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The Weyl tensor of gradient Ricci solitons

XIAODONG CAO

HUNG TRAN

This paper derives new identities for the Weyl tensor on a gradient Ricci soliton,
particularly in dimension four. First, we prove a Bochner–Weitzenböck-type formula
for the norm of the self-dual Weyl tensor and discuss its applications, including
connections between geometry and topology. In the second part, we are concerned
with the interaction of different components of Riemannian curvature and (gradient
and Hessian of) the soliton potential function. The Weyl tensor arises naturally in
these investigations. Applications here are rigidity results.

53C44; 53C21, 53C25

1 Introduction

The Ricci flow, which was first introduced by R Hamilton in [31], describes a one-
parameter family of smooth metrics g.t/, 0� t < T �1, on a closed n–dimensional
manifold M n , by the equation

(1-1) @

@t
g.t/D�2 Rc.t/:

The subject has been studied intensively, particularly in the last decade thanks to seminal
contributions by G Perelman in his proof of the Poincaré conjecture (see [40; 41]). It
also gained popularity after playing a key role in the proofs of the classification theorem
for manifolds with 2–positive curvature operators due to C Böhm and B Wilking [6],
and the Differentiable sphere theorem of S Brendle and R Schoen [9; 8].

As a weakly parabolic system, the Ricci flow can develop finite-time singularities
and consequently, the study of singularity models becomes crucial. In this paper, we
are concerned with gradient Ricci solitons (GRS), which are self-similar solutions of
Hamilton’s Ricci flow (1-1) and arise naturally in the analysis of singularities. A GRS
.M;g; f; �/ is a Riemannian manifold endowed with a special structure given by a
(soliton) potential function f , a constant �, and the equation

(1-2) RcCHessf D �g:
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Depending on the sign of �, a GRS is called shrinking (positive), steady (zero), or
expanding (negative). In particular an Einstein manifold N can be considered as a
special case of a GRS where f is a constant and � becomes the Einstein constant.
A less trivial example is a Gaussian soliton .Rk ;gsd; �jxj

2=2; �/, with gsd being the
standard metric on Euclidean space. It is interesting to note that � can be an arbitrary
real number and that the Gaussian soliton can be either shrinking, steady or expanding.
Furthermore, a combination of those two above, in the notation of P Petersen and
W Wylie [43], is called a rank k rigid GRS, namely a quotient of N �Rk . Other
nontrivial examples of GRS are rare and mostly Kähler; see [12; 26].

In recent years, following the interest in the Ricci flow, there have been various efforts
to study the geometry and classification of GRSs; for example, see Cao [13] and the
citations therein. In particular, the low-dimensional cases (n D 2; 3) are relatively
well-understood. For nD 2, Hamilton [33] completely classified shrinking gradient
solitons with bounded curvature and showed that they must be either the round sphere,
projective space, or Euclidean space with the standard metric. For nD 3, utilizing the
Hamilton–Ivey estimate, Perelman [41] proved an analogous theorem. Other significant
results include recent development of Brendle [7] showing that a non-collapsed steady
GRS must be rotationally symmetric and is, therefore, isometric to the Bryant soliton.

In higher dimensions, the situation is more subtle mainly due to the non-triviality of
the Weyl tensor (W) which is vacuously zero for dimension less than four. One general
approach to the classification problem so far has been to impose certain restrictions
on the curvature operator. An analogue of Hamilton–Perelman results was obtained
by A Naber proving that a four-dimensional complete non-compact shrinking GRS
with bounded nonnegative curvature operator must be a finite quotient of R4 , S2�R2

or S3 � R [38]. In [34], B Kotschwar classified all rotationally symmetric GRSs
with given diffeomorphic types on Rn , Sn�1 �R or Sn . Note that any rotationally
symmetric Riemannian manifold has vanishing Weyl tensor.

Thus, a natural development is to impose conditions on that Weyl tensor in higher
dimensions. A complete shrinking GRS with vanishing Weyl tensor must be a finite
quotient of Rn , or Sn�1�R or Sn . That follows from the works of Ni and Wallach [39],
Zhang [51], Cao, Wang and Zhang [18] and Petersen and Wylie [44]. A steady GRS is
flat or rotationally symmetric (that is, a Bryant soliton) by Cao and Chen [14]. The
assumption W� 0 can be weakened to ıW� 0. In that case, a closed or non-compact
shrinking GRS must be rigid; see Cao, Wang and Zhang [18], Fernández-López and
García-Río [27], and Munteanu and Sesum [37]. Furthermore, in dimension four, the
vanishing of the self-dual part of Weyl tensor has been studied by Chen and Wang [22].
They show that a shrinking GRS with bounded curvature must be a finite quotient of
R4 , S3 �R, Sn , or CP2 , and a steady GRS must be a Bryant soliton or flat. There
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are other classifications based on, for instance, Bach flatness (see Cao and Chen [15])
or assumptions on the radial sectional curvature (see Petersen and Wylie [44]).

Having highlighted the importance of the non-triviality of the Weyl tensor, this paper
is devoted to studying the delicate role of that tensor within a gradient soliton structure.
Our perspective here is to view a GRS as both a generalization of an Einstein manifold
as well as a self-similar solution to the Ricci flow. In particular, this paper derives
several new identities on the Weyl tensor of GRS in dimension four. In the first part,
we prove the a Bochner–Weitzenböck-type formula for the norm of the self-dual Weyl
tensor using flow equations and some ideas related to Einstein manifolds.

Theorem 1.1 Let .M;g; f; �/ be a four-dimensional GRS. Then we have the Bochner–
Weitzenböck formula

(1-3) �f jW
C
j
2
D 2jrWCj2C 4�jWCj2� 36 det WC� hRc ıRc;WCi

D 2jrWCj2C 4�jWCj2� 36 det WC� hHessf ıHessf;WCi:

For the relevant notation, see Section 2. Identity (1-3) potentially has several appli-
cations and we will present a couple of them in this paper, including a gap theorem.
More precisely, if the GRS is not locally conformally flat and the divergence of the
Weyl tensor is relatively small, then the L2 –norm of the Weyl tensor is bounded below
by a topological constant (see Theorem 4.1). The proof, in a similar manner to that of
Gursky [29], uses some ideas from the solution to the Yamabe problem.

In the second part, we are mostly concerned with the interaction of different curvature
components, gradient and Hessian of the potential function. In particular, an interesting
connection is illustrated by the following integration by parts formula.

Theorem 1.2 Let .M;g; f; �/ be a closed GRS. Then we have

(1-4)
Z

M

hW;Rc ıRci D
Z

M

hW;Hessf ıHessf i D
Z

M

W.Hessf;Hessf /

D

Z
M

Wijklfikfjl D
1

n�3

Z
M

hıW; .n� 4/M C .n� 2/P i:

In particular, in dimension four, the identity becomes

(1-5)
Z

M

hW;Rc ıRci D 4

Z
M

jıWj2:

Remark 1.1 For definitions of M and P , see Section 5.
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Remark 1.2 This result exposes the intriguing interaction between the Weyl tensor
and the potential function f on a GRS. It will be interesting to extend those identities
to a (possibly non-compact) smooth metric measure space or generalized Einstein
manifold.

Remark 1.3 In dimension four, the statement also holds replacing W by W˙ ; see
Corollary 5.8.

The interactions of various curvature components and the soliton potential function
can be applied to study the classification problem. For example, Theorem 6.1 asserts
the rigidity of the Ricci curvature tensor in dimension four. More precisely, if the
Ricci tensor at each point has at most two eigenvalues with multiplicity one and three,
then any such closed GRS must be rigid. It is interesting to compare this result with
classical classification results of the Codazzi tensor, which require both distribution of
eigenvalues and information on the first derivative (see [5, Chapter 16, Section C]).

This paper is organized as follows. In Section 2, we fix our notation and collect
some preliminary results. Section 3 provides a proof of Theorem 1.1 using the Ricci
flow technique. Section 4 gives some immediate applications of the new Bochner–
Weitzenböck type formula including the aforementioned gap theorem. In Section 5, we
first discuss a general framework to study the interaction of different components of
the curvature with the potential function, and then prove Theorem 1.2. In Section 6,
we apply our framework to obtain various rigidity results. Finally, in the appendix, we
collect a few related formulas.

Acknowledgements This work was done when the first author was supported by
grants from the Simons Foundation (number 266211 and 280161) and by the Jeffrey
Sean Lehman Fund from Cornell University.

2 Notation and preliminaries

In this section, we will fix the notation and conventions that will be used throughout
the paper.

R;W;Rc; S and E will stand for the Riemannian curvature operator, Weyl tensor, Ricci
curvature, scalar curvature, and the traceless part of the Ricci tensor respectively.

For a finite-dimensional real vector space (bundle), ƒ2.V / denotes the space of bi-
vectors or two-forms. In our case, the space of interest is normally the tangent bundle
and when the context is clear, the dependence on V is omitted.
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Given an orthonormal basis fEig
n
iD1

of TpM , it is well-known that we can construct
an orthonormal frame about p such that ei.p/DEi and rei jpD 0. Such a frame is
called normal at p . Also, e12 is the shorthand notation for e1 ^ e2 2ƒ2 .

The modified Laplacian is defined as

�f D��rrf :

For any .m; 0/–tensor T , its divergence operator is defined as

.ıT /p2:::pm
D

X
i

riTip2:::pm
;

while its interior product by a vector field X is defined as

.iX T /p2:::pm
D TXp2:::pm

:

Furthermore, we will interchange the perspective of a vector and a covector freely,
ie a .2; 0/ tensor will also be seen as a .1; 1/ tensor. Similarly, a .4; 0/ tensor such
as R or W can be interpreted as an operator on bi-vectors; that is, a map from
ƒ2.TM /!ƒ2.TM /. Consequently, the norm of these operators is agreed to be sum
of all eigenvalues squared (this agrees with the tensor norm defined in [23] for .2; 0/
tensors but differs by a factor of 1

4
for .4; 0/ tensors). More precisely,

jWj2 D
X

i<j Ik<l

W2
ijkl :

In addition, the norm of the covariant derivative and divergence on these tensors can
be defined accordingly,

jrWj2 D
X

i

X
a<bIc<d

.riWabcd /
2; jıWj2 D

X
i

X
a<b

..ıW/iab/
2:

For a tensor T W ƒ2.TM /˝ .TM /!R, we define

hT; ıWi D
X

i<j Ik

Tijk.ıW/kij ;(2-1)

hT; iX Wi D
X

i<j Ik

Tijk.iX W/kij :(2-2)

Finally, when the context is clear, we will omit the measure when integrating.
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2.1 Gradient Ricci solitons

In this subsection, we recall some well-known identities for GRSs. A GRS is charac-
terized by the Ricci soliton equation

(2-3) RcCrrf D �g:

Algebraic manipulation of (2-3) and application of the Bianchi identities lead to the
following formulas (for a proof see [23]):

SC4f D n�:(2-4)
1
2
riSDrj Rij D Rij r

jf:(2-5)

Rc.rf /D 1
2
rS:(2-6)

SCjrf j2� 2�f D constant:(2-7)

4SC 2jRcj2 D hrf;rSiC 2�S:(2-8)

Remark 2.1 If � � 0, then S � 0 by the maximum principle and equation (2-8).
Moreover, a complete GRS has positive scalar curvature unless it is isometric to the
flat Euclidean space [45].

One main motivation for the study of GRSs is that they arise naturally as self-similar
solutions to the Ricci flow. For a fixed GRS given by (2-3) with g.0/Dg and f .0/Df ,
we define �.t/ WD 1�2�t > 0, and let �.t/W M n!M n be a one-parameter family of
diffeomorphisms generated by X.t/ WD .1=�.t//rg.0/f . By pulling back, we get

g.t/D �.t/�.t/�g.0/; Rc.t/D �� Rc.0/D �

�.t/
g.t/�Hess

g.t/
f .t/:

Then .M;g.t//, 0� t < T , is a solution to the Ricci flow of (1-1), where T D 1=.2�/

(resp. T D1) if � > 0 (resp. �� 0). Other important quantities along the flow are:

� f .t/D f .0/ ı�.t/D �.t/�f .

� S.t/D trace.Rc.t//D n�

�.t/
��g.t/f .t/.

� ft D jrf j
2
g.t/

.

� �.t/D T � t D
�.t/

2�
.

� uD .4��/�n=2e�f .

� ‰.g; �; f /D

Z
M

�
�
�
jrf j2CS

�
Cf � n

�
u d�D��C.t/

Z
M

u d�.
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2.2 Four-manifolds

In this subsection, we give a brief review of the algebraic structure of curvature and
geometry on an oriented four-manifold .M;g/.

First we recall the Kulkarni–Nomizu product for .2; 0/ symmetric tensors A and B,

.A ıB/ijkl DAikBjl CAjlBik �AilBjk �AjkBil :

Then we have the following decomposition of curvature,

(2-9) RDWC
Sg ıg

2n.n� 1/
C

E ıg

n� 2
DW�

Sg ıg

2.n� 2/.n� 1/
C

Rc ıg
n� 2

:

In dimension four this becomes

RDWC S
24

g ıgC
1

2
E ıg DWCU CV;

jR j2 D jWj2CjU j2CjV j2;

jU j2 D
1

2n.n�1/
S2
D

1

24
S2;

jV j2 D
1

n�2
jEj2 D 1

2
jEj2:

An important feature in dimension four is that the Hodge star operator decomposes the
space ƒ2 of bi-vectors orthogonally according to the eigenvalues ˙1. The Riemannian
curvature inherits this decomposition, and consequently has a special structure. To be
more precise, let feig

4
iD1

be an orthonormal basis of the tangent space at any arbitrary
point on M . Then one pair of orthonormal bases of bi-vectors is given by

(2-10)
�

1
p

2
.e12C e34/;

1
p

2
.e13� e24/;

1
p

2
.e14C e23/

�
for ƒC

2
;�

1
p

2
.e12� e34/;

1
p

2
.e13C e24/;

1
p

2
.e14� e23/

�
forƒ�2 :

Accordingly, the curvature now is

(2-11) RD
�

AC C

C T A�

�
;

with C essentially the traceless part. It is easy to observe that W.ƒ˙
2
/ 2ƒ˙

2
, so we

may unambiguously define W˙ WDWjƒ˙ . In particular,

(2-12) W˙.˛; ˇ/DW.˛˙; ˇ˙/;

with ˛˙ and ˇ˙ the projection of ˛; ˇ onto ƒ˙
2

.
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Furthermore, as W is traceless and satisfies the first Bianchi identity, there is a normal
form due to M Berger [4] (see also [47], [19]). That is, there exists an orthonormal
basis feig

4
iD1

of TpM , and consequently a basis fe12; e13; e14; e34; e42; e23g of ƒ2 ,
such that

(2-13) WD
�

A B

B A

�
;

for ADdiag.a1; a2; a3/ and BDdiag.b1; b2; b3/, with a1Ca2Ca3Db1Cb2Cb3D0.
Then, by (2-12),

W˙ D

0B@A˙B

2

B˙A

2
B˙A

2

A˙B

2

1CA :
Using the basis given in (2-10), we get

WD
�

ACB 0

0 A�B

�
:

Hence we obtain the following well-known identities.

Lemma 2.1 Let .M 4;g/ be a four-dimensional Riemannian manifold. Then the
following tensor equations hold:

.W˙/ikpq.W
˙/j

kpq
D jW˙j2gij ;(2-14)

.W˙/ikpq.W
˙/kpq

j D
1
2
jW˙j2gij :(2-15)

Proof Note that these identities only depend on the decomposition of these tensors.
In particular, it suffices to prove them for the Weyl tensor. Using the normal form
discussed above, we calculate that

W1kpqWkpq
1 D

3X
iD1

a2
i � 2.b1b2C b2b3C b3b1/D

3X
iD1

.a2
i C b2

i /:

Similar calculations for all other pairs of indexes verify the statements.

Remark 2.2 The first identity can also be found in [24, Section 2, Equation (31)].

In addition, in reference to the decomposition of curvature in (2-11), we have the
following relations:

A˙ DW˙C S
12

I˙; jA˙j2 D jW˙j2C S2

48
;

jEj2 D jRcj2� S2

4
D 4jC j2 D 4 tr.C C T /:
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If the manifold is closed, the Gauss–Bonnet–Chern formula for the Euler characteristic
and Hirzebruch formulas for the signature (see [5] for more details) are given by

8�2�.M /D

Z
M

.jWj2� jV j2CjU j2/(2-16)

D

Z
M

�
jWj2� 1

2
jEj2C S2

24

�
D

Z
M

.jR j2� jEj2/;

12�2�.M /D

Z
M

.jWCj2� jW�j2/:(2-17)

Remark 2.3 It follows immediately that if M admits an Einstein metric ED 0, then
we have the Hitchin–Thorpe inequality

j�.M /j � 2
3
�.M /:

The Hodge operator in dimension four is related to a decomposition on the tangent
bundle. Let f˛ig

3
iD1

be a positively oriented orthogonal basis of ƒC
2

with j˛i j D
p

2.
When seen as an operator on a vector field X and given sign.i; j ; k/ D 1, those
bi-vectors satisfy the following identities (see [1]):

˛2
i D�Identity;

˛i j̨ D ˛k D� j̨˛i ;

h˛i.X /; j̨ .X /i D hX;�˛i j̨ X i D hX; ˛kX i D 0:

Here sign.i; j ; k/ is the sign of the permutation of f1; 2; 3g. The positive orientation
is just to agree with the sign convention. An example of such a basis is given by
multiplying by

p
2 the basis given in (2-10). Consequently, we have the following

result.

Lemma 2.2 Suppose .M;g/ is a four-dimensional Riemannian manifold and X is a
vector field on M. At any point p such that Xp ¤ 0,

TpM DXp˚ƒ
C

2
.Xp/;

with ƒC
2
.X /D f˛.Xp/; ˛ 2ƒ

C

2
g.

Proof Pick an orthogonal basis of ƒC
2

as above. Then f˛i.Xp/g
3
iD1

are three orthog-
onal vectors, and each is perpendicular to Xp . The statement follows.
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Remark 2.4 By symmetry, the statement also holds for ƒ�
2

. When the context is
clear, we normally omit the sub-index of the point.

2.3 New sectional curvature

In this subsection, we first prove some results in dimension four to illustrate that
classical techniques for Einstein 4–manifolds can be adapted to study GRSs.

For a four-dimensional GRS .M;g; f; �/, define

(2-18) H D Hessf ıg:

Then a straightforward calculation leads to the following decomposition.

Lemma 2.3 With respect to the decomposition given by (2-10), we have

H D

�
A B

BT A

�
;

with AD
�f

2
Id and

B D

0BBB@
f11Cf22�f33�f44

2
f23�f14 f24Cf13

f23Cf14
f11Cf33�f22�f44

2
f34�f12

f24�f13 f34Cf12
f11Cf44�f22�f33

2

1CCCA :

Remark 2.5 In particular, hH;Wi D 0.

We further define a new “curvature” tensor R by

(2-19) RD RC1

2
H DWC S

24
g ıgC

1

2

�
Rc�S

4
g
�
ıgC

1

2
H

DW� S
12

g ıgC
1

2
�g ıg

DWC
�
�

2
�

S
12

�
g ıg:

Thus, it follows immediately that, with respect to (2-10),

RD
�

AC 0

0 A�

�
;

with A˙ DW˙C .�� S=6/IdDW˙C .�f=4C S=12/ Id. Furthermore, following
the argument in [4], we obtain:
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Proposition 2.4 There exists a normal form for R. More precisely, at each point, there
exists an orthonormal base feig

4
iD1

such that as an operator on 2–forms, with respect
to the corresponding base fe12; e13; e14; e34; e42; e23g for ƒ2 ,

RD
�

A B

B A

�
;

with A D diag.a1; a2; a3/ and B D diag.b1; b2; b3/. Moreover, a1 D min K , a3 D

max K and jbi � bj j � jai � aj j, where K is the “sectional curvature” of R; that is,
K.e1; e2/D R1212 for any orthonormal vectors e1 and e2 .

Remark 2.6 Can a GRS be characterized by the existence of such a function f with
R constructed as above having the normal form?

Next, we investigate the assumption of having a lower bound on this new sectional
curvature similar to [30]. For � < 1=3, suppose that

(2-20) K � ��;

or equivalently, for any orthonormal pair ei and ej ,

(2-21) Rijij � ��() Rijij C
fii Cfjj

2
� ��:

Then we have the following lemma.

Lemma 2.5 Let .M;g; f; �/ be a GRS. Then assumption (2-20) implies the following:

� SC 3�f � 12��.

� S� 6.1� �/�.

� �f � 2.3�� 1/�.

�
1p
6

�
jWCjC jW�j

�
� 2.1� �/��

S
3

.

In the last formula, equality holds if and only if W˙ has the form a˙ diag.�1;�1; 2/,
with a˙ � 0, and

aCC a� D 2.1� �/��
S
3
:

Proof All inequalities follow from tracing Equation (2-21) and the soliton equation
S C�f D 4� except the last one.

For the last inequality, first note that any two form � can be written as a simple wedge
product of 1–forms if and only if � ^ � D 0. In dimension four, with respect to
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(2-10), that is equivalent to � D �CC �� and j�Cj D j��j. Therefore, in light of
Equation (2-13), assumption (2-20) is equivalent to

(2-22) aCC a�C 2��
S
3
� 2��;

where aC; a� are the smallest eigenvalues of W˙ . Using the algebraic inequalities

�aC �
1
p

6
jWCj;(2-23)

�a� �
1
p

6
jW�j;(2-24)

we obtain

2.1� �/��
S
3
�

1
p

6

�
jWCjC jW�j

�
:

Equality holds if and only if equality holds in (2-22) and (2-23) (or (2-24)). The result
then follows immediately.

Lemma 2.6 Let .M;g; f; �/ be a closed GRS satisfying (2-20). ThenZ
M

�
jWCjC jW�j

�2
�

Z
M

2S2

3
d�� 8.1� �/.1C 3�/�2V .M /:

Again, equality holds if W˙ has the form a˙ diag.�1;�1; 2/, with a˙ � 0 and

aCC a� D 2.1� �/��
S
3
:

Proof Applying Lemma 2.5, we computeZ
M

�
2.1� �/��

S
3

�2
D4.1� �/2�2V .M /�

4.1� �/�

3

Z
M

SC
Z

M

S2

9

D4.1� �/2�2V .M /�
4.1� �/�

3
4�V .M /C

Z
M

S2

9

D4.1� �/�2V .M /
�
���

1

3

�
C

Z
M

S2

9
:

Remark 2.7 If we use S� 6.1� �/�, thenZ
M

�
jWCjC jW�j

�2
�

�Z
M

S2 d�

��
2

3
�

2.1C 3�/

9.1� �/

�
D

4.1� 3�/

9.1� �/

Z
M

S2:
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Lemma 2.7 Let .M;g; f; �/ be a closed GRS. ThenZ
M

jRcj2 D
Z

M

S2

2
� 4�2V .M /:

Proof Using Equation (2-8), we compute

2

Z
M

jRcj2 d�D

Z
M

.2�SChrf;rSi/ d�D 2�4�V .M /�

Z
M

�f S d�

D 8�2V .M /�

Z
M

.4��S/S d�

D�8�2V .M /C

Z
M

S2 d�:

The above results lead to the following estimate on the Euler characteristic.

Proposition 2.8 Let .M;g; f; �/ be a closed non-flat GRS with unit volume, satisfy-
ing assumption (2-20). Then

8�2�.M / <
7

12

Z
M

S2d�C 2�2.12�2
� 8�� 3/:

Proof By the Gauss–Bonnet–Chern formula,

8�2�.M /D

Z
M

�
jWj2� 1

2
jEj2C S2

24

�
d�

�

Z
M

�
jWCjC jW�j

�2
d��

1

2

Z
M

jRcj2 d�C

Z
M

S2

6
d�:

Applying Lemmas 2.6 and 2.7 yields the inequality.

We now claim that equality can not happen. Suppose otherwise. Then jWCjjW�j D 0,
and equality also holds in Lemma 2.6. By the regularity theory for solitons [3], we can
choose an orientation such that jW�j � 0. Hence WC D diag.�aC;�aC; 2aC/, with
aC D 2.1� �/��S=3. Then by [22, Theorem 1.1], we have WC D 0 or RcD 0.

In the first case, by the classification of locally conformally flat four-dimensional closed
GRSs as discussed in the introduction, .M;g/ is flat; this is a contradiction.

In the second case, RcD 0 implies SD 0D �, and since equality holds in Lemma 2.6,
WC D 0. Hence the above argument applies.

Remark 2.8 The Euler characteristic of a closed Ricci soliton has been studied by
Derdzinski [25]. If the manifold is Einstein and � D 0, we recover some results of
Gursky and LeBrun [30].
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3 A Bochner–Weitzenböck formula

In this section, we prove Theorem 1.1, a new Bochner–Weitzenböck formula for the
Weyl tensor of GRSs, which generalizes the one for Einstein manifolds. Bochner–
Weitzenböck formulas have proven to be a powerful tool to find connections between
topology and geometry under certain curvature conditions (for example, see [28; 42;
48]).

Particularly, in dimension four, if ıWC D 0 (this contains all Einstein manifolds), we
have the following well-known formula (see [5, 16.73]):

(3-1) �jWCj2 D 2jrWCj2CSjWCj2� 36 det WC:

This equation plays a crucial role in obtaining an L2 –gap theorem of the Weyl tensor
and in studying the classification problem of Einstein manifolds (see [29; 30; 50]).

Our first technical lemma gives a formula for �fW in a local frame. Also note that
the Einstein summation convention is used repeatedly here.

Lemma 3.1 Let .M;g; f; �/ be a GRS and feig
n
iD1

be a local normal frame. Then
the following formula holds:

(3-2) �fWijkl D 2�Wijkl � 2.Cijkl �Cijlk CCikjl �Ciljk/

�
2

.n�2/2
gpq

�
Rcip Rcqk gjl �Rcip Rcql gjk

CRcjp Rcql gik �Rcjp Rcqk gil

�
C

2S
.n�2/2

.Rcik gjl �Rcil gjk CRcjl gik �Rcjk gil/

�
2

n�2
.Rik Rjl �Rjk Ril/

�
2.S2� jRcj2/
.n� 1/.n� 2/2

.gikgjl �gilgjk/;

where Cijkl D gpqgrsWpijr Wslkq .

Proof First, we recall how a GRS can be realized as a self-similar solution to the
Ricci flow (1-1), as in Section 2.1.

Let �.t/D 1� 2�t and suppose that �.x; t/ is a family of diffeomorphisms generated
by X D .1=�/rf . For g.0/ D g , g.t/ D �.t/��.t/g , we have that .M;g.t// is a
solution to the Ricci flow. Furthermore, W.t/D ���W. Let p be a point in M and
let feig

n
iD1

be a basis of TpM . We obtain a local normal frame via extending ei to a
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neighborhood by parallel translation along geodesics with respect to g.0/. First, we
observe that

(3-3) d

dt
W.t/ijkl

ˇ̌̌
tD0
D

�
d

dt
���W

�
ijkl

ˇ̌̌
tD0
D�

2�

�
Wijkl C .LrfW/ijkl ;

where LX is the Lie derivative with respect to X . Furthermore, by definition,

(3-4) LrfWijkl Drf .Wijkl/�W.Œrf; ei �; ej ; ek ; el/�W.ei ; Œrf; ej �; ek ; el/

�W.ei ; ej ; Œrf; ek �; el/�W.ei ; ej ; ek ; Œrf; el �/:

We calculate that

W.Œrf; ei �; ej ; ek ; el/DW.rrf ei �rei
rf; ej ; ek ; el/D�W.rei

rf; ej ; ek ; el/:

By the soliton structure, rei
r�f D�Rc.ei ; � /C�g.ei ; � /. Thus,

(3-5) W.Œrf; ei �; ej ; ek ; el/D�W.�ei �Rc.ei/; ej ; ek ; el/

D��Wijkl Cgpq Rcip Wqjkl :

Combining (3-3), (3-4), and (3-5) we obtain

d

dt
W.t/ijkl

ˇ̌̌
tD0
Drf .Wijkl/C 2�Wijkl

�gpq.Rcip Wqjkl CRcjp Wiqkl CRckp Wijql CRcip Wqjkl/:

Along the Ricci flow, the Weyl tensor is evolving according to the following equation
(for example, see [21, Proposition 1.1]):

(3-6) d

dt
W.t/ijkl

ˇ̌̌
tD0

D�.Wijkl/C 2.Cijkl �Cijlk CCikjl �Ciljk/

�gpq.Rcip Wqjkl CRcjp Wiqkl CRckp Wijql CRcip Wqjkl/

C
2

.n�2/2
gpq.Rcip Rcqk gjl �Rcip Rcql gjk

CRcjp Rcql gik �Rcjp Rcqk gil/

C
2S

.n�2/2
.Rcik gjl �Rcil gjk CRcjl gik �Rcjk gil/

C
2

n�2
.Rik Rjl �Rjk Ril/

C
2.S2� jRcj2/
.n� 1/.n� 2/2

.gikgjl �gilgjk/:

The result then follows.
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Furthermore, in dimension four, we are able to obtain significant simplification due to
the special structure given by the Hodge operator. That leads to the proof of our first
main theorem.

Proof of Theorem 1.1 We observe that

hWC; �fWCi D hWC; �WCi � hWC;rrfWCi D hWC; �WCi � 1
2
rrf jW

C
j
2:

Therefore,

�f jW
C
j
2
D�jWCj2�rrf jW

C
j
2
D 2hWC; �fWCiC 2jrWCj2:

To calculate the first term of the right hand side, we use the normal form of the
Weyl tensor (2-13). As usual, a local normal frame is obtained by parallel translation
along geodesic lines. Then (2-10) gives a basis of eigenvectors f˛ig

3
iD1

of WC with
corresponding eigenvalues �i D ai C bi . Consequently,

(3-7) hWC; �fWCi D
X

i

�i�fWC.˛i ; ˛i/:

In order to use Lemma 3.1, it is necessary to calculate the Cijkl terms. By the normal
form, we have

C1212 D a2
1C b2

2 C b2
3 ; C1234 D�2a1b3;

C1221 D�2b2b3; C1243 D 2a1b2;

C1122 D 2a2a3; C1324 D 2a2b3;

C1221 D�2b2b3; C1423 D�2a3b2:

Thus,

�fW1212 D 2�a1� 2.a2
1C b2

1 C 2a2a3C 2b2b3/�
1

2

X
p

.Rc2
1pCRc2

2p/

C
S
2
.Rc11CRc12/� .Rc11 R22�Rc2

12/�
1

6
.S2
� jRcj2/;

�fW1234 D 2�b1� 4.a1b1C a2b3C a3b2/C .Rc13 Rc24�Rc23 Rc14/:

Therefore,

(3-8) �fWC.˛1; ˛1/D 2��1� 2�2
1� 4�2�3�

1
12

�
jRcj2�S2

�
�T1;

in which

2T1 D Rc11 Rc22CRc33 Rc44C2 Rc13 Rc24�Rc2
12�2 Rc23 Rc14�Rc2

34

D .Rc ıRc/.˛1; ˛1/:
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Similar calculations hold when replacing ˛1 by ˛2 , ˛3 ,

�fWC.˛2; ˛2/D 2��2� 2�2
2� 4�1�3�

1
12
.jRcj2�S2/(3-9)

�
1
2

Rc ıRc.˛2; ˛2/;

�fWC.˛3; ˛3/D 2��3� 2�2
3� 4�1�2�

1
12
.jRcj2�S2/(3-10)

�
1
2

Rc ıRc.˛3; ˛3/:

Combining (3-7), (3-8), (3-9) and (3-10) yields

hWC; �fWCi D 2�jWCj2� 18 det WC�
X

i

Ti�i

D 2�jWCj2� 18 det WC� 1
2
hRc ıRc;WCi:

The first equality then follows. The second equality comes from the soliton equation,
the property that WC is trace-free and Remark 2.5.

4 Applications of the Bochner–Weitzenböck formula

4.1 A gap theorem for the Weyl tensor

In [29], under the assumptions WC ¤ 0, ıWC D 0, and the positivity of the Yamabe
constant, M Gursky proved the inequality

(4-1)
Z

M

jWCj2 d�� 4
3
�2.2�.M /C 3�.M //;

relating kWCkL2
with topological invariants of a closed four-manifold. Our main

result in this section is to prove an analog for GRSs. It is noted that the particular
structure of a GRS allows us to relax the harmonic self-dual condition above at the cost
of a worse coefficient due to the absence of an improved Kato’s inequality.

Theorem 4.1 Let .M;g; f; �/ be a closed four-dimensional shrinking GRS with

(4-2)
Z

M

hWC;Hessf ıHessf i d�� 2

3

Z
M

SjWCj2:

Then, unless WC � 0,

(4-3)
Z

M

jWCj2 d� > 4
11
�2
�
2�.M /C 3�.M /

�
:
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Remark 4.1 By Remark 1.3, the condition (4-2) is equivalent toZ
M

jıWCj2d��

Z
M

S
6
jWCj2d�:

Thus, it is clearly weaker than the condition of being harmonic self-dual.

To prove Theorem 4.1, we follow an idea of [29] and introduce a Yamabe-type conformal
invariant. First, the conformal Laplacian is given by,

LD�6�CS:

Furthermore, we define

Fa;b D aS� bjWCj; La;bD�6a�gCFa;b D aL� bWC;

where a and b are constants to be determined later. Under a conformal transformation
as described in (A-1), for any function ˆ we have:

� zL.ˆ/D u�3L.ˆu/:

� zLa;bˆD u�3La;b.ˆu/:

� zFa;b D u�3.�6a�gCFa;b/u:

�

Z
M

zFa;b d z�D

Z
M

u.�6a�gCFa;b/u d�D

Z
M

.Fa;bu2
C 6ajruj2/ d�

:

The Yamabe problem is, for a given Riemannian manifold .M;g/, to find a constant
scalar curvature metric in its conformal class Œg�. That is equivalent to finding a critical
point of the following functional. For any C 2 positive function u, let zgD u2g , define

YgŒu�D
hu;LuiL2

kuk2
L4

D

R
M
zS d z�qR

M d z�
:

Then the conformal invariant Y is defined as

Y .M; Œg�/D inffYgŒu� W u is a positive C 2 function on M g:

For an expository account on the Yamabe problem, see [35].

As Fa;b conformally transforms like the scalar curvature, in analogy with the discussion
above, we can define the following conformal invariant.

Definition 4.2 Given a Riemannian manifold .M;g/, define

yYa;b.M; Œg�/D inff.Ya;b/gŒu� W u is a positive C 2 function on M g;
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where

. yYa;b/gŒu�D
hu;La;buiL2

kuk2
L4

D

R
M

eFa;b dz�qR
M dz�

:

In the case of interest, we shall denote

F D F
1;6
p

6
D S� 6

p
6jWCj; yY .M /D yY

1;6
p

6
.M; Œg�/;

when the context is clear. First we note the following simple inequality.

Lemma 4.3 Let .M n;g/ be a closed n–dimensional Riemannian manifold which is
not locally conformally flat, and .Sn;gsd/ the sphere with the standard metric. Then

(4-4) yY .M; Œg�/� Y .M; Œg�/ < Y .Sn; Œgsd�/D yY .S
n; Œgsd�/:

Proof The first inequality follows from the definition and the following observation.
Given a metric g , a positive function u and b � 0, then

hu;LuiL2
� hu;L1;buiL2

D

Z
M

bjWCju2 d�� 0:

The second inequality is a result of T Aubin [2] and R Schoen [46]. The last inequality
is an immediate consequence of the fact that the standard metric on Sn is locally
conformally flat (WD 0).

On a complete gradient shrinking soliton, the scalar curvature is positive unless the
soliton is isometric to the flat Euclidean space [45]. Therefore, if the GRS is not flat
then the existence of a solution to the Yamabe problem [35] implies that Yg > 0. This
observation is essential because of the following result.

Proposition 4.4 Let .M;g/ be a closed four-dimensional Riemannian manifold. If
Y .M / > 0 and yY .M /� 0, then there is a smooth metric zg D u2g such that

(4-5)
Z

M

zS2 dz�� 216

Z
M

jeWCj2 dz�:

Furthermore, equality holds only if yY .M /D 0 and zSD 6
p

6jeWj.
Proof The proof is almost identical to that of [29, Proposition 3.5]. Thus, we provide
a brief argument here. Through a conformal transformation, the Yamabe problem can
be solved via a variational approach for an appropriate eigenvalue PDE problem. In
particular, the existence of a solution under the assumption Y .M / < Y .Sn/ depends
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solely on the analysis of regularity of the Laplacian operator (but not on the reaction
term); see [35, Theorem 4.5].

In our case, F conformally transforms as scalar curvature and Lemma 4.3 holds,
so there exists a minimizer v for yYgŒ � � such that under normalization kvkL4

D 1,
the metric zg D v2g satisfies the equation zF D zS� 6

p
6jeWCj D yY .M /. Applying

Y .M / > 0 and yY .M /� 0, we obtainZ
M

zS2 dz�D

Z
M

6
p

6jeWCjzS dz�C yY .M /

Z
M

zS dz�

�

Z
M

6
p

6jeWCjzS dz�

� 6
p

6

�Z
M

jeWCj2 dz�

�1=2�Z
M

jzSj2 dz�

�1=2

:

Therefore, Z
M

zS2 dz�� 216

Z
M

jeWCj2 dz�:

Equality is attained if only if zg attains the infimum, yY .M /D 0 and zSD 6
p

6jeWj.
Proposition 4.5 Let .M;g; f; �/ be a closed four-dimensional shrinking GRS satis-
fying (4-2) and WC ¤ 0. Then yY .M /� 0. Moreover, equality holds only if WC has
the form ! diag.�1;�1; 2/ for some ! � 0 at each point.

Proof By Theorem 1.1, we have

�f jW
C
j
2
D 2jrWCj2C 4�jWCj2� 36 detƒ2

C
WC� hRc ıRc;WCi:

Integrating both sides and applying (4-2) yieldsZ
M

�f jW
C
j
2d��

Z
M

h
2jrWCj2C

� S
3
C�f

�
jWCj2� 36 detƒ2

C
WC

i
:

Via integration by parts, we haveZ
M

rf .jWCj2/ d�D

Z
M

hrf;rjWCj2i d�D�
Z

M

�f jWCj2 d�:

Therefore, we arrive at

0�

Z
M

�
2jrWCj2C S

3
jWCj2� 36 detƒ2

C
WC

�
:

We also have the pointwise estimates

jrWCj2 � jrjWCjj2; �18 det WC� �
p

6jWCj3:
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The first one is the classical Kato’s inequality while the second one is purely algebraic.
Thus, for uD jWCj, Z

M

�
1
3
Fu2
C 2jruj2

�
d�� 0:

Hence if jeWCj> 0 everywhere then the statement follows.

If jeWCj D 0 somewhere, let M� be the set of points at which jeWCj < � . By the
analyticity of a closed GRS (see [3]), Vol.M�/! 0 as �! 0. Let ��W Œ0;1/! Œ0;1/

be a C 2 positive function which is �=2 on Œ0; �=2�, identity on Œ�;1/ and satisfies
0� �0� � 10. If u� D �� ıu, then u� is C 2 and positive. In addition, we have

�

Z
M

Fu2
�d��

Z
M�M�

Fu2d�CC�2 Vol.M�/;

�

Z
M

jru�j
2d�D

Z
M

j�0�ruj2d��

Z
M�M�

jruj2d�CC Vol.M�/;

where C is a constant depending on the metric. Therefore, we have

inf
�>0

�Z
M

.Fu2
� C 6jru�j

2/ d�

�
� 0:

Consequently, yY .M /� 0.

Now, equality holds only if
R

M

�
1
3
Fu2C 2jruj2

�
d�D 0 and equality holds in each

point-wise estimate above. The result then follows.

We are now ready to prove the main result of this section.

Proof of Theorem 4.1 By Proposition 4.5, we have yY .g/ � 0 and Y .M / > 0.
Otherwise S D 0 and the GRS is flat by [45], which is a contradiction to WC ¤ 0.
Therefore, by Proposition 4.4 there is a conformal transformation zg D u2g with

(4-6)
Z

M

zS2 dz�� 216

Z
M

jeWCj2 dz�:

According to (2-16) and (2-17),

(4-7) 2�2.2�.M /C 3�.M //D

Z
M

jeWCj2 dz��
1

4

Z
M

jzEj2 dz�C
1

48

Z
M

zS2 dz�

�

Z
M

jeWCj2 dz�C
1

48

Z
M

zS2 dz�

�

�
1C

9

2

� Z
M

jeWCj2 dz�:
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Here we used (4-6) in the last step. Since kWCkL2
is conformally invariant, (4-3) then

follows.

Now the equality holds only if all equalities hold in (4-7), (4-6) and (4-2). The first
one implies that zg is Einstein. Therefore, by [30, Theorem 1], inequality (4-6) is strict
unless S� 0. But this is a contradiction to Y .M / > 0. Thus the inequality is strict.

4.2 Isotropic curvature

Another application is the following inequality, which is an improvement of [49,
Proposition 2.6].

Proposition 4.6 Let .M;g; f; �/ be a four-dimensional GRS. Then we have

(4-8) �f u�
�
2�C

3

2
u�S

�
u�

1

4
jRcj2

in the distribution sense, where u.x/ is the smallest eigenvalue of S=3� 2W˙ .

Proof Let X1234D S=3�2W.e12Ce34; e12Ce34/ for any 4–orthonormal basis. We
use the normal form discussed in (2-13) and obtain a local frame by parallel translation
along geodesic lines.

We denote by f˛ig
3
iD1

the basis of ƒC
2

as in (2-10) with corresponding eigenvalues
�i D ai C bi . Without loss of generality we can assume a1C b1 � a2C b2 � a3C b3

and thus u.x/DX1234.x/. Using Lemma 3.1, we compute

�fW1212 D 2�a1� 2.a2
1C b2

1 C 2a2a3C 2b2b3/

�
1

2

X
p

.Rc2
1pCRc2

2p/C
S
2
.Rc11CRc12/

� .Rc11 R22�Rc2
12/�

1

6
.S2
� jRcj2/;

�fW1234 D 2�b1� 4.a1b1C a2b3C a3b2/C .Rc13 Rc24�Rc23 Rc14/:

Let us recall that �f SD 2�S� 2jRcj2 . Thus, for 2T1 D .Rc ıRc/.˛1; ˛1/, we have

�f .X1234/D 2�
S
3
�

2
3
jRcj2� 4�.a1C b1/C 4�2

1C 8�2�3C
1
6
.jRcj2�S2/CT1

D 2�X1234�
1
2
jRcj2C 4�2

1C 8�2�3�
1
6

S2
CT1:
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Next we observe that �2C �3 D ��1 and 8�2�3 � 2�2
1

. By the Cauchy–Schwartz
inequality, T1 �

1
4
jRcj2 . Therefore,

�f .X1234/� 2�X1234�
1
4
jRcj2C 6

� 1
3

S�X1234

2

�2

�
1
6

S2

� 2�X1234C
3
2
X 2

1234�SX1234�
1
4
jRcj2

D u.2�C 3
2
u�S/� 1

4
jRcj2:

Since �f u � �f .X1234/ in the barrier sense of E Calabi (see [11]), the result then
follows.

5 A framework approach

In this section, we shall propose a framework to study interactions between components
of the curvature operator and the potential function on a GRS .M;g; f; �/. In particular,
we represent the divergence and the interior product irf on each curvature component
as linear combinations of four operators P;Q;M;N . The geometry of these operators,
in turn, gives us information about the original objects. It should be noted that some
identities here have already appeared elsewhere.

Let .M n;g/ be an n–dimensional oriented Riemannian manifold. Using the point-wise
induced inner product, any anti-symmetric (2,0) tensor ˛ (a two-form) can be seen as
an operator on the tangent space by

˛.X;Y /D h�˛.X /;Y i D hX; ˛.Y /i D h˛;X ^Y i:

In particular, a bi-vector acts on a vector X by

.U ^V /X D hV;X iU � hU;X iV:

For instance, in dimension four, the complete description is given by the table below.

(5-1)

e12C e34 e13� e24 e14C e23 e12� e34 e13C e24 e14� e23

e1 �e2 �e3 �e4 �e2 �e3 �e4

e2 e1 e4 �e3 e1 �e4 e3

e3 �e4 e1 e2 e4 e1 �e2

e4 e3 �e2 e1 �e3 e2 e1

In a similar manner, any symmetric .2; 0/ tensor b can be seen as an operator on the
tangent space,

b.X;Y /D hb.X /;Y i D hX; b.Y /i:
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Consequently, when b is viewed as a 1–form valued 1–form, drb denotes the exterior
derivative (a 1–form valued 2–form). That is,

.drb/.X;Y;Z/D .rb/.X;Y;Z/C.�1/1.rb/.Y;X;Z/DrX b.Y;Z/�rY b.X;Z/:

Now we can define the fundamental tensors of interest to us here, first via a local frame
and then using operator language. Let ˛ 2 ƒ2 , X , Y , Z 2 TM , and feig

n
iD1

be a
local normal orthonormal frame on a GRS .M n;g; f; �/.

Definition 5.1 The tensors P;Q;M;N W ƒ2TM ˝TM !R are defined as

Pijk Dri Rcjk �rj Rcik Drjfik �rifjk D Rjikp r
pf;(5-2)

P .X ^Y;Z/D�R.X;Y;Z;rf /D .dr Rc/.X;Y;Z/D ıR.Z;X;Y /;

P .˛;Z/D R.˛;rf ^Z/D ı R.Z; ˛/I

Qijk D gkirj S�gkjriSD 2.gki Rjp �gkj Rip/r
pf;(5-3)

Q.X ^Y;Z/D 2.X;Z/Rc.Y;rf /� 2.Y;Z/Rc.X;rf /;

Q.˛;Z/D�2 Rc.˛.Z/;rf /D�2h˛Z;Rc.rf /iI

Mijk D Rkj rif �Rki rjf;(5-4)

M.X ^Y;Z/D Rc.Y;Z/rX f �Rc.X;Z/rY f D�Rc..X ^Y /rf;Z/;

M.˛;Z/D�Rc.˛.rf /;Z/D�h˛rf ;Rc.Z/iI

Nijk D gkjrif �gkirjf;(5-5)

N.X ^Y;Z/D hY;ZirX f � hX;ZirY f D h.X ^Y /Z;rf i;

N.˛;Z/D h˛Z;rf i D �˛.Z;rf /:

Remark 5.1 The tensors P˙;Q˙;M˙;N˙W ƒ˙
2

TM ˝TM ! R are defined by
restricting ˛ 2ƒ˙

2
TM . They can be seen as operators on ƒ2 by standard projection.

Remark 5.2 Before proceeding further, let us remark on the essence of these tensors.
P � 0 if and only if the curvature is harmonic; Q� 0 if and only if the scalar curvature
is constant; N � 0 if and only if the potential function f is constant; finally, M � 0

if and only if either rf D 0 or Rc vanishes on the orthogonal complement of rf .

5.1 Decomposition lemmas

Using the framework above, we now can represent the interior product irf on compo-
nents of the curvature tensor as follows. Again the Einstein summation convention is
used here.
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Lemma 5.2 Let .M;g; f; �/ be a GRS. For P , Q, M , N as in Definition 5.1, in a
local normal orthonormal frame we have

Rijkp r
pf D R.ei ; ej ; ek ;rf /(5-6)

D�Pijk Dr
p Rijkp D�ı R.ek ; ei ; ej /;

.g ıg/ijkpr
pf D .g ıg/.ei ; ej ; ek ;rf /D�2Nijk ;(5-7)

.Rc ıg/ijkpr
pf D .Rc ıg/.ei ; ej ; ek ;rf /D

1
2
Qijk �Mijk ;(5-8)

Hijkpr
pf DH.ei ; ej ; ek ;rf /DMijk �

1
2
Qijk � 2�Nijk ;(5-9)

Wijkpr
pf DW.ei ; ej ; ek ;rf /(5-10)

D�Pijk �
Qijk

2.n� 2/
C

Mijk

.n� 2/
�

SNijk

.n� 1/.n� 2/
:

Proof The first formula is well-known (see [16]), and follows from the soliton equation
and Bianchi identities. For the second, we compute

.g ıg/ijkpr
pf D 2.gikgjp �gipgjk/r

pf

D 2gikrjf � 2gjkrif D�2Nijk :

For the third, we use (2-6) to calculate

.Rc ıg/ijkpr
pf D .Rcik gjpCRcjp gik �Rcip gjk �Rcjk gip/r

pf

D Rcik rjf C
1
2
.gikrj S�gjkriS/�Rcjk rif

D
1
2
Qijk �Mijk :

The next formula is a consequence of the above formulas, the definition of H in (2-18)
and the soliton equation (2-3). Finally, the last one comes from the decomposition
of the curvature operator (2-9) and the previous formulas; it appeared, for example,
in [22].

In addition, the divergence on these components can be written as linear combinations
of P;Q;M;N .

Lemma 5.3 Let .M;g; f; �/ be a GRS. For P , Q, M , N as in Definition 5.1, in a
local normal orthonormal frame we have

r
p Rijkp D�Pijk ;(5-11)

r
p.Sg ıg/ijkp D 2Qijk ;(5-12)

r
p.Rc ıg/ijkp D�r

pHijkp D�Pijk C
1
2
Qijk ;(5-13)
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r
pWijkp D�

n�3

n�2
Pijk �

n�3

2.n�1/.n�2/
Qijk WD �

n�3

n�2
Cijk :(5-14)

Proof The first formula is well-known and comes from the second Bianchi identity
(see [16]). For the second, we compute

r
p.Sg ıg/ijkp D 2rp.Sgikgjp �Sgipgjk/

D 2gikgjpr
pS�gjkgipr

pS

D 2gikrj S�gjkriSD 2Qijk :

For the next one, we use (2-5) to calculate

r
p.Rc ıg/ijkp Dr

p.Rcik gjpCRcjp gik �Rcip gjk �Rcjk gip/

D gjpr
p Rcik Cgikr

p Rcjp �gjkr
p Rcip �gipr

p Rcjk

Drj Rcik C
1
2
.gikrj S�gjkriS/�ri Rcjk

D
1
2
Qijk �Pijk :

Finally, the last one comes from the decomposition of curvature (2-9) and previous
formulas; it also appeared, for example, in [24, Equation (9)].

Remark 5.3 C as defined in (5-14) is also called the Cotton tensor in the literature.

Remark 5.4 By the standard projection, and

.ıW/˙ D ı.W˙/; .irfW/˙D irfW˙;

the analogous identities hold replacing W, P , Q, M , N in Lemmas 5.2 and 5.3 by
W˙ , P˙ , Q˙ , M˙ , N˙ , respectively.

The following observation is an immediate consequence of Lemma 5.3.

Proposition 5.4 Let .M n;g; f; �/, n > 2, be a GRS and let H be given by (2-18).
Then the tensor

F DWC n�3

n�2
HC n.n�3/S

4.n�1/.n�2/
g ıg

is divergence free.

Remark 5.5 The result can be viewed as a generalization of the harmonicity of the
Weyl tensor on an Einstein manifold.
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Lastly, we introduce the following tensor D which plays a crucial role in the classifica-
tion problem (see [15; 14; 22]):

(5-15) Dijk D�
Qijk

2.n� 1/.n� 2/
C

Mijk

n� 2
�

SNijk

.n� 1/.n� 2/

D Cijk CWijkpr
pf:

5.2 Norm calculations

Lemma 5.5 Let .M;g; f; �/ be a GRS. Then the following identities hold:

2hP;Qi D �jrSj2; 2hN;N i D 2.n� 1/jrf j2;

2hP;N i D hrf;rSi; 2hQ;M i D jrSj2� 2Shrf;rSi;

2hQ;Qi D 2.n� 1/jrSj2; 2hQ;N i D �2.n� 1/hrf;rSi;

2hM;M i D 2jRcj2jrf j2� 1
2
jrSj2; 2hM;N i D 2S jrf j2� hrf;rSi:

Furthermore, if M is closed, then

�

Z
M

2hP;P ie�f D

Z
M

jr Rc j2e�f ;

�

Z
M

2hP;M i D 2

Z
M

.�jRcj2�Rc3/C

Z
M

hrf;rjRcj2iC 1

2

Z
M

jrSj2:

Proof The main technique is to compute under a normal orthonormal local frame. For
example,

2hP;Qi D PijkQijk

D .ri Rcjk �rj Rcik/.gkirj S�gkjriS/

D 2.ri Rcjk �rj Rcik/gkirj S

D 2rj S.rk Rckj �rj Rckk/

D jrSj2� 2jrSj2 D�jrSj2:

Other equations follow from similar calculations.

When M is closed, we can integrate by parts. In particular, the first equation was first
derived in [16]. For the second, we compute thatZ

M

2hP;M i D 2

Z
M

.ri Rcjk �rj Rcik/Rckj rif

D

Z
M

rif ri Rc2
jk �2

Z
M

rj Rcik Rckj rif;
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Z
M

rj Rcik Rckj rif D�

Z
M

Rcik Rckj fij �

Z
M

Rcik firj Rckj

D�

Z
M

.�jRcj2�Rc3/�
1

4

Z
M

jrSj2:

Hence, the statement follows.

Remark 5.6 The factor of 2 is due to our convention of calculating the norm. Some
special cases of dimension four also appeared in [10, Proposition 4].

An interesting consequence of the above calculation is the following corollary, which
exposes the orthogonality of Q, N versus irfW, ıW.

Corollary 5.6 Let .M;g; f; �/ be a GRS.

(a) At each point, we have

0D hQ; irfWi D hN; irfWi D hQ; ıWi D hN; ıWi:

(b) If M is closed, then

(5-16)
Z

M

2jıWj2e�f D
�

n�3

n�2

�2 Z
M

�
jr Rc j2� 1

.n�1/
jrSj2

�
e�f :

Proof Part (a) follows immediately from Lemmas 5.2, 5.3, 5.5, and our convention in
Equation (2-1). For example,

hQ; irfWi D
X
i<j

Qijk.irfW/kij

D

X
i<j

Qijkr
pfWpkij

D�

X
i<j

QijkWijkpr
pf

D

�
Q;PC

Q

2.n�2/
�

M

n�2
C

SN

.n�1/.n�2/

�
D�
jrSj2

2
C
.n�1/jrSj2

2.n�2/
�
jrSj2

2.n�2/
C

Shrf;rSi
n�2

�
.n�1/Shrf;rSi
.n�1/.n�2/

D 0:

Other formulas follow from similar calculations.
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For part (b) we observe that

jıWj2 D
�

n�3

n�2

�2 �
P C

Q

2.n� 1/
;P C

Q

2.n� 1/

�
D

�
n�3

n�2

�2 �
P C

Q

2.n� 1/
;P

�
:

Notice that we have applied part (a) in the last step. Consequently, applying Lemma 5.5
again yields

2

Z
M

jıWj2e�f D
�

n�3

n�2

�2 Z
M

2

�
P C

Q

2.n� 1/
;P

�
e�f

D

�
n�3

n�2

�2 Z
M

�
jr Rc j2�

jrSj2

2.n� 1/

�
e�f :

Remark 5.7 Part (b) recovers the well-known fact that harmonic curvature implies
harmonic Weyl tensor and constant scalar curvature.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 First, we observe

hW;Hessf ıHessf i D
X

i<j Ik<l

Wijkl.Hessf ıHessf /ijkl

D
1

2

X
k<lI i;j

Wijkl.Hessf ıHessf /ijkl

D

X
k<lI i;j

Wijkl.fikfjl �filfjk/

D

X
i;j ;k;l

Wijklfikfjl :

Next, subduing the summation notation, we integrate by parts,Z
M

Wijklfikfjl D�

Z
M

riWijklfkfjl �

Z
M

Wijklfkrifjl :

The first term can be written asZ
M

riWijklfkfjl D

Z
M

riWijklfk.�gjl �Rcjl/

D�

Z
M

riWijklfk Rcjl

D�
1

2

Z
M

.ıW/jklMklj

D�

Z
M

hıW;M i:
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Next, we compute the second term,Z
M

Wijklfkrifjl D�

Z
M

Wijlkfkri.gjl �Rcjl/

D

Z
M

Wijlkfkri Rcjl

D
1

2

Z
M

WijlkfkPijl

D�

Z
M

�
irfW;P C

Q

2.n� 1/

�
D�

n�2

n�3

Z
M

hıW; irfWi

D
n�2

n�3

Z
M

D
ıW;�P C

M

n�2

E
:

Note that we have used Corollary 5.6 repeatedly to manipulate Q and N . To conclude,
we combine the equations above to getZ

M

Wijklfikfjl D

Z
M

hıW;M i �
n�2

n�3

Z
M

D
ıW;�P C

M

n�2

E
D

1

n�3

Z
M

hıW; .n� 2/P C .n� 4/M i:

If nD 4, then Z
M

Wijklfikfjl D

Z
M

2hıW;P i

D

Z
M

2

�
ıW;P C

Q

6

�
D

Z
M

2hıW; 2ıWi

D 4

Z
M

jıWj2:

Remark 5.8 The formula in dimension four is also a consequence of the divergence-
free property of the Bach tensor. We omit the details here.

Moreover, in dimension four, we have similar results for W˙ .

Lemma 5.7 Let .M 4;g; f; �/ be a GRS. Then at each point, we have

(5-17) 0D hQ˙; irfW˙i D hQ˙; ıW˙i D hN˙; irfW˙i D hN˙; ıW˙i:
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Proof It suffices to show the statement is true for the self-dual part.

Let feig
4
iD1

be a normal orthonormal local frame, and let f˛ig
4
iD1

be an orthonormal
basis for ƒC

2
. Then

hQC; irfWCi D
X

i

X
j

Q.˛i ; ej /W.rf ^ ej ; ˛i/

D�2h˛i.ej /;Rc.rf /iW.rf ^ ej ; ˛i/:

Furthermore, we can choose a special basis, namely the normal form as in (2-13). Then
the ˛i diagonalize WC with eigenvalues �i . Consequently,

W.rf ^ ej ; ˛i/D �i˛i.rf ^ ej /D �ihrf; ˛i.ej /i:

It follows that

hQC; irfWCi D �2�ih˛i.ej /;Rc.rf /ih˛i.ej /;rf i

D �2�khek ;Rc.rf /ihek ;rf i;

where
�k D

X
i;j W˛i .ej /D˙ek

�i :

Now by (5-1), it is easy to see that each �k D 0 because WC is traceless.

Next, we state the following fact.

Claim hPC;QCi D �1
4
jrSj2 .

To prove this claim, we choose f˛ig as in (2-10) and observe that

P .˛1; ej /Q.˛1; ej /D
1
2
P .e12C e34; ej /Q.e12C e34; ej /

D�.P12j CP34j /h.e12C e34/ej ;Rc.rf /i

D �.r1 Rc2j �r2 Rc1j Cr3 Rc4j �r4 Rc3j /

� h.e12C e34/ej ;Rc.rf /i:

Similarly,

P .˛2; ej /Q.˛2; ej /D�.r1 Rc3j �r3 Rc1j �r2 Rc4j Cr4 Rc2j /

� h.e13� e24/ej ;Rc.rf /i;

P .˛3; ej /Q.˛3; ej /D�.r1 Rc4j �r4 Rc1j Cr2 Rc3j �r3 Rc2j /

� h.e14C e23/ej ;Rc.rf /i:
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Thus,

hPC;QCi D
X
i;j

P .˛i ; ej /Q.˛i ; ej /D�
X

k

�khek ;Rc.rf /i;

for

�k D
X

i;j W˛i .ej /Dek

p
2P .˛i ; ej / �

X
i;j W˛i .ej /D�ek

p
2P .˛i ; ej /:

Using (5-1), we can compute

�1 D
p

2.P .˛1; e2/CP .˛2; e3/CP .˛3; e4//

Dr1 Rc22�r2 Rc12Cr3 Rc42�r4 Rc32

Cr1 Rc33�r3 Rc13�r2 Rc43Cr4 Rc23

Cr1 Rc44�r4 Rc14Cr2 Rc34�r3 Rc24

Dr1.S�Rc11/� .
1
2
r1S�r1 Rc11/

D
1
2
r1S:

Similarly we have �k D 1
2
rkS. We also have Rc.rf /D 1

2
rS. This proves our claim.

In addition, it is easy to see that

hQC;QCi D 3
2
jrSj2:

Since ıWC D 1
2
PCC 1

12
QC , it follows that

hQC; ıWCi D 0:

The statements involving N follow from analogous calculations as

N.˛i ; ej /D h˛i.ej /;rf i:

By manipulation as in the proof of Theorem 1.2, using Remark 5.4 (replacing Lemmas
5.2 and 5.3) and Lemma 5.7 (replacing Corollary 5.6), we immediately obtain the
following result.

Corollary 5.8 Let .M;g; f; �/ be a four-dimensional closed GRS. Then we have the
identity

(5-18)
Z

M

hWC;Rc ıRci D 4

Z
M

jıWCj2:
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6 Rigidity results

In this section we present conditions that imply the rigidity of a GRS, using the analysis
on the framework discussed in the previous section.

First, Proposition 6.10 provides a geometric way to understand the tensor D defined in
Equation (5-15). In particular, it says that D � 0 is equivalent to a special condition;
namely, the normalization of rf (if not trivial) is an eigenvector of the Ricci tensor,
and all other eigenvectors have the same eigenvalue. Such a structure will imply rigidity
as the geometry of the level surface (of f ) is well-described.

On the other hand, Theorem 1.2 reveals an interesting connection between the Ricci
tensor and the Weyl tensor in dimension four. That allows us to obtain rigidity results
using only the structure of the Ricci curvature for a GRS.

Theorem 6.1 Let .M 4;g; f; �/ be a closed four-dimensional GRS. Assume that at
each point the Ricci curvature has one eigenvalue of multiplicity one and another of
multiplicity three. Then the GRS is rigid, hence Einstein.

We also find conditions that imply the vanishing of the tensor D .

Theorem 6.2 Let .M n;g; f; �/, n>3, be a GRS. Assume that one of these conditions
holds:

(1) irf Rc ıg � 0.

(2) irfW� 0 and ıW. � ; � ;rf /D 0.

Then at points where rf ¤ 0, we have D D 0.

Remark 6.1 D � 0 can be derived from other conditions such as the vanishing of
the Bach tensor (see [15, Lemma 4.1]).

Remark 6.2 For GRSs, condition (2) is a slight improvement of [20] which charac-
terizes generalized quasi-Einstein manifolds under the assumption ıWD irfWD 0.

In dimension four, the result can be improved significantly.

Theorem 6.3 Let .M;g; f; �/ be a four-dimensional GRS. At points where rf ¤ 0,
then WC.rf; � ; � ; � /D 0 implies WC D 0.
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As discussed in the last section, there are some similarities between taking the divergence
and interior product irf of the Weyl tensor; for example, see Corollary 5.6. The
following theorem is inspired by condition (1) of Theorem 6.2.

Theorem 6.4 Let .M n;g; f; �/, n> 3, be a GRS. Then ı.Rc ıg/� 0 if and only if
the Weyl tensor is harmonic and the scalar curvature is constant.

As an immediate consequence of the results above (plus known classifications discussed
in the introduction) we obtain rigidity results.

Corollary 6.5 Let .M n;g; f; �/, n� 4, be a complete shrinking GRS.

(i) If irf Rc ıg � 0, then .M n;g; f; �/ is Einstein.

(ii) If irfW D 0 and ıW. � ; � ;rf / D 0, then .M n;g; f; �/ is rigid of rank k D

0; 1; n.

(iii) If ı.Rc ıg/D 0, then .M n;g; f; �/ is rigid of rank 0� k � n.

In particular, when the dimension is four, we have the following result.

Corollary 6.6 Let .M;g; f; �/ be a four-dimensional complete GRS. If

WC.rf; � ; � ; � /D 0;

then the GRS is either Einstein or has WC D 0. Furthermore, in the second case, it is
isometric to a Bryant soliton or Ricci flat manifold if �D 0, or it is a finite quotient of
R4 , S3 �R, S4 or CP2 if � > 0.

The general strategy for proving the aforementioned statements is to use the framework
to study the structure of the Ricci tensor.

6.1 Eigenvectors of the Ricci curvature

Here we study various interconnections between the eigenvectors of the Ricci curvature,
the Weyl tensor, and the potential function. We begin with a lemma.

Lemma 6.7 Let .M;g/ be a Riemannian manifold. Assume that at each point the
Ricci curvature has one eigenvalue of multiplicity one and another of multiplicity n�1.
Then we have

hW;Rc ıRci D 0:
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Proof Without loss of generality, we can choose a basis feig
n
iD1

of TpM consisting
of eigenvectors of Rc, namely Rc11 D � and Rcii D � for i D 2; : : : ; n. Then

hW;Rc ıRci D
X

i<j Ik<l

Wijkl Rcik Rcjl(6-1)

D

X
i<j

Wijij Rcii Rcjj D ��
X

j

W1j1j C �
2
X

1<i<j

Wijij :(6-2)

We observe that X
j>1

Wijij D�W1i1i ;(6-3)

2
X

1<i<j

Wijij D

X
i>1

X
j>1

Wijij D�

X
i

W1i1i D 0:(6-4)

The result then follows.

Next, a consequence of our previous framework (on P , Q, M , and N ) is the following
characterization of the condition Rc.rf /D �rf .

Lemma 6.8 Let .M;g; f; �/ be a GRS. Then the following are equivalent:

(1) Rc.rf /D �rf

(2) Q. � ; � ;rf /D 0

(3) M. � ; � ;rf /D 0

(4) ıW.rf; � ; � /D 0

(5) ıH.rf; � ; � /D 0

Proof We’ll show that .1/$ .2/, .1/$ .3/, .2/$ .4/, and .2/$ .5/.

.2/! .1/: Let ˛ 2ƒ2 , we have 0DQ.˛;rf /D�2.˛.rf /;Rc.rf //. Since ˛
can be arbitrary, ˛.rf / can realize any vector in the complement of rf in TM .
Therefore, Rc.rf /D �rf .

.1/! .2/: Q.˛;rf / D �2.˛.rf /;Rc.rf // D �2.˛.rf /; �rf / D 0 because
˛.rf /?rf .

That .1/$ .3/ follows from an identical argument.

That .2/$ .4/ follows from

ıW.X;Y;Z/D
n�3

n�2
P .Y;Z;X /C

n�3

2.n�1/.n�2/
Q.Y;Z;X /;

P .Y;Z;rf /D�R.Y;Z;rf;rf /D 0:
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That .2/$ .5/ follows from

ıH.X;Y;Z/D�P .Y;Z;X /C 1
2
Q.Y;Z;X /;

P .Y;Z;rf /D�R.Y;Z;rf;rf /D 0:

Furthermore, the rigidity of these operators Q;M;N is captured by the following
result.

Proposition 6.9 Let .M n;g; f; �/, n > 3, be a GRS and let T D aQC bM C cN

for some real numbers a, b , c .

(i) Assume that T � 0. If a¤ 0 then Rc.rf /D �rf . Moreover, if rf ¤ 0 and
b ¤ 0, then all other eigenvectors must have the same eigenvalue.

(ii) In dimension four, if T
jƒ
C

2
˝TM

� 0 then T � 0.

Proof Let feig
n
iD1

be an orthonormal basis which consists of eigenvector of Rc with
corresponding eigenvalues �i . Then we have

(6-5) T .˛; ei/D aQ.˛; ei/C bM.˛; ei/C cN.˛; ei/

D�2ah˛.ei/;Rc.rf /i � bh˛.rf /;Rc.ei/iC ch˛.ei/;rf i

D �2ah˛.ei/;Rc.rf /iC bhrf; ˛.�iei/iC ch˛.ei/;rf i

D h˛.ei/;�2a Rc.rf /C b�irf C crf i:

(i) Without loss of generality, we can assume rf ¤ 0. Since T .˛; ei/D 0 for arbitrary
˛ and ei ,

T .˛;rf /D 0D h˛.rf /;Rc.rf /i DQ.˛;rf /:

By Lemma 6.8, e1 Drf=jrf j is an eigenvector of Rc. Plugging into (6-5) yields

T .˛; ei/D .�2a�1C b�i C c/h˛.ei/;rf i:

Therefore, �2a�1C b�i C c D 0. Hence, as b ¤ 0, all other eigenvectors have the
same eigenvalue.

(ii) In dimension four, fix a unit vector ei and note that T .˛; ei/D 0 for any ˛ 2ƒC
2

.
By Lemma 2.2 and Remark 2.4, T .ˇ; ei/D 0 for all ˇ 2ƒ�

2
. As ei is arbitrary the

result then follows.

Recall that the tensor D is a special linear combination of M;N;Q. Therefore, we
obtain the following geometric characterization.
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Proposition 6.10 Let .M n;g/, n> 3, be a Riemannian manifold and D be defined
as in (5-15). Then the following are equivalent:

(1) D � 0.

(2) The Weyl tensor under the conformal change zg D e�2f=.n�2/g is harmonic.

(3) Either rf D 0 and the Cotton tensor Cijk D 0, or rf is an eigenvector of Rc
and all other eigenvectors have the same eigenvalue.

Proof We shall show .1/$ .2/, .1/! .3/ and .3/! .1/.

.1/$ .2/: By Equation (5-15) and (5-14), we have

Dijk D Cijk CWijkpr
pf D

n�2

n�3
.ıW/kij �W.rf; ek ; ei ; ej /:

Thus, D � 0 is equivalent to

ıW.X;Y;Z/�
n�3

n�2
W.rf;X;Y;Z/D 0:

Under the conformal transformation zg D u2g (see the appendix), eW D u2W, and

ıeW.X;Y;Z/D ıW.X;Y;Z/C .n� 3/W
�
ru

u
;X;Y;Z

�
:

The result then follows from the last two equations.

The statement .1/! .3/ follows from [15, Proposition 3.2 and Lemma 4.2].

.3/! .1/: For all a; b; c; let T D aQC bM C cN . For any ˛ 2ƒ2 and ei a unit
tangent vector, by (6-5) we have

T .˛; ei/D h˛.ei/;�2a Rc.rf /C b�irf C crf i:

For the tensor D ,

aD
�1

2.n� 1/.n� 2/
; b D

1

n� 2
; c D

�S
.n� 1/.n� 2/

:

If rf D 0 then T � 0, hence D � 0. If rf ¤ 0, then there exist eigenvectors
e1 Drf=jrf j and feig

n
iD2

of Rc, with eigenvalues � and � respectively. Then

T .˛; ei/D h˛.ei/; .�2a�C b�C c/rf i:

Since �C .n� 1/�D S, with values of a, b , c given above, it follows that �2a�C

b�C c D 0. Thus, D � 0.

Remark 6.3 Note that our formulas differ from [24, Section 2, Equation (19)] by a
sign convention.
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Remark 6.4 Under that conformal change of the metric, the Ricci tensor is given by

fRcD RcCHessf C 1

n�2
df ˝ df C

1

n�2
.�f � jrf j2/g

D
1

n�2
df ˝ df C

1

n�2
.�f � jrf j2C .n� 2/�/g:

Therefore, at each point, fRc has at most two eigenvalues. Furthermore, since zg has
harmonic Weyl tensor, its Schouten tensor

eSc D 1

n�2

�fRc � 1

2.n�1/
zSzg
�

is a Codazzi tensor with at most two eigenvalues. Using the splitting results for
Riemannian manifolds admitting such a tensor gives another proof of results in [15].
This method is inspired by [20].

Now we investigate several conditions which will imply that Rc.rf /D �rf .

Proposition 6.11 Let .M n;g; f; �/, n > 3, be a GRS. Assume that one of these
conditions holds:

(1) irfW� 0.

(2) ıWC D 0 if nD 4.

Then Rc.rf /D �rf .

Proof The idea is to find a connection of each condition with Lemma 6.8.

Assuming (1): We claim that ıW.rf; � ; � /D 0.

Choosing a normal local frame feig
n
iD1

, we have

ıW.rf; ek ; el/D
X

i

.riW/.ei ;rf; ek ; el/

D

X
i

riW.ei ;rf; ek ; el/�
X

i

W.ei ;rirf; ek ; el/

D 0�W.Hessf; ek ; el/:

Since Hessf is symmetric and W is anti-symmetric, ıW.rf; � ; � /D 0. The result
then follows.

Assuming (2): First recall

ıW.X;Y;Z/D 1
2
C.Y;Z;X /D 1

2
P .Y ^Z;X /C 1

12
Q.Y ^Z;X /:
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For all ˛ 2ƒ2
C , since

ıW�.X; ˛/DriW�.ei ^X; ˛/D 0;

we have
ı.W/.X; ˛/D ı.WC/.X; ˛/D 1

2
P .˛;X /C 1

12
Q.˛;X /:

Since 0DR.Y;Z;rf;rf /D�P .Y ^Z;rf / and ıWCD 0, we get Q.˛;rf /D 0.
The desired statement follows from Lemmas 2.2 and 6.8.

6.2 Proofs of rigidity theorems

Proof of Theorem 6.1 By Lemma 6.7, we haveZ
M

W.Rc ıRc/D 0:

Theorem 1.2, therefore, implies that ıW� 0. Then by the rigidity result for harmonic
Weyl tensor discussed in the introduction, the result follows.

Proof of Theorem 6.2 Assuming (1): We observe that

Rc ıg.X;Y;Z;rf /D 1
2
Q.X;Y;Z/�M.X;Y;Z/:

Therefore, the result follows from Proposition 6.9 and Proposition 6.10.

Assuming (2): By Proposition 6.11, e1 Drf=jrf j is a unit eigenvector. Let feig
n
iD1

be an orthonormal basis of Rc with eigenvalues �i . By (5-10) and W.rf; � ; � ; � /D 0,

P D�
Q

2.n� 2/
C

M

.n� 2/
�

SN

.n� 1/.n� 2/
:

Therefore,

(6-6) P .i; j ; k/D
jrf j

n� 2

h
�1.ıjkı1i � ıikıj1/��k.ıj1ıik � ıi1ıjk/

�
S

n�1
.ıjkı1i � ıikıj1/

i
D
jrf j

n� 2
.ıjkı1i � ıikıj1/

�
�1C�k �

S

n�1

�
:

Using the assumption ıW. � ; � ;rf /D 0, we obtain that�
P C

1

2.n�1/
Q
�
.rf; � ; � /D 0:
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Combining with (6-6) yields

P .1; k; k/D�
1

2.n�1/
Q.1; k; k/D

�1jrf j

.n� 1/
D
jrf j

n� 2

�
�1C�k �

S

n�1

�
:

Thus �2D �3D �4D .S��1/=.n�1/. Proposition 6.10 then concludes the argument.

The proof of Theorem 6.4 follows from a similar argument.

Proof of Theorem 6.4 By Equation (5-13), ı.Rc ıg/D 0 implies P� 1
2
QD 0. Thus,

by Lemma 5.5,

2jP j2 D 2

�
P;

Q

2

�
D�
jrSj2

2
:

Hence P D 0 D rS. It then follows from Corollary 5.6 that ıW D ıS D 0. The
converse is obvious.

Proof of Theorem 6.3 Using a normal local frame, we can rewrite the assumption asX
i

fiWCijkl
D 0:

We pick an arbitrary index a and multiply both sides with Wajkl to arrive atX
i

fiWCijkl
WC

ajkl
D 0:

Applying identity (2-14) yields

0D
X
jkl

X
i

fiWCijkl
WC

ajkl

D

X
i

fi

X
jkl

WC
ijkl

WC
ajkl

D

X
i

fi jWCj2gia D fajWCj2:

Since the index a is arbitrary, we have rf D 0 or jWCj D 0.

Proof of Corollary 6.5 By Theorems 6.2 and 6.4, each condition implies D � 0.
Then [15, Lemma 4.2] further implies that ıW D 0. It follows, from classification
results for harmonic Weyl tensor as discussed in the introduction, that the manifold
must be rigid. We now look at each case closely and observe that not all ranks can
arise.
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(i) In this case, Proposition 6.9 reveals that �0��i D 0, where Rc.rf /D �0rf , and
�i is any other eigenvalue of Rc. Therefore, the manifold structure must be Einstein.

(ii) In this case, D�0 implies Rc has at most two eigenvalues with one of multiplicity 1

and another of multiplicity n� 1. So k can only be 0; 1 or n.

(iii) In this case, there is no obvious obstruction, so all ranks can arise.

Proof of Corollary 6.6 The statement follows immediately from Theorem 6.3, [22,
Theorems 1.1, 1.2], and the analyticity of a GRS with bounded curvature [3].

Appendix

In this appendix, we collect a few formulas that are related to this paper; they follow
from direct computation.

A.1 Conformal change calculation

In this subsection, we state the change of covariant derivative of the Weyl tensor and
Bochner–Weitzenböck type formula, with respect to the conformal transformation of a
metric.

We first fix our notation. Let .M n;g/ be a smooth Riemannian manifold and uD ef

be a smooth positive function on M . A conformal change is defined by

(A-1) zg D e2f
D u2g:

Then, for any tensor D with respect to g , the corresponding tensor for zg is denoted
by eD .

We can calculate the transformation of the covariant derivative. For fixed X;Y;Z ,

2e2f .erX Y;Z/g D 2.erX Y;Z/zg

DX.Y;Z/zgCY .Z;X /zg �Z.X;Y /zg

� .Y; ŒX;Z�/zg � .ZŒY;X �/zgC .X ŒZ;Y �/zg

D 2X.f /e2f .Y;Z/gC 2Y .f /e2f .Z;X /g

� 2Z.f /e2f .X;Y /gC 2e2f .rX Y;Z/g:

Thus,

(A-2) erX Y DrX Y CX.f /Y CY .f /X � .X;Y /grf:
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Consequently, with the convention of a + r2f � df ˝ df C 1
2
jrf j2g , we have:

� zRD e2f R�e2f a ıg .

� zR
l

ijk D Rl
ijk
�al

igjk � ajkı
l
i C aikı

l
j C al

j gik .

� dz�D enf d�.

� z4hD e�2f .4hC .n� 2/rkf rkh/.

� eW D e2fW.

� fRc D Rc�.n� 2/a�
�
4f C

n�2

2
jrf j2

�
g .

� zSD e�2f .S� 2.n� 1/4f � .n� 2/.n� 1/jrf j2/

D e�2f

�
S�

4.n� 1/

n� 2
e�

1
2
.n�2/f

4
�
e

1
2
.n�2/f

��
when n> 2:

Now restricting our attention to dimension four, we arrive at:

� zSD u3.�6�gCS/u.

� eW
zazbzc zd
D u�4eWabcd D u�2Wabcd .

� z�D u�2
�
�� 2

ru

u
r

�
.

� det eWC D u�6 det WC .

Lemma A.1 The divergence of the Weyl tensor under the above conformal change is
given by

zıeW.X;Y;Z/D ıW.X;Y;Z/C .n� 3/W
�
ru

u
;X;Y;Z

�
:

Next, we calculate the conformal change of the norm of the covariant derivative of the
Weyl tensor.

Lemma A.2 Let .M;g/ be a four-dimensional Riemannian manifold, and zg D u2g ,
for some positive smooth function u. Then we have

(A-3) jer eWj2Du�6
jrWj2C18u�8

jruj2jWj2�10u�7
rurjWj2C16hıW; iruWi:

Proof We observe that

jer eWj2 D u�10
�
.er ei

eW/abcd

�2
:
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Then

.erei
eW/abcd Dri.u

2Wabcd /�u2
�
W.erei

a; b; c; d/CW.a;erei
b; c; d/

CW.a; b;erei
c; d/CW.a; b; c;erei

d/
�

D u2
riWabcd � 2uuiWabcd CuıiaWrubcd �uWibcdua

CuıibWarucd �uWaicdubCuıicWabrud

�uWabiduc Cuıid Wabcru�uWabciud :

Now summing over all the indices, using Lemma 2.1, we have:
� .riWabcd /

2 D jrWj2 .
� .uiWabcd /

2 D jruj2jWj2 .
� .ıiaWrubcd /

2 D 4.Wrubcd /
2 D 4jruj2jWj2 .

� .Wibcdua/
2 D jruj2jWj2 .

� 2riWabcduiWabcd D hrjWj2;rui.
� riWabcdıiaWrubcd D hıW; iruWi.
� riWabcd Wibcdua D hrjWj2;rui � hıW; iruWi.
� uiWabcdıiaWrubcd D jruj2jWj2 .
� uiWabcd Wibcdua D jruj2jWj2 .
� ıiaWrubcd Wibcdua D jruj2jWj2 .
� ıiaWrubcdıibWarucd D�jruj2jWj2 .
� ıiaWrubcd Waicdub D 0.
� WrubcdıacWabrud DWrubid Wbidru D

1
2
jruj2jWj2 .

� WibcduaWaicdub D�jruj2jWj2 .
� WibcduaWabiduc DWibrud Wrubid D

1
2
jruj2jWj2 .

The result then follows immediately.

We now can calculate the conformal change of the Bochner–Weitzenböck formula.

Corollary A.3 Let .M;g/ be a four-dimensional Riemannian manifold, and let zg D
u2g , for some positive smooth function u. If

hD�jWCj2� 2jrWCj2�SjWCj2C 36 det WC;

then

u6zhD h� 20u�2
jruj2jWCj2C 2u�1

jWCj2�uC 10u�1
rurjWCj2

� 32u�1
hıWC; iruWCi:
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Proof Without risk of confusion we denote W + WC for simplicity, and calculate

z�jeWj2 D z�.u�4
jWj2/

D u�2.�.u�4
jWj2/� 2

ru

u
r.u�4

jWj2/

D u�2
�
u�4�jWj2CjWj2�u�4

C 2ru�4
rjWj2

� 2jWj2ru

u
ru�4

� 2u�4ru

u
rjWj2

�
D u�6�jWj2C 20u�8

jWj2jruj2� 4u�7
jWj2�u

� 10u�7
rurjWj2C 8u�8

jruj2jWj2

D u�6�jWj2C 28u�8
jWj2jruj2� 4u�7

jWj2�u� 10u�7
rurjWj2;

zSjeWj2 D u�6SjWj2� 6u�7
jWj2�u:

The result then follows by combining the above equations with Lemma A.2.

A.2 Along the Ricci flow

Inspired by the simplification in Bochner–Weitzenböck formula in Theorem 1.1, we
carry out a similar calculation on a Ricci flow. As a consequence, we obtain several
interesting evolution equations involving the self-dual part and other components of
the curvature operator. First, we state some useful lemmas.

Lemma A.4 Let .M 4;g.t//, 0� t < T �1, be a solution to the Ricci flow of (1-1),
and the curvature operator be decomposed as in (2-11). Then

(A-4) @

@t
WC D�WCC 2.WC/2C 4.WC/]C 2.C C T

�
1
3
jC j2IC/:

Remark A.5 Our convention agrees with [36] but differs from [32].

Lemma A.5 For a four-dimensional Riemannian manifold .M;g/, if the curvature is
represented as in (2-11), then

(A-5) hWC;C C T
i D

1
4
hWC;Rc ıRci:

Using the results above, we arrive at the following statement.

Theorem A.6 Let .M 4;g.t/, 0� t < T �1, be a closed solution to the Ricci flow
of (1-1). Then we have the evolution equation

(A-6)
�
@

@t
��

�
jWCj2 D�2jrWCj2C 36detƒ2

C
WCChRc ıRc;WCi:
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Remark A.6 The Weyl tensor is considered the traceless part of the curvature operator
(modding out the Ricci and scalar components). Thus, it is interesting to compare
the above calculation with the evolution equation for the traceless part of the Ricci
curvature hD jEj2 (see [17]),�
@

@t
��

�
h2
D�2jr Rc j2C

jrSj2

2
C

2

3
Sh� 4E3

C 4W.E;E/

D�2rhr.ln S/� 2

S2
jSr Rc�RcrSj2C2h2

�
2jr.ln S/j2C S

3

�
�4E3

C4W.E;E/:

A consequence of Theorem A.6 is the following statement.

Corollary A.7 Let .M;g.t//, 0� t < T �1, be a closed solution to the Ricci flow
of (1-1). Then

(A-7)
�
@

@t
��

��
jWCj2

S2

�
D�

2

S4
jSrWC�WCrSj2C

�
r

�
jWCj2

S2

�
;r ln S2

�

C 36
detƒ2

C
WC

S2
C
hRc ıRc;WCi

S2
� 4
jWCj2jRcj2

S3
:

Remark A.7 On a GRS, the equation becomes

(A-8) ��f

�
jWCj2

S2

�
D�

2

S4
jSrWC�WCrSj2C

�
r

�
jWCj2

S2

�
;r ln S2

�

C 36
detƒ2

C
WC

S2
C
hRc ıRc;WCi

S2
� 4
jWCj2jRcj2

S3
:

An immediate application of the computation above and the maximum principle is the
result below.

Proposition A.8 Let .M;g.t//, 0 � t < T � 1, be a closed solution to the Ricci
flow of (1-1). If detƒ2

C
WC is nonpositive along the Ricci flow, then there exists a

constant C D C.g.0// such that jWCj=S< C is preserved along the flow.
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