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Some examples of repetitive, nonrectifiable Delone sets

MARÍA ISABEL CORTEZ

ANDRÉS NAVAS

Burago and Kleiner and, independently, McMullen, gave examples of Delone sets
(that is, subsets of Euclidean space that are discrete and separated in a uniform way)
that are non-bi-Lipschitz equivalent to the standard lattice. We refine their methods of
construction via a discretization technique, thus giving the first examples of Delone
sets as above that are also repetitive, in the sense that a translated copy of each patch
appears in every large enough ball.

37B50; 52C22

A Delone set in Rd is a subset D that is separated and relatively dense in a uniform
way. This means that there exist positive constants �; % such that for all x ¤ y in D
one has d.x; y/� � , and for all z 2Rd there is z0 2 D such that d.z; z0/� %. Such
a set is said to be repetitive if there is a function RW N ! N so that for every pair
of balls Br and BR of radius r and R D R.r/, respectively, we have that BR \D
contains a translated copy of Br \D .

Besides this pure abstract definition, these sets are relevant in mathematical physics as
models of solid materials, especially after the spectacular discovery of quasicrystals in
the early eighties by Shechtman, Blech, Gratias and Cahn [13].

A Delone set D � Rd is said to be rectifiable if it is bi-Lipschitz equivalent to Zd .
This means that there exists a bijection f W D!Zd such that, for some constant L� 1
and all x; y in D ,

kx�yk

L
� kf .x/�f .y/k � Lkx�yk:

The question of the existence of nonrectifiable Delone sets in Rd , for d � 2, was raised
(with a geometric group-theoretic motivation) by Gromov [8] and (with an ergodic-
theoretic motivation) by Furstenberg (see Burago and Kleiner [4]; see also Haynes,
Kelly and Weiss [9]). This was solved in the affirmative by Burago and Kleiner [3]
and, independently, by McMullen [12]. Later, Burago and Kleiner [4] gave a criterion
for a Delone set of the plane to be rectifiable. This was extended to larger dimensions
by Aliste-Prieto, Coronel and Gambaudo [2], who applied it to show that Delone sets
that are linearly repetitive, ie those for which the repetitivity function R can be taken
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linear in r , are always rectifiable. This includes, for instance, the (set of vertices of
the) Penrose tiling; see Solomon [14]. They left open the question of the existence of
(nonlinearly) repetitive Delone sets that are nonrectifiable. The aim of this work is to
answer this in the affirmative in a very strong way.

Repetitivity has a quite transparent geometric meaning. However, it is also relevant
from the dynamical viewpoint. Indeed, it is straightforward to verify that this condition
is equivalent to the minimality of the translation action of Rd on the closure of the
orbit of the Delone set (endowed with an appropriate Gromov–Hausdorff metric or the
Chabauty topology). In this direction, our construction can be further refined to obtain
not only minimality but also unique ergodicity, which is a much stronger property in
this setting. Indeed, a result of Solomyak [15] roughly states that, in case of repetitivity,
the latter condition is equivalent to not only that each patch of the set appears in every
large enough ball, but also the number of occurrences converges (as the radius of the
ball goes to infinity, independently of the center) to a certain frequency.

Main Theorem For each d � 2, there exists a subset of Zd that is a repetitive,
nonrectifiable Delone set for which the Rd –action on the closure of its orbit is uniquely
ergodic.

As in Burago and Kleiner [3], in order to avoid technical difficulties mostly concerning
notation, we will carry out the explicit construction just for the case d D 2. (The
general case proceeds analogously.) We strongly use the main idea of [3], though we
need to proceed more carefully to get a Delone subset of Z2 (this is the easy part;
compare Garber [7] and Magazinov [11]), to guarantee repetitivity (this is much more
tricky), and finally to ensure unique ergodicity (this is the most technical issue). To
do this, we develop discrete analogues of the arguments of [3] that are of independent
interest, thus giving a proof of the main result of [3] that is completely combinatorial
(ie without passing to continuous models and/or approximating them by discrete ones).
In this view, computations involving Jacobians become elementary counting arguments,
whereas area estimates become density bounds for certain sets. An important advantage
of this approach is that it allows giving explicit estimates (and not only existential
results) all along the text. In particular, a backtracking of the proof estimates reveals a
quite striking fact: given any unbounded function R0 , there is a repetitive, nonrectifiable
Delone set for which the repetitivity function R satisfies R.rk/ � R0.rk/ along an
infinite sequence of radii rk !1. Our method also gives estimates for the rate of
growth of the sequence rk provided R0 grows faster than linearly. This is in contrast
to the aforementioned result of Aliste-Prieto, Coronel and Gambaudo [2], according to
which we cannot have R.r/� r for a nonrectifiable, repetitive Delone set. Actually, in
our examples, linear repetitivity clearly arises as an obstruction for a Delone set to be
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nonrectifiable. Indeed, along the construction, we need to perform modifications that
ensure nonrectifiability but that, after rescaling, become negligible in density. However,
in case of linear repetitivity, the density of points where these modifications should be
performed persists under scale changes.

The method of construction is still flexible in many ways. In order to illustrate this,
recall that by a standard application of the ergodic decomposition, the set of invariant
probability measures of an Rd –action is a Choquet simplex (that is, a compact, convex,
metrizable subset of a locally convex real vector space such that every point therein
is the mean with respect to a unique probability measure supported on its subset of
extreme points). In the last section of this paper, we show (the d D 2 case of) the next
extension of our main result (the case of larger dimension d is straightforward and left
to the reader).

Main Theorem (extended) For each d � 2 and any Choquet simplex K , there exists
a subset of Zd that is a repetitive, nonrectifiable Delone set for which the Rd –action
on the closure of its orbit has a set of invariant probability measures isomorphic to K .

I Nonexpansiveness implies coarse differentiability

As usual, for a real number A, we denote its integer part by ŒA�. Given two real numbers
A�B , we denote by ŒŒA; B�� the set of integers n such that A� n�B . Given positive
integers M;N , we let RM;N WD ŒŒ0; 2MN�� � ŒŒ0;M ��. Given k 2 ŒŒ1; 2N �� and a
positive integer P dividing M , let SP

k
be the subset of RM;N formed by the points

of the form

(1) xki;j WD

�
.k� 1/M C i

M

P
; j
M

P

�
;

where i; j lie in ŒŒ0; P �� . By some abuse of notation, (1) will still be used for i DP C1
(yet xkPC1;j does not belong to SP

k
). Notice that SP

k
also depends on M and N ,

but this dependence (which will be clear in each context) is suppressed just to avoid
overloading the notation.

To simplify, we will only work with Delone subsets D of Z2 satisfying what we call
the 2Z–property: all points .m; n/ with an even m do belong to D . In particular, we
will consider domino tilings of the plane made only of the pieces 1-1 and 1-0. More
generally, we say that a subset D � ŒŒA; B��� ŒŒA0; B 0�� satisfies the 2Z–property if all
points .m; n/ 2 ŒŒA; B��� ŒŒA0; B 0�� with an even m do belong to D .

There is a little technical problem that arises when considering maps defined on strict
subsets of either Z2 or RM;N . To overcome this, we introduce a general construction.
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Namely, given either a Delone set D � Z2 or a subset D � RM;N satisfying the
2Z–property in each case, for every function f W D! Z2 we define its extension yf
to either Z2 or RM;N taking values in 1

2
Z2 by letting

yf .x/D

�
f .x/ if x 2 D;
f
�
xC .1; 0/

�
�
�
1
2
; 0
�

if x … D:

The proof of the next lemma is straightforward and we leave it to the reader.

Lemma 1 If f W D! Z2 is L–bi-Lipschitz, then yf is a 6L–bi-Lipschitz map.

The technical key of the construction is given by the next lemma:

Lemma 2 Given L� 1, a positive � < 1 and an integer P � 1, there exist � > 0 and
positive integers M0; N0 such that the following holds: Given a multiple M �M0 of P
and a subset D � RM;N , with N � N0 , satisfying the 2Z–property, let f W D! Z2

be an L–bi-Lipschitz map, and denote vfM;N WD f .2MN; 0/� f .0; 0/. Assume that
for all points of the form xki;j above that do belong to D ,

kf .xkiC1;j /�f .x
k
i;j /k

M=P
� .1C�/

kv
f
M;N k

2MN
(2)

�
resp.

kf .xkiC1;j C .1; 0//�f .x
k
i;j /k

1CM=P
� .1C�/

kv
f
M;N k

2MN

�
;(3)

provided xkiC1;j lies in D (resp. does not lie in D ). Then there is a k� in ŒŒ1; 2N � 1��
such that for all xk�i;j in SP

k�
,

(4)
h yf .x

k�
i;j C .M; 0//�

yf .x
k�
i;j /; v

f
M;N i

M
� .1� �/

kv
f
M;N k

2

2MN
:

Proof We will deal with yf instead of f . Accordingly, we denote yL WD 6L. Notice
that in case xkiC1;j does not belong to D , we still have

k yf .xkiC1;j �
yf .xki;j /k

M=P
�
kf .xkiC1;j C .1; 0//�f .x

k
i;j /kC

1
2

M=P

�
.1C�/kv

f
M;N k

2MN

.1CM=P/

M=P
C

P

2M
:

Thus,

(5)
k yf .xkiC1;j /�

yf .xki;j /k

M=P
� .1C 2�/

kv
f
M;N k

2MN
;
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where the last inequality holds provided

P

2M
�
�kv

f
M;N k

4MN
and

�
1C

P

M

�
.1C�/� 1C

3�

2
;

which is always the case for M �maxf.LP /=�; 2P.1C�/=�g.

Assume no square SP
k�

satisfies the required property. A direct application of the
pigeonhole principle then shows that there is a “height” j� 2 ŒŒ0; P �� such that at least
r WD Œ.2N � 1/=.2.P C 1//� squares Sk1

; : : : ; Skr
contain points xk1

i1;j�
; : : : ; x

kr

ir ;j�
,

respectively, satisfying the reverse inequality to (4) and such that all the indices ks
have the same parity and are at most 2N � 1.

Notice that vfM;N equals

yf .0; j�/� yf .0; 0/C
rP
sD1

. yf .x
ks

is ;j�
/� yf .x

1Cks

is ;j�
//C yf .2MN; 0/� yf .2MN; j�/

C

h
yf .2MN; j�/� yf .x

kr

ir ;j�
/C

rP
sD2

yf .x
ks

is ;j�
/� yf .x

1Cks�1

is�1;j�
/C yf .x

1Ck1

i1;j�
/� yf .0; j�/

i
:

The (nonnormalized) projections over vfM;N of the expression in brackets can be
estimated using the hypothesis: it is smaller than or equal to�

2MN �M

�
2N � 1

2.P C 1/

��
.1C 2�/

kv
f
M;N k

2

2MN
:

Therefore, by the choice of the points xks

is ;j�
, the value of kvfM;N k

2 is bounded from
above by

h yf .0; j�/� yf .0; 0/; v
f
M;N iC .1� �/

2N � 1

2.P C 1/

kv
f
M;N k

2

2N

Ch yf .2MN; 0/� yf .2MN; j�/; v
f
M;N iC

�
2MN�M

�
2N � 1

2.P C 1/

��
.1C2�/

kv
f
M;N k

2

2MN
:

Since yf is yL–Lipschitz, we finally conclude that

kv
f
M;N k

2
� 2yLMkv

f
M;N kC

�
1�

1

2N

�
2N�1

2.P C 1/

��
.1C 2�/kv

f
M;N k

2

C .1� �/
2N � 1

2.P C 1/

kv
f
M;N k

2

2N
:

Thus we get

kv
f
M;N k

�
�2�C

.1C 2�/

2N

�
2N � 1

2.P C 1/

�
�
.1� �/

2N

2N � 1

2.P C 1/

�
< 2yLM;
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hence

kv
f
M;N k

�
�2�C

.1C 2�/.2N � 2P � 2/

4N.P C 1/
�

1� �

2.P C 1/

�
< 2yLM:

For N > 2.P C 1/=� , we have

N� �P � 1

2.2NP CN CP C 1/
>

�

12P
;

thus for �� �=.12P /, we obtain

�2�C
.1C 2�/.2N � 2P � 2/

4N.P C 1/
�

1� �

2.P C 1/
> 0:

The bi-Lipschitz condition of f then yields

2NM

L

�
�2�C

.1C 2�/.2N � 2P � 2/

4N.P C 1/
�

1� �

2.P C 1/

�
< 2yLM:

However, one easily checks that given M , this is impossible for

��
�

12P
; N �N0 WD 1C

�
1
�
.LyLC 2P C 2C �/

�
:

This finishes the proof for M �M0 WD .LC 4/P=�.

In analogy to the terminology introduced in [3], a square SP
k�

satisfying the conclusion
of the preceding lemma (ie condition (4)) will be said to be .M;N; �; f /–regular.

Lemma 3 Given L � 1, " > 0 and an integer P � 1, there exists a positive � < 1
such that the following holds: Let M � M0 WD .LC 4/P=� be a multiple of P ,
where � WD �=.12P /. Suppose f W D! Z2 is an L–bi-Lipschitz map such that for
each xki;j 2 S

P
k

, either (2) or (3) holds according to the case. Then for every xk�i;j
belonging to an .M;N; �; f /–regular square SP

k�
, one has

(6)
 yf .xk�C1i;j /� yf .x

k�
i;j /

M
�
v
f
M;N

2MN

� ":
Proof Again, we denote yL WD 6L. Given xk�i;j 2 S

P
k�

, let us write

yf .x
k�C1
i;j /� yf .x

k�
i;j /D ˛

k�
i;j v

f
M;N Cˇ

k�
i;j v
?
M;N

for certain reals ˛k�i;j and ˇk�i;j , where v?M;N is a unit vector orthogonal to vfM;N . On
the one hand, by (4),

˛
k�
i;j

kv
f
M;N k

2

M
� .1� �/

kv
f
M;N k

2

2MN
;
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hence

(7) ˛
k�
i;j �

1� �

2N
:

On the other hand, since M �M0 , using P times (5) and the triangle inequality, we
obtain

.˛
k�
i;j /

2
kv
f
M;N k

2
� .˛

k�
i;j /

2
kv
f
M;N k

2
C .ˇ

k�
i;j /

2
�

�
.1C 2�/

kv
f
M;N k

2N

�2
:

Therefore,

j˛
k�
i;j j �

1C 2�

2N
�
1C �

2N
:

Similarly, using (2), (7) and the previous estimate, we obtain�
.1� �/2kv

f
M;N k

2

4N 2
C .ˇ

k�
i;j /

2

�
� .˛

k�
i;j /

2
kv
f
M;N k

2
C .ˇ

k�
i;j /

2
� .1C 2�/2

kv
f
M;N k

2

4N 2
;

which yields

.ˇ
k�
i;j /

2
�
kv
f
M;N k

2

4N 2
..1C �/2� .1� �/2/D

�kv
f
M;N k

2

N 2
:

As a consequence, yf .xkC1i;j /� yf .xki;j /

M
�
v
f
M;N

2MN

D ˛ki;jM v
f
M;N C

ˇki;j

M
v?M;N �

v
f
M;N

2MN


� kv

f
M;N k

ˇ̌̌̌
˛ki;j

M
�

1

2MN

ˇ̌̌̌
C
jˇki;j j

M

� kv
f
M;N k

�

2MN
Ckv

f
M;N k

p
�

MN

� 2MNL

�
�

2MN
C

p
�

MN

�
� 3L

p
� D ";

where the last equality holds for � WD "2=.9L2/.

Below we put together the two preceding lemmas into a single statement.

Proposition 4 Given L�1, a positive "<1 and a positive integer P , there exist �>0
and positive integers M0; N0 such that the following holds: Given a subset D �RM;N
satisfying the 2Z–property, with M �M0 a multiple of P and N �N0 , let f W D!Z2

be an L–bi-Lipschitz map. Assume that for every point of the form xki;j that belongs
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to D ,

kf .xkiC1;j /�f .x
k
i;j /k

M=P
� .1C�/

kv
f
M;N k

2MN�
resp.

kf .xkiC1;j C .1; 0//�f .x
k
i;j /k

1CM=P
� .1C�/

kv
f
M;N k

2MN

�
;

provided xkiC1;j lies in D (resp. does not lie in D).

Then there is a subset

S D SPk WD

��
.k� 1/M C i

M

P
; j
M

P

�
W 0� i � P; 0� j � P

�
such that every x 2 S satisfies yf .xC .M; 0//� yf .x/M

�
f .2MN; 0/�f .0; 0/

2MN

� ":
Remark 5 The estimates and definitions given along the proofs of Lemmas 2 and 3
show that, given L � 1, a positive constant " < 1 and a positive integer P , the
conclusion of Proposition 4 holds for

��
"2

108PL2
; M0 �

108P 2L2.LC 4/

"2
; N0 � 2C

216L2P.3L2CP C 1/

"2
:

II Coarse differentiability forces densities to be close

Let f W D!Z2 be an L–bi-Lipschitz map defined on a Delone set D�Z2 satisfying
the 2Z–property. Fix an integer P � 1, and let S be a square of the form SP

k
�RM;N ,

where M is a multiple of P . We let � be the curve obtained by connecting (using
line segments) points in yf .@S/ coming from consecutive points in @S . The curve �

is closed though not necessarily simple. However, the curve � contains the simple
curve  D S obtained by “deleting short loops”. Notice that the bi-Lipschitz property
of yf easily implies that each loop has length at most 2yL3M=P . Therefore, if P �4yL4 ,
then  has length at least

M
p
2

yL
�
4yL3M

P
� 4.
p
2� 1/yL3 > 0:

In particular, it is well defined. We denote by int./ the closed, bounded region of the
plane determined by  . We let

yS WD f..k� 1/M C i; j / W i; j in ŒŒ0;M � 1��g:
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This corresponds to the set of all points with integer coordinates in the region (square)
bounded by the points of SP

k
, except for those in the upper and the right sides of the

square. We call such a subset the lower-left corner of the corresponding square.

Given " > �1, we let .1C "/ yS be the set of all points with integer coordinates lying
in the square having the same center as S though side of length .1C "/M . We also
denote by S1 the unit square in R2 , and by .1C "/S1 the corresponding homothetic
copy.

Lemma 6 Given L � 1 and " > 0, there exists P0 such that the following holds:
If f W D! Z2 is L–bi-Lipschitz and P � P0 , then

(i) no point of yf .Z2 n .1C "/ yS// lies in int./;

(ii) all points in yf ..1� "/ yS/ are contained in int./.

This lemma can be easily shown by contradiction just by renormalizing and passing to
the limit (along a subsequence) using a variation of the Arzela–Ascoli theorem. Indeed,
such an argument provides not only a limit homeomorphism F from the unit square S1
but also

in case (i), a point in the exterior of .1C "/S1 which is mapped by F inside F.S1/;

in case (ii), a point in .1� "/S1 which is mapped by F into a point outside F.S1/.

In each case, this is certainly impossible, since F is a homeomorphism.

Despite this simple argument, it is better to give a slightly more involved proof that
yields a quantitative estimate for P0 in terms of L and ".

Proof of Lemma 6 We claim that the lemma holds for P0 WDmaxf4yL4; 3yL2="g.

For (i), let x 2 Z2 n yS be a point that is mapped by yf inside int./ and lies at a
maximal distance to yS among these points. (Notice that, by the bi-Lipschitz property
and the Delone condition, only finitely many points map into int./.) We claim
that dist. yf .x/; / � yL. Otherwise, the closed ball of center yf .x/ and radius yL
would be contained in int./. This ball contains the image under yf of the points
x � .1; 0/, xC .1; 0/, x � .0; 1/, xC .0; 1/. However, among these points, at least
one is at a greater distance to yS than x , which contradicts the choice of x .

Now, it is obvious from the construction that every point in  lies at distance � yLM=P
from some point of the form yf .y/, where y 2 @S . Therefore,

kx�yk

yL
� k yf .x/� yf .y/k � yLC

yLM

P
D yL

�
1C

M

P

�
;
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hence

dist.x; @ yS/� 1Ckx�yk � yL2
�
2C

M

P

�
�
3yL2M

P
� "M;

where the last inequality holds provided P � P0 .

The proof of (ii) proceeds analogously, dealing with f �1 instead of f .

Remark 7 It is an open problem whether every bi-Lipschitz map defined on a Delone
subset of the plane can be extended to a bi-Lipschitz homeomorphism of the whole
plane (see [1, Question 4.14.(ii)]). Certainly, having an affirmative answer for (a
quantitative version of) this question would yield another proof of the preceding lemma.
The estimates given above are, however, enough for our purposes.

The next elementary lemma will be needed when comparing cardinalities of points
enclosed by curves each of which is an almost translated copy of the other one.

Lemma 8 If  is a rectifiable curve in R2 of length./� 4 and 1� T � 1
4

length./,
then

jfx 2 Z2 W d.x; /� T gj � 25T length./:

Proof Let x1; : : : ; xk be points in  such that every x 2  has distance � T to at
least one of the points xi . Notice that we can take such a k 2N satisfying

k � 2C
length./
2T

�
length./

T
:

If x 2 Z2 satisfies d.x; / � T , then kx � xik � 2T holds for some 1 � i � k .
Therefore,

fx 2 Z2 W d.x; /� T g �
k[
iD1

fx 2 Z2 W kx� xik � 2T g:

Thus,

jfx 2 Z2 W d.x; /� T gj � k.4T C 1/2 �
length./

T
.5T /2 D 25T length./;

which finishes the proof.

We can now give the main argument involving local densities of points of D via
comparison along the images.
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Proposition 9 Given L � 1 and 1 � d > d 0 > 0, there exist a positive " < 1 and
integers P1;M1 such that the following holds: Let D be a Delone set satisfying
the 2Z–property, and let f W D! Z2 be surjective. Assume that for P � P1 , N � 1
and M �M1 a multiple of P , some square S WD SP

k
� RM;N , with 1 � k < 2M ,

is such that every x 2 S satisfies (6), and denote S 0 WD SP
kC1

. If yS \D contains at
least dM 2 (resp. at most d 0M 2 ) points and yS 0\D contains at most d 0M 2 (resp. at
least dM 2 ) points, then f cannot be L–bi-Lipschitz.

Proof We will show that the claim holds for all positive " < .d � d 0/=.20.2C 5L//,
M1�maxf2yL; 1="g and P1DP0 , where P0 is given by Lemma 6. To do this, we will
suppose that j yS \Dj � dM 2 and j yS 0\Dj � d 0M 2 , the other case being analogous.

We proceed by contradiction. Assuming that f is L–bi-Lipschitz, we use Lemma 6.
By (ii), for  WD S , the set f .D\ .1� "/ yS/ � Z2 contains � dM 2 � 4."M C 1/2

points, all lying in int./:

jint./\Z2j � dM 2
� 16"M 2:

By (i) and the surjectivity of f W D ! Z, for  0 WD S 0 , the set int. 0/ \ Z2 is
contained in f .D \ .1C "/ yS 0/, hence its cardinality is bounded from above by the
quantity d 0M 2C 4"M.M C 1/C 4."M C 1/2 :

jint. 0/\Z2j � d 0M 2
C 24"M 2:

We claim that points of int./ must lie in int. 0/ after translation by vM;N =.2N /,
except perhaps for those which are moved into points that are "M –close to  0 . Indeed, 
(hence int./) is determined by the image yf .@S/, hence by points of the form yf .xki;j /

for which (6) holds. Obviously, similar arguments apply to  0 .

We next claim that we may use the preceding lemma to conclude that the number of
points that move into points "M –close to  0 is at most

25"M length. 0/� 100"LM 2:

Indeed, the choices of P and M yield

length. 0/� 2M=yL> 4 and "M � 1
4
�
1
4

length. 0/;

thus fulfilling the hypothesis of Lemma 8.

The preceding estimates force

dM 2
� 16"M 2

� 100"LM 2
� d 0M 2

C 24"M 2;

that is,
d � d 0C .40C 100L/":
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However, this is impossible due to the choice of ".

We next put together Propositions 4 and 9 into a single one.

Proposition 10 Given L � 1 and 1 � d > d 0 > 0, there exist � > 0 and positive
integers M�; N�; P� such that the following holds: Let D be a Delone set satisfying
the 2Z–property, and let f W D ! Z2 be L–bi-Lipschitz and surjective. Assume
that for M �M� and N �N� , with M a multiple of P� , there are two consecutive
squares SP�

k
and SP�

kC1
of RM;N such that the lower-left corner of one of them contains

at least dM 2 points of D , and the lower-left corner of the other one has no more than
d 0M 2 points of D . Then there must exist a point x 2D\RM;N of the form xki;j such
that either

kf .xC .M=P; 0//�f .x/k

M=P
� .1C�/

kf .2MN; 0/�f .0; 0/k

2MN

if xC .M=P; 0/ belongs to D , or

kf .xC .1CM=P; 0//�f .x/k

1CM=P
� .1C�/

kf .2MN; 0/�f .0; 0/k

2MN

otherwise.

Roughly, the preceding proposition says that if a Delone set D with the 2Z–property
maps onto Z2 by an L–bi-Lipschitz map f , then variations of the local density of D
force the Lipschitz constant of f to increase when passing from a certain scale to a
smaller one. By inductive application of this argument, we will contradict the Lipschitz
condition of f for appropriately constructed Delone sets.

Remark 11 The estimates of Remark 5 and those given in Lemma 6 and Proposition 9
show that, given L� 1 and 1� d > d 0 > 0, the conclusion of Proposition 10 holds for

��
.d � d 0/3

1010L7
; M� �

1015L11

.d � d 0/4
; N� �

1010L10

.d � d 0/4
:

III Construction of the nonrectifiable, repetitive Delone set

We start by introducing a general recipe for constructing repetitive Delone subsets
of Z2 .

Let .Fn/n�1 be a sequence of finite subsets of Z2 satisfying the following properties:
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(F1) .0; 0/ 2 Fn � FnC1 , for every n� 1.

(F2) Z2 D
S
n�1 Fn .

(F3) For every n� 1, the set FnC1 is a disjoint union of translated copies of Fn .

The last condition yields a finite subset �n � FnC1 such that

FnC1 D
[
v2�n

.FnC v/:

Assume that for each n� 1, there exist kn� 1 and a family of patches Pn;1; : : : ;Pn;kn

in f0; 1gFn such that:

(F4) PnC1;kjvCFn
� v is in fPn;1; : : : ;Pn;kn

g for all v 2 �n and all k 2 ŒŒ1; knC1��.

(F5) For every j 2 ŒŒ1; kn�� and k 2 ŒŒ1; knC1��, one has PnC1;kjvCFn
D Pn;j for a

certain v 2 �n .

(F6) PnC1;1jFn
D Pn;1 .

By properties (F1), (F2) and (F6) above, the intersection\
n�1

˚
D 2 f0; 1gZ

2

WDjFn
D Pn;1

	
consists of a single point, which can be viewed as a subset D of Z2 .

Lemma 12 The set D is a repetitive Delone set.

Proof Fix r > 0. Since D is a subset of Z2 , only finitely many patches Q1; : : : ;Qm
of diameter 2r appear (up to translation) in D . Let n� 1 be such that the restriction
of D to Fn (ie Pn;1 ) contains (translated copies of) all of the patches Q1; : : : ;Qm .
Property (F5) above ensures that for a large enough R> 0, every ball of radius R in D
contains a translated copy of the patch Pn;1 , hence a copy of each patch Q1; : : : ;Qm .
Thus, every ball of radius r appears in each ball of radius R .

In order to implement the strategy above, we need to specify our building blocks (ie
the patches along the construction). These will be constructed starting from two data,
namely:

� A constant L� 1 (which will play the role of the Lipschitz constant to discard).
� Two square patches Q1;Q2 in Z2 that have equal and even length-side but

contain different number of points. We let di be the density of points in the
lower-left corner of Qi , the notation being such that d2 > d1 . We also assume
that both patches contain all boundary points and satisfy the 2Z–property when
placed centered at the origin.
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Given these data, fix d 01; d
0
2 such that d2 > d 02 > d

0
1 > d1 . Let �;M�; N�; P� be the

constants provided by Proposition 10 for L, d WDd 02 and d 0 WDd 01 . Fix an integer `� 1
such that

(8)
.1C�/`

L
> L:

Using the elementary inequality .1C�/` � 1C�`, one easily checks that this holds
for

(9) `�
L2

�
:

Let 2M be the side length of the patches Q0i WD Qi for i 2 f1; 2g. We view these
patches as subsets of ŒŒ�M;M��� ŒŒ�M;M��, that is, centered at the origin. We start
by constructing new patches Q11;Q

1
2 as follows (see Figure 1):

� Fix an odd positive integer m so that 2mP�M �M� , and form a square (centered
at the origin) of .mP�/2 copies of Q1 , matching left sides to right sides and
lower sides to upper sides.

� Next, match to the right a square block consisting of .mP�/2 copies of Q2 .
After this, match to the right a square block consisting of .mP�/2 copies of Q1 .
Proceed similarly up to having matched N blocks made of pieces Q1 and Q2
in an alternating manner, where the integer N �N� is to be fixed below.

� Proceed similarly to the left of the centered-at-the-origin block made of pieces Q1 .
In this way, we form a rectangle of sides 2mP�M.2N C1/ and 2mP�M , filled
by alternating blocks of copies of Q1 and Q2 .

� To complete Q11 , fill up the whole square of side 2mP�M.2N C 1/ centered
at the origin by matching copies of Q1 at all places, except for those in the
lower rectangle of sides 2mP�M.2N C 1/ and 2mP�M , where we match the
rectangle constructed above. (We emphasize that all matchings are made as
above, that is, by identifying left to right sides, and lower to upper sides.)

� Finally, to construct Q12 , proceed similarly as for Q11 , switching the roles of Q1
and Q2 .

� The integer N is taken �N� and such that the density of points in the lower-left
corner of Q11 (resp. Q12 ) is < d 01 (resp. > d 02 ). One can easily check that this
holds for N satisfying

(10) N � 2max
�
N�

2
;

1

d2� d
0
2

;
1

d 01� d1

�
:
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Next, we repeat the procedure, but starting with the patches Q11;Q
1
2 , keeping the same

constants L, d 01 , d 02 . We thus get new patches Q21;Q
2
2 of densities less than d 01 and

greater than d 02 , respectively, to which we may apply the construction again. If we
repeat this procedure ` times, we obtain new patches, that we denote by Qnew

1 and Qnew
2

(and that have densities less than d 01 and greater than d 02 , respectively).

Lemma 13 Let D be a Delone subset of Z2 satisfying the 2Z–property. If D contains
translated copies of either Qnew

1 or Qnew
2 as building blocks as above, then D cannot be

mapped onto Z2 by an L–bi-Lipschitz map.

Proof We call the expansion of points x; y under a map f the expression
kf .x/�f .y/k

kx�yk
:

By Proposition 10, if f is an L–bi-Lipschitz surjective map D! Z2 , the expansion
of the endpoints of the lower side of Q`i is at most 1=.1C�/ times the expansion of
the endpoints of the lower side of some square made of mP� copies of Q`�1j , where
mDm` . By the triangle inequality, the latter is larger than or equal to the expansion
of the endpoints of some of the patches Q`�1j placed at the lower side of this square.

By the construction, the preceding argument yields that the expansion above is no more
than 1=.1C �/ times the expansion of the endpoints of the lower side of a certain
square Q`�2j 0 . Continuing this way, in ` steps, we get two pairs of points such that the
expansion for one pair is at least .1C�/` times that of the other pair. Now, as f is
L–bi-Lipschitz, both expansions are �L and � 1=L. This is in contradiction to (8).

It is now easy to construct a nonrectifiable, repetitive Delone set. Indeed, let .Ln/
be a sequence of numbers � 1 going to infinity. Start with the square patches Q1;1
and Q1;2 illustrated in Figure 2.

Next, proceed inductively: given the patches Qn;1 DW Q1 and Qn;2 DW Q2 , we let
QnC1;1 WD Qnew

1 and QnC1;2 WD Qnew
2 , where we have implemented the preceding

procedure to obtain new patches for the constant Ln . This construction fits into that
of Lemma 12, except that the patches Pn;1;Pn;2 that are involved do not correspond
to Qn;1;Qn;2 , respectively, but to the lower-left corners of these. (This occurs because
the matchings above were made by identifying left to right sides, and lower to upper
sides.) Hence, we have a repetitive Delone set D containing copies of Qn;1 and Qn;2 ,
for each n � 1. By Lemma 13, D cannot be Ln–bi-Lipschitz equivalent to Z2 for
any n� 1. Since Ln!1, the set D is not bi-Lipschitz equivalent to Z2 .

Remark 14 Clearly, the properties of being repetitive and nonrectifiable are not only
valid for D but also for all points in the closure of its orbit under the translation action.
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j j

2M

jj

2mP�M

j 2mP�M.2N C 1/ j

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � �

Q1 Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q2 � � � Q2

::: � � �
:::

Q2 � � � Q2

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q2 � � � Q2

:::
� � � :::

Q2 � � � Q2

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q2 � � � Q2

:::
� � � :::

Q2 � � � Q2

Q1 � � � Q1

:::
� :::

Q1 � � � Q1

Q2 � � � Q2

:::
� � � :::

Q2 � � � Q2

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q2 � � � Q2

:::
� � � :::

Q2 � � � Q2

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

:::
� � � :::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Q1 � � � Q1

::: � � �
:::

Q1 � � � Q1

Figure 1: Building Q11 starting with Q01 DQ1 and Q02 DQ2

We end this section with a brief discussion concerning the lack of linear repetitivity of
our examples. Roughly, this amounts to saying that the ratio of the side length of the
new squares Qnew

1 ;Qnew
2 compared to that of the original ones Q1;Q2 appearing along

the construction tends to infinity at least along a subsequence. In our construction, this
essentially comes from the condition (see Remark 11 and estimate (10)):

N �N� �
1010L10

.d � d 0/4
:
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� � � � �

� � �

� � �

� � �

� � � � �

Q1;1

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Q1;2

Figure 2: The initial patches Q1;1 and Q1;2

Despite this, given an unbounded function R0W .0;1/! .0;1/, we can artificially
introduce steps in which the parameter N does not satisfy (10) but just N D 1. Doing
this infinitely many times, we obtain an infinite sequence of radii rk for which the
repetitivity function R satisfies R.rk/ � R0.rk/. Notice that the resulting Delone
set is still nonrectifiable, as an easy application of the triangle inequality shows that
these steps do not obstruct the steps along which (10) is satisfied and that yield a
contradiction to rectifiability. It is quite surprising that, actually, the choice N D 1
allows requiring R0 just to be larger than some universal constant for infinitely many
values, not necessarily being unbounded.

It is more interesting trying to obtain explicit estimates on the growth of the sequence rk
provided R0 has some nice behavior, for instance, if it grows faster than linearly. If
we pay attention only to Remark 11, then this requires rk to be of the order of a
product C kLk � � �L2L1 for some universal constant C >1 (where Ln is the sequence
of Lipschitz constants to be discarded so that Ln !1) provided R0.rk/ is larger
than CL10

k
rk . Indeed, the value of the denominator .d � d 0/ can be bounded from

below by a universal positive constant all along the construction. (Notice that (9) does
not alter this issue.)

Nevertheless, there is another condition, namely (10), which is more restrictive. Indeed,
the corresponding expressions .d 01� d1/ and .d2� d 02/ that do appear in the denomi-
nators cannot be bounded from below by an universal constant. They can, however,
be bounded from below by a sequence of positive numbers with finite sum smaller
than 1, as for instance 1=cn1C˛ for an appropriate constant c . This allows controlling
the value of the repetitivity function R along a sequence of radii having the order
of cLk � � �L1.kŠ/1C˛ , where Ln!1.

In any case, we think that many steps of our construction can be improved. In this
direction, it is very tempting thinking that, given a function R0 growing faster than
linearly, a nonrectifiable Delone set exists so that R.r/ � R0.r/ holds for all large
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enough r . However, it may happen that linear repetitiveness is not the optimal condition
to ensure rectifiability, and that some finite moment condition on the function R still
should imply this. We do not see, however, any potential application of these seemingly
hard questions.

IV Combining patches to get unique ergodicity

As we already mentioned, for a repetitive Delone set, unique ergodicity is equivalent to
all patches appearing in the tiling having a well-defined asymptotic density. This is
closely related to [15, Theorem 3.3], but there is an alternate way to see this. Namely,
since the Delone sets that we consider are subsets of Z2 , we can use Wiener’s unique
ergodicity criterion for Zd –subshifts (see for example [10]). That is, the Z2–action
on the closure of the orbit of D is uniquely ergodic if and only if for every D0 in this
orbit closure and every patch Q of D0 , the limit

lim
n!1

number of occurrences of Q in D0jŒ�n;n�d
.2nC 1/d

exists and is independent of D0 . Moreover, by the proof of [15, Theorem 3.3], this
condition needs to be checked only for a single D0 , say for D . We claim that in the
schema of Lemma 12, this is the case whenever all asymptotic densities of occurrences
of the patches Pm;i as blocks in Pn;i , with n!1, are equal to 1

2
.

Lemma 15 Assume that all asymptotic densities of occurrences of the patches Pm;i
as blocks in Pn;i , with n!1, are equal to 1

2
. Then the limit

(11) lim
n!1

number of occurrences of Q in DjŒ�n;n�d
.2nC 1/d

exists for every patch Q appearing in D .

Proof First, an easy application of a Whitney-like decomposition shows that the limit
(11) exists if and only if the limit

(12) lim
n!1

number of occurrences of Q in Pn;j
jPn;j j

exists and is independent of j . To show that the last condition holds, for each m� 1
and j 2 f1; 2g, denote

dm;j WD
number of occurrences of Q in Pm;j

jPm;j j
:
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Additionally, denote by dm!ni;j the density at which the patch Pm;i appears as a block
of Pn;j . Let ` be the side length of Q, and assume that m is large enough so that ` is
smaller than the side length of each Pm;j . If we divide a given square Pn;j into the
blocks Pm;1 and Pm;2 , we have

dm;1d
m!n
1;1 C dm;2d

m!n
2;1 � dn;1 � dm;1d

m!n
1;1 C dm;2d

m!n
2;1 C

2`

side length of Pm;j
and

dm;1d
m!n
1;2 Cdm;2d

m!n
2;2 � dn;2 � dm;1d

m!n
1;2 Cdm;2d

m!n
2;2 C

2`

side length of Pm;j
:

Indeed, the left-side inequalities are obvious, while in the right-side expressions, the
extra term appears because of the possibility that a copy of Qm;j overlaps with two
different blocks (in either the left-to-right or bottom-to-top direction).

By hypothesis, for all fixed m and each i; j in f1; 2g, the value of dm!ni;j converges
to 1

2
as n!1. It thus follows from the inequalities above that given " > 0, there

exist integers m and N such that for all n�N ,

1
2
.dm;1C dm;2/� "� dn;1 �

1
2
.dm;1C dm;2/C ";

1
2
.dm;1C dm;2/� "� dn;2 �

1
2
.dm;1C dm;2/C ":

In particular, there exists a sequence of integers nk such that for each k and for
all n� nkC1 ,

1
2
.dnk ;1C dnk ;2/�

1
k
� dn;1 �

1
2
.dnk ;1C dnk ;2/C

1
k
;(13)

1
2
.dnk ;1C dnk ;2/�

1
k
� dn;2 �

1
2
.dnk ;1C dnk ;2/C

1
k
:

As a consequence, both .dn;1/ and .dn;2/ are Cauchy sequences, hence they converge
to certain limits d1 and d2 , respectively. Letting k!1 in (13) along nD nkC1 , we
obtain

1
2
.d1C d2/� d1 �

1
2
.d1C d2/;

hence d1 D d2 , as desired.

In order to guarantee the hypothesis of the preceding lemma and hence prove unique
ergodicity of the translation action on the orbit closure of D , we will need to crucially
modify the preceding construction. As above, we will only use two types of patches at
each step, and we will start with the same (lower-left corners of the) patches illustrated
in Figure 2. Therefore, the density of points in the resulting Delone set will be equal to

1
2
�
16
16
C
1
2
�
10
16
D

13
16
:
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We begin by introducing the transition matrices

An!nC1 D .dn!nC1i;j /;

where, as before, dn!nC1i;j stands for the density at which the patch Pn;i appears
in PnC1;j , with i; j in f1; 2g. If we let

Am!n DAm!mC1AmC1!mC2 � � �An�1!n

and denote by dm!ni;j the entries of Am!n , then dm!ni;j represents, as before, the
density at which the patch Pm;i appears in Pn;j . In particular, if di is the density of
points in the starting patch P1;i , where i 2 f1; 2g, then the density of points in Pn;i
equals

dn;i WD d0 � d
1!n
0;i C d1 � d

1!n
1;i :

To simplify, we will only work with transition matrices of the form

(14) An!nC1 D 1
2
V C ınW;

where

V D

�
1 1

1 1

�
and W D

�
1 �1

�1 C1

�
:

To deal with these matrices, we will strongly use the identity

(15)
�
1
2
V C˛W

��
1
2
V CˇW

�
D

1
2
V C 2˛ˇW:

This shows, in particular, that for ˛; ˇ between 0 and 1
2

, the k � k1 distance between�
1
2
V C˛W

��
1
2
V CˇW

�
and 1

2
V

is less than or equal to 2ˇ times the k � k1 distance between

1
2
V C˛W and 1

2
V:

As before, we start the construction with the (lower-left corners of the) patches illustrated
in Figure 2. Next, we proceed by induction: assuming that we have constructed the
patches Qn;1 DW Q1 and Qn;2 DW Q2 , we let Q0nC1;1 WD Qnew

1 and Q0nC1;2 WD Qnew
2 ,

where we have implemented the construction of new patches of the preceding section
for the constant Ln WD n and

d 02 WD dn;2�
1
3
.dn;2� dn;1/; d 01 D dn;1C

1
3
.dn;2� dn;1/:

By construction, this procedure consists of a certain number `D `n of intermediate
steps along which all transition matrices are of the form (14). In particular, by the
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previous discussion, we did not lose any amount of closeness to the desired limit
matrix 1

2
V along this construction.

Next, to construct QnC1;1 and QnC1;2 , we mix (and match) Q0nC1;1 and Q0nC1;2
appropriately, as shown in Figure 3.

Q0nC1;2 Q0nC1;1 Q0nC1;2

Q0nC1;1 Q0nC1;1 Q0nC1;1

Q0nC1;2 Q0nC1;1 Q0nC1;2

QnC1;1

Q0nC1;1 Q0nC1;2 Q0nC1;1

Q0nC1;2 Q0nC1;2 Q0nC1;2

Q0nC1;1 Q0nC1;2 Q0nC1;1

QnC1;2

Figure 3: Building QnC1;1 and QnC1;2 starting with Q0nC1;1 and Q0nC1;2

Letting PnC1;i be the lower-left corner of QnC1;i , with i 2 f1; 2g, we have that the
density of P 0nC1;1 inside PnC1;1 (resp. PnC1;2 ) equals 5

9
D
1
2
C

1
18

�
resp. 4

9
D
1
2
�
1
18

�
.

Similarly, we have that the density of P 0nC1;2 inside PnC1;1 (resp. PnC1;2 ) is equal
to 4

9
D

1
2
�

1
18

�
resp. 5

9
D

1
2
C

1
18

�
.

By the construction, the transition matrix from the patch Pn;i (hence from any Pm;i ,
with m � n) to each PnC1;j is of the form (14). In particular, we have dn;2 > dn;1
for all n. Moreover, because of (15), the k � k1 distance between any transition
matrix Mm!nC1 and 1

2
V is less than or equal to 1

9
times the k �k1 distance between

the transition matrix Mm!n and 1
2
V . Letting n go to infinity, this yields the desired

convergence.

V Prescribing the (shape of the) set of invariant probability
measures

There are many ways to realize arbitrary Choquet simplices, one of which is given by
the next lemma. For the statement, given positive integers k; q , we let 4.k; q/ be the
convex hull of the set of vectors e1=q; : : : ; ek=q , where fe1; : : : ; ekg stands for the
canonical orthonormal basis of Rk .
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Lemma 16 Let K be a Choquet simplex, let .qn/ be an increasing sequence of positive
integers such that each qn divides qnC1 , and let .rn/ be a sequence of positive integers
satisfying rn

p
qn <

p
qnC1 . Then there exists a sequence .An/ of kn�knC1 matrices

with positive integer entries such that, passing to a subsequence of .qn/ if necessary
(as well as to the corresponding subsequence of .rn/), we have:

(K1) k1 Dmaxf3; dg if K has dimension d , and k1 D 3 if K has infinite dimension.

(K2) kn � 3, for all n.

(K3) An.1; j /D 1, for every j 2 ŒŒ1; knC1��.

(K4)
Pkn

iD1An.i; j /D qnC1=qn , for every j 2 ŒŒ1; knC1��.

(K5) minfAn.i; j / W 2� i � kn; 1� j � knC1g � knC1 .

(K6) minfAn.i; j / W 2� i � kn; 1� j � knC1g � rn
p
qnC1 .

(K7) K is affine homeomorphic to the inverse limit

lim
 n
.4.kn; qn/; An/ WD

�
.un/ 2

Y
n�1

4.kn; pn/ W An.unC1/D un; for all n
�
:

Proof By [6, Lemmas 9 and 13], there exists a sequence .B`/ of k` � k`C1 matrices
with positive integer entries such that k` � 2 for all `, satisfying (K4), (K7) and

k`C1 �minfB`.i; j / W 1� i � k`; 1� j � k`C1g:

Next, notice that since all matrix entries are � 1, using (K3) we easily obtain by
induction that for every m>m0 , all i 2 ŒŒ1; km0 �� and all j 2 ŒŒ1; kmC1��,

Bm0 � � �Bm.i; j /�
qmC1

qm0C1
:

Let `1 WD 1, and given `n , define `nC1 so that q`nC1
> .1C q`nC1/

2 r2
`�n

. Then, the
matrices zAn WD B`n

� � �B`nC1�1 satisfy (K4), (K7) and

minf zAn.i; j / W 1� i � k`n
; 1� j � k`nC1

g �maxfk`nC1
; r`n

p
q`nC1

g:

Finally, defining An as the .k`n
C 1/� .k`nC1

C 1/ matrix with columns

.An.�; 1//D .An.�; 2//D

0BBBBB@
1

zAn.1; 1/� 1
zAn.2; 1/
:::

zAn.k`n
; 1/

1CCCCCA and .An.�; kC1//D

0BBBBB@
1

zAn.1; k/� 1
zAn.2; k/
:::

zAn.k`n
; k/

1CCCCCA ;
where 2 � k � k`n

, we have that all properties (K2), (K3), (K4), (K5) and (K6)
are satisfied with respect to the subsequences .q`n

/; .r`n
/. By [6, Lemmas 1 and 2],
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property (K7) is also satisfied. Finally, property (K1) follows from [6, Lemma 9] and
the proof of [6, Lemma 13] (this is independent of the choice of .qn/).

In all that follows, we will assume that K is not reduced to a singleton. In other
words, we will search for the construction of a translation action over the orbit of a
nonrectifiable Delone set that is not uniquely ergodic, the uniquely ergodic case having
been settled in the previous section.

Lemma 17 With the notation above, assume that K is not reduced to a singleton. Then
there exist positive integers m0 �m and i0 2 ŒŒ1; km�� as well as real numbers xd > xd 0

in �0; 1Œ such that for every n�m0 , there exist jnC1; j 0nC1 in ŒŒ1; knC1�� satisfying

Am � � �An.i0; jnC1/

qnC1
� xd and

Am � � �An.i0; j
0
nC1/

qnC1
� xd 0:

Proof Since K has at least two extreme points, there exist .un/; .vn/ in the inverse
limit lim n.4.kn; qn/; An/ such that for some positive integers m and i in ŒŒ1; km��,
the i th –coordinates um;i and vm;i of um and vm , respectively, are different. For
each n > m, we set

˛n Dmax
�ˇ̌̌̌
Am � � �An.i; r/

qnC1
�
Am � � �An.i; s/

qnC1

ˇ̌̌̌
W r; s in ŒŒ1; knC1��

�
:

Suppose for a contradiction that there exists a subsequence .˛n`
/ converging to zero.

Then for every j 2 ŒŒ1; kn`C1��, there exists ı`;j 2 Œ�˛n`
; ˛n`

� such that

Am � � �An`
.i; j /

qn`C1
D
Am � � �An`

.i; 1/

qn`C1
C ı`;j :

Therefore,

um;i D

kn`C1X
jD1

Am � � �An`
.i; j /

qn`C1
qn`C1un`;j

D

kn`C1X
jD1

�
Am � � �An`

.i; 1/

qn`C1
C ı`;j

�
qn`C1un`;j

D
Am � � �An`

.i; 1/

qn`C1
C

kn`C1X
jD1

ı`;j qn`C1un`;j

and

vm;i D
Am � � �An`

.i; 1/

qn`C1
C

kn`C1X
jD1

ı`;j qn`C1vn`;j :
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Thus we get

jum;i � vm;i j �

kn`C1X
jD1

jı`;j jqn`C1.un`;j C vn`;j /� 2˛n`
;

which contradicts the fact that um;i ¤ vm;i .

Let K be a Choquet simplex not reduced to a singleton, and let .pn/ be a sequence
of positive integers such that p1 D maxf4; dg for d –dimensional K , p1 D 4 for
infinite-dimensional K , and such that for every n� 1, one has pnC1D 2.lnC1/pn for
an integer ln � 1. Let .An/ be a sequence of kn�knC1 matrices with positive integer
entries verifying the properties of Lemma 16 with respect to qn WD p2n . Let m0 �m,
i0 in ŒŒ1; km��, d > d 0 in �0; 1Œ and jnC1; j 0nC1 in ŒŒ1; knC1�� be as in Lemma 17,
where n �m0 . Observe that we can (and we will) assume that mD 1 and that both
jnC1 and j 0nC1 are greater than or equal to 2 (the latter assumption is possible because
the first two columns of each matrix An are equal). Let .rn/ be a sequence of positive
integers such that rnpn < pnC1 , for all n.

We set F1 WD ŒŒ0; p1� 1��2 , and for n� 1, we let

FnC1 WD
[

v2ŒŒ�ln�1;ln��2

.FnCpnv/:

Next, we define the patch

P1;i0 WD F1 n f.p1� 1; p1� 1/g:

For k 2 ŒŒ1; k1�� n fi0g, the patch P1;k is defined as (see Figure 4)

P1;k WD f.i; j / 2 F1 W i is eveng[ f.i; j / 2 F1 W j D 0g[ f.1; k/g:

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

P1;i0

� � �

� � �

� � � �

� � �

� � �

� � � � � �

P1;k for k D 3¤ i0

Figure 4: The patches P1;k for p1 D 6 , k1 � 3 and i0 ¤ 3
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We next proceed to define patches P2;1; : : : ;P2;k2
in f0; 1gF2 satisfying:

� P2;j \ .F1C .l1p1; l1p1//DP1;1 , for each j 2 ŒŒ1; k2�� (that is, the upper-right
corner of each P2;j is a copy of P1;1 ).

� P2;j \ .F1C vp1/ belongs to fP1;1; : : : ;P1;k1
g, for every j 2 ŒŒ1; k2�� and for

all v 2 ŒŒ�l1� 1; l1��2 .

� For all i 2 ŒŒ1; k1�� and all j 2 ŒŒ1; k2��, the number of vectors v 2 ŒŒ�l1�1; l1��2

such that P2;j \ .F1C vp1/D P1;i equals A1.i; j /.

In order to check that it is possible to obtain k2 different patches satisfying these three
properties, just observe that the number of different ways to define a single patch P2;k
satisfying all of them equals�Pk1

iD2A1.i; k/
�
Š

A1.2; k/Š � � �A1.k1; k/Š
�minfA1.i; j / W 2� i � k1; 1� j � k2g � k2:

Now, suppose that for n � 2, we have defined a collection Pn;1; : : : ;Pn;kn
of dif-

ferent patches in f0; 1gFn . We will next proceed to define knC1 different patches
PnC1;1; : : : ;PnC1;knC1

in f0; 1gFnC1 such that for all k 2 ŒŒ1; knC1��, the following
properties are satisfied (see Figure 5):

(P1) PnC1;k \ .FnC .lnpn; lnpn//D Pn;1 .

(P2) For all s 2 ŒŒ�ln� 1; ln�� and r 2 ŒŒ�ln� 1;�lnC rn� 2��, it holds that

PnC1;k \ .FnC .spn; rpn//D
�
Pn;jn

if ŒspnC1=rn� is even,
Pn;j 0n if ŒspnC1=rn� is odd.

(P3) PnC1;k\.FnCvpn/ belongs to fPn;1; : : : ;Pn;kn
g, for every v 2 ŒŒ�ln�1; ln��2 .

(P4) The number of v 2 ŒŒ�ln � 1; ln��2 such that PnC1;k \ .FnC vpn/ D Pn;i is
equal to An.i; k/.

Notice that properties (P1) and (P2) completely determine how to fill .pnC1=pn/rnC1
translated copies of Fn . We thus need to fill, in different ways, the remaining (free)
p2nC1=p

2
n � .pnC1=pn/rn � 1 translated copies of Fn in a way that (P4) is satisfied.

To do this, notice that if pnC1 is sufficiently large, namely

(16) pnC1 >
.kn�1/p

2
n

kn�2

�
rn

pn
C 1

�
;
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Pn;jn
� � � Pn;jn

:::
� � � :::

Pn;jn
� � � Pn;jn

Pn;j 0n � � � Pn;j 0n

:::
� � � :::

Pn;j 0n � � � Pn;j 0n

Pn;jn
� � � Pn;jn

:::
� � � :::

Pn;jn
� � � Pn;jn

Pn;j 0n � � � Pn;j 0n

:::
� � � :::

Pn;j 0n � � � Pn;j 0n

Pn;1

Figure 5: Building the patches PnC1;k : the white part must be filled accord-
ing to the rules (P3) and (P4), and the dashed lines indicate that we do not
overlap patches as in the previous sections.

then

.kn�2/
p2nC1

p2n
> .kn�1/

pnC1rn

pn
C .kn�1/pnC1;

which implies

.kn�1/

�
p2nC1

p2n
�
pnC1rn

pn
� 1

�
> .kn�1/

�
p2nC1

p2n
�
pnC1rn

pn
�pnC1

�

>
p2nC1

p2n
>

knX
iD2

An.i; j /

� .kn�1/minfAn.i; j / W 1� i � kn; 1� j � knC1g:

Using this and (K5), we obtain

p2nC1

p2n
�
pnC1rn

pn
� 1 > knC1:
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Next, we notice that among the free translated copies of Fn , the number of those that
have to be filled by copies of Pn;jn

(resp. Pn;j 0n ) equals

An.jn; k/�
rnpnC1

2pn
� rnpnC1� rn

pnC1

2pn
> 0�

resp. An.j 0n; k/�
rnpnC1

2pn
� rnpnC1� rn

pnC1

2pn
> 0

�
:

This easily allows producing patches PnC1;1; : : : ;PnC1;knC1
that do satisfy (P4) and

differ from each other in the places where we put some patches Pn;jn
; Pn;j 0n in a fixed

family of kn free translated copies of Fn .

Having defined all patches Pi;j , let us now consider the family of sets

Xn WD fD � Z2 WD\ .FnC v/ 2 fPn;1; : : : ;Pn;kn
g; for every v 2 pnZ2g:

It is clear that .Xn/ is a nested sequence of nonempty compact sets, hence their
intersection is nonempty. Moreover, every element in this intersection is a Delone
set that satisfies the 2Z–property. Fix such a set D , and let X be the closure of its
orbit with respect to the translation action of Z2 (equivalently, of R2 ). For n� 1 and
for k 2 ŒŒ1; kn��, we set

Cn;k WD fD 2X WD\Fn D Pn;kg:

By the construction,

Un WD fCn;kC v W 1� k � kn; v 2 Fng

is a clopen covering of X . We claim that it is actually a partition of X . To show
this, let us first consider the case of U1 . For all D 2 X1 and all v 2 p1Z2 , the
intersection D \ .F1 C v/ belongs to fP1;1; : : : ;P1;k1

g. If two atoms of U1 , say
C1;k C v and C1;k0 C v0 , have nonempty intersection, then letting u WD v � v0 , we
have that C1;kCu intersects C1;k0 . Then, by looking at all possible intersections and
having in mind the geometry of the patches P1;k , one is easily convinced that u must
belong to p1Z2 . Since both v and v0 lie in F1 , this implies that uD 0, hence vD v0 ,
and finally k D k0 . The proof for .Un/ works by induction. Assuming that Un�1 is
a partition, a similar argument applies taking into account that the unique position in
which Pn�1;1 appears in each patch Pn;k is the upper-right corner.

Next, let � be an invariant probability measure for the translation action of Z2 on X .
We claim that the vectors of the �–measures, namely

�n WD .�.Cn;1/; : : : ; �.Cn;kn
//;
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satisfy �Tn D An.�
T
nC1/, for every n� 1. Indeed, we have

�.Cn;i /D �

�knC1[
kD1

fCnC1;kC v W v 2 FnC1; CnC1;kC v � Cn;ig

�

D

knC1X
kD1

jfv 2 FnC1 W CnC1;kC v � Cn;igj ��.CnC1;k/

D

knC1X
kD1

An.i; k/ ��.CnC1;k/;

which shows our claim.

We can thus consider the sequence .�n/ as a point in lim n.4.kn; p2n/; An/. Notice
that the function � 7! .�n/ from the set of invariant probability measures into the
space lim n.4.kn; p2n/; An/ is affine. We claim that it is a bijection. Indeed, on
the one hand, given .un/ in lim n.4.kn; p2n/; An/, we may produce a probability
measure � on X by letting �.Cn;k C v/ D un.k/, for every k 2 ŒŒ1; kn�� and all
v 2 Fn . It is the not hard to check that � is invariant under the translation action (see
[5, Lemma 5]), thus showing the surjectivity of the map. On the other hand, to check
that it is injective, consider the set

X� WD
[
w2Z2

\
n�1

kn[
kD1

[
v2FnnFn�w

.Cn;kC v/:

This set contains all points of X (if any) that are not separated by the partitions .Un/.
Indeed, if D;D0 are two such points, then for each n � 1 they belong to the same
atom Cn;inCvn in Un . If D;D0 are different, then there is w 2Z2 contained only in
one of them. Thus, DCw and DCw0 differ at the origin, and therefore Cn;inCvnCw
cannot be an atom of Un . This implies that vnCw … Fn , that is vn 2 Fn nFn �w ,
which shows our claim.

Using the fact that .Fn/ is a Følner sequence, one can easily check that �.X�/D 0
for every invariant probability measure �. Indeed, for all n� 1 and all fixed w 2 Z2 ,

�

� kn[
kD1

[
v2FnnFn�w

.Cn;kC v/

�
D

knX
kD1

jFn nFn�wj ��.Cn;k/

DjFn nFn�wj �

knX
kD1

�.Cn;k/D
jFn nFn�wj

jFnj
��!
n!1

0;
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where the last equality holds since Un is a partition of X . Thus, any given clopen
set C can be written as the union C1[C2 , where C1 is a (countable) union of atoms
of .Un/ and C2 is a subset of X� . This shows that any probability measure � on X
that is invariant under the translation action of Z2 is completely determined by the
sequence .�n/, thus showing the desired injectivity.

We can now finish our construction. To do this, we consider the sequence .pn/ defined
by p1 WDmaxf4; dg if K is d –dimensional, p1 WD 4 if K is infinite-dimensional, and
pnC1 WD 2nŠ.pn/

2 , for all n� 1. (This definition ensures property (16).) Then we let
rn WDnŠ, and we realize K as an inverse limit lim n.4.kn; qn/; An/, where qn WDp2n .
Next, we perform the preceding construction for this realization. We thus obtain a
Delone set D satisfying the 2Z–property and such that the set of invariant probability
measures for the Z2–action on the closure of its orbit is affine isomorphic to K . It
remains to show that D is nonrectifiable. To do this, we will need the next lemma:

Lemma 18 There exist d > d 0 in �0; 1Œ such that for every n > m0 ,

jPn;jn
j � p2nd > p

2
nd
0
� jPn;j 0n j:

Proof First notice that jP1;i0 j D p21 � 1 and that for every k 2 ŒŒ1; k1�� n fi0g,

jP1;kj D 1
2
p21 C

1
2
p1C 1:

Thus for every n� 1 and k 2 ŒŒ1; kn��, we have

jPn;kj D A1 � � �An�1.i0; k/
�
p21 � 1

�
C

�
p2n

p21
�A1 � � �An�1.i0; k/

��
1
2
p21 C

1
2
p1C 1

�
D A1 � � �An�1.i0; k/

�
1
2
p21 �

1
2
p1� 2

�
C
p2n

p21

�
1
2
p21 C

1
2
p1C 1

�
:

By Lemma 17, for every n > m0 ,

jPn;jn
j � xdp2n

�
1
2
p21 �

1
2
p1� 2

�
C
p2n

p21

�
1
2
p21 C

1
2
p1C 1

�
> xd 0p2n

�
1
2
p21 �

1
2
p1� 2

�
C
p2n

p21

�
1
2
p21 C

1
2
p1C 1

�
� A1 � � �An�1.i0; j

0
n/
�
1
2
p21 �

1
2
p1� 2

�
C
p2n

p21

�
1
2
p21 C

1
2
p1C 1

�
D jPn;j 0n j:

Thus, letting

d WD xd
�
1
2
p21 �

1
2
p1� 2

�
C

1

p21

�
1
2
p21 C

1
2
p1C 1

�
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and
d 0 WD xd 0

�
1
2
p21 �

1
2
p1� 2

�
C

1

p21

�
1
2
p21 C

1
2
p1C 1

�
;

we get the desired property.

To conclude, we write pnC1 D 2pn.nŠpn/ and in reference to Proposition 10, we
identify nŠpn with M (which is a multiple of P�pn for any prescribed P� provided
n is large enough) and pn with N . Then, an application of Proposition 10 along the
lines of the proof of Lemma 13 allows showing that D is not L–bi-Lipschitz equivalent
to Z2 for any prescribed L, hence nonrectifiable.
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