 3.5 we can eliminate hC; eC and h�; e� in A0 and since there is a unique
leaf connecting the hyperbolic singularity h˙ to e˙ there is a unique way to eliminate
the singularities. Outside of a neighbourhood of 0, either there is a pair of parallel
closed leaves in the interior of the annulus, or all leaves of the characteristic foliation
(except the boundary leaves) start at one boundary component and go to the other.
(Part (iii) of that lemma can be used to arrange that, away from a neighbourhood of A0 ,
there are exactly two or zero closed leaves in the interior of the annulus.)

After the elimination, the contact structure is transverse to a rank-1 foliation transverse
to As , s 2 .�1; 1/. According to Theorem 2.27 the contact structure is tight and there
are only three sheets: two at the boundary and one in the interior of the annuli. After
a deformation of the interior sheet there is exactly one negative degenerate orbit at
exactly one level.

This proves the claim in the model case. In order to deal with the general case note
that the degenerate leaf is part of a sheet (as explained in Section 3A2). The isotopy
used in Lemma 3.20 to reduce the number of connected components of the intersection
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of a sheet with surfaces in a product neighbourhood can be reverted so as to increase
this number (this is called folding; see also [34, Figure 19]). For example, the sheet
in Figure 5 in Section 3A4 can be obtained by folding a sheet which intersects each
surface at most twice.

After folding the sheets outside of a small neighbourhood of the degenerate closed
leaf we want to eliminate, and isotoping the folded part of the sheet to the surface
containing the degenerate leaf, we apply the construction of the model case. Then we
undo the folding using Lemma 3.20 to get the desired result.

The above lemmas allow us to arrange that the set of instances when †t is not convex is
discrete and the only cause of nonconvexity is the presence of retrograde saddle-saddle
connections.

Lemma 3.22 Let � be a contact structure on † � Œ�1; 1� with convex boundary
and A1; : : : ;An a collection of sheets consisting of attractive closed leaves of †t

connecting the two boundary components of †� Œ�1; 1�.

There is a contact structure �PB isotopic to � relative to the boundary and A1[� � �[An

such that for all t 2 Œ�1; 1� when †t .�PB/ is not convex there is a single retrograde
saddle-saddle connection. The number of t with †t not convex with respect to �PB is
finite. Moreover, the upper basin of Ai \†t is compact for all t where †t .�PB/ is
not convex.

Proof We assume that n D 1 and abbreviate A1 D A. First, we arrange that the
characteristic foliation on †t has no nontrivial recurrent leaves at nonconvex levels.

This can be done by applying Lemma 3.19 to †� Œ�1; 1� with respect to the sheet A.
Recall that in the proof of Lemma 3.19 we arranged that, for nonconvex levels, †t is
decomposed into two planar regions such that †t .�

0
PB/ is transverse to the boundary of

the regions. Since the latter condition is open, we may impose that the movie †t .�
0
PB/

is generic.

The planarity of the regions also implies that if � is a degenerate closed orbit of †t .�
0
PB/

for t 2 Œ�1; 1� then there is no sequence of closed orbits �i of †ti
.� 0PB/ whose limit

contains �: If such a sequence would exist, then there would be a closed orbit �i whose
intersection number with � is positive. But � and �0 have to be contained in the same
region from the proof of Lemma 3.19 since they intersect and they are transverse to
the boundary of the regions from the proof of Lemma 3.19. But two closed curves
contained in a planar region have vanishing intersection number. Hence the set of
levels †t with t 2 Œ�1; 1� containing a degenerate closed orbit is discrete and hence
finite.
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Using Lemma 3.21 we isotope the contact structure � 0PB on the union of neighbourhoods
of degenerate closed orbits such that after the isotopy we obtain a contact structure �PB

where there are no degenerate closed leaves in the movie †t .�PB/ for t 2 Œ�1; 1�. This
amounts to introducing cancelling pairs of singularities inside the regions from the
proof of Lemma 3.19. Hence this operation does not affect the Poincaré–Bendixson
property.

So at all nonconvex levels †t .�PB/, t 2 Œ�1; 1�, has a retrograde saddle-saddle connec-
tion and by genericity we can arrange that each level contains at most one connection
between saddle points. Moreover, each retrograde saddle-saddle connection is isolated
because of Lemma 3.10 because the stable leaves of h� and unstable leaves of hC of
the singularities participating in such a connection are rigidly attached to some stable
limit set of the characteristic foliation for levels close to the level where the retrograde
saddle-saddle connection occurs. Thus �PB has the desired properties except maybe
the compactness of the basin.

Let t 2 Œ�1; 1� be such that †t is not convex with respect to �PB . If the upper basin of
A\†t is not compact, then we can introduce cancelling pairs of singularities along all
closed leaves and cycles of †t .�PB/ (the signs of the singularities have to be chosen in
such a way that we do not introduce retrograde saddle-saddle connections when we
place the singularities on cycles). Then the upper basin of A\†t is compact (also on
nearby levels).

3B2 Overtwisted discs from compressible sheets Giroux’s criterion (Lemma 2.32)
implies that a convex oriented surface † has a tight neighbourhood if and only if no
component of the dividing set bounds a disc, unless † is a sphere. In this section we
give a criterion for finding overtwisted discs from sheets with particular properties. The
following lemma is essentially [24, Lemma 3.34].

Lemma 3.23 Let � be a contact structure and †� Œ�1; 1� such that there is a sheet A

with the following properties:

� A bounds a solid torus S1 �D2 in the interior of †� Œ�1; 1�. Let

tmin Dminft 2 Œ�1; 1� jA\†t ¤∅g;
tmax Dmaxft 2 Œ�1; 1� jA\†t ¤∅g:

� For one level surface †t with tmin < t < tmax there is a repulsive closed leaf ˛t

of †t .�/ which is disjoint from the solid torus and isotopic to one of the curves
A\†t so that the annulus bounded by ˛t and the attractive leaf of †t .�/ in
A\†t contains no other closed leaf of †t .�/.

Then � is overtwisted.
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Proof Without loss of generality we assume ˛t is nondegenerate and t D 0. Then ˛0

is part of a sheet A.˛0/ which intersects nearby surfaces in repulsive curves close to ˛0 .
Using Lemma 3.5 we can arrange that the annulus bounded by ˛0 and a connected
component of A.˛0/ \ †0 does not contain a singular point of the characteristic
foliation. Furthermore, we create a cancelling pair of negative singularities e; h on †t

such that all leaves which end at e come from the repulsive closed curve A\†t except
one unstable leaf of h. Just like the closed repulsive leaf on the other side of A\†t ,
this configuration persists in nearby levels, and by applying Lemma 3.20 to A we may
assume that for all t 2 Œtmin; tmax� there is a cancelling pair of negative singularities
and a nondegenerate repulsive closed leaf parallel to A, and by Lemma 3.4 we can
replace these repulsive leaves by circles in †t consisting of positive singularities of
the isotoped contact structure. As in [24], we achieve the following conditions:

� A\†� is either empty, connected or has two connected components, and A\†�
contains no singularities of the characteristic foliation except when � D 0 and
A\†0 consists of two circles of singularities (one negative, the other positive).

� When A\†� consists of two connected components they have parallel orienta-
tions, so the two components do not bound a Reeb component.

We will find an overtwisted disc in a surface consisting of one arc in †� with � 2 J ,
where J is a closed interval containing Œtmin; tmax� in its interior.

(1) The first piece �1 of the boundary of a surface containing D consists of the
family of negative elliptic singular points e� of †� .�/ which contains e , and
� is contained in a closed interval J which is slightly larger than Œtmin; tmax�.
When �1 is oriented from top to bottom it is positively transverse to � .

(2) The upper endpoint of �1 is connected to A.˛0/ by a Legendrian arc in a surface
sightly above †tmax . Let �4 be one of the Legendrian curves connecting e�
to A0 .
Similarly, the lower endpoint of �1 is connected to A.˛0/ by a Legendrian
curve �2 , and we now use the orientation opposite to the orientation of �2

viewed as a leaf of the characteristic foliation.

(3) For each point e� between the two endpoints of �1 we choose an arc in †�
which connects e� to A.˛0/\†� such that the part of the arc which is transverse
to the characteristic foliation is connected (this part may be empty). If we orient
all arcs so that they point to the negative elliptic singularity, then the arc is never
tangent and anti-parallel to the characteristic foliation on †� , except in †0

where the arc is Legendrian.

(4) �3 is an arc in A.˛0/ consisting of the endpoints of the arcs we have just picked.
We orient �3 from bottom to top. Then �3 is positively transverse to � .
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The concatenation � of �1; �2; �3; �4 is a piecewise smooth curve whose smooth
segments are positively transverse to � or Legendrian, and � bounds D . We orient D

so that � D @D . From the properties of A and the characteristic foliations on †� it
follows that all singularities of the characteristic foliation on D are positive except
one point in the interior of D \ A. Moreover, D \ A is a circle in D such that
the characteristic foliation on D points inwards. Since all singular points of the
characteristic foliation on D which do not lie in the disc bounded by D \ A are
positive, the basin formed by all flow lines whose !–limit set is inside the disc bounded
by A\D is well-defined and it yields an overtwisted disc.

The second condition of Lemma 3.23 can be achieved using the Legendrian realization
principle (Lemma 2.18) if the curves A \ †t are nonseparating and the genus is
at least two. If † Š T 2 , then the results in [24] show that the presence of a sheet
bounding a solid torus without any further assumptions does not suffice to produce
an overtwisted disc (the corresponding contact structures on T 2 � Œ0; 1� are tight, but
virtually overtwisted).

3B3 Transverse contact structures on †� Œ�1; 1� The purpose of this section is
to prove that contact structures on † � Œ�1; 1� which are transverse to the second
factor are tight when the boundary does not have a neighbourhood with an obvious
overtwisted disc. For this and for other purposes we give an efficient construction of
contact structures transverse to the foliation I given by the second factor of †� Œ�1; 1�.
We shall assume that the genus of the underlying surface is at least two, the case of
tori is simpler.

The construction of contact structures transverse to I is explained in the following
example, which yields a contact structure on †�R that is a complete connection of
the R–bundle because it is periodic with respect to a translation of the second factor.

Example 3.24 Let † be an oriented surface of genus g� 2. We fix two nonseparating
oriented disjoint closed curves  0;  00 and we choose four singular foliations F1; : : : ;F4

on † such that all singularities have positive divergence as follows:

(1)  0 is a closed attractive leaf of F1 with nondegenerate holonomy,  00 is a curve
with attractive holonomy on one side and repulsive holonomy on the other side such
that the degenerate closed leaf marks the birth of a pair of parallel closed leaves on
surfaces †t in †� .�"; "/ which lie above †0 (see Lemma 3.7). All leaves of the
characteristic foliation whose ˛–limit set is  00 accumulate on  0 (except  00 itself, of
course) and, except for the degenerate closed orbit, F1 is of Morse–Smale type. By
Lemma 2.11, there is a contact structure �1 on †� Œ�1; 1� such that F1D†0.�1/ and
the only nonconvex level is †0 .
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(2)  00 is a closed attractive leaf of F2 with nondegenerate holonomy and  0 is a
closed degenerate leaf such that this marks the disappearance of a pair of closed leaves
on †s of the contact structure �2 on †� Œ�1; 1� determined by F2 D †0.�2/. All
leaves of F2 which come from  0 accumulate on  00 (except  0 ). So for s < 0 there
are two attractive closed leaves on †s while there is only one for s > 0.

(3)  00 is an attractive closed leaf of F3 while  0 is a degenerate closed leaf, but in
contrast to F2 it now marks the birth of a pair of nondegenerate closed leaves. Again,
all leaves whose ˛–limit set is  0 have  00 as their !–limit set (again, except  0 ). The
corresponding contact structure on †� Œ�1; 1� is called �3 . For s < 0 there is only one
attractive closed leaf on †s isotopic to  00 while for s > 0 there are two such leaves,
one of them isotopic to  0 and the other isotopic to  00 .

(4)  0 is a closed attractive leaf of F4 and  00 is a degenerate closed leaf which marks
the cancellation of a pair of nondegenerate closed leaves of �4 . Again, we require that
all leaves of F4 coming from  00 to have  0 as their !–limit set.

For each contact structure �i , i D 1; : : : ; 4, on †�Ii Š†� Œ�1; 1�, the surface †t is
convex except when tD 0. In order to glue the two pieces such that the resulting contact
structure has no negative singularity, a little bit of care is needed since the condition
(3-5) concerning the position of tangent spaces of sheets consisting of attractive closed
leaves, the contact planes along these sheets, the tangent spaces of the surfaces and the
vertical direction has to be satisfied. Isotoping the foliation F2 so that the attractive
closed leaves lie on the side of  0 and  00 which is opposite to the side determined by
the coorientation of the leaves in the surface, we can glue the two contact structures � 0

1

and � 0
2

(which are restrictions of �1 and the (isotoped) contact structure �2 , respectively)
to †� I1 and †� I2 , respectively, using Lemma 3.3, such that the resulting contact
structure �12 on †� .I1[ I2/ is transverse to the second factor.

Similarly, one can now combine isotoped versions of �12; �3 and �4 to obtain a contact
structure on † �

�S
i Ii

�
Š † � Œ0; 1� transverse to the second factor such that the

contact structure � near †0 coincides with the contact structure on †1 when we use
the second factor to identify these levels.

In order to obtain a contact structure on †�R which is transverse to the second factor
and complete when viewed as a connection it suffices to glue infinitely many copies
together.

Lemma 3.25 Let † be a closed surface of genus g � 1 and � a contact structure on
†� Œ�1; 1� transverse to the fibres of the projection †� Œ�1; 1�!† such that †˙1 is
convex and no component of the dividing set bounds a disc. Then � is universally tight.
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Proof Since � is transverse to the foliation I defined by the second factor in
†� Œ�1; 1�, it is automatically extremal, ie jhe.�/; Œ†�ij D 2g� 2, and we coorient �
using the second factor. In particular, he.�/; Œ†�i D 2 � 2g . By assumption, no
component of the dividing set on †˙1 bounds a disc. Hence the dividing curves on
each of the surfaces †˙1 come in pairs, each pair bounding an annulus containing a
closed attractive leaf.

The idea of the proof is to embed .†� Œ�1; 1�; �/ into .†�R; y�/ so that y� is transverse
to the foliation yI corresponding to the R–factor and y� is a complete connection on
†�R!†. Theorem 2.27 then implies that y� is universally tight, and hence the same
is true for � (the embedding of †� Œ�1; 1� maps †0 to †� f0g �†�R).

We attach layers of contact structures obtained as in Example 3.24 in order to succes-
sively reduce the number of connected components of the dividing set and to arrange
that in the end the only attractive closed curve is nonseparating in †. Using Lemma 3.3
we can modify the characteristic foliations so that at each step of the elimination no
new attractive closed curves appear. Some care is needed when we want to eliminate
a component which separates the surface into two pieces. In this situation one first
introduces a nonseparating closed repulsive curve using Lemma 2.18. Using the folding
procedure we obtain a contact structure with an attractive closed leaf isotopic to the
repulsive curve.

We end up with a contact structure on †� Œ�2; 2� which is transverse to the second
factor, has convex boundary and the characteristic foliation on the boundary has exactly
one nonseparating attractive curve. We then attach infinitely many layers obtained in
Example 3.24.

Remark 3.26 The condition that no component of the dividing set of †˙1 bounds a
disc clearly cannot be omitted. However, if there is one component  of the dividing set
which bounds a disc, then we consider the case that D contains no other component
of the dividing set.

Then there is an attractive closed leaf ˇ bounding a larger disc Dˇ containing D in its
interior since the interior of D necessarily contains a singular point which is positive
by transversality. Now consider the basin of all leaves of †˙1.�/ which leave D

through  . The closure of the basin may not contain any singularities at all (since they
would have the opposite sign as the singularities inside the disc).

Therefore the basin has Legendrian boundary and is again a disc. The boundary is an
attractive closed orbit.
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3C Boundary elementary contact structures

Let † be a closed oriented surface of positive genus g and � a contact structure on
N D †� Œ0; 1�. For our purposes it suffices to consider only the case when @N is
convex. We require that the contact structure is extremal in the sense that

(3-6) �.†/D 2� 2g D he.�/; Œ†�i;

where e.�/ is the Euler class of � viewed as an oriented vector bundle. The Thurston–
Bennequin inequalities (2-3) imply that the left-hand side of (3-6) cannot be bigger
than the right-hand side provided that � is tight.

When † has Legendrian boundary and †.�/ has no singular points on @†, the
Thurston–Bennequin inequality (2-3) for closed surfaces remains true (this can be seen
by doubling the surface). In this situation it therefore still makes sense to speak about
extremal contact structures, and again †� is a union of annuli when † is convex for
an extremal contact structure � .

From now on we assume that � is tight. By Corollary 2.33 the surface †� is then the
union of annuli whenever † is convex. Each such annulus contains a Legendrian curve
which is the !–limit set of all leaves entering the annulus. Let ˇ denote such a curve.
We will sometimes refer to such curves as sinks.

The following definition is an adaptation of [24, Definition 3.14] for our situation.

Definition 3.27 A contact structure is boundary elementary with respect to the product
decomposition †�Œ0; 1� of N if for each annulus of †�i containing the sink ˇ , iD0; 1,
there is an annulus A.ˇ/ which is foliated by Legendrian curves in A.ˇ/\†t so that
ˇ � @A.ˇ/� @N .

Compared to Giroux’s definition in [24] of elementary contact structures there are two
differences:

(i) If � is elementary in the sense of [24], then this has consequences for all closed
leaves of characteristic foliation on .@N /.�/. Definition 3.27 requires only the
existence of some repulsive closed leaves of the characteristic foliation on @N .

(ii) Definition 3.27 does not put restrictions on the characteristic foliation of all
surfaces †t in the interior of N .

Given a contact structure on N , we will need to isotope � so that it becomes boundary
elementary. This is relatively easy to achieve when † D T is a torus because if
Tt .�/ intersects a sheet A in a homotopically nontrivial curve, then by the Poincaré–
Bendixson theorem Tt .�/ has no nontrivial recurrent leaf since the complement of
A\T is planar.
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3C1 The pre-Lagrangian extension lemma The following lemma will be the main
tool for the extension of pre-Lagrangian surfaces.

Lemma 3.28 Let � be a contact structure on N D†�Œ�1; 1� such that †˙1 is convex
and @†t is an attractive Legendrian curve for all t . Assume that A is a sheet and the
following conditions are satisfied:

(i) � satisfies the extremal condition (3-6) (and the paragraph following this equa-
tion).

(ii) A is transverse to †t for all t 2 Œ�1; 1� and ˇt D A\†t is a nonseparating
curve. All sheets which meet †�

˙1
connect †�1 and †1 .

(iii) ˇt is either a closed attractive leaf or contains only negative singularities.

(iv) For i D ˙1 the characteristic foliation †i.�/ has a repulsive closed leaf ˇ0i
parallel to A\†i . Moreover ˇ0

C1
and ˇ0

�1
lie on the same side of A.

(v) The maximal sheet A0
˙1

containing ˇ0
˙1

does not connect ˇ0
˙1

to a repulsive
leaf in the same boundary component of N .

Then � is isotopic to a contact structure y� such that the isotopy is the identity near the
boundary and A and there is a sheet yA connecting ˇ0

�1
and ˇ0

1
.

The proof of this lemma is rather lengthy and will be given in Section 3C2. Our
main application of Lemma 3.28 is the following result which we will refer to as the
pre-Lagrangian extension lemma.

Lemma 3.29 Let � be an extremal contact structure on N D †� Œ�1; 1� such that
the boundary is convex, @†t is an attractive Legendrian curve, � is transverse to the
foliation I corresponding to the second factor and there is a pair of isotopic closed
leaves ˇ; ˇ0 of †�1.�/ such that ˇ is attractive and ˇ0 is repulsive and the following
conditions are satisfied:

(i) The maximal sheet containing ˇ does not connect the two boundary components
of †.

(ii) ˇ0 is not part of a properly embedded sheet in N .

(iii) ˇ0 lies on the side of ˇ opposite to the coorientation of � .

(iv) For all other attractive closed leaves ˛ of †�1.�/ or †C1.�/, the maximal sheet
containing ˛ connects the two boundary components of N .

(v) No sheet meets the interior of the annulus bounded by �ˇ[ˇ0 .

Then there is a contact structure y� isotopic to � relative to the boundary such that the
sheet yA.ˇ/ containing ˇ is properly embedded and @ yA.ˇ/D�ˇ[ˇ0 .
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There is an analogous lemma when ˇ �†1 . In that case ˇ0 is supposed to lie on the
side determined by the coorientation of � (in requirement (iii) above). The dashed
line in Figure 5 in Section 3A4 corresponds to an extension of the sheet A.ˇ/ where
ˇ �†�1 .

Proof Since A.ˇ/ does not connect the two boundary components of N we have

t.ˇ/Dmaxft 2 Œ�1; 1� jA.ˇ/\†t ¤∅g< 1:

By Lemma 3.16 and Lemma 3.7, A.ˇ/\†t.ˇ/ is a closed degenerate leaf and there is
a level t 0.ˇ/ such that for t 0.ˇ/� t < t.ˇ/ the characteristic foliation on †t contains
a closed attractive leaf ˇt D A.ˇ/\†t and a closed repulsive leaf ˇ00 parallel to
ˇ which lies on the side of ˇt opposite to the coorientation of the contact structure.
(So the pairs ˇ; ˇ0 and ˇt ; ˇ

00
t are isotopic.) Note that ˇt is isotopic to ˇ as oriented

curves since there are no negative singularities.

After applying Lemma 3.20 to all sheets, we may assume that the restriction of � to
†� Œ�1; t 0.ˇ/� satisfies the hypothesis of Lemma 3.28. Then we obtain the desired
contact structure y� .

3C2 The proof of Lemma 3.28 Before we start with the proof we fix some notation:
for fixed t let �C be the graph on †t formed by positive singularities and stable leaves
of positive singularities of †t .�/ together with repulsive closed leaves, and let �� be
the graph formed by negative singularities and unstable leaves of negative singularities
and attractive closed leaves. Thus �C; �� is not the dividing set of any surface (we
want to use the same notation as in [24]).

By the extremal condition (3-6) the connected components of �� are either nonclosed
trees or homeomorphic to one circle with finitely many (eventually nonclosed) trees
attached to the circle. In order to simplify the presentation we assume that every
repulsive closed leaf appearing in a path in �C is replaced by a pair of positive
cancelling singularities such that both unstable leaves of the new positive hyperbolic
singularity come from the new elliptic singularity and the path passes through the new
elliptic singularity.

In the proof below we assume that � is tight. If that proof does not work for a given
overtwisted contact structure, then this is because there is an overtwisted disc in the
complement of the sheets A.ˇ/ and A.˛/ for ˛ an attractive closed leaf of †�1.�/.
Then the classification of overtwisted contact structures (Theorem 2.26) implies all
claims of the lemma.
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Proof of Lemma 3.28 Before we begin the construction note that by Lemma 3.20 we
may assume that every sheet connecting a component of †�

�1
to a component of †�

1

is transverse to †t for all t . Furthermore, when we refer to the basin of ˇt we mean
the basin lying on the same side of ˇt as ˇ0

˙1
.

If †t .�/ is convex for all t 2 Œ�1; 1�, then by Lemma 3.4 or Lemma 3.3 we can
isotope � without changing A so that the characteristic foliation of the isotoped contact
structure on †t has a closed repulsive leaf parallel to ˇt DA\†t for all t 2 Œ�1; 1�.
The collection of these repulsive leaves then provides the desired sheet A0 .

If †t is not convex for all t we will arrange that the basin of A.ˇ\†t / never contains
a negative singularity and construct the desired sheet. All this will be achieved in three
steps: In Step 1, we arrange that there are only finitely many nonconvex levels and
after that, in Step 2, we deal with each nonconvex level individually. In Step 3 we
apply Lemma 3.4 to construct the desired extension of A.ˇ/.

Step 1 According to Lemma 3.22, � is isotopic to a contact structure �PB (the subscript
PB refers to the Poincaré–Bendixson property) with the following properties:

� There are only finitely many levels t 2 Œ�1; 1� where †t .�PB/ is not convex.
Moreover, at all these levels a single retrograde saddle-saddle connection is
responsible for the nonconvexity and †t .�PB/ has no nontrivial recurrent leaves.

� The basin of ˇt is compact for all nonconvex levels.

If †t .�PB/ contains a retrograde saddle-saddle connection, then we denote the negative
and positive singularities participating in the retrograde connection by h� and hC ,
respectively. These singularities persist on nearby surfaces and we will denote these
singularities also by h˙ .

Step 2 Let t be a nonconvex level such that one of the singular points hC or h� of
†t .�PB/ is contained in the closure of the basin of ˇt . We will isotope �PB without
creating new nonconvex levels such that †t becomes convex or the retrograde saddle-
saddle connection does not interact with the basin of ˇt .

In the following we assume that all negative hyperbolic singularities of †� .�PB/

except h� have been eliminated for � close to t . Hence †t .�/ has exactly two
negative singularities (one of them is h� , the other one is elliptic).

Case A Both stable leaves of h� are contained in the boundary of the basin, ie h�
is a pseudovertex of the basin of ˇ� for � ¤ t sufficiently close to t , and the isotopy
type of the dividing set of †� does not change when � crosses t .

If h� is a pseudovertex of the basin of ˇt , then we apply Lemma 3.11: Let �0; �00

denote the unstable leaves of hC . Let � 0� and � 00� be the connected components of ��
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containing the !–limit sets of �0 and �00 , respectively. This configuration is shown in
Figure 7.

� 0� � 00�
�0 �00

hC

h�

ˇt

Figure 7: Configuration in Case A

Because �PB is extremal and tight, both � 0� and � 00� are trees since otherwise †�� .�PB/

would have components which are not diffeomorphic to annuli for � > t or � < t by
Lemma 3.10. For the same reason � 0� D �

00
� because otherwise the dividing set of

†�� .�PB/ would contain a component bounding a disc for � close to t . Hence we can
indeed apply Lemma 3.11 so that the number of nonconvex levels is reduced by one.

Now consider the case when the hyperbolic singularity h� is not a pseudovertex of the
basin of ˇt . Then the unstable leaf connecting h� to ˇ� for � ¤ 0 is the unstable leaf
of h� which participates in the retrograde saddle-saddle connection when � D t . So
hC is part of the basin of ˇt and both unstable leaves of hC accumulate on ˇt (from
the side containing the basin under consideration).

In this situation, both unstable leaves of hC accumulate on ˇt from the same side
and the region bounded by the two unstable leaves of hC contains a positive elliptic
singularity eC because �PB is tight. Thus we can eliminate the singular points eC; hC
of †t .�PB/ and on nearby surfaces.

In this way we have reduced the number of nonconvex levels by one. In particular,
we did not lose the properties of the movie (like the Poincaré–Bendixson property,
compactness of basins at nonconvex levels or the discreteness of nonconvex levels all
of which are nonconvex due to the presence of retrograde saddle-saddle connections).

Case B Only one unstable leaf of h� is contained in the closure of the basin while
the other one is not. Then h� is a corner of the basin and one unstable leaf of h� is
connected to a positive hyperbolic singularity. Since generically there is at most one
saddle-saddle connection hC is a pseudovertex of the basin of ˇt .

Let � 0C be the connected component of �C containing hC and � 0� the connected
component of �� containing h� . The unstable leaf of h� which does not participate
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in the retrograde saddle-saddle connection will be denoted by �. The unstable leaves
of hC are denoted by �; �0 and � accumulates on ˇt (see the left part of Figure 8).
In order to obtain closed graphs we remove the retrograde saddle-saddle connection
between h� and hC from � 0

˙
. As before, � 0� has to be a tree.

Assume that � accumulates on ˇt while the other unstable leaf �0 of hC does not
accumulate on ˇt from the same side as � (if that happens we are in the situation of
the second part of Case A). There are two subcases depending on whether the !–limit
set of �0 is contained in � 0� or not.

Case B1 The easier case is when the !–limit set of �0 is not contained in � 0� . As
in Case A the isotopy type of the dividing set of †� .�PB/ does not change when �
passes t . Therefore we can again apply Lemma 3.5 to both singularities in � 0� without
losing the properties mentioned at the end of Case A. Thus we simply eliminated one
nonconvex level by removing the negative hyperbolic singularity participating in the
retrograde connection.

Case B2 The much more intricate case is when the !–limit sets of � and �0 are both
contained in � 0� . In this situation, a pair of dividing curves appears (resp. disappears)
as � crosses t and the corresponding component of †�� splits off (resp. merges) with
the component of †�� containing A\†� .

Case B2.1 There is a simple path c in � 0C with the following properties:

(i) The unstable leaves of the positive hyperbolic singularities on c lying on the
same side of c as the stable leaf of hC which is connected to � 0� are also
connected to � 0� .

(ii) The !–limit set y̌t of the other unstable of yhC is either different from ˇt or
this unstable leaf accumulates on ˇt from the other side than the unstable leaf �
of hC .

(iii) yhC is the only hyperbolic singularity on c with this property.

This configuration is schematically depicted in Figure 8, where c is the thickened curve.

� 0�
�

h�

ˇt

hC
�0

� 0� � 0�

�

yhC

y̌
t

Figure 8: Configuration in Case B2.1
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Using Lemma 3.5 (in particular part (ii) of that lemma) starting at the elliptic singularity
closest to yhC we can eliminate the hyperbolic/elliptic singularities along c so that
the retrograde connection between h� and the no-longer present hC is replaced by
a retrograde saddle-saddle connection of h� with yhC .

The benefit for us is that the appearance/disappearance of the component of †��
containing h� at the nonconvex level � D t has no longer anything to do with the
basin of ˇt . Now the component of †�� containing h� splits off from or merges with
a component of †�� different from the one containing †�� \A or this happens on the
side of ˇ� opposite to the side under consideration. The construction does not affect
the properties mentioned at the end of Case A.

Case B2.2 If there is no path with the properties of c in Case B2.1, then the basin
of � 0C , ie the closure of leaves of the characteristic foliation whose ˛–limit set is
contained in � 0C , is a subsurface S with two boundary components and corners.
One boundary component is ˇt while the other boundary component contains � 0�
and h� is a corner. (Recall that by genericity we may assume that for all � , the
characteristic foliation on †� has at most one saddle-saddle connection.) Also, if � 0�
were contained in the interior of the closure of the basin of � 0C then the current
assumption (nonexistence of a path like c from Case B2.1) would imply that ˇt bounds
a subsurface of †t . But ˇt is nonseparating.

Let †�� .h�/ be the connected component of †�� which contains h� for � close to t for
the relatively open subinterval I.h�/� .�1; 1/ where this region does not contain ˇ� .

The boundary points of I.h�/ correspond to nonconvex levels and we eliminate all
negative singularities from the characteristic foliation of �PB on these levels. According
to Lemma 3.16 the closure of A0 in †� Œ�1; 1� is obtained by adding degenerate orbits
to A0 . (In order to obtain a smooth sheet we have to make sure that the graph formed
by unstable leaves of negative singularities and elliptic singularities in †�� .h�/ with
� 2 I.h�/ is smooth, but this can be achieved by modifications in neighbourhoods of
elliptic singularities in †�� .h�/.)

While in the situation of Case B2.1 it was not possible in general to prevent the formation
of nontrivial recurrent orbits or an infinite number of degenerate closed leaves, now
the fact that no leaf of the characteristic foliation can enter the surface S through ˇt

implies that we do not lose the Poincaré–Bendixson property at nonconvex levels and
only one degenerate closed leaf appeared. (At most one annulus in †� degenerates
at a given nonconvex level.)

Our present goal is to isotope the contact structure so that A0 disappears completely.
There are two possibilities:
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(1) Both boundary components of A0 meet one of the surfaces †� with �1< � < 1

and the degenerate closed leaves of the characteristic foliations at these levels
are parallel

(2) Like (1), except that the degenerate closed leaves are anti-parallel.

It will turn out that the second possibility contradicts the tightness of � . But first, we
deal with the first two cases (which can be treated simultaneously) using an inductive
procedure.

There are two extreme situations, namely �.S/D 0 (ie S is an annulus) and �.S/D
�.†/ (then † nS is an annulus), and the intermediate cases �2� �.S/� �.S/C 2.

The case �.S/ D 0 is straightforward: ˇ� and A0 \†� with � 2 I.h�/ bound an
annulus S� �†t such that both boundary curves are attractive closed curves (except
in the boundary levels of A0 ). After eliminating all superfluous negative/positive
singularities in St we obtain a family of repulsive closed curves separating the two
boundary components. This allows us to eliminate A0 completely using Lemma 3.20.
By this procedure we have reduced the number of nonconvex levels.

The case �.S/ D �.†/ can be treated in the same fashion when one considers
S 0 D†t n S̊ or, in a more indirect fashion, inductively as the nonextremal cases.

In order to treat the case when �.S/ is not �.†/ or 0, we note that we may assume
by induction (the induction starts with �.S/D 0) that the lemma was already proved
for surfaces with attractive Legendrian boundary of lower genus. This is possible since
neither the lower or the upper basin of A0 \†t can contain ˇt . Thus we may cut
†� Œ�1; 1� along A.ˇ/\ .†� Œ�1; 1�/. Then the pre-Lagrangian extension lemma
can be applied to A0 . Using Lemma 3.20 A0 can be eliminated completely or moved
out of †� Œ�1; 1�. We have thus reduced the number of nonconvex levels in Œ�1; 1�

and at each such level there is only a retrograde saddle-saddle connection.

As we shall see, we encounter only case (1) from above when the contact structure is
tight. Hence after finitely many steps we have eliminated all negative singularities in the
closure of the basin of ˇt at nonconvex levels without losing the Poincaré–Bendixson
property at nonconvex levels and the nonconvexity is again due only to retrograde saddle-
saddle connections. The compactness of the basin at these levels is now easily arranged.

We now show that the case (2) from above does not occur when � is tight. Again this
is by induction on the genus. We can cut †� Œ�1; 1� along A and we eliminate the
negative singularities near both ends of A0 thus replacing the retrograde saddle-saddle
connections by degenerate closed leaves of characteristic foliations. Then we can
extend the pre-Lagrangian surface A0 to a pre-Lagrangian torus bounding a solid torus.
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Now we apply the pre-Lagrangian extension lemma to the basin of the attractive curves
in A0 on the side opposite to S . Again this surface has lower genus and therefore we
can find a pre-Lagrangian surface parallel to A0 which consists of repulsive closed
curves in †t . But then the contact structure is overtwisted according to Lemma 3.23.

This shows that case (2) does not occur and after an isotopy of � we may assume
that the lower of ˇt does not contain a negative singular point at nonconvex levels.
Moreover, there are still only finitely many nonconvex levels in Œ�1; 1� all of which
correspond to retrograde saddle-saddle connections. The contact structure obtained
after these isotopies is still denoted by �PB .

Step 3 We now construct the desired pre-Lagrangian extension of A.ˇ/. For all t

such that †t .�PB/ is not convex the boundary of the closure of the basin of ˇt does
not contain a negative singularity. Let Vt � †t be a collar of ˇt lying in the basin
(covered by .Qt DS1� Œ0; 1�;Vt D∅; ˛t /) such that †t .�PB/ is transverse to @Vt nˇt

and all leaves of the characteristic foliation entering Vt accumulate on ˇt .

Fix a domain Ft �†t containing a neighbourhood of the basin of ˇt with Vt removed
such that Lemma 3.4 can be applied to Ft . Such a neighbourhood exists because
˛.S1�f1g) contains only positive singularities and no stable leaf of a positive hyperbolic
singularity in ˛.S1 � f1g/ comes from a negative singularity by construction. We
modify the contact structure on neighbourhoods of Ft to obtain the attracting closed
curves parallel to ˇt near levels where �PB is not convex. Once we have dealt with
nonconvex levels we apply Lemma 3.3 to obtain the desired contact structure y� .

In this last step we have used again that ˇ and hence also ˇt is nonseparating (as in
Lemma 2.18).

4 Transitive confoliations

In this section we prove Theorem 1.4 for transitive confoliations. Since a parametric
version is not much more difficult we present that version. We fix once and for all a
Riemannian metric on M which we use to define the C k –topologies on the space of
plane fields on M .

Before we state Colin’s result recall that according to Gray’s theorem every contact
structure � on a closed manifold M has a C 1 –neighbourhood such that every contact
structure in that neighbourhood is isotopic to � . This follows from the fact that the
contact condition is open in the C 1 –topology. In particular, the contact structures
interpolating between some contact structure � 0 in the C 1 –neighbourhood and � can
be chosen inside that neighbourhood. Colin has shown the following stability theorem
for C 0 –neighbourhoods.
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Theorem 4.1 [6] Let � be a contact structure on the closed 3–manifold M . Then
there is a C 0 –neighbourhood U of � in the space of smooth plane fields so that every
contact structure in U is isotopic to � .

The family of contact structures constructed in the proof of this theorem does not
necessarily stay in U . We now extend this theorem further to the case when � is a
transitive confoliation.

Theorem 4.2 Let � be a transitive confoliation on a closed manifold M . Then there
is a C 0 –neighbourhood U of � such that the space of positive contact structures in U

is weakly contractible in the space of all contact structures on M .

We now give a very rough outline of the main difficulty of the proof in the nonparametric
case. Let � be a transitive confoliation. We choose a decomposition of M into
polyhedra which are adapted to � . Among many other requirements (see Definition 4.12
below) the confoliation on each polyhedron is close to the horizontal foliation fdzD 0g

in terms of adapted coordinates .x;y; z/. Moreover, the characteristic foliation is
homeomorphic to a foliation on the sphere with exactly two singular points such that
no closed leaf is attractive or repelling on both sides.

For two contact structures �0; �1 which are sufficiently close to � the polyhedra are
Darboux domains (Definition 4.4). Therefore �0 and �1 are tight when restricted to
polyhedra and all leaves of the characteristic foliation on the boundary of a polyhedron
spiral from one repulsive critical point to an attractive one (both singular points will be
particular vertices of the polyhedron). Characteristic foliations with these properties
will be called decreasing.

We want to interpolate between �0 and �1 by a family of plane fields �s , s 2 Œ0; 1�,
such that the characteristic foliation of �s on the boundary of each polyhedron is
homeomorphic to a foliation on the sphere which is decreasing.

This is not trivial because a change of the characteristic foliation on a single face which
leads to a more decreasing characteristic foliation when the face is viewed as part of
the boundary of one polyhedron does the opposite for the polyhedron on the other side
of the face.

The strategy to overcome this problem is to modify the characteristic foliation simulta-
neously on several faces. For this we will connect the faces with cylinders in the region
H.�/ where � is contact using ribbons (Definition 4.16 in Section 4B1). At this point we
are using the transitivity of the confoliation. On each cylinder C DD2�Œ�1; 1��H.�/

all confoliations �; �0; �1 are required to be transverse to the second factor. Then the
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holonomy on S1 � Œ�1; 1�� @C is decreasing by a positive amount and this will be
used to manipulate characteristic foliations in the desired way.

Once this is achieved, it is relatively straightforward to find a family �s , s 2 Œ0; 1�, of
contact structures on the polyhedra which induces the same characteristic foliation
as �s . In order to use the techniques developed here in later sections we will insist that
all plane fields appearing in the construction are transverse to a foliation I of rank 1

which is transverse to � . The main tool for this is Lemma 4.14.

The following two sections contain preliminaries for the proof of Theorem 4.2, which
can be found in Section 4C. The structure of the proof is similar to Colin’s proof of
Theorem 4.1. Since this technique will be used later, we present it in a way that makes it
amenable to further adaptation. We shall also use the following theorem of Varela [57].

Theorem 4.3 Let � be a positive confoliation on M which is somewhere noninte-
grable. Then there is a C 0 –neighbourhood of � such that every confoliation in that
neighbourhood is somewhere nonintegrable and positive.

Originally, this theorem was stated in [57] only for contact structures (and therefore there
is no further reference to nonintegrability). However, the proof uses only properties of
characteristic foliations on the boundaries of a family of tubular neighbourhoods of
a single knot transverse to � . It thus carries over immediately to yield Theorem 4.3
since every open set of a contact domain, like H.�/, contains a transverse knot.

4A Adapted polyhedral decompositions

Colin’s proof of Theorem 4.1 uses polyhedral decompositions which are adapted to � .
We will make use of similar decompositions which we explain in this section.

4A1 Darboux domains The original Darboux theorem for contact structures
states that every positive contact structure is locally diffeomorphic to a domain in
.R3; ker.dzCx dy//. This is of course not true for confoliations but a slightly
weakened notion is part of the following definition.

Definition 4.4 A pair .P;V /, where P is a compact set in M and V an open
neighbourhood of P , is a Darboux domain if there is a bounded smooth function
f W R3!R such that @f=@x � 0 and a confoliated embedding

'W .V; �jV /! .R3; ker.dzCf .x;y; z/ dy//

so that the intersection of every flow line of the Legendrian vector field @x with the
image of V is connected. Furthermore, we require that there is a disc D�V contained
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in a .y; z/–plane such that the lines parallel to the x–axis which intersect D cover P

and their intersection with P is connected.

We say that a relatively compact set P � M is a Darboux domain if there is a
neighbourhood V such that .P;V / is a Darboux domain; .x;y; z/ are called Darboux
coordinates.

When a manifold is equipped with a contact structure � and a foliation I transverse
to � , we require that @z is tangent to I on the Darboux domain.

We will consider Darboux domains which are polyhedra or even simplices. New
Darboux domains will often arise by subdivision of simplices. The importance of
Darboux domains comes from the following stability property. The role of the disc D

from the above definition is to simplify later proofs.

Lemma 4.5 Let .M; �/ be a confoliated manifold and .P;V / a Darboux domain.
Then there is a C 0 –neighbourhood U of � in the space of smooth plane fields such
that P is a Darboux domain for every positive confoliation � 0 in U .

If a foliation I of rank 1 is transverse to � , then the Darboux coordinates .x0;y0; z0/
for � 0 can be chosen so that @z0 is tangent to I .

Proof Let .P;V / be a Darboux domain. We fix a confoliated embedding ' and a
surface D as in Definition 4.4. In order to determine U we fix an open neighbourhood
V 0 � V of P such that V 0 is compact. Then U is determined by the following
requirements:

(i) Every plane field in U is transverse to '�1
� .@z/ on V 0 .

(ii) For a smooth plane field � 0 on M let X 0 be the projection of '�1
� .@x/ along

'�1
� .@z/ to � 0 . We require that X 0 is transverse to V 0 \D and the flow lines

of X 0 starting at D are well defined as long as they stay in V 0 and the image of
V 0\D under the flow of X 0 covers P .

The vector field X 0 is smooth and therefore flow lines are uniquely defined. By standard
theorems about the continuous dependence of solutions of ordinary differential equations
on parameters (see [30, Chapter V], for example) U is open in the C 0 –topology.

By construction X 0 preserves the foliation I . The new coordinate vector fields @y0

and @z0 are obtained by transporting @z and @y using the flow of X 0 . These coordinates
define an embedding '0 .

Since @x0 is Legendrian and @z0 is transverse to � 0 , this plane field is defined by a defin-
ing form dz0Cf 0.x0;y0; z0/ dy0 (here f 0 is a new function, not the derivative of f ).
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We have defined '0 on connected segments of flow lines of X 0 starting at points of
V 0 \D . Hence all requirements in Definition 4.4 are satisfied except that f is not
yet defined on all of R3 but only on the image of '0 . But the construction allows
one to choose an extension of f 0 to R3 so that dzCf 0.x;y; z/ dy defines a positive
confoliation and f 0 is bounded.

According to Theorem 2.27 every confoliation in U is tight when restricted to V

where .P;V / is a Darboux domain: the boundedness of the function f implies that
ker.dzC f .x;y; z/ dy/ is a complete connection of the fibration R3!R2 given by
.x;y; z/ 7! .x;y/.

Remark 4.6 The notion of a Darboux domain can be extended to general smooth
plane fields by omitting the requirement that f . � ;y; z/ is weakly monotone for all
.y; z/. Then one can formulate the stability property for all smooth plane fields.

4A2 Polyhedral decompositions adapted to � In this section we describe polyhe-
dral decompositions adapted to a confoliation. Such decompositions are also used in
[6]. Let � be a positive cooriented confoliation on M and I a line field transverse to � .

Definition 4.7 Given a polyhedron P in M , we say that �.x/ is transverse to @P at
x 2 @P if

� �.x/ is transverse to a face of P if x is contained in the interior of that face,

� �.x/ is transverse to all edges of P whose closure contains x , and

� if x is a vertex, then for a germ of a surface †x tangent to �.x/ the intersection
†x \P is a manifold with piecewise smooth boundary. If †x \P D fxg, then
x is elliptic.

We will never need hyperbolic singularities on boundaries of polyhedra. These could
be incorporated by requiring that x is a simple crossing of †x \ @P .

The following notion (introduced by Thurston [55]) will be applied to line fields and
plane fields. We therefore formulate it in complete generality.

Definition 4.8 Let � be a distribution of codimension k on an n–manifold and
Rn � P ,!M an embedded polyhedron. Then P is in general position with respect
to � if for all x 2 P and all k –subsimplices of P the map

Rn
!Rn=�x D �

?
x

restricted to the k –simplex is a diffeomorphism onto its image.
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General position is a C 0 –open condition and it implies that @P is transverse to � .
Later M will be a 3–manifold, and � D � a confoliation (k D 1) or � D I a foliation
of rank 1 transverse to � (k D 2). In order to obtain simplices in general position, one
can use Thurston’s jiggling lemma [55]. This lemma uses triangulations (and not just
polyhedral decompositions).

Lemma 4.9 (Thurston’s jiggling lemma) Let M be a compact manifold, T a tri-
angulation and �n�k a continuous distribution of codimension k . Then there is a
subdivision T 0 of T such that after a small perturbation of the vertices one obtains a
triangulation T 00 in general position with respect to � .

For the proof of this lemma, it is convenient to embed M into a Euclidean space. Then
M is approximated by a simplicial complex; subdivisions and perturbations of this
complex provide the desired triangulation. For more details we refer to [55].

The way simplices are subdivided is essential. A possible subdivision is due to Thurston
[55]. Another method was used by Whitney. In both cases the simplices obtained by
subdivision depend on the ordering of the vertices of a simplex P at least if n � 3.
Whitney’s method in dimension 3 goes as follows [59, page 358]:

Let P � R3 be a simplex and p0;p1;p2;p3 its vertices. Let pij be the midpoint
between pi and pj with pii D pi . The first Whitney subdivision of P consists of the
following simplices (with an ordering of the vertices):

p0p01p02p03; p1p01p02p03; p1p12p02p03; p2p12p02p03;

p1p12p13p03; p2p12p13p03; p2p23p13p03; p3p23p13p03:

Both subdivision schemes have the property that consecutive subdivisions of a simplex
yield only finitely many subsimplices of Rn up to rescaling and translation. An
important consequence is the following: if T 00 is obtained as in Lemma 4.9 and is in
general position, then all simplices obtained by further Whitney subdivisions of T 00 are
still in general position with respect to � . It is therefore possible to apply Lemma 4.9
to a finite collection of distributions (with varying codimensions).

According to Lemma 4.9 there is a triangulation such that every simplex is in general
position with respect to a confoliation � and a foliation I of rank 1 transverse to
it. If we start with a triangulation such that every simplex is contained in a Darboux
domain, then we can ensure in addition that all simplices are contained in a Darboux
domain and are in general position with respect to the vector field @x associated to the
Darboux domain (see Definition 4.4), ie we consider different vector fields @x for each
polyhedron of a given simplicial decomposition. After subdividing a simplex P from
such a decomposition we obtain a collection of Darboux domains, and the Darboux
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coordinates can be chosen to be restrictions of the Darboux coordinates around P . The
proof of the jiggling lemma (Lemma 4.9) applies.

Thus we have established the existence of a triangulation satisfying the requirements
of the following definition. It refers to polyhedra rather than simplices because there is
one condition we will want to impose later on the decomposition of M , which will
require the consideration of polyhedra, not only simplices.

Definition 4.10 A decomposition of M into polyhedra is weakly adapted to � and I
if each polyhedron P of the decomposition has the following properties:

(i) P is in general position with respect to � and I . In particular, there are exactly
two singular vertices xP

1
and xP

2
which are both elliptic and P is homeomorphic

to a ball.

(ii) P is a Darboux domain in general position with respect to the vector field @x

from Definition 4.4.

(iii) For i D 1; 2 a neighbourhood of xP
i in P is contained in the half-space deter-

mined by the plane �.xP
i / in some coordinate chart near xP

i . (This property is
independent of the choice of a chart.)

(iv) The faces where I enters P form a disc in @P . Moreover, the intersection of
every leaf of I with P is connected.

We say that �.xP
i /, i 2 f1; 2g, supports P and xP

i is a supporting vertex of P ; all
other vertices of P are nonsupporting. If P lies on the side of �.xP

i / determined by
the coorientation of � , then xP

i is negative, otherwise this supporting vertex is positive.

Later we will often say that a polyhedron/polyhedral decomposition is adapted to �
and implicitly require that it is also adapted to a fixed line field I transverse to � .

Let P � .M; �/ be a polyhedron in a confoliated manifold. If the boundary of a
polyhedron P is transverse to � , then one can define the characteristic foliation on @P
as follows. Since faces are smooth they have a characteristic foliation which is oriented
by the usual conventions. Where two faces meet along an edge we concatenate the
corresponding oriented leaves. The leaves we obtain are piecewise smooth curves. At
edges and nonsupporting vertices the characteristic foliation is tangent to a pair of
vectors, one of them tangent to one face adjacent to the edge or vertex while the other
vector is tangent to the other face.

By requirement (i) of Definition 4.10 the characteristic foliation @P .�/ has exactly two
singular points corresponding to the supporting vertices xP

1
;xP

2
, and both are elliptic.

Geometry & Topology, Volume 20 (2016)



2504 Thomas Vogel

On a neighbourhood of P the confoliation can be viewed as a connection on a fibre
bundle .x;y; z/ 7! .x;y/ determined by Darboux coordinates. Since � is a positive
confoliation @P .�/ is spiralling away from xP

i (again in the weak sense if � is not a
contact structure at xP

i ) if this vertex is positive and towards xP
i if it is negative. Thus

positive supporting vertices are sources of @P .�/ while negative supporting vertices
are sinks.

By the Poincaré–Bendixson theorem all limit sets of leaves of @P .�/ are singularities,
closed cycles (passing through singularities) or closed leaves, and because P is adapted
to � there are no cycles other than closed leaves. By Theorem 2.27 the restriction of �
to a neighbourhood of each polyhedron is tight. Hence @P .�/ has no closed orbits if �
is a contact structure. If � is a positive confoliation and @P .�/ has a closed leaf, then
this closed leaf bounds a disc D tangent to � inside P and the holonomy of @P .�/
near @D is weakly attractive on the side of the positive supporting vertex while it is
weakly repelling on the other side.

We still have to modify our triangulation further (in the process we will turn it into
a polyhedral decomposition). For each simplex P of a triangulation we denote the
unique edge connecting the supporting vertices by  .P /. We parametrize  .P / so
that it points away from the negative vertex. If P is a polyhedron, then  .P / is a (not
uniquely determined) simple path consisting of edges of P and connects the supporting
vertices of P . Moreover,  .P / is positively transverse to � when  .P / is oriented
pointing away from the negative supporting vertex. When P is in general position
with respect to I then the space of leaves of IjP is homeomorphic to a disc. The leaf
space of IjP is denoted by P=I .

Definition 4.11 Let M be a 3–manifold carrying a smooth plane field � and a
foliation I transverse to � . A weakly adapted simplex P �M is graphical if the
projection of @P .�/ to P=I has the following properties:

(i) The projections of any two segments of @P .�/ intersect transversely.

(ii) Let � be a segment of a leaf of @P .�/ such that � connects two consecutive
intersection points of the leaf with  .P /. Then the projection of � to P=I has
at most one self-intersection.

A polyhedral decomposition is graphical if all polyhedra are graphical.

The self-intersections of projections of segments like � in (ii) of Definition 4.11 form a
smooth curve with boundary contained in the projection of  .P / to P=I . In Figure 10
at the end of Section 4A2 this curve is dotted.
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The purpose of this definition is to ensure that one can easily find a foliation of P by
discs such that the boundary of a leaf is either transverse to � (when the intersection
point of D with  .P / is not a fixed point of the holonomy of @P .�/) or tangent to �
(when a closed leaf of @P .�/ goes through D\  .P /): if P is graphical, then such
discs are obtained as sections of P ! P=I .

Definition 4.12 A polyhedral decomposition of M which is weakly adapted to �
and I is adapted to � and I if it satisfies the following conditions:

(i) All polyhedra are graphical.

(ii) Exactly three edges of P meet at a supporting vertex.

(iii) For all vertices x of the polyhedral decomposition there is at most one polyhedron
supported by �.x/.

(iv) For each polyhedron P the projection of the characteristic foliations of � on the
faces of P to the leaf space of the foliation IjP form a collection of line fields
which are transverse to each other.

So far we have established the existence of a weakly adapted triangulation. Because �
and I are continuous every supporting vertex of a polyhedron has a neighbourhood
where @P .�/ is graphical. Subdividing the simplices of a weakly adapted triangulation
further following the method of Whitney, one obtains a graphical triangulation which
remains graphical when subdivided further by the same method.

In order to ensure (iii) of Definition 4.12 we modify the triangulation as in [6]. In
this step the triangulation is modified in neighbourhoods of supporting vertices. In an
inductive process one adds/removes tetrahedra from polyhedra of the decomposition
(here the triangulation is replaced by a polyhedral decomposition). This is described
in detail in [6]; we therefore only indicate the main idea. In Figure 9 (which is [6,
Figure 1]), x is a supporting vertex of P0 but not of P1 . If there is yet another
polyhedron with x as a negative supporting vertex, then a piece is removed from P0

and added to P1 and we obtain P 0
0

and P 0
1

. Now x0 supports P 0
0

and no other
polyhedron of the modified decomposition.

Note that P1 is not convex (with respect to the coordinate system supplied by the
Darboux domain). However, the intersection of P with leaves of I respectively planes
parallel to a contact plane in P is connected respectively a disc. The characteristic
foliation remains graphical.

Considering the various cases (one half-space of TxI is contained in P or not) and
choosing the segment � close enough to other edges of P one sees that the properties
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x P1

Figure 9: Modification of polyhedra

(i)–(iv) of Definition 4.10 can be preserved by this construction. When a polyhedron is
modified then it is sometimes necessary to modify  .P / but it is clear how to do this
when P is modified as indicated in Figure 9. It is equally clear that the new polyhedron
is still part of a Darboux domain. Finally, requirement (iv) of Definition 4.12 is achieved
by a slight perturbation of the polyhedral decomposition.

Thus we have proved the following lemma (essentially due to Colin).

Lemma 4.13 Let � be a confoliation on a 3–manifold and I a foliation of rank 1

transverse to it. Then there is a polyhedral decomposition of M adapted to � and I .

Now consider plane fields � which are transverse to I and sufficiently close to � to
ensure that P is still adapted to � and I . Moreover, we require that the characteristic
foliation on @P has decreasing holonomy (this is automatic if � is a contact structure).

Under these circumstances, Theorem 2.35 implies that there is a tight contact structure � 0

on P , unique up to isotopy, such that @P .�/D @P .� 0/. For later applications we want
to keep � 0 transverse to I and the purpose of the condition that P is graphical is to
ensure that such an extension � 0 can be constructed quite easily.

Lemma 4.14 Let � be a plane field, I a line field transverse to � and P a polyhedron
adapted to � and I such that every leaf of @P .�/ spirals from the positive supporting
to the negative supporting vertex.

Then there is a contact structure � 0 on P transverse to I so that @P .�/D @P .� 0/. It is
unique up to homotopy through contact structures in that class.

If � is a contact structure near supporting vertices, than one can arrange that � and �
coincide on small neighbourhoods of supporting vertices.
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Proof Given � , first construct a foliation on @P by circles transverse to @P .�/ (of
course, xP

1
;xP

2
are singular points of this foliation). This is possible since we assume

that the characteristic foliation of � on @P does not have closed leaves. Since P is
graphical, these circles can be chosen so that they project to simple closed curves
in P=I .

As indicated in Figure 10, this is achieved as follows: Let � be a segment of a leaf
of @P .�/ connecting two consecutive intersection points of the leaf with  .P /. If
the projection to P=I of � has a self-intersection, then choose an arc transverse to
@P .�/ connecting one endpoint of � to a point on the segment (close to the intersection
point) so that one obtains a piecewise smooth circle in @P consisting of � and one arc
transverse to @P .�/. If the projection has no self-intersection, then the transverse arc
can be chosen almost parallel to a piece of  .P /.

The piecewise smooth circles obtained in this way can be approximated by circles
transverse to @P .�/ that are projected to simple closed curves in P=I .

In Figure 10 the intersection points of segments like � lie on the dotted line and the
arcs transverse to @P .�/ are dashed.

 .P /

xP
1

P

Figure 10: Construction of discs transverse to the characteristic foliation of a
graphical polyhedron (I is orthogonal to the page). The projection of one of
the discs is shaded.

This construction can be carried out parametrically. In this way we obtain a foliation
of @P n fxP

1
;xP

2
g by circles transverse to @P .�/.

Since these circles project to simple closed curves in P=I we obtain a foliation of P

by discs transverse to I . Now pick a curve transverse to the discs connecting xP
1

and xP
2

. The intersection points of this arc with the discs serve as midpoints of the
discs. Then a contact structure � 0 which is tangent to a radial line field on the discs is
obtained by twisting the tangent plane around the radial line field starting at the centre
of each disc. (This can be done in such a way that a given contact structure near the
supporting vertices is extended.)

The proof of the last part of the statement should be clear.
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Remark 4.15 This lemma only shows how to fill one polyhedron. However, we will
need to fill many polyhedra simultaneously. Then different polyhedra are adjacent
to the same face and additional care is needed to ensure that the plane fields we are
constructing are smooth.

When we apply Lemma 4.14, � will be a contact structure near supporting vertices.
Therefore smoothness near supporting vertices will not be a problem.

In order to ensure that the resulting plane field is smooth everywhere we first extend the
plane field from the 2–skeleton to a contact structure on a small neighbourhood of the
2–skeleton (as in [6, Lemma 3.3]) by modifying the plane field inductively near vertices
(except supporting vertices), edges and faces. Then one can apply Lemma 4.14 to
slightly shrunken polyhedra without changing the contact structure on a neighbourhood
of the 2–skeleton (for this one chooses the radial foliation in the proof of Lemma 4.14
tangent to the contact structure near the boundary of the discs).

4B Ribbons

The proof of Colin’s stability result Theorem 4.1 does not carry over immediately to
Theorem 4.2. This is because @P .�/ can have closed leaves for some polyhedron P of
the decomposition if � is a confoliation, while all leaves of the characteristic foliation
pass from the source to the sink if � is a contact structure. Characteristic foliations with
the latter property are rather stable under C 0 –perturbations among contact structures
and this is used in Colin’s proof of his stability theorem (Theorem 4.1). The goal of
the construction presented in this section is to modify (depending on the choice of a
contact structure �s close to � ) a given polyhedral decomposition which is adapted
to � and I in order to ensure that the characteristic foliation of �s on the boundary of
modified polyhedra does not have closed orbits.

We will see that if the confoliation is transitive we can isotope the polyhedral decom-
position so that

� the interior of no isotoped polyhedron contains an integral disc with boundary
on the polyhedron, and

� all supporting vertices lie in the interior of the region H.�/ where � is a contact
structure.

This is relatively straightforward in the case of a transitive confoliation: One can use
Legendrian vector fields whose flow lines connect points of @P with H.�/ (a detailed
description of similar isotopies is given below). The characteristic foliation of � on
the boundary of each isotoped polyhedron has no closed leaves and Colin’s proof of
Theorem 4.1 yields a proof of Theorem 4.2.
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In order to have a proof of Theorem 4.2 which applies to more general — and more
interesting — situations, we formalize the isotopies used above in terms of ribbons
attached to @P in the context of transitive confoliations. This will be adapted to
nontransitive confoliations later.

4B1 Definitions Let P be a polyhedron of a polyhedral decomposition adapted to �
and to a fixed line field I transverse to � .

Definition 4.16 A ribbon attached to P is a smooth embedding of a rectangle ��Œ0; 1�
into M with the following properties:

(i) � � f0g D � is transverse to � and � � f1g � H.�/ lies in the interior of a
polyhedron.

(ii) The projection of � to P=I is disjoint from the curve consisting of self-
intersection points of projections of segments of leaves of the characteristic
foliation on @P n fxP

1
;xP

2
g which connect consecutive intersection points of

leaves of the characteristic foliation with  .P / (see Figure 10). The analo-
gous requirement holds for the intersection of � � Œ0; 1� with every face of the
decomposition through which the ribbon exits.

(iii) The curves fzg � Œ0; 1�, z 2 � , are Legendrian. Close to @P they are tangent
to X' WD '

�1
� .@x/, where ' denotes the embedding associated to the Darboux

domain .P;V /. In particular, the ribbon is transverse to @P . When the ribbon
leaves another polyhedron P 0 , then it is tangent to the coordinate vector field @x0

associated to P 0 .

(iv) The curve � � f1g is contained in a leaf of I and I is tangent to � � Œ0; 1�.

(v) The ribbon is disjoint from the 1–skeleton of the polyhedral decomposition
except that � � f0g may contain one supporting vertex of P . The intersection
of a ribbon with the faces of polyhedra consists of arcs connecting the two
Legendrian curves coming from the endpoints of � .

It is possible to satisfy (iii) of this definition since the flow of X' preserves the
foliation I (see Definition 4.4).

On its way from the polyhedron P to the contact zone H.�/ the ribbon � � Œ0; 1�
meets other parts of the 2–skeleton of the polyhedral decomposition. Let P1 be the
first polyhedron the ribbon leaves. We view a copy of the remaining part of the ribbon
which lies between P1 and � � f1g as a ribbon �1 � Œ0; 1� attached to P1 .

For later constructions it is useful to enlarge �1 � Œ0; 1� in the transverse direction.
We replace �1 � Œ0; 1� by a slightly larger ribbon which is attached to P1 and whose
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opposite end is still contained in H.�/ (see Figure 11). This extension is again denoted
by �1 � Œ0; 1�. We continue until we enter the polyhedron PC containing � � f1g in
its interior. At each step the ribbon that is attached gets a little bit broader. Still, all the
induced ribbons �1� Œ0; 1�, �2� Œ0; 1�, . . . , �k� Œ0; 1� are attached to P1;P2; : : : ;Pk ,
ie they satisfy the conditions of Definition 4.16. We will sometimes denote the ribbon
� � Œ0; 1� by �0 � Œ0; 1�.

�.xP
1 /

�
�1 � Œ0; 1�

P 1

P

Figure 11: The ribbons � � Œ0; 1� and �1 � Œ0; 1�

Lemma 4.17 Let P be a polyhedron adapted to � and I and let �j � Œ0; 1�, j D

1; : : : ; l , be disjoint ribbons attached to @P . Then

P [
[
j

.�j � Œ0; 1�/

is a Darboux domain in M .

Proof Since only finitely many ribbons are attached it suffices to consider the case
l D 1. By (iii) of Definition 4.16 we can extend the embedding 'jP to an embedding
of P� D P [� � � Œ0; 1�, and the vector field @x is extended to a Legendrian vector
field X which is tangent to the ribbon and whose support is contained in a small
neighbourhood of P� . We then extend the embedding ' to an open neighbourhood
of P� . Since � � Œ0; 1� is transverse to � and compact, the function f remains well
defined and bounded.

Let �� Œ0; 1� be a ribbon attached to P and let �1� Œ0; 1�; : : : ; �k� Œ0; 1� be the ribbons
induced by � � Œ0; 1�. At the end of the broadest ribbon �k � Œ0; 1� opposite to P we
attach a small cylinder C which can be thought of as a reservoir of nonintegrability.
We now specify properties of such cylinders:
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(1) C Š I � I � I�k . Here I D Œ�1; 1� and I�k is a compact interval.

(2) C is the total space of a fibration over the base I � I whose fibres are tangent
to I .

(3) C �H.�/ and C is disjoint from the 2–skeleton of the polyhedral decomposi-
tion.

(4) The first factor in C Š I�I�I�k is tangent to the � –Legendrian vector field X

from the proof of Lemma 4.17 and C is contained in the support of X .

(5) The intersection of the ribbons � i� Œ0; 1� with C is � i�f1g for all i D 0; : : : ; k ,
and �k�f1g is contained in the interior of the vertical part of @C . The projection
of �k � f1g to I � I is .�1;�1/.

(6) The holonomy of @C.�/ and its inverse are defined for all points of �k � f1g.

Because �k �f1g is compact, there is a number ı > 0 so that the difference between x

and both its preimage and image under the holonomy are separated by an interval
whose length is at least 2ı .

Lemma 4.18 Let C be a cylinder with the properties listed above, � a contact structure
transverse to I and hW I�k!I�k the monodromy of @C.�/. For every diffeomorphism
gW I�k ! I�k with support in the interior of I�k such that

(4-1) h� g � id;

there is a domain C.g/�C with piecewise smooth boundary containing I�k such that
g is the monodromy of .@C.g//.�/.

Proof Let X be the Legendrian vector field tangent to the first factor of C D I�I�R.
We use the flow of X to identify the front @CC D f1g � I �R of C with the back
@�C Df�1g�I�R. Because � is a contact structure the image LC of the characteristic
foliation on @CC is transverse to the characteristic foliation L� on @�C . We use the
characteristic foliation on @�C and then the flow of X to identify all fibres with the
fibre over .�1;�1/.

For x in the fibre over the base point we move along the leaf of LC starting at the
point above f.C1;�1/g which corresponds to x until this leaf intersects the leaf of L�
coming from the point g.x/ above .�1�1/. Such an intersection point exists because
of (4-1). It is unique by transversality of LC and L� .

The domain C.g/ is bounded be flow lines of X and the segments of L˙ for varying
initial points x above .�1;�1/.
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4B2 Attaching a full collection of ribbons Recall that for each polyhedron of the
decomposition we fixed an edge path  .P / connecting the supporting vertices such
that when we use the coorientation of � to orient  .P / then  .P / is directed from
the negative supporting vertex of P to the positive supporting vertex.

Definition 4.19 Given a polyhedral decomposition of M adapted to � we say that a
pairwise disjoint collection .�i � Œ0; 1�/, i D 1; : : : ; l , of ribbons attached to polyhedra
of the decomposition is full if for every polyhedron P

� each supporting vertex is contained in a ribbon, and

� for each leaf of the characteristic foliation on @P n  .P / there is a ribbon
�i � Œ0; 1� such that the interior of �i � f0g intersects the leaf.

Here and in the following we stick to the notational convention that upper indices for
ribbons indicate ribbons induced by one ribbon � � Œ0; 1� while lower indices refer to
ribbons which are not induced by longer ones.

Lemma 4.20 Let � be a transitive confoliation on a closed manifold M and I a line
field transverse to � . For every polyhedral decomposition of M which is adapted to �
and I there is a full collection of ribbons.

Proof For each P we choose a pair of Legendrian curves connecting the supporting
vertices xP

1
;xP

2
to H.�/ so that these curves intersect the 1–skeleton of the polyhedral

decomposition exactly in the supporting vertex. The Legendrian curves are chosen
tangent to X near the supporting vertices and such that they satisfy the conditions from
Definition 4.16 which can be applied to Legendrian curves (ie the second part of (i),
(ii), (iii) and (v) of Definition 4.16). For example, they avoid the rest of the 1–skeleton
and when they leave a polyhedron they are tangent to the Legendrian vector field @x

associated to the Darboux coordinates of that polyhedron.

Then we use the flow of a vector field tangent to I which commutes with X and extend
these curves to obtain ribbons �i � Œ0; 1�, i D 1; 2, so that I is tangent to the ribbon (it
may be necessary to extend the ribbon a little to ensure that it meets P in a segment.)

Similarly, one obtains a collection of ribbons �i , i D 3; : : : ; l , such that
S

i.�i � f0g/

intersects every segment of the characteristic foliation on @P nfxP
1
;xP

2
g and the ribbons

satisfy the conditions in Definition 4.16 individually. All polyhedra are treated in the
same way.

The ribbons may still intersect each other. We assume that they do so transversely. We
remove the intersections inductively starting with one ribbon �1 � Œ0; 1�. If the ribbon

Geometry & Topology, Volume 20 (2016)



On the uniqueness of the contact structure approximating a foliation 2513

�2� Œ0; 1� meets �1� Œ0; 1�, then we replace �2� Œ0; 1� by narrower ribbons consisting
of pieces which are parallel to pieces of the original ribbons. This is indicated in
Figure 12 in the case when the first intersection of �2 � Œ0; 1� with �1 � Œ0; 1� contains
exactly one boundary point of �1 � Œ0; 1�.

�2 � Œ0; 1�

�1 � Œ0; 1�

Figure 12: Removing intersections of ribbons

The arrows in Figure 12 indicate the direction away from the polyhedron where the
ribbon starts; the original intersection between the ribbons is dotted. After this process
is repeated a finite number of times we obtain a full collection of ribbons.

Definition 4.21 Let ��Œ0; 1� be a ribbon ending at a cylinder C �H.�/. A collection
of diffeomorphisms of � .k/ � f1g with compact support is admissible if

(4-2) g.k/ � � � � � g.1/ � g � id

and these diffeomorphisms can be realized as the holonomy of the characteristic foliation
of a domain in C .

For an admissible collection of diffeomorphisms g;g.1/; : : : ;g.k/ we obtain domains

C.g.k//� � � � � C.g.1//� C.g/

by Lemma 4.18.

Let � � Œ0; 1� be a ribbon attached to a polyhedron P and gW � ! � a decreasing
map with compact support in the interior which corresponds to the monodromy of the
boundary of a domain C.g/ in the cylinder containing � � f1g. We use the ribbon to
identify � � f0g D � with � � f1g. Fix a tubular neighbourhood N.�/� @P whose
fibres are segments of leaves of P .�/ such that N.�/ is disjoint from the 1–skeleton
of the polyhedral decomposition (for this one has to remove the supporting vertices
which � might contain). The size of N.�/ can be chosen arbitrarily small.

The part of P[.��Œ0; 1�/[C.g/ which is close to the ribbon or C.g/ can be smoothed
to a domain with smooth boundary such that
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� the resulting domain is homeomorphic to a ball, the boundary contains @PnN.�/,
� the characteristic foliation on the boundary has no new singular points, and
� its boundary is arbitrarily close to @P [ .� � Œ0; 1�/[C.g/.

This is illustrated in Figure 13, where the ribbon, C.g/ and N.�/ are thickened.
We will not introduce notation to distinguish P [ .� � Œ0; 1�/[C.g/ from its partial
smoothing.

P

P 1

� � Œ0; 1�
C.g/� C.g.1//

Figure 13: Smoothing parts of polyhedra with ribbons attached, illustrated
on a surface transverse to I

In order to identify @P with the boundary of the smoothing of P [ .� � Œ0; 1�/[C.g/,
we extend the original ribbon � � Œ0; 1� to a family of ribbons covering the thickening
of .� � Œ0; 1�/[C.g/ such that all ribbons are tangent to I . We then use a flow tangent
to the characteristic foliation on the ribbons to push the new piece of the boundary
to N.�/.

As indicated in Figure 13, the thickenings of the domains C.g.i// can be chosen such
that they satisfy the corresponding strict inclusion relations and their boundaries are
disjoint. Moreover, parts of the boundary of thickenings of .� i � Œ0; 1�/ [ C.g.i//

are identified with parts of @P i , i D 1; : : : ; k . An isotopy which does this can be
constructed similarly to the one we constructed above.

This isotopy is the flow of a vector field tangent to the characteristic foliation of � on
surfaces which consist of segments of I , and the support of the vector field is contained
in the union of such surfaces. Therefore the pullback of � under the isotopy remains
transverse to I .

Since admissible functions are nowhere increasing, the new monodromy of the charac-
teristic foliation @P is decreasing by a larger amount than the monodromy of @P .�/.
Also, by construction of the isotopy, P is still a Darboux domain with respect to the
pulled-back contact structure.

We attach all the ribbons together with the parts of the cylinders obtained from
Lemma 4.18 to the polyhedra. For a polyhedron P we denote the result by P� .
This is meant to take into account all ribbons meeting P ; the functions g.i/ defining
pieces C.g.i// of a cylinder C are omitted in this notation.
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4C Proof of Theorem 4.2

The proof of Theorem 4.2 has two main parts. We first determine a C 0 –neighbourhood
of � and then we show that it has the desired properties. Before we start let us note that
in view of future adaptations it is desirable to ensure that all contact structures/plane
fields in the construction are transverse to I . The proof without this control would be
somewhat simpler; in particular, we could use Theorem 2.35 instead of Lemma 4.14.

4C1 Determining the neighbourhood of � in Theorem 4.2 Let � be a transitive
confoliation, I a foliation of rank 1 transverse to � . We fix a polyhedral decomposition
of M which is adapted to � and I together with a full collection of ribbons �i � Œ0; 1�

and cylinders.

There is a number ıcyl > 0 such that for each ribbon � � Œ0; 1� from our collection
ending at the cylinder C the monodromy on @C is at least 2ıcyl –decreasing when
it is defined. This is measured with respect to the parametrization of � obtained by
identifying pieces of  .P / with � following the leaves of @P .�/ and with � � f1g
following the leaves of the characteristic foliation of � on � � Œ0; 1�.

We fix a positive number � such that the boundary of the 2�–ball around a supporting
vertex is transverse to the ribbon and meets the interval ��f0g starting at the supporting
vertex exactly once.

By (ii) of Definition 4.16 in Section 4B1 the characteristic foliation on @P remains
graphical if the characteristic foliation on @P is changed on an arbitrarily small tubular
neighbourhood N.�/ Š .� � f0g/� J � @P of � (where J is a short interval and
the second factor is tangent to @P .�/) by a small amount. The purpose of (ii) in
Definition 4.16 is that we do not have to worry about the exact shape of the charac-
teristic foliation on N.�/ but only about the diffeomorphism g of the two boundary
components of N.�/ induced by the new characteristic foliation as long as g has
compact support in the interior. The new characteristic foliation will later be obtained by
pulling back contact structures along the ribbon �� Œ0; 1� (as explained in Section 4B2).

For sufficiently small positive constants k; ksupp the characteristic foliation remains
graphical after a modification of the characteristic foliation on P along all ribbons of a
full collection (including induced ribbons) which are attached to P if

(4-3) jh�1
� ıg ı h� .x/�xj< 2k when � does not contain a supporting vertex

and

(4-4) jh�1
� ıg ı h� .x/�xj< 2ksupp dist.x;xP

i /

when � does contains the supporting vertex xP
i :
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Here h� identifies a boundary component of N.�/ with a segment of  .P / using the
holonomy of the characteristic foliation on @P .

The constants ıcyl; �; k; ksupp have to satisfy the following compatibility relations:

� To ensure that variations of the monodromy by attachments of ribbons which will
be allowed later near supporting vertices are not bigger than variations allowed
for other ribbons we require

(4-5) � � ksupp � k:

� To guarantee that the monodromy of @P .�/ can be modified by the attachment
of ribbons and pieces of cylinders so that the monodromy of @P is decreasing by
at least 2k away from arbitrarily small neighbourhoods of supporting vertices
we require that

(4-6) 2k < 1
2
ıcyl:

These relations can be satisfied by choosing k and ksupp appropriately and sufficiently
small after � and ıcyl are fixed.

When � is replaced by a smooth plane field � (sufficiently C 0 –close to � ) the Darboux
coordinates on a neighbourhood of a polyhedron P from the decomposition and the
data associated to a ribbon � � Œ0; 1� from the full collection vary as follows:

� The vector field defining the � –Legendrian curves on the original ribbon ��Œ0; 1�
is replaced by its projection to � along I , the initial condition � � f0g is fixed.
The curves .fpg � Œ0; 1�/� .� � Œ0; 1�/ are now �–Legendrian.

The ribbons �j � Œ0; 1� which were induced by � � Œ0; 1� are now treated in-
dependently from each other (recall that �jC1 � Œ0; 1� is slightly broader than
�j � Œ0; 1� for 0� j � k � 1).

� The Darboux coordinates and the Legendrian vector field X on the cylinder C

where �� Œ0; 1� ends are deformed in the same way (see the proofs of Lemma 4.5
and Lemma 4.17).

� The identifications h� in (4-3)–(4-4) and N.�/ Š .� � f0g/� J are induced
by @P .�/.

We do not introduce any new notation reflecting these variations.

The following conditions on " > 0 ensure that the "-C 0 –neighbourhood U".�/ of �
has the stability property in Theorem 4.2; � denotes a smooth plane field in U".�/.
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(1) � is transverse to I and the polyhedral decomposition is adapted to � and I for
all plane fields � 2 U".�/.

(2) If � is a confoliation, then it is positive (see Theorem 4.3).

(3) The flows of the deformed vector fields used in the attachments of ribbons
and associated constructions are well defined and have the same properties as
before for all � 2 U".�/. In particular, �j � Œ0; 1� (induced by � � Œ0; 1�) meets
�jC1� Œ0; 1� in the interior of �jC1�f0g and the end �k �f1g of the modified
ribbon �k � Œ0; 1� is contained in the interior of the vertical part of @C .

(4) Each polyhedron with ribbons and cylinders attached is contained in a Darboux
domain (see Lemma 4.5 and Lemma 4.17). The collection of ribbons is full for
@P .�/ for all polyhedra of the decomposition.

(5) The projection to P=I of each arc where a ribbon is attached to a polyhedron P

remains disjoint from self-intersection points of projections of segments of leaves
of @P .�/ which connect consecutive intersection points of leaves of @P .�/ with
 .P / (see Figure 10).

(6) The monodromy of @P .�/ is
� at most k=2–increasing on  .P /, and
� at most .ksupp=2/ dist. � ;xP

i /–increasing on  .P /\B2�.x
P
i /.

(7) The monodromy on the boundary of the cylinders is at least ıcyl –decreasing
and there is a collection of admissible diffeomorphisms such that the attachment
of the ribbons changes the monodromy of the characteristic foliation on the
boundary of polyhedra
� at least by k on  .P / n .B2�.x

P
1
/[B2�.x

P
2
//, and

� at least by ksupp dist. � ;xP
i / on  .P /\ .B2�.x

P
1
/[B2�.x

P
2
//.

(8) The characteristic foliation remains graphical even after a full collection of
ribbons with domains in cylinders is attached and the monodromy is changed by
an amount bounded by
� k for each ribbon which does not contain a supporting vertex, and by
� ksupp dist. � ;xP

i / for each ribbon containing a supporting vertex xP
i of a

polyhedron P .

This is a finite list of requirements restricting the C 0 –distance of � from � . It can be
summarized as follows: " > 0 is chosen so small that ribbons and adapted polyhedral
decompositions persist. The conditions on �; ıcyl; k; ksupp and " ensure that the char-
acteristic foliation on boundaries of polyhedra can be modified by the attachment of
ribbons and pieces of cylinders so that the leaves of the characteristic foliation spiral
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from the positive supporting vertex towards the negative supporting vertex in a way
that allows polyhedra to be filled by contact structures transverse to I .

As indicated by the conditions referring to supporting vertices more care is required near
supporting vertices: we will ensure that all plane fields are positive contact structures
on a priori unspecified neighbourhoods of the supporting vertices.

4C2 Proof that the neighbourhood of � has the desired property We will prove
that the space of positive contact structures in the "–neighbourhood of � is weakly
contractible inside the space of all contact structures. The proof does not show that the
neighbourhood itself is weakly contractible.

Proof of Theorem 4.2 We have to show that the C 0 –neighbourhood U of � described
in Section 4C1 has the following property: for every compact polyhedron S and every
family of contact structures �s , s 2 S in U , there is an extension of this family �s to a
family of contact structures �ys with

ys D .s; t/ 2 yS D S � Œ0; 1�=S � f1g:

Here we view S as the subspace S � f0g of the cone yS of S .

The construction will be carried out in two main steps, the first consisting of two substeps
which are to be carried out at the same time. The first step consists in constructing a
family of smooth plane fields �ys so that for each polyhedron the characteristic foliation
@P .�ys/ has the following properties:

� All leaves spiral from the positive supporting vertex to the negative supporting
vertex.

� It is graphical for all ys 2 yS .

� �ys is a contact structure on a neighbourhood of every supporting vertex.

First, we discuss the construction near supporting vertices, then we finish the construc-
tion of �ys . The second step is an application of Lemma 4.14 and Remark 4.15.

We start with the most delicate part, namely the construction of the family �ys around
supporting vertices. This is also the part in which plane fields appear which are not
contact.

Let xP
i be one of the supporting vertices of a polyhedron P of the decomposition.

Recall that P is a Darboux domain, so we are given a �–Legendrian vector field X

on P and a surface D � P intersecting every flow line of X which meets P exactly
once. We denote the Darboux coordinates on .P; �/ by .x;y; z/ so that X is the
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coordinate vector field of x . By the conditions on " the polyhedron P is a Darboux
domain for all �s , s 2 S , and the corresponding �s –Legendrian vector fields Xs

vary continuously. The same is true for the characteristic foliations D.�s/ and the
Darboux coordinates .xs;ys; zs/. The contact structure �s near xP

i is defined by
dzsCfs.xs;ys; zs/ dys with @fs=@xs > 0.

We fix a point s0 2S . Because S is compact there is a small neighbourhood N.xP
i /�

B�.x
P
i / such this data can be extended from the parameter space S to S � Œ0; 1�

on N.xP
i /. This means that there are families Xys; .xys;yys; zys/; fys and �ys defined on

N.xP
i / with ys D .s; t/, t 2 Œ0; 1� such that

� Xys is tangent to @=@xys ,

� @fys=@xys > 0,

� the contact structure

�ys D ker
�
dzysCfys.xys;yys; zys/

�
dyys

is "–close to � , and

� for ysD .s; 1/ the extended data coincides with the data associated to s0 2S � yS

(in particular, it is independent of s ).

Next we extend �ys from N.xP
i / to a family of smooth plane fields �ys on M such that

� �s0
D �.s;1/ for all s 2 S , and

� �ys remains "–close to � .

Because �ys is only a plane field it may happen that the characteristic foliation on @P has
closed orbits in the 2�–ball around xP

i . This problem will be fixed by the attachment
of a ribbon with a cylinder as follows.

For the ribbon ��Œ0; 1� containing xP
i we pick a family of admissible diffeomorphisms

g
.j/
s W � ! � , j D 0; : : : ; k , such that after the attachment of .� � Œ0; 1�/[C.g

.0/
s /

all closed leaves of @P .�s/ close to xP
i disappear. Moreover, the remaining closed

leaves disappear after the other ribbons are attached. That this is possible is due to the
conditions (6)–(8) from the numbered list in Section 4C1.

Figure 14 summarizes the situation near xP
i . The horizontal axis measures the distance

of a point in  .P / from xP
i while the vertical axis corresponds to the displacement of

a point by the holonomy of the characteristic foliation. The solid curve represents the
holonomy of �ys on @P (before attachment of ribbons) while one dashed curve represents
the effect of the attachment of C.yg0/ and the ribbon � � Œ0; 1�. The other dashed curve
corresponds to another ribbon and the dotted curves correspond to condition (6) and
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xP
i

k=2

�k=2

�k

N.xP
i /

�

2�

3�

holonomy of �ys

effect of C.g.0//

Figure 14: Monodromy of �ys near supporting vertices

the thickened horizontal arc corresponds to points in N.xP
i /. (We assumed that (4-5)

is an equality.)

It is important to note that since �ys is a positive contact structure near supporting
vertices, there is no need to correct the monodromy in a small neighbourhood of the
supporting vertex (the size of that neighbourhood does not matter). Hence the condition
on admissible diffeomorphisms that they have compact support in the interior of the
initial segment � � f0g of the ribbon to which they are associated is not restrictive.

We deal simultaneously with all supporting vertices and attach all ribbons (including
ribbons which do not end at supporting vertices). The resulting characteristic foliations
@P .�ys/ have all the properties required in order to apply Lemma 4.14 and the subsequent
Remark 4.15. Therefore we can now replace �ys by a family of contact structures �ys
such that �.s;1/ is independent of s .

There are several places in this proof where we did not attempt to ensure that �ys or �ys
is contained in the "–neighbourhood of � :

� When the plane fields �ys are pulled back along ribbons, the resulting plane field
is not C 0 –close to the original plane fields.

� Lemma 4.14 does not provide such contact structures.

These problems seem to be solvable.
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5 Exceptional minimal sets

The purpose of this section is to prove a parametric version of Theorem 1.4 for confoli-
ations (which have holonomy if they are foliations) such that either F is a minimal
foliation or every minimal set of F is exceptional.

Theorem 5.1 Let � be a C 2 –confoliation which has no closed leaf but is not a
foliation without holonomy. Then there is a C 0 –neighbourhood U of � such that the
space of positive contact structures in U is weakly contractible.

Let us outline the main difficulty in adapting the proof from Section 4C. We will use
the terminology introduced there and we warn the reader that now we merely sketch
the strategy, which we simplify quite a bit. We do this with the hope of clarifying the
structure of the proof.

Let � be a confoliation which is not transitive. As before we choose an adapted
polyhedral decomposition (which is now also compatible with a fixed foliation I of
rank 1 transverse to � ). Now there are points which can’t be connected to H.�/ by
a Legendrian curve and hence we no longer have at our disposal cylinders whose
characteristic foliation has decreasing monodromy. This is what we had used in the
previous section.

Now assume � contains only one minimal set and that this minimal set is exceptional
(see Definition 2.5). Then every point can be connected by a Legendrian curve to H.�/

or to a neighbourhood N of a particular simple closed curve  (whose existence is
guaranteed by a theorem of Sacksteder) contained in a leaf of the minimal set of � . The
important property of  is that the holonomy of F is attractive along  . Moreover, we
can fix annuli containing Legendrian curves parallel to  such that the characteristic
foliation of plane fields which are sufficiently close to � has an attractive closed leaf
on each of these annuli.

The neighbourhood N is chosen as the union of these annuli, so that N is diffeomorphic
to a solid torus and so that every ribbon � � Œ0; 1� which ends in N can be extended to
a semi-infinite ribbon accumulating on a closed leaf of the characteristic foliation of �
on the annuli. After a modification of the ribbons this remains true when � is replaced
by a plane field � which is sufficiently close to � .

Ribbons will only be attached to polyhedra in the complement of N . As before,
the attachment of neighbourhoods of pieces of ribbons (now without cylinders) to a
polyhedron as in the previous section changes the monodromy of the characteristic
foliation on the boundary of the polyhedron. If � is a positive contact structure, then the
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size of this modification increases with the length of the ribbon. A direct computation
(the result (3-4) of this computation is explained right before Section 3A1) or an
examination of the arguments in [21] shows that if the ribbon can be extended to a
semi-infinite ribbon � � Œ0;1/ such that the entire ribbon except for a compact piece
is contained in an annulus, then one can change the monodromy of the characteristic
foliation again by a definite amount which depends only on the geometry of the ribbon.
Thus semi-infinite ribbons will replace the cylinders we used in the previous section.

Now let �0; �2 be two contact structures which are sufficiently close to � . First we use
ribbons to isotope �0 into a contact structure �1 which coincides with �2 outside of a
well-chosen solid torus yN containing N .

On yN we use the classification of tight contact structures on the solid torus obtained
in Theorem 2.36 to isotope �1 into �2 . For this we need to show that �1 and �2 are
tight. We use the fact that all plane fields appearing in the construction are transverse
to I and we choose yN in a particular way.

5A Facts about exceptional minimal sets

We first review the relevant definitions and results concerning Sacksteder curves.

Theorem 5.2 (Sacksteder [52]) Let F be a C 2 –foliation and N �M an exceptional
minimal set. Then there is a leaf L�N containing an embedded closed curve  such
that the holonomy h W � ! � along  satisfies

h0 .x/ < 1;

where � �M is an embedded interval transverse to F containing x 2  .

A curve with the properties of  in this theorem will be referred to as Sacksteder
curve. Going through the proof of Theorem 5.2 one can easily verify that the theorem
remains true when one considers C 2 –confoliations instead of C 2 –foliations, so there
is a leaf L containing a curve  such that the characteristic foliation on an annulus
transverse to L containing  has nontrivial linear holonomy along  .

Sacksteder’s theorem is one of the instances where the C 2 –hypothesis is used in an
essential way. As it turns out, the other place where C 2 –smoothness is used, namely
the theory of foliations without holonomy and the following observation about minimal
foliations with holonomy, are also based on Theorem 5.2. The proof of the following
result from [12] can be found in [49].
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Theorem 5.3 (Ghys) Let F be a C 2 –foliation on M such that M is a minimal set
and F is not a foliation without holonomy. Then there is a Sacksteder curve tangent
to F .

From the fact that Sacksteder curves have nontrivial linear holonomy it follows that a
Sacksteder curve cannot bound a compact subsurface of the leaf L it is contained in
(this holds for both orientations of  ). In order to see this recall that

(5-1) �1.L/!R; ˛ 7! log.h0˛.0//

determines a cohomology class in H 1.L;R/ (see [4] or [12]). Again, this remains
true when L is a leaf of the fully foliated part of a confoliation.

5B Adapting definitions related to ribbons

In the proof of Theorem 5.1 we use the setup from the proof of Theorem 4.2. We
describe the required changes below.

Either � is a foliation all of whose leaves are dense or all minimal sets of the fully
foliated part of � are exceptional. Fix a foliation I of rank 1 transverse to � . Because
M is compact there are only finitely many exceptional minimal sets N1; : : : ;N�
(this follows immediately from Theorem 5.2; see [4]). If � is minimal we pick one
Sacksteder curve 1 , otherwise let 1; : : : ; � be a collection of Sacksteder curves
such that j �Nj for j D 1; : : : ; � . The curves j are contained in leaves Lj of the
fully foliated part of � .

We choose a pairwise disjoint collection of tubular neighbourhoods of the Sacksteder
curves 1; : : : ; � . Each of these tubular neighbourhoods is diffeomorphic to j�I�I ,
where I D Œ�1; 1�, and the fibres of the projection

�j W j � I � I ! j � I � f0g �Lj

along the third factor are tangent to I . Moreover, we require that � is transverse to
the boundaries j � f�g � f˙1g of each annulus j � f�g � I . We then fix a pair of
smaller tubular neighbourhoods of j

j �Nj �
yNj � .j � I � I/

such that yNj is diffeomorphic to the product of j and a disc with two corners such
that I is tangent to the discs and � is transverse to all smooth boundary arcs of each
disc. Let

N WD

�[
jD1

Nj ; yN WD

�[
jD1

yNj :

Geometry & Topology, Volume 20 (2016)



2524 Thomas Vogel

As in Lemma 4.13, using a fine enough subdivision of a triangulation we obtain
polyhedral decomposition of M adapted to � and I such that the following conditions
are satisfied:

(i) @Nj and @ yNj are transverse to the 1–skeleton and the 2–skeleton of the polyhe-
dral decomposition. No vertices are contained in @N [ @ yN .

(ii) A polyhedron which meets Nj does not meet a polyhedron which intersects @ yNj .

We will use the following modified definition (compare Definition 4.19) of the notion
of a full collection of ribbons.

Definition 5.4 A finite collection of ribbons .�i � Œ0; 1�/i is full if it satisfies the
requirements of Definition 4.19 with the following modifications:

� No ribbon begins at a face contained in N . Moreover, no ribbon which enters N

leaves N again.

� For all i , the segment �i�f1g either is contained in H.�/ or it has the following
properties:

- �i � f1g is contained in the interior of Nj and at the same time in a fibre
of �j for some j 2 f1; : : : ; �g such that a neighbourhood of the end �i�f1g

is contained in a vertical annulus j � f�g� I .
- The union of semi-infinite segments of the characteristic foliation i�f�g�I

which point away from �i � Œ0; 1� and start in �i � f1g is an immersion of
�i � Œ1;1/ which accumulates on i � f�g� f0g.

- When one ribbon ends in j � f�g� I then no other ribbon intersects this
annulus.

Figure 15 depicts one ribbon ��Œ0; 1� whose extension accumulates on  (the horizontal
line inside of the rectangle). The two short vertical lines represent � �f0g and � �f1g
and the annulus is obtained from the rectangle identifying its vertical sides.

Lemma 5.5 Every foliation with holonomy and without compact leaves admits a
complete collection of ribbons.

Proof The proof of Lemma 4.20 carries over almost immediately. Since curves with
nontrivial holonomy cannot separate the leaf they are contained in (see (5-1) at the
end of Section 5A) there is a path tangent to F from every point in . yN nN /\Lj ,
j D 1; : : : ; � , to N without intersecting one of the annuli j �I where another ribbon
ends.
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@CC 0.w/
C.w/

�

@�C � @P



� � f1g

Figure 15: A ribbon accumulating on 

5C Determining the neighbourhood of F

Before we describe the neighbourhood of � in the space of plane fields we first explain
how to modify characteristic foliations on the boundary of polyhedra using ribbons
(more precisely we will use extensions of ribbons) which do not end in H.�/.

When � is not contact near �i � f1g for some particular i , then the fact that there are
integral surfaces in small cylinders near �i � f1g implies that we cannot realize the
holonomy gi with gi < id at given prescribed points in the interior of �i .

However, it is possible to realize a given decreasing holonomy with compact support in
�i D �i � f0g if � 0 is a contact structure which is sufficiently close to � . This is done
by attaching a thickening of a sufficiently long extension of the ribbon.

Fix an extension of the vector field X (tangent to the ribbon) from the proof of
Lemma 4.17 which is � –Legendrian, vanishes nowhere and is tangent to the character-
istic foliation on the ribbon � � Œ0; 1� and on nearby ribbons parallel to � � Œ0; 1�, and
also on j � f�g� I and nearby annuli parallel to j � f�g� I . Using the flow of X

we obtain an extension of � � Œ0; 1� to a semi-infinite ribbon �i � Œ0;1/ accumulating
on j � f�g.

For each ribbon which does not end inside H.�/ we pick a neighbourhood @�Ci � @P

which is homeomorphic to a disc and contains � . The notation @�C is meant to
indicate that this surface will play a similar role as the part of the boundary of C which
was denoted by @�Ci in Lemma 4.18. We require that @�Ci is disjoint from its images
under the flow of X for positive times and that the neighbourhoods @�Ci � �i are so
small that their images under the flow never intersect.

If � is C 0 –close enough to � , then we can consider the projection X 0 of X along I
to � . We assume that � is so close to � that the flow  0� of X 0 can be used to modify
the ribbon �i � Œ0; 1�. Moreover, we assume that X 0 — just like X — is transverse to
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j �I �f˙1g. Then the modified ribbon can still be extended to a semi-infinite ribbon
�i � Œ0;1/ which accumulates on j � f�g.

For w > 0 let

Ci.w/ WD

w[
�D0

 0� .@�Ci/;

where  0� denotes the flow of X 0 (the �–Legendrian vector field determined by X

and the plane field � close to � ). As w increases this is a neighbourhood of longer
and longer pieces of the semi-infinite ribbon; for w > 0 it is homeomorphic to a ball.
This is illustrated in Figure 15. In analogy with the notation employed in Lemma 4.18
we set @CCi.w/ WD  

0
w.@�Ci/.

If � 0D � is a positive contact structure which is so close to � that the above construction
can be carried out, then the nonintegrability of � 0 can be used as follows: as w!1,
the pullback of the characteristic foliation on @CCi.w/ to @�Ci converges to the line
field determined by the intersection of the annuli j �f�g� Œ�1; 1� with @�Ci by (3-4)
at the end of Section 3A. (The convergence is monotone and by Dini’s theorem the
convergence is even uniform.)

As in Lemma 4.18 we can therefore prescribe the holonomy gi W �iD�i�f0g!�i�f0g

corresponding to the domain contained in a long enough tube C 0i .w/ containing long
pieces of the semi-infinite ribbon as w!1. When this domain is added to P the
change of the monodromy is determined by gi (and the characteristic foliation on @P ,
as in (4-3)–(4-4) in Section 4C1).

The size of the shift by which we can change the monodromy when we attach a domain
surrounding a long piece of a semi-infinite ribbon is bounded by the length of the
attaching arc �i � f0g of the ribbon.

Again, this works parametrically, ie the domain varies continuously when the contact
structures � 0s depend continuously (again with the C 0 –topology) on a parameter s

as long as � 0s is sufficiently close to � . By the last requirement in Definition 5.4 we
can ensure that all these domains are pairwise disjoint for all w by choosing @�Ci

sufficiently thin.

As before, the ribbon �i � Œ0;1/ intersects other polyhedra on its way to j �f�g� I

and induces further ribbons but we will ignore induced ribbons which start inside N .
As in the previous section we consider neighbourhoods of induced ribbons, which get
thicker and thicker as we move towards �i � f1g.

We modify the list of requirements listed in Section 4C1. For all ribbons which end in
H.�/ no further modification is needed; they are treated as in Section 4. There are the
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following additional restrictions on the neighbourhood of � in the space of plane fields.
As before, � denotes a smooth plane field from that neighbourhood.

(1) The characteristic foliations of � on the annuli j � f�g � I described in
Definition 5.4 remain transverse to the boundary of the annuli. (The characteristic
foliation on these annuli may have more than one closed orbit after a small
perturbation of � . What matters to us is that all leaves of the characteristic
foliation which enter the annulus stay in the annulus even after a C 0 –small
perturbation.)

(2) � is so close to � that the construction of semi-infinite ribbons described above
works for all ribbons from the full collection which do not end in H.�/.
This requirement applies to all ribbons (induced or not) which are attached to
polyhedra outside of N . Since ribbons either end at cylinders in H.�/ or in N

we have to deal only with a finite number of ribbons.

(3) Recall that each connected component of yN is the product of a circle and a
disc with two corners such that I is tangent to the discs. We ask that � remains
transverse to both smooth boundary segments of the discs with corners. (This
will be used to show that certain contact structures on yN are tight.)

(4) The constant ıcyl used in Section 4C1 (measuring the possible alterations of the
holonomy of characteristic foliations when a ribbon is attached) is smaller than
the length of the shortest ribbon �i from the full collection.

These conditions together with those from Section 4C1 determine a C 0 –neighbourhood
of � in the space of smooth plane fields.

5D The proof of the stability theorem for confoliations with holonomy
and without closed leaves

We shall construct a family of contact structures �.s;t/ using a modification of the
technique developed in Section 4 together with Theorem 2.36. Also, the domains we
attach to ends of ribbons depend on s and t . None of these dependencies will be
reflected in the notation.

Proof Let �s be a family of contact structures with compact parameter space S that
lies in the "–neighbourhood of � . As before, we want to extend �s to a family of
contact structures �ys with parameter space yS . This will be done in two steps, so it is
convenient to put yS WD S � Œ0; 2�=S � f2g. We denote elements of yS by ys D .s; t/.

We fix a particular perturbation of � into a contact structure: by the proof of the
approximation theorem of Eliashberg and Thurston (Theorem 1.1) there is a contact
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structure in the "–neighbourhood of � (which we shall denote by z� ) so that the
characteristic foliation on each connected component of @ yN has exactly two closed
orbits on each connected component (one of them attractive, the other one repulsive).
Like �s0

in the proof of Theorem 4.2 in Section 4C2, z� will serve as base point.

In the first step we construct a family of contact structures �.s;t/ with t 2 Œ0; 1� so that
outside of yN we have �.s;1/D z� . This is possible at the expense of losing some control
over the contact structure �.s;1/ inside yN . However, we will show that �.s;1/ is tight
on yN . Then we can use Theorem 2.36 to find a homotopy �.s;t/ , t 2 Œ1; 2� such that in
the end �.s;2/ D z� . This will conclude the proof of Theorem 5.1.

The first step is analogous to the first part of the proof of Theorem 4.2 at the end of
the previous section: For each supporting vertex of a polyhedron which meets the
complement of yN , we choose a family of contact structures on a neighbourhood of
the supporting vertex which interpolates between �s and z� so that this family remains
"–close to � . Then we extend this family of contact structures to a family of plane
fields �.s;t/ which coincides with �s

� on all polyhedra meeting N , and

� on all cylinders in H.�/ where ribbons from the full collection end

such that the plane field is "–close to � . Recall that by the choice of the polyhedral
decomposition ((ii) in Section 5B) there is a layer of polyhedra in yN separating @ yN
from N .

The characteristic foliation of �.s;t/ on the boundary of polyhedra not intersecting N

may have closed leaves. But since �.s;t/ is "–close to � this can be corrected by the
attachment

� of ribbons together with pieces of cylinders lying in H.�/ such that the mon-
odromy on the boundary of the cylinder is sufficiently decreasing, or

� of domains C 0i .w/ containing long enough pieces of a ribbon �i � Œ0;1/ accu-
mulating on a closed leaf of the characteristic foliation on an annulus j�f�g�I .

It is irrelevant that a semi-infinite ribbon �i � Œ0;1/ might meet a region where �.s;t/
is not contact since this happens only on the piece � � Œ0; 1�.

Attaching all ribbons we obtain a family of plane fields such that its characteristic
foliation on each polyhedra outside of N satisfies the conditions of Lemma 4.14.
On the complement of N we therefore obtain a family of contact structures �.s;t/
which is transverse to I such that �.s;1/ D z� on the complement of yN and also on a
neighbourhood of @ yN .
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On the remaining polyhedra �.s;t/ is obtained by pulling back the contact structure �s
by the isotopy used to identify boundary of polyhedra with ribbons/cylinders or domains
surrounding long pieces of semi-infinite ribbons with the original boundary. Recall
that these identifications are done so that the resulting plane fields remain transverse
to I . This will imply the following claim.

Claim �.s;1/ is tight on yN for all s .

We now use the particular shape of tubular neighbourhoods yNj of j which were
formed as unions of products of a circle and discs with two corners. By construction
�.s;1/ is transverse to I and therefore the characteristic foliation of �.s;1/ on the discs
with corners consists of arcs which pass from one smooth piece of the boundary of the
disc to the other. Thus �.s;1/ can be extended to a contact structure on R2 �R such
that the second factor corresponds to I and the extended contact structure is transverse
to the second factor and defines a complete connection on R2 �R!R2 . Therefore
�.s;1/ is tight for all s 2 S .

On the interior of yN the contact structures �.s;1/ depend on s while the characteristic
foliation on the boundary is constant. By the claim above we can use Theorem 2.36 to
extend the homotopy of contact structures by a family �.s;t/ , t 2 Œ1; 2�, so that z�D �.s;2/
is independent from s . The homotopy is constant outside of yN .

In this proof we have first modified contact structures outside of a particular set yN
using semi-infinite ribbons which accumulate inside yN in a controlled fashion. Then
we have appealed to classification results from contact topology to deal with contact
structure inside yN . The scheme will appear again in the following two sections. The
case of foliations without holonomy is somewhat different and will be explained in
Section 8.

6 Uniqueness with closed leaves: tori

The proof of Theorem 1.6 is easier when the only closed leaves of F are stable tori
(the terminology is explained below). We give this proof first before proceeding to
leaves of higher genus in the next section. The main results discussed in Section 6A
apply to all orientable surfaces and will be used later, too.

Recall that for stable torus leaves we only obtain a weakened uniqueness result because
every neighbourhood of a confoliation with a stable torus leaf contains contact structures
with different Giroux torsion.

The strategy to deal with foliations with stable torus leaves is parallel to the one used
in the previous section. The main differences are:
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� Neighbourhoods yN �N of the Sacksteder curves are now replaced by neigh-
bourhoods of torus leaves.

� The classification of tight contact structures on the thickened torus T 2 � I is
more complicated. This leads to the fact that in the presence of torus leaves we
only obtain a weakened uniqueness statement.

6A Fixing neighbourhoods of closed leaves

The purpose of this section is to introduce part of the data we shall use to determine
the neighbourhood U of the confoliation � in Theorem 1.4.

In contrast to exceptional minimal sets, whose number is always finite, a foliation
can have uncountably many compact leaves. However, according to a fundamental
theorem of A Haefliger [29] the set of compact leaves of a foliation of codimension one
is a closed subset of M . This result does not need the C 2 –smoothness assumption.
Moreover, if F is coorientable, then the union of leaves of a given diffeomorphism type
is compact. In our situation this implies that there is an integer gmax such that the genus
of a given closed leaf of F is at most gmax . In order to give a more precise description
of the union of closed leaves of F we recall the following definition from [1].

Definition 6.1 Let †0 and †1 be two closed leaves of � . These leaves are equivalent
if there is an immersion

 W †� Œ0; 1�!M

with the following properties:

(i) The restriction of  to †� ftg is an embedding for all t 2 Œ0; 1�.

(ii)  .†� f0g/D†0 and  .†� f1g/D†1 .

(iii) For all p 2† the curve  .p; � / is transverse to F .

Clearly, equivalent leaves are diffeomorphic. A diffeomorphism is provided by the
holonomy of the image of the foliation by the second factor on †� Œ0; 1�. Definition 6.1
has an obvious generalization to all foliations of codimension one. The closed leaves
of the foliation on S1� Œ�1; 1� shown in Figure 16 (the S1 –factor is horizontal) which
lie in the centre of the figure are all equivalent while the other two closed leaves are
not equivalent to any other closed leaf in the figure.

Haefliger’s compactness theorem implies that there is only a finite number of equivalence
classes of closed leaves [1]. Because F is not a foliation without holonomy we can
actually assume that  is an embedding and extend it to a tubular neighbourhood for
both †0 and †1 . Using this terminology, the assumption (i0 ) in Theorem 1.6 can be
replaced by the following slightly weaker requirement:
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Figure 16: Foliation on S1 � Œ�1; 1� with three equivalence classes of closed leaves

(i00 ) The union of all torus leaves is covered by a finite collection of embeddings
 W T 2� Œ0; 1�!M as in Definition 6.1 each of which has attractive holonomy,
ie there is a simple nonseparating closed curve  � T 2 so that the holonomy
along  . � fig/ in the torus T 2 � fig is attractive on the side not contained in
 .T 2 � Œ0; 1�/ for i 2 f0; 1g.

The two upper equivalence classes of closed leaves in Figure 16 have attractive holo-
nomy; the closed leaf at the bottom does not.

Before we proceed with the proof of Theorem 1.6 let us recall the following result of
M Hirsch [33] which explains the terminology stable/unstable torus leaf. This result is
reproved as [1, Theorem 3.f.1].

Theorem 6.2 Let F be a transversely coorientable foliation of codimension 1 on M

and L a closed leaf with abelian fundamental group such that F is not a foliation by
fibres of a fibration M ! S1 . Fix a tubular neighbourhood N.L/ of L.

(i) If L has attractive holonomy along some simple closed curve  �L, then there
is a C 0 –neighbourhood of F in the space of plane fields such that every foliation
in that neighbourhood has a closed leaf diffeomorphic to L inside N.L/.

(ii) If there is no curve in L with attractive holonomy, then every C 1 –neighbourhood
of F contains a foliation which has no closed leaf inside N.L/.

The case when F is given by the fibres of a torus fibration over S1 is also under-
stood: according to a theorem of J Plante [50], a fibration with torus fibres has a
C 0 –neighbourhood such that every foliation in that neighbourhood has a torus leaf
close to an original fibre if and only if the map

�M W H1.T
2;Z/!H1.T

2;Z/
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induced by the monodromy of the torus bundle does not have a positive real eigenvalue.
However, it will turn out in Section 8A that not only these fibrations have a neighbour-
hood with the properties described in Theorem 1.6. Therefore the analogy between
stable torus leaves and stability of the approximating contact structures up to isotopy is
not perfect.

6B Determining the neighbourhood in the space of plane fields

We now describe the neighbourhood U of � in the space of smooth plane fields whose
existence is claimed in Theorem 1.6. In order to simplify the presentation we assume
that � has a unique minimal set which is a closed torus leaf with attractive holonomy.
How to treat the case when there are several minimal sets, either exceptional ones
or other torus leaves, will then be clear. In Section 5 we have already considered a
situation where both H.�/ and the fully foliated set of � are not empty. From now on
we will assume that � D F is a foliation. As before I is a line field transverse to � .

Let T �M be the unique torus leaf and  a simple closed curve in T with attractive
holonomy.

There is a foliation G on T by simple closed curves such that  is a leaf and the
holonomy along each leaf of G is attractive (in the case of confoliations this is true by
Lemma 2.7). Now we fix a pair of tubular neighbourhoods

(6-1) T D T � f0g �N.T /Š T �
�
�

1
2
; 1

2

�
� yN .T /Š T � Œ�1; 1�

of T and a polyhedral decomposition of M adapted to F and I such that the following
conditions are satisfied:

(i) The foliation I is tangent to the interval factor in (6-1) and the characteristic
foliation on  � Œ�1; 1� has one closed orbit, and all other leaves enter this
annulus through its boundary and accumulate on  . The characteristic foliation
is transverse to @N.T /\ . � Œ�1; 1�/. The same requirement applies to the
other leaves of G .

(ii) @N.T / and @ yN .T / are both transverse to all faces and edges of the polyhedral
decomposition. No vertex lies on @ yN [ @N .

(iii) The characteristic foliations @ yN .T /.F/ and @N.T /.F/ contain no 2–dimensional
Reeb component.

(iv) No polyhedron which intersects @ yN .T / meets a polyhedron intersecting @N.T /
nontrivially.
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We fix a full collection of ribbons for all faces of polyhedra which do not meet N.T /,
ie we choose a finite collection of ribbons �j � Œ0; 1� satisfying the following conditions:

(i) The end of each ribbon which is not contained in the face of a polyhedron is
contained in N.T / and the ribbons are pairwise disjoint. Each closed leaf of
the characteristic foliation of a polyhedron outside of N.T / meets the attaching
arc �j of a ribbon.

(ii) For each ribbon the projection of the part of the ribbon lying in N.T / along I
to the torus is contained in a single leaf of G .

(iii) As in Definition 5.4 we extend the ribbon �j � Œ0; 1� to a semi-infinite ribbon
�j � Œ0;1/ so that the piece �j � Œ1;1/ is contained in an annulus to which I is
tangent and which contains a leaf  of G . The semi-infinite ribbon accumulates
on  (this is shown in Figure 15).

We are now in a position to choose " > 0 which determines the C 0 –neighbourhood
of F in Theorem 1.6 in the present context (ie no closed leaves of higher genus). For
every plane field � in the "–neighbourhood of F we require:

� � is transverse to I .
� The characteristic foliation of � on  0�Œ�1; 1� remains transverse to the boundary

and inward-pointing for all leaves  0 of G . In particular, all leaves of  0� Œ�1; 1�

entering through the boundary accumulate on a closed leaf. It is irrelevant to our
discussion how many closed leaves this characteristic foliation has or whether or
not they are nondegenerate.

� All semi-infinite ribbons lift to semi-infinite ribbons adapted to � while the
ribbons still have the necessary properties (pairwise disjointness, ending in
N.T /, characteristic foliations remain graphical, etc) explained in Section 4C1
and Section 5C.

6C The proof of Theorem 1.6 in the absence of closed leaves of higher
genus

It remains to show that the "-C 0 –neighbourhood of F from the previous section has
the desired properties.

Proof of Theorem 1.6 We start with two contact structures �; � 0 which are "–close
to F . By the procedure from Section 4C2 and Section 5D we can connect � to a
contact structure y� which coincides with � 0 on all polyhedra which are not contained
in the interior of yN .T /. Using Lemma 4.14 we can ensure that the contact structure
remains transverse to I .
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Thus we obtain a family of contact structures �t , t 2 Œ0; 1�, such that �1 coincides
with � 0 on all polyhedra which are not contained in yN .T /, so that �1 is transverse
to I on yN .T /.

After a C1–small perturbation we may assume that @ yN .T / is convex and nonsingular.
Then the dividing set on @N.T / contains no homotopically trivial component. (By
Lemma 3.25, y� and � 0 are tight on N.T /.)

Because the characteristic foliation of �1 on @ yN .T / is the same as the one induced
by � 0 , there is no Reeb component in @ yN .T /. Now we apply Theorem 2.37. For this
we have to check that for both contact structures �1; � 0 there is a torus in the interior of
yN .T / isotopic to T and whose characteristic foliation is a foliation by closed leaves.

But this follows from the fact that for each leaf  0 of G the characteristic foliation
on  0 � Œ�1; 1� has a closed leaf in the interior. By the results from Section 3A the
union of these closed Legendrian curves contains an embedded torus with the desired
properties. By Theorem 2.37, �1 and � 0 are stably isotopic.

If T is a torus leaf (stable or unstable) of a (con-)foliation F , then F can be C 0 –
approximated by confoliations Fn containing a domain foliated by tori. It is then easy
to approximate Fn by a contact structure with arbitrarily large Giroux torsion along T .

Finally, let us mention two points where the above proof fails for unstable torus leaves.
When T is unstable, then

(1) we are no longer sure that our ribbons can be extended to semi-infinite ribbons
in yN .T /, and

(2) we can no longer guarantee that (iii) of Theorem 2.37 is satisfied.

As indicated in the bottom part of Figure 1 in Section 1A there may be sheets of the
contact structure which connect the two boundary components of yN .T /. If this happens,
then according to [24] there are infinitely many contact structures on yN .T / with
vanishing Giroux torsion which are pairwise nonisotopic and still satisfy assumptions
(i)–(ii) of Theorem 2.37. For these contact structures, the sheets connect the two
boundary components of @ yN .T /. The conditions on " formulated in Section 7B
ensure — among other things — that no sheet of the contact structure "-C 0 –close to F
will connect the boundary components of a tubular neighbourhood of the closed leaf.

In Example 9.12 we show that in this case it may happen that any neighbourhood (it
will turn out that we may even take a C1–neighbourhood) of a foliation with unstable
torus contains two positive contact structures which are not stably isotopic on M .
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7 Uniqueness in the presence of closed leaves with higher
genus

In this section we shall complete the proof of Theorem 1.4 for foliations with holonomy.

The previous sections have covered the situation when F is a foliation (or a positive
confoliation) which belongs to one of the following classes:

� F is a foliation such that every leaf is dense and there is holonomy.

� F is a (positive con-)foliation all of whose minimal sets are either exceptional
or stable torus leaves.

Actually, T Tsuboi [56] has shown that every C 1 –neighbourhood of a foliation contains
a foliation without closed leaves of higher genus.

In this section we deal with closed leaves of genus g� 2. As in the case of torus leaves
the set of closed leaves of a fixed genus is not finite but at least it is compact and the
discussion in Section 6A applies. In order to simplify the presentation, we assume
throughout this section that there is exactly one minimal set, which is the closed leaf †.

The overall strategy to prove the uniqueness result is the same as in Section 5 and
Section 6 and the introduction in Section 1A contains an outline which deals with closed
leaves of higher genus. Compared to the case of minimal sets which are exceptional or
stable torus leaves, there are two main difficulties which we will have to deal with:

(1) We do not know in general whether the characteristic foliation of � on † has
closed leaves on fixed annuli transverse to †. In Section 5 and Section 6 we made
essential use of such curves since semi-infinite ribbons accumulated on them.

(2) The available classification theorems for tight contact structures on †� Œ�1; 1�

are much less satisfactory than those for tight contact structures on the solid torus
or T 2 � Œ�1; 1�: the assumptions of Theorem 2.39 are much more restrictive
than those of Theorem 2.36 or Theorem 2.37.

We will use Theorem 2.39 to first modify � without changing the isotopy type of �
to ensure that the new characteristic foliation has closed leaves in a place suitable for
extending ribbons from a fixed collection. In order to apply Theorem 2.39, one has
to isotope the boundary of †� I , where I denotes an interval, so the assumptions of
Theorem 2.39 are satisfied on the boundary of the isotoped region. The construction
of these isotopies is guided by sheets. We will apply Theorem 2.39 twice, once to be
able to extend ribbons and then in a way analogous to those in which Theorems 2.36
and 2.37 were applied in Sections 5 and 6, respectively.
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7A Geometry of surfaces of higher genus

Let † be a closed surface of genus � 2. We fix a hyperbolic metric on † and a
universal covering H2!†. On all surfaces covering † we use the pulled-back metric,
and @H2 denotes the ideal boundary of the hyperbolic plane.

Lemma 7.1 There is a constant K which depends only on the hyperbolic surface †
with the following property:

Let t , t 2 Œ0; 1�, be a family of homotopically essential simple closed curves and let zt

be a lift of the isotopy to H2 . Then there is a pair of points p0 2 z0 and p1 2 z1 such
that the distance between the points is smaller than K .

If †0!† is an abelian covering, then the same constant can be used for †0 .

The only interesting case is when z1 lies entirely on one side of z0 in H2 . This will
be the case in our applications of this lemma. Finally, the part of the lemma concerning
abelian coverings will be used only in Section 8C3 when we discuss minimal foliations
without holonomy.

Proof of Lemma 7.1 We will use some facts from the geometry of hyperbolic surfaces
which can be found for example in the first chapters of [16].

Because 0 is a simple closed curve it is isotopic to a unique closed geodesic  which
is also simple and nontrivial because 0 is not null-homotopic. We fix a lift z of  in
the universal covering. In order to prove the lemma we will first show that there is a
constant K0 and a point zx 2 z such that the lift (with the same endpoints on the ideal
boundary) of every curve isotopic to  contains a point whose distance from zx is at
most K0 .

Let a1; : : : ; al �† be a collection of oriented null-homologous homotopically essential
simple closed curves such that the complement of the curves is a union of discs (as
shown in Figure 17).

We assume that the curves ai are geodesics. Let BR be a large disc in H2 such that
the restriction of the universal covering map to BR is surjective.

For each lift zai of ai intersecting BR we pick connected neighbourhoods zJ˙.zai/�

@H2 of the endpoints of zai that are pairwise disjoint. (There are only finitely many
lifts of ai which intersect BR .) Given a lift z̨ of an oriented closed geodesic ˛ in †,
we denote the corresponding isometry of H2 by fz̨ .
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†

a1

a2

a3

Figure 17: Collection of null-homologous curves in †

For each ˛ > 0 there is a number N D N.˛/ with the following property: if z is a
geodesic in H2 which intersects zai in a point y 2 BR such that

j]y.z ; zai/j> ˛;

then both ideal endpoints of f ˙N
zai

.z / are contained in the same interval zJ˙.zai/ (the
thickened arcs in Figure 18 correspond to two such intervals).

In the following we choose " > 0 close to zero (and the corresponding integer N )
such that if a geodesic  intersects one curve aj and the angle at that intersection is
smaller than ", then the absolute value of the angle at the intersection points of  andS

i¤j ai which lie next to y on  is bigger than

(7-1) ˛0 D
1
2

min
˚
j]z.ai ; aj /j j z 2 ai \ aj and i ¤ j

	
:

We pick the number N corresponding to this angle.

Pick two intersection points x;x0 of  with a1; : : : ; al which are either consecutive
along  and the angle of the two geodesics at both intersection points is greater than "
or x;x0 are separated by exactly one other intersection of  with

S
i ai where the

angle between the two curves is smaller than " (then the angle at the intersections x;x0

is again greater than ˛0 ).

Now consider preimages zx; zx0 2 z of x;x0 such that there is at most one intersection
point of the segment of z between zx; zx0 and lifts of the curves ai . The distance
between zx and zx0 is bounded by 2K1 , where K1 is the maximal diameter of the discs
† n

S
i ai . This bound is independent of  .

Let za; za0 be lifts of two curves from our collection passing through zx; zx0 . We assume
that these curves are oriented to the side of z containing z0 . Since our collection of
curves is finite, we can consider

K0 WDmax
˚
dist.y; f ˙N

zai
.y// j dist.y; zai/� 2K1 and zai is a lift of ai

	
:
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This number depends only on the maximal displacement of the isometries associated to
our system of curves but not on  . The point zx and the number K0 have the desired
properties.

In order to see this, assume that z0 is the lift of a simple closed curve isotopic to 
with the same endpoints in the ideal boundary of H2 which does not meet the K0–ball
around zx . The curves f �N

za
.z0/ and f �N

za0
.z0/ each have endpoints in one of the

intervals zJ˙.zai/. In particular, the endpoints of these curves on @H2 are unlinked.
Because the discs bounded by f �N

za
.z0/ and f �N

za0
.z0/ and pieces of the intervals

zJ˙.zai/ contain zx , the images of z0 under deck transformations intersect. This is
indicated in Figure 18. But this contradicts the assumption that 0 is simple.

f �N
za

.z0/

J�.za/ J�.za0/
f �N
za0

.z0/

zx0

zx

z

f N
za0
.zx/

za f N
za
.zx/

za0

z0

Figure 18: Nondisjoint lifts of 0 to H2

It is therefore impossible that both points f N
za
.zx/ and f N

za0
.zx/ lie on the same side

of z0 as  . Therefore z0 intersects the K0–ball around zx .

What we used to show this is that the angle between the geodesic z and a lift of one of
the curves a1; : : : ; al at their intersection point zx is bigger than ", the distance between
two such intersection points is at most twice the diameter of the discs †n

�S
i ai

�
. The

constant K0 is determined by a collection of disjoint neighbourhoods of endpoints of
lifts and the hyperbolic isometries of H2 which are translations of distance length.ai/

along a lift of a1; : : : ; al .

Now if 0; 1 are isotopic, then the lifts (with the same endpoints on @H2 ) of z0

and z1 could lie on opposite sides of the geodesic connecting the two endpoints in H2 .
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The only condition on x;x0 that we used above was that the angle between  and
curves from our collection a1; : : : ; al at these intersection points is bounded from
below by ". Therefore we can use the same point zx for both 0 and 1 . Hence there
are points on z0 and z1 whose distance from each other is smaller than 2K0 .

When the lift of 0 intersects z while z1 does not, there are points on z0 and z1

whose distance is smaller than

K0Cmax
˚
diam

�
connected component of

�
† n

S
i ai

��	
(the second summand bounds the distance between an intersection point of  and z0

from a point zx with the properties used above). Finally, if both z0 and z1 intersect z ,
then we can take

(7-2) K D 2K0C 2 max
˚
diam

�
connected component of

�
† n

S
i ai

��	
:

This constant works in the previous cases, too.

Finally, if †0!† is an abelian covering of †, then we lift the collection of separating
curves and the hyperbolic metric to the abelian covering. Because the covering is
abelian all lifts of curves a1; : : : ; ak are still closed. The discs obtained by cutting †0

along all lifts of a1; : : : ; al are isometric to the discs obtained by cutting †. Note
also that although the ball BR �H2 (used above to determine ") does not necessarily
surject onto the abelian covering we can still use a deck transformation to ensure that
the intersection point of z (a lift of a simple closed geodesic in the abelian cover) with
lifts of ai lies in BR . Therefore there is no need to change R or any other constant
appearing in (7-2) when † is replaced by an abelian covering.

This lemma is not true if † is a torus T 2 Š S1 �S1 since one can use the flow along
the first circle direction to displace f1g�S1 from itself in such a way that the distance
becomes unbounded when everything is lifted to the universal covering. The crucial
point in the proof of Lemma 7.1 is that lifts of isotopies of closed curves do not move
the endpoints in the ideal boundary.

In order to see that Lemma 7.1 does not hold for homotopies (instead of isotopies)
consider a closed geodesic  �† and a lift z �H2 . Now let zt be a family of curves
in H2 consisting of points whose distance from z is t . This family of curves projects
to a homotopy t of closed curves in † and this homotopy violates the conclusion of
Lemma 7.1 since t can be chosen arbitrarily large.
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7B Determining the neighbourhood in the space of plane fields

Let † be a closed leaf of F with genus g � 2. As before we will assume that it
is the unique minimal set of F ; if † is not the only closed leaf then we consider a
neighbourhood of an equivalence class of closed leaves.

Fix a foliation I of rank 1 transverse to F . For a hyperbolic metric on † let K be
the constant K from Lemma 7.1. We also need to fix a pair of tubular neighbourhoods

†� Œ�2; 2�Š yN .†/�N.†/�†

such that the second factor of the product decomposition is tangent to I . Compared
to the conditions formulated in Section 5C and Section 6B, the conditions the pair
. yN .†/;N.†// of tubular neighbourhoods has to satisfy are now more complicated.
To formulate this condition we fix yN .†/Š†� Œ�2; 2� such that the second factor is
tangent to I .

Inside yN we will define two sets of .2gC 1/ levels as follows. For ı� � 0 consider

(7-3) ��F .ı
�/D inf

˚
t 2 Œ�2; ı�� j there is a geodesic of length�KC 1 whose

F –horizontal lift starting in †� fıg meets †� ftg
	
:

This is a negative number and ��F .ı
�/ � �2. We choose ı�

gC1
< 0 so close to zero

that the levels

(7-4) ı�gC1 > ı
�
g D �

�
F .ı
�
gC1/ > ı

�
g�1 D �

�
F .ı
�
g / > � � �> ı

�
�.gC1/ > �2

are all different and greater than �2. (Note that this iteration is always possible without
reaching the boundary of yN .†/ when one starts in †�f0g.) Without loss of generality
we assume that ı�

0
D�1.

In the part of † � Œ�2; 2� lying above †0 we fix an analogous sequence of levels.
Instead of ��F we consider �CF defined by replacing inf by sup and Œ�2; ı� by Œı; 2�
in (7-3), and replacing (7-4) by

0< ıC
gC1

< ıCg D �
C
F .ı
C

gC1
/ < ıC

g�1
D �CF .ı

C
g / < � � �< ı

C

�.gC1/
< 2:

These levels will be used in one of our requirements for "; namely, we ask that " > 0 is
so small that there is no geodesic in † of length �K whose �–horizontal lift connects
†�fı�i g to †�fı�

iC1
g or †�fı�

i�1
g for i D�g; : : : ;g , where � is any smooth plane

field whose C 0 –distance to F is smaller than ". We also require that " satisfies the
analogous requirement with respect to the levels ıCi .

In contrast to the case of stable tori and neighbourhoods of Sacksteder curves in
exceptional minimal sets, we do not know a priori that there are distinguished annuli

Geometry & Topology, Volume 20 (2016)



On the uniqueness of the contact structure approximating a foliation 2541

in † � Œ�2; 2� such that the characteristic foliation of F on the annuli contains an
attractive closed leaf and I is tangent to the annuli.

In order to deal with this difficulty we choose yet another collection of levels as follows.
Let

(7-5) ı WD 1
2

minfjı�gC1j; ı
C

gC1
g

and N.†/D†� Œ�ı; ı�� yN .†/.

Inside N.†/ we choose yet another smaller neighbourhood yN 0.†/ and constants
zı˙i and ı0 which are analogous to the constants ı˙i and ı (defined in (7-4)–(7-5)).
Finally let N 0.†/ D †� Œ�ı0; ı0�. Using this data we obtain additional restrictions
on ": namely, starting in †� f˙ıg we do not reach the boundary of yN 0.†/ when
considering 2gC 1 consecutive �–horizontal lifts of geodesics in † which are shorter
than K .

Since † is an isolated closed leaf, there are simple closed nonseparating curves C; �
embedded in † such that the holonomy along C (resp. � ) is attractive on the side
lying above (resp. below) †. Note that C; � are not isotopic or disjoint in general.
However, we can choose both of them nonseparating because if the holonomy of † is
trivial on one side for all nonseparating curves, then all leaves of F in a neighbourhood
of † which meet the same side of the neighbourhood are compact and equivalent to †.
Hence there are annuli A˙ containing ˙ in their interior such that

� one boundary component (above † for AC , below † for A� ) is transverse to F ,

� A˙ are both contained in the interior of †� Œı; ı�, and

� A˙ is tangent to I .

We pick product neighbourhoods of A˙ such that every annulus in that family has
the same properties as the original annulus A˙ . (The case when † is not an isolated
closed leaf is only slightly different: the curves on annuli which are attractive on one
side then lie in different leaves.)

So far we have been concerned with neighbourhoods of †. The number " > 0 must
also satisfy conditions related to polyhedral decompositions and ribbons. We fix the
following data on M :

� A polyhedral decomposition of M adapted to F and I such that no polyhedron
which meets †� Œı; ı� meets the complement of †� .�2ı; 2ı/.

� No polyhedron which meets the complement of †�.�2; 2/ meets †�fı˙
�.gC1/

g.

Geometry & Topology, Volume 20 (2016)



2542 Thomas Vogel

� A complete collection of ribbons �i�Œ0; 1� for all polyhedra in the decomposition
which meet the complement of †� Œ�2ı; 2ı�. As usual, I is assumed to be
tangent to the ribbons. The ends of the ribbons opposite to the faces lie in yN 0.†/,
they are tangent to annuli parallel to A˙ , and they enter annuli near AC and A�
through the boundary components above and below †, respectively.

We require that " is such that the properties of polyhedra are also satisfied for plane
fields "–close to F and ribbons vary continuously when the plane field varies in the
"-C 0 –ball around F in the space of smooth plane fields. Moreover, the boundary
components of the annuli A˙ which are transverse to F are also transverse to � for
all plane fields "–close to F .

Comparing this with the torus case, yN .†/D†� Œ�2; 2� will play the role of yN .T /

and N.†/D†� Œ�ı; ı� will be the analogue of N.T / (as indicated by the notation).
Since we made no assumptions on the holonomy of † we need one more ingredient,
because after the perturbation of F into a contact structure we can’t be sure that
the ribbons ending in the annuli A˙ can still be extended to semi-infinite ribbons. If
CD � and this curve has attractive holonomy on both sides, then the neighbourhoods
yN 0.†/�N 0.†/ are not needed for the proof of Theorem 1.4.

7C The proof of Theorem 1.4 in the presence of closed leaves of higher
genus

Let �0; �2 be two positive contact structures "-C 0 –close to F .

(1) We isotope �0; �2 inside N 0.†/ such that after the isotopy the annuli A˙ (and
the annuli parallel to A˙ fixed above) contain a closed leaf in their interior.
For this we show that the contact structure on yN 0.†/ nN 0.†/ determines the
contact structure on yN 0.†/ up to isotopy. The resulting contact structures are
still transverse to I and they are still denoted by �0; �2 . (This step is not needed
if † has attractive holonomy.)

(2) We construct a homotopy �s , s 2 Œ0; 1�, of contact structures on M such that
�1 D �2 outside of †� Œ�2ı; 2ı� and such that the contact structures �1; �2 are
tight on †� Œı�

�.gC1/
; ıC
�.gC1/

�. In this step we use the restrictions on " related
to polyhedra and ribbons.

(3) Using the constraints on " coming from the holonomy of F near †, we show
that the restrictions of �1 and �2 to yN .†/ are isotopic relative to the boundary.
For this we show that the contact structures are determined up to isotopy by their
restriction to the smaller space yN .†/ nN.†/.
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This is slightly more complicated than in the case of torus leaves. If there is a curve
in † such that the holonomy of F along that curve is attractive, then one can omit the
first step and proceed as in Section 6.

For steps (1) and (3) we first show the following proposition (formulated for the pair
N.†/� yN .†/).

Proposition 7.2 Let � be a contact structure "–close to F on †� .Œ�2; 2� n .�ı; ı//.

Up to isotopy there is a unique tight contact structure on †� Œ�2; 2� which coincides
with � on †� .Œ�2; 2� n .�ı; ı//.

Since the pair N 0.†/� yN 0.†/ has analogous properties, Proposition 7.2 also holds
for this pair: a tight contact structure on yN 0.†/ which is "–close to F is determined
up to isotopy by its restriction to the collar yN 0.†/ nN 0.†/.

We postpone the proof of Proposition 7.2 and explain first how it implies Theorem 1.4.
In order to finish step (1) it suffices to extend the contact structure on yN 0.†/nN 0.†/ in
such a way that A˙\N 0.†/ contain closed leaves. This can be done as in Example 3.24.
One can also use [37, Proposition 6.2].

Then step (2) works as in the case of torus leaves or the case of Sacksteder curves.
Finally, Proposition 7.2 finishes the proof of Theorem 1.4 for confoliations which are
not foliations without holonomy.

Let us summarize the main differences between the case of torus leaves and leaves of
higher genus before we prove Proposition 7.2:

(1) The relative Euler class essentially determines the isotopy type of tight contact
structures on †� Œ�1; 1� if † is not a torus.

(2) If †D T is a torus, then we cannot change the contact structure on N 0.T /�
yN 0.T / in order to ensure the existence of closed leaves of the characteristic

foliation on annuli transverse to T .

(3) The last problem occurs for contact structures which have sheets connecting the
two boundary components of yN .T /. If T does not have attractive holonomy
we cannot prevent this by reducing " since there is no analogue of Lemma 7.1
for tori.

In order to prove Proposition 7.2 we want to apply the classification of tight contact
structures outlined in Section 2D2. We need to arrange that the dividing sets on †�1

and †C1 have exactly two connected components which are nonseparating. This is
done in Section 7C1. In Section 7C2 we determine the relative Euler class and if the
relative Euler class vanishes we determine which basic slice embeds into †� Œ�2; 2�

as stated in Proposition 2.41.
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7C1 Correcting the boundary of the neighbourhood of the closed leaf In this
section we explain how to find a domain in yN .†/ which contains N.†/ and satisfies the
assumptions of the classification theorem of Honda, Kazez and Matić (Theorem 2.39).

Lemma 7.3 The constant " > 0 and the levels ı˙i , i D �.gC 1/; : : : ;gC 1, have
the following property: Let � be a contact structure "–close to F , i D�g; : : : ;g , and
ˇ �†fı˙i g a closed attractive leaf of the characteristic foliation. Then the sheet A.ˇ/

does not meet †� fı˙
iC1
g or †� fı˙

i�1
g.

Proof We consider the case ˇ�†�1 . As shown in Section 3A4 there is an embedded
annulus A.ˇ/ in † � Œ�1; 1� such that ˇ � @A.ˇ/ and A.ˇ/ is foliated by closed
Legendrian curves parallel to ˇ which are contained in one of the surfaces †t , t >�1.
The sheet A.ˇ/ has the following properties:

(i) A.ˇ/ is transverse to both I and � .

(ii) When a connected component A.ˇ/\†t is an attractive closed leaf, then at
each point p of that leaf � is steeper than the tangent space of A.ˇ/ at that
point (see (3-5) in Section 3A4).

(iii) The projection of the closed Legendrian curves foliating A.ˇ/ to † along I
provide an isotopy of simple closed curves ˇ� � † starting with the curve
ˇ D ˇ0 . We lift this isotopy of curves to an isotopy ž� with fixed points on the
ideal boundary of the universal covering H2!†.

By Lemma 7.1, ž� contains a point which is connected to a point in ž0 by a geodesic z�
whose length is less than the constant K from Lemma 7.1. Consider the characteristic
foliation of the lifted contact structure z� on z†� Œ�1; 1� on the surface z� D z� � Œ�1; 1�.
Let z�; zF denote the lifts of �;F to the universal covering H2� Œ�2; 2� of †� Œ�2; 2�.

If A.ˇ/ meets †� fı�
1
g, then by the discussion in Section 3A4 (in particular (3-5))

the above properties of A.ˇ/ imply that the leaf of the characteristic foliation on
z� � Œ�2; 2� lies above the intersection of A.ˇ/ with z� � Œ�2; 2�. Therefore, if A.ˇ/

meets †� fı�
1
g then so does the leaf of z�.z�/ which starts at ˇ0 . But this is excluded

by the choice of ". This proves the lemma.

Lemma 7.4 There is a convex surface †0 in †� Œı�
�gC1

; ı�
g�1

� transverse to I such
that the dividing set on †0 has no separating component.

Proof After a C1–small perturbation of � we may assume that †�1 is convex.
Assume that the dividing set on †�1 has separating components. Then there is a sepa-
rating attractive closed leaf of †�1 . Let A.ˇ/ be the sheet of the movie .†�Œ�1; 1�; �/
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whose boundary contains ˇ . Then A.ˇ/ is an annulus and we put

tmax.ˇ/Dmaxft 2 Œ�1; 1� jA.ˇ/\†t ¤∅g:

This is the highest level the sheet A.ˇ/ reaches. Since the movie has no negative
singularities A.ˇ/\†tmax.ˇ/ is a degenerate closed curve y̌.

We assume that A.ˇ/ has the property that tmax WD tmax.A.ˇ// is maximal among the
levels tmax. ž/ for the finite number of separating attractive closed leaves ž of †�1.�/

isotopic to ˇ . We can also arrange that the sheet A.ˇ/ is as simple as possible, ie there
is no degenerate closed orbit on A.ˇ/ between ˇ and y̌. By Lemma 7.3,

tmax.A.ˇ// < ı
�
1 :

We now replace †�1 by a smooth surface †0 transverse to I and close to but never
below the surface consisting of

(i) the connected component of †�1 n ˇ on the side of ˇ determined by the
coorientation of ˇ inside †�1 ,

(ii) the part of the sheet A.ˇ/ which lies between ˇ and y̌, and

(iii) the connected component y† of †tmax n
y̌ on the repelling side of y̌.

If y† contains an attractive closed curve isotopic to y̌, then we pick the curve closest
to y̌ and denote it by ˇ0 . There are two possibilities: either ˇ is parallel to ˇ0 or not.

In the first case, the sheet A.ˇ0/ is part of a sheet containing A.ˇ/. This contradicts
the definition of tmax.ˇ/. Hence ˇ0 is anti-parallel to y̌. Notice that the sheet A.ˇ0/

does not intersect †�1 since this would contradict the maximality of tmax.ˇ/. We
proceed by replacing †0 by a surface †00 consisting of

(i) the part of †0 lying on the side of ˇ0 which contains y̌,

(ii) the part of the sheet of A.ˇ0/ below †0 and †�1 and the degenerate closed
curve y̌0 which is contained in † � ftmin.ˇ

0/g (the definition of tmin.ˇ
0/ 2

.�1; tmax/ should be obvious by now), and

(iii) the part of †tmin.ˇ0/ on the side of y̌0 which is determined by the coorientation
of y̌0 in †tmin.ˇ0/ .

Now we repeat this process. The next attractive closed curve we encounter in the
process is part of a sheet containing A.ˇ/. Therefore we cannot pass the level †tmax in
the next step and the same applies to all steps that follow it. This procedure terminates
since otherwise we would find a degenerate closed curve isotopic to ˇ which is the
limit of degenerate closed curves isotopic to ˇ . The resulting surface will be called †0 .
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By construction, †0 has no attractive closed curves isotopic to ˇ which lie in the part
of †0 n y̌ not containing ˇ .

The remaining attractive closed curves parallel to ˇ are easy to eliminate since the
sheets such curves can be completed to are sheets which are properly embedded, ie both
of whose boundary components are contained in †�1 . The attractive closed curves
which are anti-parallel to ˇ are dealt with in the same way explained above. This step
does not interfere with what we have achieved already since it all happens in the half
of †0 which is contained in †�1 .

We have removed all separating attractive closed curves which are parallel or anti-
parallel to ˇ and we want to eliminate the remaining separating attractive closed
curves.

We proceed with the separating curve ž which, together with ˇ , bounds a subsurface
containing no other attractive separating leaf. Now ž can be treated essentially in the
same way as ˇ , except that we leave the part of the surface on the side of ž which
contains ˇ as it is. Depending on whether the other side of ž coincides with the side
determined by the coorientation of � or not, the surface is shifted towards higher or
lower levels.

Figure 19 shows this schematically. The isotoped surface is thickened. Only parts
of sheets where the corresponding curve in †t is attractive and neighbourhoods of
degenerate closed curves are shown.

ˇ

y̌

ˇ0

ž

†0

†�1

†�2

�2

�1

0

Figure 19: Elimination of separating curves

Since a pairwise disjoint collection of separating homotopically essential simple closed
curves contains at most g�1 (where g is the genus of †) isotopy classes of nonoriented
curves, this process stops after a finite number of steps and we have found the desired
surface. By our choice of " the resulting surface is contained in †� Œı�

�gC1
; ı�

g�1
�.
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After the elimination of all separating attractive curves we obtain a convex surface †0

in †� Œı�
�gC1

; ı�
g�1

� such that no dividing curve is separating. The procedure from
the proof of Lemma 7.4 allows us prove that the contact structures are tight.

Proposition 7.5 The restrictions of �1 and �2 to †� Œı��g; ı
C
�g� are tight.

Proof By construction, �1; �2 are transverse to I on †� Œı��g; ı
C
�g�. After a C1–

small perturbation we may assume that † � fı˙�gg is convex. We want to apply
Lemma 3.25. For this we have to show that no connected component of the dividing
set bounds a disc. Assume that there is a component of the dividing set which bounds
a disc. By Remark 3.26 there is a closed attractive orbit ˇ bounding a disc. Let A.ˇ/

be the corresponding sheet.

After going through the procedure in the proof of Lemma 7.4 we find a disc on a
surface †t in †� Œ�2; 2� such that this surface contains no closed orbits although
the characteristic foliations point inwards along the boundary. But this requires the
presence of a negative singularity. However, if � is "–close to F , then there are no
such singularities. Hence Lemma 3.25 proves the claim.

We are now in a position to eliminate all but one pair of dividing curves from the
surface †0 obtained in Lemma 7.4.

Lemma 7.6 Let † � † � Œı�
�gC1

; ı�
g�1

� be a convex surface transverse to I such
that all dividing curves are nonseparating. Then † is isotopic to a convex surface †0

in † � Œı��g; ı
�
g � which is transverse to I and whose dividing set consists of two

nonseparating closed curves bounding an annulus.

Proof We assume that there are at least four dividing curves, all of which are nonsep-
arating. Fix an attractive closed leaf ˇ in †.�/ such that tmax.ˇ/ is minimal among
the finitely many attractive closed leaves in †�1 . Since ˇ is nonseparating and there
is another attractive closed orbit, we can use the theory of convex surfaces to change
the characteristic foliation on † so that
� there is a repulsive closed leaf ˇ0 parallel to ˇ on the side of ˇ opposite to the

side determined by the coorientation of � , and
� all leaves of the characteristic foliation which do not lie in the annulus bounded

by ˇ and ˇ0 accumulate on an attractive closed curve different from ˇ .

This can be done without changing any of the sheets containing closed attractive leaves
of †.�/.

By our assumptions on " and the choice of neighbourhoods of the closed leaf †, the
sheet A.ˇ/ containing ˇ does not enter †� Œ�ı; ı�. We choose an identification of
the region bounded by † and †�ı with †� Œ�1;�ı� such that
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� † corresponds to †�1 ,

� the foliation corresponding to the second factor is tangent to I , and

� the Legendrian foliation on the sheets containing closed attractive curves of
†.�/ is tangent to the level surfaces of the product decomposition †� Œ�1;�ı�.

Now we apply the pre-Lagrangian extension lemma (Lemma 3.29) to ˇ relative to
the sheets containing other closed leaves of †�1.�/. We obtain a properly embedded
sheet A0.ˇ/ of a contact structure � 0 isotopic to � so that A0.ˇ/ connects ˇ to ˇ0 . We
now replace †�1 by a surface †0 close to the union of

(i) the sheet A0.ˇ/ and

(ii) †�1 with the annulus bounded by ˇ0 and ˇ removed.

If †0 is sufficiently close to this union and lies above it, then no new closed curves
or negative singular points have appeared on †0 and we have eliminated one pair of
dividing curves. This process can be iterated as long as there are at least two pairs of
parallel dividing curves.

7C2 Identification of the contact structure By the lemmas from the previous sec-
tion, we find a domain N.†0/ diffeomorphic to †� Œ�1; 1� inside M such that the
boundary has the following properties:

� It is convex and contained inside †� .Œ�2; 2� n Œ�ı; ı�/.

� One boundary component lies above †0 while the other boundary component
lies below †0 .

� The dividing set of the characteristic foliation of � consists of two nonseparating
closed curves on each boundary component.

Since the contact structures �1; �2 are tight on N.†0/ we can apply Theorem 2.39 to
determine the isotopy class of � . By our assumptions on ", both contact structures have
the following property: the sheet containing an attractive closed leaf of the characteristic
foliation on a boundary component of N.†0/ does not enter †� Œ�ı; ı�.

From now on we identify N.†0/ with †� Œ�1; 1� in such a way that sheets containing
attractive closed leaves of the characteristic foliation on the boundary are preserved
and nothing changes on †� Œ�ı; ı�.

First, we determine the relative Euler class of a contact structure � on †� Œ�1; 1�.

For this we apply the pre-Lagrangian extension lemma (Lemma 3.29) to A.ˇ˙1/, where
ˇ˙ is the unique closed attractive leaf of †˙1.�/. We obtain a boundary elementary
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contact structure such that the boundary component ˇ0
�1

of A.ˇ�1/ which is different
from ˇ�1 lies on the side of ˇ�1 opposite to the coorientation of ˇ�1 determined by
the coorientation of � . For A.ˇC1/ the situation is opposite.

The map ' in the following lemma is an automorphism of the surface isotopic to a
left-handed Dehn twist along ˇ�1 .

Recall that an extremal contact structure � on †� Œ�1; 1� is boundary elementary if
all attractive closed of the characteristic foliation on the boundary are part of properly
embedded sheets (see Definition 3.27).

Lemma 7.7 Let � be a boundary elementary tight contact structure on †� Œ�1; 1�

with the properties from the previous paragraphs. Let ˛�† be a simple closed oriented
curve with ˛ �ˇ�1 D 1. Then for sufficiently large k > 0 there is an annulus S.˛k/

with primped Legendrian boundary isotopic to ˛k WD '
k.˛/ connecting †�1 to †C1

such that there is a Legendrian curve y̨k in the interior of S.˛k/ containing no singular
point of S.˛k/.�/.

Proof We start with †�1 and arrange that @A.ˇ�1/ � †�1 consists of two circles
of singularities (negative along ˇ�1 and positive at the other end of A.ˇ�1/). Using
Lemma 3.3, we can moreover arrange that ˛ is a Legendrian curve in †�1 which
intersects the annulus bounded by @A.ˇ�1/ in a single arc so that ˛ is primped (see
Section 2D2) and the only negative singularity on ˛ is ˛\ˇ�1 .

Now consider the smooth surface †00 obtained from †�1 after replacing the annulus
bounded by @A.ˇ�1/ in †�1 by A.ˇ/ and then smoothing out the nonsmooth points.
Using a vector field X transverse to the surface, we push †00 into the interior of
† � Œ�1; 1�. We may assume that X is a contact vector field outside of a small
neighbourhood of @A.ˇ�1/. Note that the part of †00 contained in A.ˇ�1/ is foliated
by closed leaves of the characteristic foliation, so †00 is certainly not convex. The
closed Legendrian curve close to ˇ is attractive while the closed Legendrian curve at
the opposite end of A.ˇ�1/ is repelling.

By Lemma 3.7 the collection of closed Legendrian curves forming on †00 curves
disappears as we push this surface into N.†0/ using the flow of X and leaves of
the characteristic foliation close to ˇ�1 get connected to leaves of the characteristic
foliation on the opposite side of A.ˇ�1/. If the flow runs for an appropriate time, the
characteristic foliation on the pushed-off surface connects the two arcs of ˛ which lie
in the part of the surface further away from A.ˇ/. (The sequence of instances where
this happens has 0 as an accumulation point.)

For an appropriate push-off we obtain a surface †0 containing a closed curve isotopic
to a curve obtained from ˛ by applying a sufficiently high power of a left-handed Dehn
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twist ' along ˇ . The annulus S.˛k/ is now obtained by isotoping †˙1 such that
there is a Legendrian curve y̨k isotopic to 'k.˛/ which intersects ˇ�1 exactly once.

The annulus S.˛k/ is then obtained by picking an annulus bounding the Legendrian
curves isotopic to ˛k in †˙1 and containing y̨k . Since the twisting of � along y̨k is
zero with respect to the framing determined by †0 , this twisting vanishes also with
respect to the framing determined by S.˛k/. Therefore we can eliminate the singular
points of S.˛k/.�/ which lie on y̨k .

We now decompose †� Œ�1; 1� as follows. Start with †0 and modify this surface using
the pre-Lagrangian extension lemma in a similar way as in the proof of Lemma 7.6 to
reduce the number of dividing curves to 2 without introducing any new ones. For this
recall the following facts:

� All dividing curves intersect ˇ�1 at least once and always with the same sign,
and thus there are no null-homologous dividing curves in †0 .

� From the way we obtained †0 it follows that we may assume that the domain
between †0 and †�1 does not contain negative singularities except those along
ˇ�1 �†�1 (these singularities lie on the Legendrian curve @S.˛k/.)

The resulting surface is called y†, and the dividing set on this surface is such that ˛k is
isotopic to a curve disjoint from the dividing set (which consists of two parallel copies
of the curve  ).

Hence if yS is an annulus in the domain bounded by y† and †�1 , whose boundary is
isotopic to ˛k , then

(7-6) hze.�/; ySi D �1D .˙ Cˇ�1/ �˛k D�˛ �ˇ�1

if we use the coorientation of ˇ�1 in order to orient yS . In other words, yS is oriented
so that �˛k is part of the oriented boundary of yS . This means that we have determined
the sign in front of ˇ�1 in the expression of the Poincaré dual of ze.�/ in (2-5).
The coefficient in front of ˇC1 is determined in the same way, looking at the other
boundary component †C1 . Since the pre-Lagrangian annulus A.ˇC1/ now lies on the
side of ˇC1 determined by the coorientation of � , we get a minus sign. Hence

(7-7) PD.ze.�//D�ˇC1Cˇ�1:

Thus if ˇ�1 and ˇC1 are not homologous, then we have identified the contact structure
up to isotopy because by the classification theorem Theorem 2.39 it is determined by
the relative Euler class.

If ˇ�1 and ˇC1 are homologous, then (7-7) implies ze.�/D 0 and we have to study
which basic slice admits a contact embedding into †� Œ�1; 1� such that one boundary
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component gets mapped to †�1 in an orientation-preserving fashion. If y̨k is attractive,
then we have already found a basic slice. If ˛k is repulsive, then after folding we
obtain a surface with four dividing curves. After removing the dividing curves which
do not come from this folding procedure, we end up again with a basic slice

ŒŒˇ�1; ˇ
0
I �ˇ0Cˇ�1��

with ˇ0 isotopic to y̨k . (The folding procedure provides us with a pre-Lagrangian
annulus below †0 which lies on the side of ˛k determined by the coorientation of � .)

Therefore the contact structure on †� Œ�1; 1� is completely determined by the contact
structure on the complement of †� Œ�ı; ı�. This completes the proof of Proposition 7.2
and with it the proof of Theorem 1.4 for all confoliations except foliations without
holonomy.

8 Foliations without holonomy

The proof of Theorem 1.4 is almost finished. What is left open is the case of foliations
without holonomy, which will be discussed in this section.

We will use of the structure theory of foliations without holonomy which was developed
in particular by R Sacksteder and S Novikov. The following theorem can be found in
[4] (recall that we assume that M is closed).

Theorem 8.1 Let F be a C 2 –foliation without holonomy on M . Either every leaf
of F is dense or the leaves of F are the fibres of a fibration M ! S1 .

In particular, a foliation without holonomy is automatically taut since noncompact
leaves in closed manifolds always have a closed transversal. In particular, F has a
neighbourhood in which every contact structure is tight (see Theorem 2.31).

There are some differences between the proof presented in this section and the proofs
in Sections 4–7. For example, we do not need polyhedral decompositions or ribbons at
this point. On the other hand, more care is needed when trying to apply classification
theorems for tight contact structures.

As usual, we fix a foliation I transverse to F . We shall deal first with the case that
every leaf is closed. We also determine precisely which torus fibrations satisfy the
conclusion of Theorem 1.6.

Then we finally prove Theorem 1.4 for foliations without holonomy all of whose leaves
are dense. As before, we will use the classification of tight contact structures on M
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after it has been cut open along a surface †. The problem is the choice of the surface
we cut along.

It is known that foliations without holonomy can be C 0 –approximated by fibrations,
and we now focus on the case when the genus of the fibre is positive: in that case we
fix a fibration 'W M ! S1 whose fibres are close to F . In the following we consider
only fibrations whose fibre is an abelian covering of a fibre of ' .

Given a fibre †0 of a fibration M ! S1 and a positive contact structure close to F ,
we want to isotope a fibre so that we can apply the classification Theorem 2.39.
Whether these manipulations described in Section 7C1 are possible depends not only
the constant K appearing in Lemma 7.1 (which used the geometry of hyperbolic
surfaces) but also on the distance between intersection points of † with leaves of I
(the distance is measured along leaves of I ). For a careful choice of the fibration a
fibre † can then be manipulated as in Section 7C1.

8A Every leaf of F is a torus

Let prW M ! S1 be an orientable torus fibration over the circle. The diffeomorphism
type of M is determined by the action of the monodromy of the fibration on the
homology of a fibre

�M W H1.T
2;Z/!H1.T

2;Z/:

Thus we may assume that M DT 2�R=Š, with .x; t/Š .Ax; tC1/ for A2Sl.2;Z/,
since M is orientable.

There are infinitely many isotopy classes of positive contact structures on M . On the
universal cover R2 �R of M consider the 1–form

cos'.t/ dx1� sin'.t/ dx2;

where ' is a strictly increasing function. According to [23], for each integer n� 0 one
can chose ' such that the corresponding contact structure on R3 is invariant under the
action of �1.M / and

2n� < sup
t2R

.'.t C 1/�'.t//� 2.nC 1/�:

The resulting contact structures do not depend on the particular choice of ' , but the
induced contact structures �n on M are not isotopic for different integers n.

The universally tight contact structures on M have been classified by Honda [35] and
Giroux [24; 23]. For our purposes the following statement of their results is sufficient:
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Theorem 8.2 If jtr.�M /j ¤ 2, then all positive universally tight contact structures
on M are isotopic to one of the contact structures �n defined above.

This implies that the conclusion of Theorem 1.6 also holds for torus bundles over S1

whose monodromy is elliptic or hyperbolic. If the monodromy A 2 Sl.2;Z/ satisfies
tr.A/D 2, then this is not the case, as will be shown in Example 9.7.

Theorem 8.3 Let F be the foliation defined by a torus bundle prW M ! S1 . Then
there is a C 0 –neighbourhood of F in the space of plane fields such that all positive
contact structures in that neighbourhood are stably isotopic if and only if C1 is not an
eigenvalue of A.

Proof If the monodromy is elliptic or hyperbolic, then C1 is not an eigenvalue of A

and Theorem 8.2 proves the claim. The case tr.A/DC2 will be treated in Example 9.7
below. Thus we are left with the case when tr.A/D�2, in which the classification of
universally tight contact structures is slightly more complicated and we have to prove
our claim more directly.

Let U be the neighbourhood of F determined by the requirement that all plane fields
on U are transverse to the line field @t on M . Since such contact structures lift to
complete connections of a fibre bundle equivalent to R3!R2 , all contact structures
in U are universally tight by Theorem 2.27.

Consider a positive contact structure � in U and consider the characteristic foliations
on the fibres of M . After a C1–small perturbation of � the fibre T0 D pr�1.0/ is
convex. Let ˇ be an attractive closed leaf of T0.�/ and A.ˇ/ the sheet containing ˇ .

Because �1 is the only eigenvalue of A the characteristic foliation T0.�/ has another
closed attractive leaf ˇ0 which is isotopic to ˇ after its orientation is reversed.

If A.ˇ/ connects the two boundary components of M nT0 we consider the cyclic
covering yM of M given by:

yM
ypr
//

��

R

��

M
pr
// S1

Let yT D ypr�1.0/ and consider the maximal sheets yA.ˇ/; yA.ˇ0/ containing lifts of
ˇ; ˇ0 � yT . Let

� D supfyt 2R j yA.ˇ/\ ypr�1.yt/¤∅g;

� 0 D supfyt 2R j yA.ˇ0/\ ypr�1.yt/¤∅g:
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One of these numbers is finite because otherwise the sheets yA.ˇ/ and yA.ˇ0/ would
intersect. This is impossible unless they actually coincide. But � is transverse to I
and, as explained in the discussion of the behaviour of sheets in Remark 3.15, the
sheets yA.ˇ/; yA.ˇ0/ cannot coincide. Thus we can reduce the number of dividing
curves on T by isotoping the sheet yA.ˇ0/. After finitely many such isotopies (as in
Section 7C1) we find an embedded torus T 0 �M isotopic to the fibre such that T 0.�/

has no singularities and no closed orbits.

The classification of universally tight contact structures on T 2�Œ0; 1� (see Theorem 2.37)
such that the characteristic foliation on the boundary is of the same type as T 0.�/

implies the claim.

8B Every leaf of F is compact and has genus g � 2

Fix a hyperbolic metric on a fibre †0 and let K > 0 be the constant from Lemma 7.1.
We identify a foliated tubular neighbourhood of †0 with †� .�ı; ı/ and a foliation I
transverse to the leaves of F such that I is tangent to the fibres of †� .�ı; ı/!†.

We assume that " > 0 satisfies the following condition:

For every path  of length at most KC1 and i D�gC1; : : : ;g�1 and every smooth
plane field � which is "-C 0 –close to F , the �–horizontal lift of  with starting point
in †iı=g does not meet †.i�1/ı=g or †.iC1/ı=g . Moreover, we require that " is so
small that every contact structure "–close to F is tight (such an " exists because F
is taut).

Now we show that all positive contact structures which are "–close to F are isotopic.

The first three steps are the same as those used in the proof of Proposition 7.2. We do
not go through the details again but here are the steps: Let �0 and �2 be two contact
structures "–close to F .

(1) After a C1–small perturbation of �0 and �2 we may assume that †0 is convex
for both contact structures.

(2) By Lemma 7.4 we can isotope the surface †0 inside

†� .�.g� 1/ı=g; .g� 1/ı=g/

so that the resulting surfaces y†.0/ and y†.2/ are convex with respect to �0 and �2 ,
respectively, and whose dividing set has no separating component.

(3) After sufficiently many applications of Lemma 7.6 we end up with surfaces
†.0/; †.2/ � .�ı; ı/ whose dividing set consists of exactly two nonseparating
closed curves which bound a single annulus.
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When we cut M along †.0/ we obtain M n†.0/ . This a manifold which is diffeomor-
phic to †�Œ0; 1� and the boundary satisfies the assumptions of the classification theorem
of Honda, Kazez and Matić (Theorem 2.39). The contact structure on †� Œ0; 1� is
determined by the orientations of the attractive closed leaves of †.0/.�/ (see Lemma 7.7
and the discussion following it).

To see this, let 0 denote the attractive closed leaf of †.0/.�0/. The relative Euler class
of �0 on the cut open manifold is Poincaré-dual to ��.0/�0 , where �W †.0/!†.0/

denotes the monodromy of the fibration. If the relative Euler class vanishes, then the
contact structure is still determined by embedding properties of basic slices, since there
are no sheets which pass from one boundary component of M n†.0/ to the other.

The analogous statement is true for M n†.2/ . The remaining problem is that the
dividing sets of †.0/.�0/ and †.2/.�2/ are not isotopic in general.

As in the first step of the proof of Theorem 1.4 in Section 7C, we can find a tight
contact structure �1 on M n†.0/ with the following properties:

� �1 is transverse to I and hence tight.

� �1 coincides with �0 near the boundary M n†.0/ .

� Recall that †.0/ and †.2/ are isotopic. We use this isotopy to compare dividing
sets on these surfaces. The surface

(8-1) †1 D†
.0/
�
˚

1
2

	
�†.0/ � Œ0; 1�ŠM n†.0/

is convex with respect to �1 and the dividing set on †1 coincides with the
dividing set of �2 on †.2/ .

The construction of �1 is similar to the one described in Example 3.24, where we
considered two disjoint nonseparating curves. Here we also use that the part of the
curve complex of † whose vertices are nonseparating is connected (this is [37, Propo-
sition 3.3]) in order to find a path in the curve complex (containing only nonseparating
curves) connecting the dividing set on †.0/ with the dividing set of �1 on †1 through
nonseparating curves.

Now �1 is isotopic to �0 on M n†.0/ relative to the boundary. Thus we can replace �0
by �1 on M . Now, inside of M , the surface †1 is isotopic to †.2/ by shifting †1

along leaves of I . The classification of tight contact structures now implies that �1
and �2 are isotopic.

This concludes the proof of the uniqueness theorem for foliations formed by fibres of a
fibration over S1 such that the genus of the fibres is � 2.
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8C Every leaf of F is dense

First, we review standard facts about foliations without holonomy and explain how
a general foliation without holonomy can be understood in terms of a foliated fibre
bundle on a manifold of higher dimension. This uses results of Novikov [47] and our
presentation follows [44] closely.

This will be used to approximate a foliation without holonomy by the fibres of a
fibration over S1 . The main point will be to find an approximation of F by fibrations
which are sufficiently close to F so that a chosen fibre † can be manipulated as in the
proofs of Lemma 7.4 and Lemma 7.6. For this one has to exclude the possibility that a
sheet intersecting †0 in an attractive closed leaf of the characteristic foliation is part
of a pre-Lagrangian torus.

We fix a fibration whose fibres are transverse to a chosen line field I which is also
transverse to F . (It may be helpful to think of I as defined by a vector field which
projects to a fixed nowhere-vanishing vector field on the circle.) We then replace the
original fibration by another one such that the new fibres are coverings of the old
fibration and the angle between the fibres and F decreases faster than the distance
between intersection points of the new fibres with leaves of I (measured along the
leaves of I ). In this process we will use a result concerning the approximation of
irrational numbers by rational numbers.

We now start summarizing facts about foliations without holonomy. As always, the
underlying manifold is closed and the foliation is at least C 2 –smooth. We fix a simple
closed curve C transverse to F (such a curve exists because there are noncompact
leaves).

Theorem 8.4 (Sacksteder [52]) If F is a C 2 –foliation without holonomy, then there
is a C 0 –flow

(8-2)  W M �R!M

which preserves the leaves of F and acts transitively on the set of leaves. The flow can
be chosen tangent to any previously fixed foliation L of rank 1 transverse to F . Given
a closed curve C transverse to F we can choose  such that C becomes a flow line.

In order to prove this theorem, one establishes the existence of a holonomy-invariant
transverse measure �. The relationship between � and  is �. .x; Œ0; s�//D s . The
transverse measure determines a group homomorphism

'�W �1.M /!R; Œ � 7!

Z
S1

 �.d�/:

Geometry & Topology, Volume 20 (2016)



On the uniqueness of the contact structure approximating a foliation 2557

The image P.�/ of '� is called the group of periods of F . It consists of those times s

where  .s; � / maps one (or equivalently every) leaf to itself. The leaves of F are fibres
of a fibration if and only if P.�/ is discrete.

Let zM !M be the universal covering and zF the induced foliation, L a leaf of F and
zL!L the universal covering of L. Since M is taut, zL is a leaf of zF , and, lifting  
to zM , we obtain a diffeomorphism

z W zL�R! zM :

We denote the projection onto the second factor of zL�R by � . We get a representation

(8-3) qW �1.M /D Deck. zM /! Diff2
C.R/; ˛ 7!

�
x 7! �..p0;x/ �˛

�1/
�
:

Here p0 is a base point in zL and we abbreviate fp0g �R � zL�R by R. Novikov
proves the following facts about q :

(i) If q.˛/ has a fixed point, then q.˛/D id.

(ii) The image G of q is an abelian group (it is obviously free and finitely generated).

The action of �1.M / on zM by deck transformations and by q on R determines a
foliated R–bundle

(8-4) E D zM �R=�1.M /:

We denote the induced foliation on E by FE . By the definition of q , the embedding

z� W zM ! zM �R; x 7! .x; �.x//

is �1.M /–equivariant, the resulting embedding � W M !E is transverse to FE and
F D ��FE .

The element q.C / D f0 is nontrivial and f0.x/ > x . Then according to [54] we
may (smoothly) reparametrize R so that f0.x/D xC 1. Because the other elements
of G commute with f0 we have that f .xC 1/D f .x/C 1 for all f 2G . Therefore
the elements of G have the same properties as lifts of orientation-preserving C 2 –
diffeomorphisms of the circle S1 DR=Z (we call such diffeomorphisms 1–periodic).

The outline we have given is somewhat misleading since Novikov’s result can be used
to prove Theorem 8.4. This is explained in [4, Chapter 9], where the representation
(8-3) is obtained without using Theorem 8.4 and the holonomy-invariant transverse
measure is then obtained by an averaging procedure.
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8C1 1–periodic diffeomorphisms of R Let �W R! R be a 1–periodic homeo-
morphism of R. We denote the group consisting of such diffeomorphisms by Diff1.R/.
It is well known (and explained in many places, eg [25]) that the sequence .�n� id/=n

converges uniformly to a constant �.�/ as n!1. This number is called the translation
number of � , and the fractional part of this number is the rotation number � 2R=Z
of ' when � is a lift of 'W S1! S1 to the universal covering R! S1 DR=Z. All
the following statements are consequences of well-known properties of the rotation
number:

� If r˛.x/D xC˛ then �.r˛/D ˛ .

� The rotation number depends continuously on � with respect to the uniform
topology.

� If �1; �2 commute, then �.�1 ı�2/D �.�1/C �.�2/.

The following theorem is just a translation of a fundamental result in the theory of
circle diffeomorphisms to the context of 1–periodic diffeomorphisms of R.

Theorem 8.5 (Denjoy) If the translation number � of � is irrational and � is C 2 –
smooth, then there is a 1–periodic homeomorphism h of R such that h ı' ıh�1 D r� .
The centralizer of r� in the group of 1–periodic homeomorphisms of R consists of all
translations of R.

In particular, the conjugating homeomorphism h is unique up to composition with
a translation. Moreover, note that if �1; �2; : : : ; �n are pairwise commuting home-
omorphisms and one of them is conjugate to a translation, then one can use the
same conjugating homeomorphism in order to conjugate �1; : : : ; �n to translations
simultaneously.

8C2 Diophantine approximations The theory of diffeomorphisms of the circle has
strong connections to the theory of Diophantine approximations [32]. However, our
use of the following theorem from the theory of Diophantine approximations is much
more modest. A reference for the following result is [53, page 27].

Theorem 8.6 (Dirichlet) Let ˛1; : : : ; ˛n be real numbers such that at least one of
them is irrational. Then there are infinitely many .nC1/–tuples .q;p1; : : : ;pn/ of
integers such that gcd.q;p1; : : : ;pn/D 1 and

(8-5)
ˇ̌̌̌
˛i �

pi

q

ˇ̌̌̌
<

1

q1C1=n
:
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The Thue–Siegel–Roth theorem states that if ˛ is a real algebraic number and ı > 0,
then ˇ̌̌̌

˛�
p

q

ˇ̌̌̌
<

1

q2Cı

has only finitely many solutions p; q where p; q are coprime integers. Therefore one
cannot expect to improve the exponent in (8-5).

It is not known to the author whether one can arrange gcd.q;pi/ 2 f1; qg for all i ,
maybe at the expense of replacing the function q�1�1=n in (8-5) by another function
f .q/ such that qf .q/! 0 as q !1. This would allow us to reduce the case of
minimal foliations without holonomy to the previous case. That is, we could find a
fibration such that F lies in a neighbourhood of the fibration in which the uniqueness
theorem holds.

8C3 The uniqueness theorem for minimal foliations without holonomy In the
proof of the approximation theorem of Eliashberg and Thurston (Theorem 1.1) one uses
the fact that all foliations without holonomy can be C 0 –approximated by fibrations.
This is explained in [12, Section 1.2.2] and later we shall find particular sequences of
fibrations converging to F . We fix a fibration transverse to the flow lines of the  (see
[12, page 10]) and a fibre †0 . There are two cases:

†0 has genus � 1 If †0 has genus 0, then F has to be a foliation by spheres, and
there is an "–neighbourhood of F which does not contain any contact structure at all.
When the fibres have genus 1, then the leaves of F are either all cylinders or they
are all planes since the leaves of F cover the fibres of the fibration. These are the
cases excluded in Theorem 1.4, and as we will see in Section 9B there are infinitely
many contact structures with vanishing Giroux torsion in any neighbourhood of a linear
foliation by planes or cylinders on T 3 .

†0 has genus � 2 Our first goal is to find a very good approximation of the foliation
by a fibration using Theorem 8.6. For future reference we fix a hyperbolic metric
on †0 .

Let f0; : : : ; fn be generators of G (the image of the map defined in (8-3)). As explained
above, fi ı fj D fj ı fi and we may assume f0.x/ D x C 1. Because no map fi

has a fixed point and all these maps are 1–periodic they are conjugate to translations
(either because they are all lifts of periodic circle diffeomorphisms, or because of
Theorem 8.5). Since we assumed that F is minimal there is one generator, say f1 ,
with irrational translation number.

By Theorem 8.5 the representation qW �1.M /! Diff2
C.M / defined in (8-3) is con-

jugate to a representation q0 with .q0.˛//.x/D xC �.q.˛// via a 1–periodic home-
omorphism h of R. We consider the foliated bundle induced by this representation.
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Using Theorem 8.6 we approximate the numbers �i WD �.fi/, i D 1; : : : ; n, by rational
numbers (recall that �.f1/ is irrational).

There might be relations among the maps fi which then translate to relations among
the �i . Since �1.M / is finitely presented, these relations are automatically satisfied
for an approximation p1=q; : : : ;pn=q of �1; : : : ; �n provided that q is big enough and
the approximation satisfies (8-5) in Theorem 8.6.

In order to turn the approximations of the translation numbers into foliations approx-
imating FE we fix a handle decomposition of M . We can C 0 –approximate the
foliation FE on E!M on the preimage of 1–handles by a foliation whose mon-
odromy along a curve in M is h0ı�pi=q ıh

0�1 when the original monodromy along the
curve was fi (here h0 is a diffeomorphism sufficiently close to the homeomorphism h).

Since the maps h0 ı �pi=q ı h0�1 satisfy the relations in �1.M / coming from the 2–
handles we can extend the approximating foliation to the union of preimages of the
2–handles.

Then extension over 3–handles is no problem since a 1–periodic foliation on S2 �R
transverse to the R–fibres is a product foliation by the Reeb stability theorem
(Theorem 2.8). In this way, we obtain a sequence of foliations Fq;E on E . The
extensions can be chosen so that the tangent spaces of the foliations Fq;E converge
uniformly to the original foliation FE on E as q!1.

By construction, the leaves of Fq;E are properly embedded submanifolds. Hence the
pullback Fq WD �

�Fq;E is a smooth foliation on M by compact leaves provided that
� is transverse to Fq;E . This happens when q is sufficiently large and h0 is sufficiently
close to h.

So far we have shown that F can be approximated by foliations Fq all of whose leaves
are compact. Such foliations define fibrations over the circle.

The distance between two distinct points of a leaf of Fq which lie on the same R–fibre
can be chosen in the interval Œ1=2q; 2=q� (the factor 2 accounts for the additional
approximations eg of h). Because .p1=q; : : : ;pn=q/ satisfy (8-5), Fq can be chosen
such that the angle between leaves of Fq and FE is bounded by a constant proportional
to 1=q1C1=n while the distance between two points on a fibre along leaves of the
Sacksteder flow decreases linearly.

If q is sufficiently large, then the F -horizontal lift with respect to the Sacksteder flow
of a curve  in a fiber of Fq does not intersect all fibres of Fq provided that the length
of  is smaller than KC 1. The leaves of Fq are coverings of the fibres of F0 and
the group of deck transformations is abelian, ie the leaves of Fq are abelian coverings
of †0 with index q .

Geometry & Topology, Volume 20 (2016)



On the uniqueness of the contact structure approximating a foliation 2561

We say that Fq is well-approximating. The fibres of the fibration ��Fq of M are
abelian coverings of †0 .

Let K be the constant from Lemma 7.1 (with respect to a fixed hyperbolic metric on a
fibre of the original fibration). According to (8-5) we can choose q so that

(8-6)
KC 1

q1C1=n
<

1

8q
;

and consider the corresponding approximation Fq of F . We now view a tubular
neighbourhood of a fibre/leaf † of Fq as a fibration over †; the normal fibres of the
tubular neighbourhood are segments of I and we may choose these segments to have
length 1=4q in both directions away from †. Then we view F as a connection on this
interval bundle.

Then (8-6) implies that no F –horizontal lift of a curve of length �KC 1 which starts
at † can leave the chosen tubular neighbourhood. Recall that † is an abelian covering
of a fibre of the original fibration.

The following conditions on " determine the neighbourhood of F whose existence is
claimed in the uniqueness theorem (Theorem 1.4).

Fixing the neighbourhood of F We choose " > 0 such that

� every plane field � which is "–close to F is transverse to the flow lines of the
Sacksteder flow, and

� no �–horizontal lift of a curve of length �KC 1 which starts at a fibre † can
leave its tubular neighbourhood chosen above.

We now show that the "–neighbourhood of F has the desired property. Let �0; �2
be C1–generic positive contact structures "–close to F . We consider the movie of
characteristic foliations on the fibres/leaves of Fq .

From the conditions on " it follows that no sheet containing an attractive closed curve
of the characteristic foliation of a fibre can be a closed torus in M . Therefore, when
† is a fibre of the well-approximating fibration which is a convex surface with respect
to �0 , we can isotope † along the flow lines of the Sacksteder flow and thereby reduce
the dividing set to a single nonseparating pair using Lemma 7.4 and Lemma 7.6. The
fact that one sheet which arises in the constructions of these two lemmas may hit the
surface we are about to isotope more than once is not a problem since several pieces
of the surface can be isotoped at the same time. (From the definition of the sheets it
follows that two sheets either coincide or are disjoint.)
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We now proceed as in the proof of Theorem 1.4 when F is a fibration over the circle.
Using the construction from Example 3.24 together with the classification of tight
contact structures, we conclude that �0 is isotopic to �2 . This concludes the proof of
Theorem 1.4.

9 Applications and examples

In this section we apply Theorem 1.4 to prove results about the topology of the space
of taut foliations. Moreover, we give a few examples of approximations of foliations
by contact structures where the foliation violates the assumptions of Theorem 1.4 and
Theorem 1.6 and every neighbourhood of the foliation contains contact structures which
are not (stably) isotopic.

9A Homotopies through atoral foliations

Definition 9.1 A foliation F is atoral if there is no torus leaf, not every leaf is a plane
and not every leaf is a cylinder.

In other words, atoral foliations are just those foliations which satisfy the assumptions of
Theorem 1.4. This definition, like the following, makes sense for positive confoliations.
However, in the next two sections we shall focus on foliations. According to a result
from [27], a foliation on a closed 3–manifold without torus leaves is taut. On the class
of atoroidal manifolds, atoral foliations coincides with taut foliations.

Definition 9.2 A contact structure � approximates a foliation F if every C 0 –
neighbourhood of F contains a contact structure isotopic to � .

Theorem 1.4 then just says that there is a unique positive contact structure approximat-
ing F whenever F is atoral. We have the following simple consequence:

Theorem 9.3 Let Ft , t 2 Œ0; 1�, be a C 0 –continuous family of atoral C 2 –foliations.
Then the positive contact structures �0 and �1 approximating F0 and F1 , respectively,
are isotopic.

Proof By Theorem 1.4, for each t 2 Œ0; 1� there is a C 0 –neighbourhood Ut of Ft

in the space of plane fields such that all positive contact structures in Ut are pairwise
isotopic. By compactness we can cover the path Ft by finitely many C 0 –open sets
U0; : : : ;UN such that Ui \UiC1 contains a foliation from the family Ft . According
to Theorem 1.1 there is a positive contact structure � 0i in Ui \UiC1 since this is a
C 0 –open neighbourhood of a foliation. By the choice of Ui , we have

�0 Š �
0
0 Š �

0
1 Š : : :Š �

0
N�1 Š �1:
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We obtain an obstruction for two foliations F0 and F1 being homotopic through taut
foliations when the underlying manifold is atoroidal: if the positive contact structures
approximating the foliations are not isotopic, then there is no homotopy through taut
foliations connecting F0 and F1 . This is of interest because the following h-principle
due to Eynard-Bontemps ([14], building on [42]) reduces the question of when two taut
foliations are homotopic through foliations to a purely homotopy-theoretic problem.

Theorem 9.4 Two taut foliations F0 and F1 on 3–manifolds are homotopic through
foliations if and only if the corresponding plane fields are homotopic.

The first step in the proof of this theorem is the introduction of Reeb components.

The following example shows that one can indeed use Theorem 9.3 to show that a pair
of taut foliations is not homotopic through foliations without Reeb components (also,
they are not homotopic through taut foliations) although they are homotopic through
foliations. The example therefore shows that the introduction of Reeb components
in Eynard-Bontemps’ proof of Theorem 9.4 is necessary. To the best of the author’s
knowledge, this is the first example of this kind.

More information concerning the question of which contact structures appear in neigh-
bourhoods of foliations can be found in Bowden [3].

Example 9.5 We consider the Brieskorn homology sphere

M D†.2; 3; 11/D f.x;y; z/ 2C3
j x2
Cy3

C z11
D 0g\S5:

This manifold is a Seifert fibred space over S2 with three singular fibres. In terms of
Seifert invariants, this manifold is often denoted by M

�
1
2
;�1

3
;� 2

11

�
(see [19]). Since

M is a homology sphere it does not fibre over S1 .

The tight contact structures on M were classified by Ghiggini and Schönenberger [19].
They showed that this manifold carries exactly two positive tight contact structures
up to isotopy. From the surgery description in [19, Section 4.1.4] of the two contact
structures it follows that if � is a tight contact structure on M , then x� (this is � with
its orientation reversed) represents the other isotopy class of tight contact structures.

In [38] (together with [45]) it is shown that M admits a smooth foliation F transverse
to the fibres. Since M is a homology sphere, no taut foliation on M has a closed leaf.
In particular, there are no torus leaves, and since M does not fibre over S1 there are no
smooth foliations without holonomy. Hence F satisfies the conditions of Theorem 1.4.

Now let � be a contact structure in a sufficiently small C 0 –neighbourhood of F . Notice
that x� approximates F . By Theorem 9.3 the foliations F and F are not homotopic
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through foliations without torus leaves. Since M is a homology sphere this is equivalent
to saying that F and F are not homotopic through taut foliations.

This is nontrivial since F and F are homotopic as plane fields, as can be shown using
the invariants from [26], which form a complete invariant for oriented plane fields on
3–manifolds up to homotopy. The most obvious of these invariants is the Euler class
e.�/ 2H 2.M;Z/. When e.�/ is torsion and H 2.M IZ/ has no 2–torsion (recall that
the manifold under consideration is a homology sphere), then the homotopy class of
the plane field is determined by e.�/ and the rational number �.�/ defined by

(9-1) �.�/D .PD.c1.X;J ///
2
� 2�.X /� 3�.X / 2Q:

Here .X;J / is a 4–manifold oriented by an almost complex structure J with signature
�.X / and Euler characteristic �.X / such that M D@X as oriented manifolds, J.�/D�

and J induces the original orientation of � . As explained in [26], these invariants can
be computed effectively when the contact structure is given by a Legendrian surgery
diagram.

In the case at hand it is clear that the Euler class of e.�/D�e.x�/ vanishes since M is
a homology sphere. It follows from (9-1) and the equality c1.X;�J /D �c1.X;J /

that �.�/D �.x�/. Hence � and x� are homotopic as oriented plane fields and the same
is true for F and F . So by Theorem 9.4 the foliations F and F are homotopic through
foliations but by Theorem 9.3 this homotopy has to contain torus leaves. One can easily
show that every foliation without Reeb components on M is taut.

Example 9.6 The work of Ghys and Sergiescu [20] provides another class of pairs of
foliations which are not homotopic through atoral foliations. These foliations are the
stable and unstable foliations Fs;Fu of Anosov flows on T 2 –bundles over S1 which
are suspensions of A 2Gl.2;Z/ such that jtr.A/j> 2. The reason why these foliations
are not homotopic through atoral foliations is that atoral foliations on suspensions of
orientation-preserving Anosov diffeomorphisms of T 2 admit a classification up to
diffeomorphism: each smooth atoral foliation is smoothly equivalent to Fs or Fu [20].
In many instances these two types of foliations are not even diffeomorphic. It is obvious
from [12; 43] that both foliations have isotopic approximating contact structures and
that the corresponding plane fields are homotopic (through positive confoliations). Note
that Fs and Fu are both homotopic to the foliation by the torus fibres of the fibration
if tr.A/ > 2. The homotopy is given by

˛s D s dt C .1� s/��tˇ�;

where s 2 Œ0; 1� and ˇ� is a 1–form on T 2 with constant coefficients such that
A�.ˇ�/D �ˇ� . The coordinate on the base circle is denoted by t . This eigenvalue � is
positive since tr.A/ > 2. Thus Fu and Fs are even homotopic through taut foliations.
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We conclude from the last example that there are foliations which are not homotopic
through atoral foliations despite the fact that the approximating contact structures are
isotopic.

9B Parabolic torus fibrations and linear foliations on T 3

In this section we discuss foliations given by fibres of particular torus fibrations over S1

and we show that there are foliations with the property that every isotopy class of
contact structures has positive C 0 –distance from the foliation. Clearly, these foliations
have to belong to the classes where Theorem 1.4 does not apply.

Example 9.7 Let M be the total space of a torus bundle over the circle whose
monodromy �M satisfies tr.�M /DC2 (see Section 8A for the notation). According
to [31], these are exactly those orientable manifolds which admit C 2 –foliations all of
whose leaves are cylinders. We may assume that

�M DAD

�
1 0

k 1

�
;

with k 2 Z. We view M as a fibration over T 2 with the bundle projection

M ! T 2; .x1;x2; t/ 7! .x1; t/

and typical fibre S1 . Let F0 denote the foliation by tori defined by dt on M . Thus
the leaves are the fibres of M ! S1 . Let �";m be the contact structure defined by

(9-2) dt C "
�
.jkjC 1/ cos.2�mt/ dx1� sin.2�mt/.dx2� kt dx1/

�
;

with m a positive integer and " > 0. This 1–form is a contact form on M and as
"! 0 the corresponding plane field converges to F0 . The contact structures �";m are
distinguished by their Giroux torsion.

However, there are other contact structures in every neighbourhood of F0 : Let �";m
be the positive contact structure defined by the 1–form

˛";m D dx1C "
�
sin.2�mx1/.dx2� kt dx1/CjkC 1j cos.2�mx1/ dt

�
;

where m is a positive integer and "> 0 (these contact forms are taken from [23]). Then
as "! 0 the contact structures defined by ˛";m converge to the foliation F1 defined
by dx1 on M . Now consider the following automorphism of M :

 pW M !M; .x1;x2; t/ 7!
�
x1Cpt;x2C

1
2
kpt.t C 1/; t

�
:
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This map covers the p–fold Dehn twist of T 2 given by .x1; t/ 7! .x1Cpt; t/. We
consider the foliations defined by

 �p .dx1/D dx1Cp dt:

As p ! 1 these foliations converge to F0 . Hence the contact structures �";m;p
defined by  �p .˛";m/ form a sequence of positive contact structures converging to F0 .
It is shown in [23] that the contact structures �";m;p and �"0;m0;p0 are isotopic if and
only if m D m0 and p D p0 . Moreover, they are not isotopic to any of the contact
structures �";m defined by (9-2).

A foliation F on T 3 is linear if F D ker.ˇ D a dxC b dyC c dz/ with a; b; c 2 R.
In the following we establish restrictions on the contact structures lying in a given
C 0 –neighbourhood of F . For this we first recall the classification of tight contact
structures on T 3 DR3=Z3 (with corresponding coordinates x;y; z and oriented by
the volume form dx ^ dy ^ dz ). The following result sums up work of Kanda, Giroux
and earlier results from [11].1

Theorem 9.8 (Kanda, Giroux) A positive tight contact structure on T 3 is diffeomor-
phic to

(9-3) �m D ker
�
˛m D cos.2�mz/ dx� sin.2�mz/ dy

�
for a unique m 2 f1; 2; : : : g. Two tight contact structures �; � 0 are isotopic if and only
if there are contactomorphisms

 W .T 3; �/! .T 3; �m/;

 0W .T 3; � 0/! .T 3; �m0/

such that mDm0 and the pre-Lagrangian tori  �1.fz D z0g/ and  0�1.fz D z0
0
g/ are

isotopic.

This theorem implies in particular that every oriented tight contact structure � on T 3

is isotopic to x� since �m is isotopic to x�m via the isotopy

hsW T
3
! T 3; .x;y; z/ 7! .x;y; zC�s=m/;

with s 2 Œ0; 1�. Moreover, we can associate to � a pre-Lagrangian torus T .�/ which is
well-defined up to isotopy. Using this we will establish the following result:

1The author is grateful to Hansjoerg Geiges for pointing out this reference.
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Proposition 9.9 Let F be a linear foliation on T 3 and � a tight contact structure.

(a) If F is not a foliation by closed leaves, then there is a neighbourhood U� of F
which does not contain any contact structure isotopic to � .

(b) Every C 0 –neighbourhood of F contains a contact structure isotopic to � if and
only if T .�/ is isotopic to a leaf of F . In particular, all leaves of F are closed.

Proof We fix a fibration prW T 3! T 2 by circles which are transverse to F and a pair
G1;G2 of oriented foliations by tori T 2 such that for any two leaves †1 and †2 of
G1 and G2 , respectively, the intersection †1\†2 is a fibre of pr. We view G1;G2 as
an S1 –family of embedded tori and we orient S1 so that the orientation of the leaves
followed by the orientation of S1 is the orientation of T 3 .

We will consider only plane fields which are transverse to the fibres of pr. The
characteristic foliation of every such plane field on leaves of G1 or G2 is nonsingular.
Therefore it has a well-defined asymptotic direction on every leaf of G1 or G2 . This
slope is an element of the space of oriented lines in H1.T

2;R/ (this vector space
inherits a natural orientation from the orientation of the leaf).

If � D � is a positive contact structure, then the characteristic foliation on leaves of
G1 or G2 cannot be diffeomorphic to a linear foliation, according to the proof of the
classification of tight contact structures on T 3 in [24]. We recall the argument briefly:
If the characteristic foliation was diffeomorphic to a linear foliation on a leaf of Gi ,
i D 1; 2, then the slope of the characteristic foliation would have to vary and it can
only change in one direction as one moves along S1 . Therefore the slope would have
to make at least one full twist. In particular, the characteristic foliation of � would
be somewhere tangent to the fibres of pr. This contradicts our initial assumptions on
� D � .

Hence the characteristic foliation on the leaves of G1;G2 has constant slope. Moreover,
the characteristic foliation of � on leaves of Gi , i D 1; 2, has closed leaves and the
union of these closed leaves forms a collection of sheets which are transverse to the
fibres of pr; these sheets are pre-Lagrangian tori of � .

Thus we have shown that the characteristic foliation of � on a leaf of G1 or G2 has
a closed leaf whose slope coincides with the slope of a pre-Lagrangian torus of �
intersected with that leaf. Thus the C 0 –distance between � and F is bounded from
below by the angle between F and a linear torus which is isotopic to a pre-Lagrangian
torus of � .

If F is a foliation by cylinders or planes, then the slope of the characteristic foliation
of F on a leaf of G1 or G2 is irrational while the slope of a linear torus is rational, thus
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the angle between � and F is bounded from below once the pre-Lagrangian torus of �
is fixed up to isotopy. This proves (a) and one direction of (b).

Conversely, if every neighbourhood of a linear foliation on T 3 contains a given contact
structure, then the slopes of the pre-Lagrangian tori of � and the slopes of F have to
coincide. In particular, all leaves of F are closed. Thus we have shown (b).

Example 9.10 Let .a; b; c/¤ .0; 0; 0/ and an; bn; cn; qn a sequence of integers such
that

qn ¤ 0;

.an; bn; cn/¤ .0; 0; 0/;

gcd.an; bn; cn/D 1;

lim
n
.an=qn; bn=qn; cn=qn/D .a; b; c/:

We pick 1–forms ˛; ˇ such that .˛1D a dxCb dyCc dz; ˛; ˇ/ is a positive framing
of T �T 3 . For a positive sequence "n with limn "n D 0, the plane fields defined by

˛n D ˛1C "n

�
cos.anxC bnyC cnz/˛� sin.anxC bnyC cnz/ˇ

�
converge to the foliation F D ker.a dx C b dy C c dz/ on T 3 D R3=.2�Z/3 . For
large n, ˛n is a positive contact form. The Giroux torsion of all these contact structures
vanishes.

A similar argument shows that foliations by cylinders on torus bundles over the circle
as in Example 9.7 (defined by dx1C a dt with a 2R nQ in the coordinates used in
Example 9.7) have properties analogous to those of the foliations by planes considered
in Proposition 9.9.

Corollary 9.11 Let F be a linear foliation on T 3 with noncompact leaves. Then F
cannot be deformed to a contact structure, ie there is no family of plane fields �s with
�0 D F and �s a contact structure for s > 0.

Proof If �s is a deformation of F into a contact structure, then Gray’s theorem
implies that every neighbourhood of F contains a contact structure isotopic to �1 . But
according to Proposition 9.9 a sufficiently small neighbourhood of F does not contain
a contact structure isotopic to �1 .

A different type of example for this phenomenon was found much earlier by Etnyre
[13]. His example is slightly different since it refers to Giroux torsion rather than
pre-Lagrangian tori, but both examples make essential use of pre-Lagrangian tori. It
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is natural to ask to whether foliations without holonomy on surface bundles over S1

can be deformed into contact structures when the Euler characteristic of the fibres is
negative.

Finally, we give an example of a foliation on T 3 with an unstable torus leaf such that
every C1–neighbourhood contains positive contact structures which are not stably
isotopic.

Example 9.12 Let ZDf .z/@z be a smooth vector field on S1DR=Z with f .z/> 0

for z ¤ 0 such that f .z/D z2 on a neighbourhood of 0. We denote the flow of Z

by 't . Mapping the two generators of �1.T
2/ to the commuting diffeomorphisms

't and 't 0 with 0 < t < t 0 , we obtain a foliation on T 3 transverse to the fibres of
T 3! T 2 , and the torus z D 0 is the only minimal set of F0 . This torus is unstable
by construction.

In order to show that this example has the desired properties we proceed as follows.
Approximate Z by zZD zf .z/@z such that zf .z/ > 0 for all z 2S1 . We denote the flow
of zZ by z' . Replacing 't ; 't 0 in the representation �1.T

2/! DiffC.S1/ by z't ; z'
0
t ,

we replace F by zF . If the rotation numbers z�; z�0 of z't ; z'
0
t are rationally independent,

the foliation zF is a foliation by planes. Moreover, if there are integers .c; d/ with
c > 0 and d > 2 such that

(9-4)
ˇ̌̌̌
z��

p

q

ˇ̌̌̌
>

c

qd

for all q 2 NC and p 2 Z, then according to Herman’s thesis [32] zF is smoothly
conjugate to one of the linear foliations discussed in Proposition 9.9. The numbers
satisfying the Diophantine condition (9-4) are dense. Therefore we can approximate F
by a sequence of foliations zFn all of whose leaves are planes, and every neighbourhood
of zFn contains nonisotopic positive contact structures with vanishing Giroux torsion
(see Example 9.10).

9C Further applications

Colin showed in [7] that foliations without Reeb components can be approximated by
tight contact structures and asked whether or not this is true for every contact structure
in a sufficiently small neighbourhood of the foliation. Theorem 1.6 together with the
gluing results from [5] provide the following partial answer to this question.

Proposition 9.13 Let F be a C 2 –foliation without Reeb components such that all
torus leaves have attractive holonomy. Then F has a neighbourhood such that all
contact structures in that neighbourhood are universally tight.
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Bowden showed in [2] that Proposition 9.13 remains true when the assumption on the
holonomy of torus leaves is dropped.

Recall the following theorem from [58]:

Theorem 9.14 Let .M; �/ be a confoliation admitting an overtwisted star. Then �
can be C 0 –approximated by overtwisted contact structures.

Together with the uniqueness result, Theorem 1.4 has the following consequence for
confoliations which are not s-tight.

Corollary 9.15 Let M be a closed manifold and � be a confoliation without torus
leaves which is not s–tight. Then there is a C 0 –neighbourhood of � such that every
contact structure in that neighbourhood is overtwisted.

It is not clear whether or not the conclusion of the corollary also holds in the presence
of incompressible torus leaves.
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