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Dimer models and the special McKay correspondence

AKIRA ISHII

KAZUSHI UEDA

We study the behavior of a dimer model under the operation of removing a corner
from the lattice polygon and taking the convex hull of the rest. This refines an
operation of Gulotta, and the special McKay correspondence plays an essential role in
this refinement. As a corollary, we show that for any lattice polygon there is a dimer
model such that the derived category of finitely generated modules over the path
algebra of the corresponding quiver with relations is equivalent to the derived category
of coherent sheaves on a toric Calabi–Yau 3–fold determined by the lattice polygon.
Our proof is based on a detailed study of the relationship between combinatorics of
dimer models and geometry of moduli spaces, and does not depend on the result of
Bridgeland, King and Reid.

14F05; 14D20, 16G20, 14E16

1 Introduction

Dimer models were introduced in the 1960s as statistical mechanical models which
include the two-dimensional Ising model as a special case. See eg Baxter [1] and
Kenyon [27] and references therein for more on this aspect of dimer models. In this
paper, a dimer model is a bicolored graph on a real 2–torus giving a polygon division
of the torus. A fundamental object associated with a dimer model from the statistical
mechanical point of view is its characteristic polynomial. It is a Laurent polynomial in
two variables defined in a purely combinatorial way in terms of perfect matchings. The
Newton polygon of the characteristic polynomial is called the characteristic polygon.

More recently, string theorists have discovered that dimer models encode the information
of quivers with relations, and have used them to study supersymmetric quiver gauge
theories in four dimensions (see eg Kennaway [26] and references therein). If a dimer
model is non-degenerate, then the moduli space M� of stable representations of
the corresponding quiver with dimension vector .1; : : : ; 1/ with respect to a generic
stability parameter � in the sense of King [28] is a smooth toric Calabi–Yau 3–fold;
see Ishii and Ueda [20]. Here, a stability parameter is generic if all semi-stable objects
are stable. The Calabi–Yau property of M� implies that the convex hull � of the set

Published: 6 January 2016 DOI: 10.2140/gt.2015.19.3405

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14F05, 14D20, 16G20, 14E16
http://dx.doi.org/10.2140/gt.2015.19.3405
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Dimer model Quiver Moduli space

face vertex tautological line bundle
edge arrow morphism between tautological line bundles

Table 1: The correspondence among dimer models, quivers and moduli spaces

of primitive generators of one-dimensional cones of the fan describing M� as a toric
manifold is a lattice polygon (ie the generators all lie on a hyperplane). Moreover,
this lattice polygon is known to coincide with the characteristic polygon of the dimer
model; see Franco and Vegh [14] and Ishii and Ueda [20]. Although the structure of the
fan is not determined by this lattice polygon, all fan structures give equivalent derived
categories of coherent sheaves; see Bondal and Orlov [6] and Bridgeland [7].

The quiver associated with a dimer model is the dual graph of the dimer model, oriented
in such a way that a white node is on the right of an arrow. A face of the dimer model
gives a vertex v of the quiver, which in turn gives the corresponding tautological line
bundle Lv on the moduli space M� . An edge of the dimer model gives an arrow
v ! w of the quiver, which corresponds to a morphism Lv ! Lw of tautological
bundles by the universal morphism C�!End.

L
v Lv/, where C� is the path algebra

of the quiver with relations. These correspondences are summarized in Table 1.

Consider the following two conditions:

.T/ The tautological bundle
L
v Lv on the moduli space M� is a tilting object.

.E/ The universal morphism C�! End
�L

v Lv
�

is an isomorphism.

According to Morita theory for derived categories (see Bondal [5] and Rickard [32]),
the conditions .T/ and .E/ imply that the functor

(1-1) ˆ.�/DR�

��M
v

Lv
�
˝�

�
W DbcohM� !Dbmod C�

is an equivalence of triangulated categories.

There is a notion of consistency condition on a dimer model (see Hanany and Vegh [17],
Ishii and Ueda [21] and Bocklandt [4]), which ensures the Calabi–Yau property of the
path algebra C� of the quiver with relations associated with the dimer model (see
Mozgovoy and Reineke [29], Davison [12] and Broomhead [9]). An example of a
consistent dimer model comes from a finite abelian subgroup A of SL.3;C/, where
the associated quiver is the McKay quiver.

The Calabi–Yau property of the path algebra C� implies that M� is smooth and its
canonical bundle is trivial, and the tautological bundle satisfies conditions .T/ and .E/
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c

Figure 1: Left: the polygon � . Right: the polygon �0 .

by a result of Bridgeland, King and Reid [8]; see also Van Den Bergh [2]. We do not
rely on their results, and give an independent proof of these facts for any consistent
dimer model.

In this paper, we study the behavior of a dimer model under the removal of a corner
from the characteristic polygon. To make this precise, define a corner of a lattice
polygon � to be an extremal point of �, and a side of � to be the interval between
two neighboring corners. A side is divided into primitive side segments, defined as
intervals between adjacent lattice points on the boundary of �. We reserve the words
edge and vertex for an edge of a dimer model and a vertex of a quiver, respectively.

Theorem 1.1 Let G be a consistent dimer model and � be the characteristic polygon
of G . Let further c be a corner of � and �0 be the convex hull of the set of lattice
points of � other than c. Assume that �0 is not contained in a line. Then there is an
explicit algorithm to remove some of the edges from G and produce another dimer
model G0 satisfying the following two conditions:

(1) G0 is consistent.

(2) The characteristic polygon of G0 coincides with �0 .

Theorem 1.1 is a combination of Algorithm 10.1 and Propositions 11.1 and 12.2. An
example of a polygon �, a corner c of �, and the polygon �0 obtained from � by
removing the corner c is shown in Figure 1. This refines an operation of Gulotta [16]
who studied the operation of removing a triangle from the characteristic polygon, in
the sense that the removed part in our operation is smaller than or equal to the removed
part in Gulotta’s operation. These two operations are identical if the removed parts are
equal. It is not clear if successive operations of our algorithm gives the same result as
Gulotta’s operation.

Since
� any lattice polygon can be embedded into a sufficiently large lattice triangle, and
� the McKay quiver gives a consistent dimer model for any lattice triangle,

Theorem 1.1 gives a constructive proof of the following:
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Corollary 1.2 For any lattice polygon �, there is a consistent dimer model whose
characteristic polygon coincides with �.

Corollary 1.2 also follows from a result of Gulotta [16, Theorem 6.1] which produces
a properly ordered dimer model for any lattice polygon, and a result in Ishii and Ueda
[21, Theorem 1.1] which shows that properly ordered dimer models are consistent.

Although the algorithm in Theorem 1.1 can be stated in a purely combinatorial way, its
motivation comes from geometry of moduli spaces, where Wunram’s special McKay
correspondence [37] plays an essential role. Let A be a finite small subgroup of GL2.C/
and A–Hilb.C2/ be the Hilbert scheme of A–orbits in C2 (see Nakamura [30]). The
Hilbert–Chow morphism

� W A–Hilb.C2/!C2=AD Spec CŒx; y�A

gives the minimal resolution of the quotient singularity; see Ishii [19]. The special
McKay correspondence gives a description of the derived category of coherent sheaves
on A–Hilb.C2/ in terms of A; see Van Den Bergh [3], Craw [10] and Wemyss [35].

Let G be a consistent dimer model, � be its characteristic polygon, and G0 be
another consistent dimer model obtained from G by removing a corner c from � as
in Theorem 1.1. Let further M� be the moduli space of the quiver � with relations
associated with the consistent dimer model G and a generic stability parameter � .
Since M� is a smooth toric variety and � is the convex hull of primitive generators
of one-dimensional cones of the corresponding fan, any lattice point of � corresponds
to a divisor in M� . A toric divisor Dc of M� corresponding to a corner c of � will
be called a corner toric divisor.

Proposition 1.3 Let G be a consistent dimer model and c be a corner of the character-
istic polygon �. Then there is a generic stability parameter � and a finite small abelian
subgroup A of GL2.C/ satisfying the following:

� There is an open neighborhood Uc of the corner toric divisor Dc in M� and a
commutative diagram

Dc
//

��

Uc

'
��

A–Hilb.C2/ // A–Hilb.C3/

where horizontal arrows are closed embeddings and vertical arrows are isomor-
phisms.
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� For any irreducible representation � of A, there is a vertex v of the quiver � such
that the pull-back of the tautological bundle L� on A–Hilb.C3/ is isomorphic
to the restriction of Lv on M� :

'�L� Š LvjUc :(1-2)

Here A� GL2.C/ is embedded into SL3.C/ in a natural way.

The proof of Proposition 1.3 is given in Section 9. To prove Proposition 1.3, we
introduce the notion of large hexagons. A large hexagon is the union of faces of a
dimer model, which is cut out by a pair of zigzag paths. The tautological line bundles
corresponding to faces of one large hexagon are isomorphic near the given corner
divisor. A division of a dimer model into large hexagons gives a coarse graining of the
associated quiver into the McKay quiver for some A� GL2.C/. The correspondence
between combinatorics of dimer models and geometry of moduli spaces is summarized
in Table 2.

An example of a lattice polygon � and a triangulation associated with a stability
parameter � as in Proposition 1.3 is shown in Figure 2. The sub-fan of � corre-
sponding to A–Hilb.C3/ is shown in green. The normal fan to the one-dimensional
cone corresponding to the corner c describes A–Hilb.C2/. The relation between
the inclusion of A–Hilb.C2/ as a divisor in A–Hilb.C3/ and the special McKay
correspondence is explained in Section 3.

The main result in this paper is the following:

Theorem 1.4 Let G be a consistent dimer model. Then for any generic stability
parameter � , the tautological bundle

L
v Lv on the moduli space M� satisfies the

conditions .T/ and .E/.

The proof of Theorem 1.4 is given in Section 20. Theorem 1.4 contains the abelian
case of the main result of Bridgeland, King and Reid [8]. Our proof is independent of
theirs, and based on Theorem 1.5 below.

Let G be a consistent dimer model and G0 be another consistent dimer model obtained
from G by removing a corner from the characteristic polygon as in Theorem 1.1.

Dimer model Characteristic polygon Moduli space

perfect matching lattice point toric divisor
zigzag path primitive side segment non-compact torus-invariant curve

Table 2: The correspondence
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c

Figure 2: A triangulation of �

Choose a stability parameter � for G described in Proposition 1.3. This stability
parameter � for G naturally induces a stability parameter � 0 for G0 , and let M0

� 0
be

the corresponding moduli space associated with the dimer model G0 . Then M0
� 0

is
naturally an open subscheme of M� , and the complement is exactly the divisor Dc :

M0� 0 DM� nDc:

A key to the proof of Theorem 1.4 is the following:

Theorem 1.5 The conditions .T/ and .E/ hold for M� if and only if they hold
for M0

� 0
.

Theorem 1.5 is a combination of Propositions 14.1, 18.1, and 19.1. Their proofs are
based on a detailed study of the interplay between combinatorics of dimer models
and geometry of moduli spaces. Proposition 1.3 is an important step in reducing both
Theorem 1.1 and Theorem 1.5 to the case where M� D A–Hilb.C3/. In the proof of
Theorem 1.5, the special McKay correspondence plays an essential role again.

The proof of Theorem 1.4 also gives the following characterization of the edges removed
in the operation in Theorem 1.1, which explains the geometric origin of the algorithm:

Proposition 1.6 The edges removed from G in the operation in Theorem 1.1 are
exactly those which correspond to morphisms between tautological bundles vanishing
only on the toric divisor Dc �M� .

Proposition 1.6 is proved in Section 13. The effect of the operation in Theorem 1.1 on
various objects is summarized in Table 3.
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Object Operation

characteristic polygon removing a corner c 2�
moduli space removing the toric divisor Dc �M�

path algebra inverting the arrows vanishing only on Dc

quiver contracting the arrows as above
dimer model removing the edges dual to the arrows as above

Table 3: The effect of the operation in Theorem 1.1

by Grant-in-Aid for Young Scientists (number 18840029 and number 20740037). A
large part of this work was done while K U was visiting the University of Oxford, and
he thanks the Mathematical Institute for hospitality and the Engineering and Physical
Sciences Research Council for financial support.

2 The special McKay correspondence

Let R WD SA be the invariant ring of the polynomial ring S D CŒx1; : : : ; xn� with
respect to the natural action of a finite small subgroup A of GLn.C/. For any irreducible
representation � of A, the invariant part M� WD .S ˝ �

_/A is an indecomposable
Cohen–Macaulay (and hence reflexive) R–module, since it a direct summand of a
Cohen–Macaulay R–module S ˝ �_ .

The McKay quiver ƒ of A is a quiver with relations whose set of vertices is the
set Irrep.A/ of irreducible representations of A. The number a�� of arrows from a
vertex � 2 Irrep.A/ to another vertex � 2 Irrep.A/ is given by the multiplicity in the
irreducible decomposition of the tensor product

�˝ �_Nat D
M

�2Irrep.A/

�˚a�� ;

where �Nat WA ,!GLn.C/ is the natural representation of A and .�/_ denotes the dual
representation. The relations of ƒ are such that the path algebra Cƒ is isomorphic to
EndR

�L
�2Irrep.A/M�

�
, which is Morita equivalent to

EndR.S/Š EndR

� M
�2Irrep.A/

M˚ dim�
�

�
Š S ÌA:

Now assume that A is a finite small subgroup of GL2.C/, and let Y D A–Hilb.C2/

be the Hilbert scheme of A–orbits in C2 [30]. The Hilbert–Chow morphism

� W Y !X D Spec CŒx; y�A
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gives the minimal resolution of the quotient singularity [19].

Definition-Lemma 2.1 (Esnault [13]) Let M be a sheaf on Y and M_ be its dual
sheaf. Then there exists a reflexive module M on X such that MŠ zM WD��M=torsion
if and only if the following three conditions are satisfied:

(1) M is locally free.

(2) M is generated by global sections.

(3) H 1..M/_˝!Y /D 0.

In this case M is said to be full.

Let us recall the definition of a tilting object:

Definition 2.2 An object E in a triangulated category T is acyclic if

Extk.E ; E/D 0; k ¤ 0:

It is a generator if, for any object F ,

Extk.E ;F/D 0 for all k 2 Z

implies that F Š 0. An acyclic generator is called a tilting object.

A tilting object induces a derived equivalence:

Theorem 2.3 (Bondal [5], Rickard [32]) Let E be a tilting object in the derived
category DbcohX of coherent sheaves on a smooth quasi-projective variety X . Then
DbcohX is equivalent to the derived category of finitely generated modules over the
endomorphism algebra Hom.E ; E/.

The following theorem is the McKay correspondence as a derived equivalence for a
finite subgroup of SL2.C/:

Theorem 2.4 (Kapranov and Vasserot [25]; see also Bridgeland, King and Reid [8])
When A is a finite subgroup of SL2.C/, the direct sum of indecomposable full sheaves
is a tilting object whose endomorphism ring is Morita equivalent to the crossed product
algebra CŒx; y�ÌA.

This is no longer true when A š SL2.C/, and one has to restrict the class of full
sheaves. The following theorem is due to Wunram:

Geometry & Topology, Volume 19 (2015)
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Theorem 2.5 [37, Main result] Let C D
Sr
iD1 Ci be the decomposition of the

exceptional set C into irreducible components. Then for every curve Ci there exists
exactly one indecomposable reflexive module Mi such that the corresponding full sheaf
zMi D �

�Mi=torsion satisfies the conditions H 1.. zM/_/D 0 and

c1. zMi / �Cj D ıij :

A full sheaf is said to be special if there is an index 1� i � r such that MDMi or it
is isomorphic to the structure sheaf OY . The special full sheaf OY corresponds to the
trivial representation and is denoted by M0 . Special full sheaves are characterized as
follows:

Theorem 2.6 (Wunram [37, Theorem 1.2]) An indecomposable full sheaf M is
special if and only if H 1.M_/D 0.

By Definition-Lemma 2.1, this condition is equivalent to the following:

Corollary 2.7 An indecomposable full sheaf M is special if and only M˝!Y is a
full sheaf.

An irreducible representation � of A is said to be special if the corresponding full
sheaf

M� D �
�..�_˝CŒx; y�/A/=torsion

is special.

Special full sheaves generate the derived category of coherent sheaves on Y :

Theorem 2.8 (Van den Bergh [3, Theorem B]) The direct sum of indecomposable
special full sheaves is a tilting object.

Let M be the direct sum of indecomposable special full sheaves. It follows that
the derived category DbcohY of coherent sheaves on Y is equivalent to the derived
category Dbmod.EndM/ of finitely generated right modules over EndM. The special
McKay correspondence as a derived equivalence is studied by Craw [10] and Wemyss
[35]. The category DbcohY Š Dbmod.EndM/ is an admissible subcategory of
DbcohŒC2=A�ŠDbmod.CŒx; y�ÌA/; whose semiorthogonal complement is gener-
ated by an exceptional collection [23].
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3 Zero locus of the “multiplication by z” map

In this section, we explain why the special McKay correspondence should appear in
the algorithm of Theorem 1.1. We include this section for motivational purposes only,
and other parts of this paper are logically independent of this section. Unlike other
parts of this paper, we use the results of [8] in this section.

Let A be a finite small subgroup of GL.2;C/, which may not be abelian. Then we
have a minimal resolution

Y D A–Hilb.C2/!C2=A

as in the previous section. We can embed GL.2;C/ into GL.3;C/ by the map

X 7!

�
X 0

0 det.X/�1

�
;

and A becomes a subgroup of SL.3;C/. Thus Y is embedded into

U D A–Hilb.C3/;

which is a crepant resolution of C3=A by [8]. The structure sheaf of the universal
subscheme, if pushed forward to U , is decomposed as

L
�R� ˝ � , where R� is

the tautological bundle associated with an irreducible representation � of A. The
restriction R�jY of R� to Y coincides with the full sheaf M� associated with M� .

Let z be the third coordinate of C3 , so that C2 �C3 is defined by z D 0. Let �Nat

be the two-dimensional representation of A determined by the original embedding
A� GL.2;C/. Then multiplication by z induces a map

z�W R�!R�˝det�Nat :

Let Z� be the support of coker z� � U , which contains Y for any � .

Proposition 3.1 Z� D Y if and only if � is special.

Sketch of proof Note first that Z� is a divisor since z� is an injection of locally
free sheaves of the same rank. The map z� is zero at any point on Y and therefore it
determines a map

z0�W R�.Y /!R�˝det�Nat :

If Z0� denotes the support of coker z0� , then we see Z� D Y [Z0� and Y 6�Z0� .

Assume Z� D Y . Then Z0� is empty and z0� is an isomorphism. Then, by restricting
it to Y , we see that M� ˝OY .Y / is a full sheaf. Since U is a crepant resolution,
OY .Y / is isomorphic to !Y and therefore � is special by Corollary 2.7.
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Conversely, suppose � is special. Then by Corollary 2.7, we see Y \Z0� D∅. Since
coker z� corresponds via the Fourier–Mukai transform to a locally free sheaf on C2

which is indecomposable [8], Z� must be connected. This implies that Z0� D∅.

This proposition, together with Corollary 15.3, clearly explains the role of the special
McKay correspondence in this paper. Namely, the restrictions of non-special tautologi-
cal bundles form a tilting bundle on U nY , and to obtain the endomorphism algebra of
the tilting bundle on U nY , the algebra for U should be “localized” by the maps z�
for the special representations � .

4 Specials and continued fractions

For relatively prime integers 0<q<n, consider the small cyclic subgroup AD
˝
1
n
.1; q/

˛
of GL2.C/ generated by

1

n
.1; q/D

�
� 0

0 �q

�
;

where � is a primitive nth root of unity. We label the irreducible representations of A
by elements a 2 Z=nZ so that a sends the above generator to ��a .

Remark 4.1 M� in our notation corresponds to �_ via the correspondence in [37].
So we dualize the labeling of the irreducible representations so that Theorem 4.2 is of
the same form.

Define integers r , b1; : : : ; br and i0; : : : ; irC1 as follows: put i0 WD n, i1 WD q and
define itC2 and btC1 inductively by

(4-1) it D btC1itC1� itC2 .0 < itC2 < itC1/

until we finally obtain ir D 1 and irC1D 0. This gives a continued fraction expansion

(4-2)
n

q
D b1�

1

b2�
1

: : : �
1

br

and �bt is the self-intersection number of the t th irreducible exceptional curve Ct .

For a general representation d , the degrees of the full sheaf Ld are given in the
following way:
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Theorem 4.2 (Wunram [36, Theorem]) For an integer d with 0� d < n, there is a
unique expression

d D d1i1C d2i2C � � �C dr ir ;

where di 2 Z�0 are non-negative integers satisfying

0�
X
t>t0

dt it < it0

for any t0 . Then one has
degMd jCt D dt

for any t D 1; : : : ; r .

Remark 4.3 The non-negative integers di in Theorem 4.2 can be computed by setting
e0 D d and

et D dtC1itC1C etC1; 0� etC1 < itC1

for t D 0; : : : ; r � 1.

Corollary 4.4 Special representations are given by i0 � irC1; i1; : : : ; ir , and the
labeling of specials and irreducible components are related by

degMis jCt D ıst :

Lemma 4.5 (Wunram [36, Lemma 1]) A sequence .d1; : : : ; dr/2 .Z�0/r is obtained
from an integer d 2 Œ0; n� 1� as in the previous theorem if and only if the following
hold:
� 0� dt � bt � 1 for any t .
� If ds D bs � 1 and dt D bt � 1 for s < t , then there is an l with s < l < t and
dl � bl � 3.

Define the dual sequence j0; : : : ; jrC1 by j0 D 0, j1 D 1, and

jt D jt�1bt�1� jt�2; t � 2:

Then one has jrC1 D n.

Lemma 4.6 (Wunram [36, Lemma 2]) Let dDd1i1C� � �Cdr ir be as in Theorem 4.2,
and put f D d1j1C � � �C drjr . Then one has qf � d mod n.

In particular, special representations are given by

(4-3) i0 � qj0; i1 � qj1; : : : ; ir � qjr :

Note that .it /rtD0 is decreasing and .jt /rtD0 is increasing.

Remark 4.7 A geometric interpretation of these numbers can be found in Lemma 16.2.
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5 Dimer models and quivers

5.1 Dimer models

By a graph, we mean an abstract, unoriented graph, possibly with multiple edges and
loops. To be more precise, a graph is a triple .N;E; @/ consisting of

� a set N of nodes,

� a set E of edges, and

� the incidence relation @W E!N .2/ , which is a map from E to the symmetric
product N .2/ DN 2=S2 .

A graph is bipartite if one can divide the set N of nodes into the disjoint union of

� a set B �N of black nodes, and

� a set W �N of white nodes, so that

� no edge connects nodes with the same color.

A bicolored graph is a bipartite graph with a fixed choice of a coloring.

To a graph .N;E; @/, one can associate a one-dimensional CW complex whose 0–cells
and 1–cells correspond to nodes and edges, respectively. An embedding of a graph into
a topological space T is a continuous injection from this CW complex to T . When a
graph is embedded in a topological space, we often identify nodes and edges with their
images under the embedding.

Let T be a real 2–torus. We fix an identification T DR2=Z2 , which gives identifications
H1.T;Z/Š Z2 and H 1.T;Z/Š Z2 . We equip T with the orientation coming from
the standard orientation on R2 .

A dimer model is a finite bicolored graph G D .B;W;E/ embedded in T such that

� G has no univalent node, and

� any connected component of the complement T n
S
e2E e of the graph is simply

connected.
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5.2 Perfect matchings and characteristic polygons

A perfect matching (or a dimer configuration) on a graph .N;E; @/ is a subset D of E
such that for any node n 2 N there is a unique edge e 2D incident to n. A dimer
model is said to be non-degenerate if for any edge e 2E there is a perfect matching D
such that e 2D .

Let G D .B;W;E/ be a dimer model, and consider the bicolored graph zG on R2

obtained from G by pulling back to the universal cover R2! T . The set of perfect
matchings on G is naturally identified with the set of periodic perfect matchings on
the infinite graph zG on the universal cover. Fix a perfect matching D0 called the
reference matching. For any perfect matching D , the union D[D0 divides R2 into
connected components. The height function hD;D0 is a locally constant function on
R2 n .D[D0/ which increases by 1 when one crosses an edge e 2D with the black
node on the right or an edge e 2D0 with the white node on the right, and decreases
by 1 when one crosses an edge e 2 D with the white node on the right or an edge
e 2D0 with the black node on the right. This rule determines the height function up to
an addition of a constant. The height function may not be periodic even if D and D0
are periodic, and the height change h.D;D0/D .hx.D;D0/; hy.D;D0// 2 Z2 of D
with respect to D0 is defined by the differences

hx.D;D0/D hD;D0.pC .1; 0//� hD;D0.p/;

hy.D;D0/D hD;D0.pC .0; 1//� hD;D0.p/

of the height function, which does not depend on the choice of p 2 R2 n .D [D0/.
More invariantly, height changes can be considered as an element of H 1.T;Z/. The
dependence of the height change on the choice of the reference matching is given by

h.D;D1/D h.D;D0/� h.D1;D0/

for any three perfect matchings D , D0 and D1 . We often suppress the dependence of
the height difference on the reference matching and just write h.D/D h.D;D0/.

For a fixed reference matching D0 , the characteristic polynomial of G is defined by

Z.x; y/D
X

D2Perf.G/

xhx.D/yhy.D/;

where Perf.G/ is the set of perfect matchings on G . The characteristic polynomial is
a Laurent polynomial in two variables, whose Newton polygon gives the characteristic
polygon, defined as the convex hull

�D Convf.hx.D/; hy.D// 2 Z2 j D is a perfect matching on G g
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Figure 3: Left: a zigzag path. Right: a path on the quiver along a zigzag path.

of the set of height changes of perfect matchings on the dimer model.

A corner of � is an extremal point of �, and a side of � is the interval between two
neighboring corners. A side is divided into primitive side segments, defined as intervals
between two adjacent lattice points on the boundary of �. A perfect matching D is
said to be a corner perfect matching if its height change h.D/ is on the corner of the
characteristic polygon. The multiplicity of a perfect matching D is the number of
perfect matchings whose height changes are the same as D .

5.3 Zigzag paths and their slopes

A zigzag path is a path on a bicolored graph in an oriented surface which makes a
maximum turn to the right on a white node and a maximal turn to the left on a black
node. We assume that a zigzag path does not have an endpoint, so that it is either
periodic or infinite in both directions. Here, the latter can happen only if the graph is
infinite. Figure 3, left, shows an example of a part of a dimer model and a zigzag path
on it.

Let z be a zigzag path on a dimer model, and assume that there is a perfect matching D0
which intersects half of the edges constituting z (ie every other edge of z belongs
to D0 ). Then the height change of any other perfect matching D with respect to D0
in the direction of z is negative:

(5-1) hh.D;D0/; Œz�i � 0:

Here, Œz� 2 H1.T;Z/ Š Z2 is the homology class of Œz�, which is paired with the
height change considered as an element of H 1.T;Z/. To show this, replace z by
the path p on the quiver going along z (on the left side of z ), which belongs to the
class Œz� as shown in Figure 3, right. Then (5-1) follows from the fact that, as one goes
around T along p , one crosses no edge in D0 and every edge one crosses has a white
node on the right. In this way, such a zigzag path gives an inequality which bounds the
Newton polygon of the characteristic polynomial.

The homology class Œz�D .u; v/ 2H1.T;Z/ŠZ2 of a zigzag path z considered as an
element of Z2 will be called its slope. If a zigzag path does not have a self-intersection,
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then .u; v/ 2 Z2 is a primitive element, and we sometimes think of the slope as an
element

.u; v/
p
u2C v2

2 S1

of the unit circle. The set of slopes has the natural counterclockwise cyclic order as a
subset of the unit circle.

5.4 Quivers

A quiver is an oriented graph, which is a quadruple .V; A; s; t/ consisting of

� a set V of vertices,

� a set A of arrows, and

� two maps s; t W A! V from A to V .

For an arrow a 2 A, the vertices s.a/ and t .a/ are called the source and the target
of a , respectively.

A path on a quiver is an ordered set of arrows .an; an�1; : : : ; a1/ such that s.aiC1/D
t .ai / for i D 1; : : : ; n�1. We also allow for a path of length zero, starting and ending
at the same vertex.

The path algebra CQ of a quiver QD .V; A; s; t/ is the algebra spanned by the set of
paths as a vector space, and the multiplication is defined by the concatenation of paths:

.bm; : : : ; b1/ � .an; : : : ; a1/D

�
.bm; : : : ; b1; an; : : : ; a1/ if s.b1/D t .an/;
0 otherwise:

A quiver with relations is a pair of a quiver and a two-sided ideal I of its path algebra.
For a quiver � D .Q; I/ with relations, its path algebra C� is defined as the quotient
algebra CQ=I .

5.5 A quiver with relations associated with a dimer model

A dimer model .B;W;E/ encodes the information of a quiver � D .V; A; s; t; I/ with
relations in the following way: The set V of vertices is the set of connected components
of the complement T n .

S
e2E e/, and the set A of arrows is the set E of edges of

the graph. The orientations of the arrows are determined by the colors of the nodes of
the graph, so that the white node w 2W is on the right of the arrow. In other words,
the quiver is the dual graph of the dimer model equipped with an orientation given by
rotating the white-to-black flow on the edges of the dimer model by �90ı .

Geometry & Topology, Volume 19 (2015)



Dimer models and the special McKay correspondence 3421

a
pC.a/p�.a/

Figure 4: Left: relations on the quiver. Right: small cycles.

The relations of the quiver are described as follows: For an arrow a 2 A, there exist
two paths pC.a/ and p�.a/ from t .a/ to s.a/, the former going around the white
node incident to a 2 E D A clockwise, and the latter going around the black node
incident to a counterclockwise, as shown in Figure 4, left. Then the ideal I of the
path algebra is generated by pC.a/�p�.a/ for all a 2 A.

5.6 Small cycles, minimal paths and weak equivalence

A small cycle on a quiver associated with a dimer model is a path obtained as the
product of arrows surrounding a node of the dimer model. Three small cycles are
shown in Figure 4, right. A path p is said to be minimal if it is not equivalent to a path
containing a small cycle.

Note that small cycles starting from a fixed vertex are equivalent to each other. It
follows that the sum ! WD

P
v2V !v of small cycles over the set of vertices, where

one picks one small cycle !v for each vertex v , is a well-defined element of the path
algebra independent of the choice of !v . One can easily see that the element ! belongs
to the center of the path algebra, and there is the universal map

C�!C�Œ!�1�

into the localization of the path algebra by the multiplicative subset generated by ! .
Two paths are called weakly equivalent if they give the same element in C�Œ!�1�.

Suppose that there is a perfect matching D . Note that every small cycle contains
exactly one arrow in D . Then [21, Lemma 2.1] implies that two paths with the same
source and the target are weakly equivalent if and only if they have the same homology
class and they contain the same number of arrows in D .

5.7 Moduli space of quiver representations

A representation of a quiver � D .V; A; s; t; I/ with relations is a module over the path
algebra C� . In other words, a representation of � is a collection ..Vv/v2V ; . a/a2A/
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of vector spaces Vv for v 2 V and linear maps  aW Vs.a/! Vt.a/ for a 2A satisfying
relations in I . The dimension vector of a representation ..Vv/v2V ; . a/a2A/ is given
by .dimVv/v2V 2ZV . This allows us to think of ZV as a quotient of the Grothendieck
group of the abelian category of finite-dimensional representations of � . The support
of a representation is the set of vertices v 2 V such that dimVv ¤ 0.

A stability parameter � is an element of Hom.ZV ;Z/. A C� –module M is said
to be � –stable if �.M/ D 0 and if for any non-trivial submodule N ¨ M one has
�.N / > �.M/. The module M is � –semistable if �.N / � �.M/ holds instead
of �.N / > �.M/. A stability parameter � is said to be generic with respect to
a fixed dimension vector if semistability implies stability. This stability condition
was introduced by King [28] to construct the moduli space M� representing (the
sheafification of) the functor

.Sch/! .Set/; T 7! .a flat family over T of � –stable representations of � /=�

for a fixed dimension vector. Here, a flat family of representations of � over T is a
collection .Lv/v2V of vector bundles on T for each vertex v of � and a collection
.�a/a2A of morphisms �aW Ls.a/ ! Lt.a/ for each arrow a of � satisfying the
relations I of � . Two families are defined to be equivalent if they are isomorphic up
to tensor product Lv 7! Lv˝L by some line bundle L simultaneously for all vertices
v 2 V . If the dimension vector is a primitive vector, then we do not have to sheafify
the functor, and there is a universal family over the moduli space. The bundles Lv
in the universal family are called the tautological bundles. In the rest of this paper,
M� denotes the moduli space of � –stable C� –modules for the dimension vector
.1; 1; : : : ; 1/. On the other hand, the moduli space M� of � –semistable modules
does not represent the moduli functor, but parametrizes S-equivalence classes of � –
semistable modules.

5.8 Perfect matchings and moduli spaces

The main theorem of [20] states that when a dimer model is non-degenerate the moduli
space M� is a smooth Calabi–Yau toric 3–fold for generic � .

Lemma 5.1 Let G be a non-degenerate dimer model. Then, for each arrow a of the
associated quiver, the zero locus of �aW Ls.a/! Lt.a/ is a reduced subscheme of M� .

Proof The proof of [20, Proposition 5.1] shows that the moduli space M� is covered
by open neighborhoods U‰ of the torus-fixed points Œ‰� 2M� . The proof of [20,
Lemma 4.5] gives a coordinate description U‰ŠSpec CŒt1; t2; t3� of each U‰ , together
with the trivialization of tautological line bundles Lv such that the homomorphism �a
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for any arrow a is given by either 1, t1 , t2 , t3 , t1t2 , t1t3 , t2t3 , or t1t2t3 . It follows
that ��1a .0/\U‰ is reduced.

It is also proved in [20, Section 6] that a toric divisor in M� gives a perfect matching
in such a way that the stabilizer group of the divisor is given by the height change of
the perfect matching.

A perfect matching can be considered as a set of walls which block some of the arrows:
for a perfect matching D , let QD be the subquiver of Q whose set of vertices is the
same as Q and whose set of arrows consists of A nD (recall that ADE ). The path
algebra CQD of QD is a subalgebra of CQ , and the ideal I of CQ defines an ideal
ID D I \CQD of CQD . A path p 2CQ is said to be an allowed path with respect
to D if p 2CQD .

With a perfect matching, one can associate a representation of the quiver with dimension
vector .1; : : : ; 1/ by sending any allowed path to 1 and other paths to 0. A perfect
matching is said to be simple if this representation is simple, ie has no non-trivial
subrepresentation. This is equivalent to the condition that there is an allowed path
starting and ending at any given pair of vertices.

5.9 Quivers as categories

To a quiver � with relations one can associate a C–linear category C , as follows:

� The set of objects of C is the set of vertices of � .
� The space of morphisms between two objects v and w is the vector space ew �

C� �ev , where ev and ew are the idempotents of the path algebra corresponding
to the vertices v and w of � .

� The composition of morphisms comes from the product in the path algebra.

In terms of the category C , a representation of � is just a linear functor from C to the
category of vector spaces.

The advantage of working with categories rather than path algebras is the following: Let
v and w be two vertices in a quiver � D .V; A; s; t; I/ with relations and fa1; : : : ; arg
be any subset of the set of arrows of � from v to w . Then we can define another
quiver � 0 D .V 0; A0; s0; t 0; I 0/ by setting V 0 D V n fvg; A0 D A n fa1; : : : ; arg; and

s0.a/D

�
s.a/ if s.a/¤ v;
w if s.a/D v;

t 0.a/D

�
t .a/ if t .a/¤ v;
w if t .a/D v:

The relations of � 0 are determined by the condition that C� 0 is Morita equivalent to the
localization of C� at the arrows a1; : : : ; ar . This means that � 0 is obtained from � by
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inverting the arrows a1; : : : ; ar and identifying two vertices v and w which become
isomorphic after the inversion of the arrows. There is a natural map � W C� ! C� 0

between path algebras, which is not an algebra homomorphism since

�.ew/ ı�.ev/D ew ı ew D ew ¤ 0D �.0/D �.ew ı ev/:

Nevertheless, the map � induces a functor $ W C! C0 from the category C associated
with � to the category C0 associated with � 0 . Since a representation of � is a
functor from C to the category of vector spaces, the functor $ induces a functor
$�W mod C� 0! mod C� between categories of representations. The image of the
functor $� consists of representations ..Vv/v2V ; . a/a2A/ such that Vv D Vw and
 a1 D � � � D  ar D idVv .

5.10 McKay quiver and hexagonal dimer models

Let zT � GL.3;C/ be the subgroup consisting of diagonal matrices and put zT0 D
zT \SL.3;C/: For a finite subgroup A� zT0 , the character group A� D Hom.A;C�/
is a quotient of zT�0 Š Z2 , and hence a quotient of zT� Š Z3 . Let �x; �y ; �z 2 A�

be the images of the coordinate functions x; y; z 2 zT� , respectively. The McKay
quiver for A has A� as the set of vertices, and there are three arrows starting from
each vertex � , whose targets are ��x , ��y and ��z , respectively. We say that these
arrows correspond to multiplications by x , y , z , respectively. If M0 denotes the
kernel of the surjection zT�0 ! A� , then the McKay quiver can be embedded in the
torus T D .zT�0 ˝R/=M0 , and comes from a hexagonal dimer model on T as in [31]
(see also [34, Section 5] and an example in Figure 24 below). The corresponding path
algebra with relations is isomorphic to the crossed product algebra CŒx; y; z�ÌA. The
Hilbert scheme A–Hilb.C3/ of A–orbits, parametrizing A–clusters, is isomorphic to
the moduli space M� for this quiver with respect to a stability parameter � such that
�.�/ > 0 for every non-trivial � 2 A� (see eg [24, Section 3]).

6 Consistency conditions on dimer models

6.1 Divalent node

Let G D .B;W;E/ be a non-degenerate dimer model. For a divalent node n 2B tW ,
one can contract two nodes adjacent to n and obtain another dimer model G0 D
.B 0; W 0; E 0/ as shown in Figure 5. Note that the two nodes adjacent to n must be
distinct since the dimer model is non-degenerate. The numbers of black nodes and
white nodes are reduced by one, and the number of edges is reduced by two under this
operation. If G0 still has a divalent node, then one can continue this process until the
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Figure 5: Removal of a divalent node

dimer model contains no divalent nodes. It is clear from the definition of the zigzag
paths that there is a natural bijection between the sets of zigzag paths on dimer models
before and after the removal of divalent nodes. It is also clear from the definition of
the relations of the quiver associated with a dimer model that the isomorphism class of
the path algebra does not change under the operation of removing divalent nodes.

Although divalent nodes do not cause any problem for the purpose of this paper, it
is often convenient to assume that all the divalent nodes are removed to simplify the
exposition.

6.2 Consistent dimer models

The following definition is taken from [21, Definition 3.5]. It originates from the work
of Hanany and Vegh [17], and was also studied by Bocklandt [4].

Definition 6.1 A dimer model is consistent if

� there is no homologically trivial zigzag path,

� no zigzag path has a self-intersection on the universal cover, and

� no pair of zigzag paths on the universal cover intersect each other in the same
direction more than once.

Here, two zigzag paths on a dimer model are said to intersect if they share an edge (not
a node) after removing all the divalent nodes from the dimer model. One intersection
consists of an odd number of consecutive edges connected by divalent nodes, which
must be just one edge if the dimer model has no divalent node.

The third condition means that if a pair .z; w/ of zigzag paths on the universal cover
has two intersections a and b and the zigzag path z points from a to b , then the other
zigzag path w must point from b to a .

6.3 Related notions

For a node in a dimer model, the set of zigzag paths going through the edges adjacent to it
has a natural cyclic ordering given by the directions of the outgoing paths from the node.
On the other hand, the homology classes of these zigzag paths determine another cyclic
ordering if these classes are distinct. The following condition was introduced by Gulotta:
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Definition 6.2 [16, Section 3.1] A dimer model is properly ordered if

� there is no homologically trivial zigzag path,

� no zigzag path has a self-intersection on the universal cover,

� no pair of zigzag paths in the same homology class have a common node, and

� for any node of the dimer model, the natural cyclic order on the set of zigzag
paths going through that node coincides with the cyclic order determined by
their homology classes.

Mozgovoy and Reineke [29, Condition 4.12] introduced the following condition:

Definition 6.3 A dimer model is said to be cancellative if weakly equivalent paths are
equivalent.

Mozgovoy and Reineke called this condition the first consistency condition.

Proposition 6.4 [21, Proposition 4.4 and Lemma 3.1] A dimer model is consistent if
and only if it is properly ordered. Moreover, a consistent dimer model is cancellative.

Mozgovoy and Reineke [29] proved that the path algebra of the quiver with relations
coming from a dimer model is a Calabi–Yau–3 algebra in the sense of Ginzburg [15]
if the dimer model is cancellative and one extra condition which they call the second
consistency condition. The latter condition was shown to be redundant by Davison [12].
Broomhead has proved the Calabi–Yau–3 property of the path algebra for isoradial
dimer models [9]. The proof of Theorem 1.4 in this paper does not rely on any of
these results, and gives an independent proof of the Calabi–Yau–3 property of the path
algebra of the quiver with relations associated with a consistent dimer model through
the derived equivalence DbcohM� ŠD

bmod C� .

7 Adjacent zigzag paths and large hexagons

In this section, we assume for simplicity that all divalent nodes are removed from the
dimer model. In this case, a pair of zigzag paths intersect each other if and only if they
share a common edge, and one intersection consists of exactly one edge.
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a

b

c d

v1 v2

Figure 6: A pair of zigzag paths intersecting twice

7.1 Adjacent zigzag paths

Recall from Section 5.3 that the slope of a zigzag path on a dimer model is its homology
class considered as an element in Z2 . The lack of self-intersection of a zigzag path
in a consistent dimer model implies the primitivity of its slope. There may be several
zigzag paths with a given slope. The set of slopes naturally has a cyclic order, and a
pair of zigzag paths are said to have adjacent slopes if their slopes are adjacent with
respect to this cyclic order.

The following three lemmas are immediate consequences of Proposition 6.4:

Lemma 7.1 If a pair of zigzag paths in a consistent dimer model intersect each other
more than once on the universal cover, then their slopes are not adjacent.

Proof Assume that there is a pair .a; b/ of zigzag paths intersecting twice in the
opposite direction as in Figure 6. Let v1 and v2 be the vertices adjacent to the first and
the last edges where a and b intersect. Then there are two other zigzag paths c and d
such that c intersects with a at the edge adjacent to the vertex v1 and d intersects
with a at the edge adjacent to the vertex v2 . Then the slopes of c and d must come
in between a and b by Proposition 6.4, preventing them from being adjacent.

Lemma 7.2 If a pair of zigzag paths in a consistent dimer model have a common node
other than their intersection, then the slopes of this pair of zigzag paths are not adjacent.

Proof Since the dimer model is consistent, it is properly ordered by Proposition 6.4.
If a pair of zigzag paths have a common node other than their intersection, then they
are not adjacent with respect to the cyclic order around that node. Now it follows from
Definition 6.2 that their slopes are not adjacent.

Lemma 7.3 If a dimer model is consistent, then there is a pair of zigzag paths with
linearly independent slopes.
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Figure 7: A pair of zigzag paths with adjacent slopes

Proof A dimer model always has a node with valence greater than two. Then there
are at least three zigzag paths at the node whose slopes are different, since the dimer is
properly ordered.

7.2 Large hexagons

Lemmas 7.1 and 7.2 show that a pair of zigzag paths with adjacent slopes in a consistent
dimer model behaves like a pair of lines: they have no self-intersection, and any pair of
lifts to the universal cover intersect exactly once. Any pair of lines on a torus divides the
torus into parallelograms. Since an intersection of a pair of zigzag paths in a consistent
dimer model consists of an edge instead of a point, they divide the torus into hexagons
instead of parallelograms.

Definition 7.4 Let GD .B;W;E/ be a consistent dimer model on a torus T and .z; w/
be a pair of zigzag paths on G with adjacent slopes. A large hexagon is a connected
component of the complement T n .z[w/ of the union of the pair of zigzag paths.

Figure 7 shows an example of a collection of zigzag paths with adjacent slopes in
a large square tiling. One can see that these zigzag paths divide the torus into large
hexagons, as shown in Figure 8.

By removing arrows dual to edges in the pair of zigzag paths, the quiver associated
with the dimer model is divided into a disjoint union of subquivers, each of whose
connected components are in one-to-one correspondence with a large hexagon. Inside
each such connected subquiver, there is a pair of distinguished vertices called the source
and the sink. The source vertex is characterized by the existence of a path from that
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Figure 8: Large hexagons

Figure 9: Sources and sinks

vertex to any other vertex in the subquiver, and the sink vertex is characterized by the
dual property that there is a path of the subquiver from any other vertex to the sink
vertex. The arrow dual to an intersection of the pair of zigzag paths goes from the
source vertex of one large hexagon to the sink vertex of an adjacent large hexagon. See
Figure 9 for an example of the subquivers and their source and sink vertices.

7.3 Large hexagons and the McKay quiver

The tessellation by large hexagons forms a new dimer model, and, as in Section 5.10, the
resulting quiver ƒ with relations can be identified with the McKay quiver for a suitable
finite subgroup A� SL.3;C/ acting on C3 D Spec CŒx; y; z� in the following way:

� Choose any vertex of ƒ and identify it with the trivial representation.
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� The arrow dual to an intersection of the two zigzag paths is identified with
multiplication by z .

� The cyclic order of three arrows starting from a vertex of ƒ coming from the
orientation of the torus is given by .x; y; z/.

The fact that we have taken only a pair of zigzag paths with adjacent slopes, so that there
is only one zigzag path in each slope, implies that �x generates the character group A� ,
and so does �y under the notation in Section 5.10. Hence the subgroup A� SL.3;C/
is obtained by embedding a finite small subgroup A� GL.2;C/ into SL.3;C/.

8 Consistent dimer models are non-degenerate

Proposition 8.1 A consistent dimer model is non-degenerate.

Proof We may assume there is no divalent node. For an edge e in a consistent dimer
model, choose a zigzag path z containing the edge. Choose another zigzag path w
whose slope is adjacent to that of z . Then z and w divide the torus into large hexagons.
In each large hexagon, there are two paths p and q from the source to the sink along
z[w , as shown in Figure 10. One path p starts from the source vertex, goes along the

p

q

w

z

u

Figure 10: Two minimal paths p and q inside a large hexagon

zigzag path z until z intersects with w , from which point the path goes along w and
arrives at the sink vertex. The other path q starts from the source vertex, goes along the

Geometry & Topology, Volume 19 (2015)



Dimer models and the special McKay correspondence 3431

zigzag path w until w intersects with z , from which point the path goes along z . Both
p and q are minimal: if one is not minimal, then there is another zigzag path u which
intersects this path in the same direction more than once by [21, Lemma 3.11]. This
implies that the slope of the zigzag path u comes in between the slopes of z and w
with respect to the natural cyclic order on the set of slopes, as shown in Figure 10. This
contradicts the adjacency of the slopes of z and w .

Let D1 be the set of edges formed by starting with e and taking every other edge in
the union of z and w . Let further D2 be the set of edges in the interiors of the large
hexagons which are not crossed by any minimal path from the source to the sink. We
show that the union DDD1[D2 is a perfect matching. See Figure 11 for an example,
where e is at the intersection of z and w .

Let n be a node on the union z [w of the zigzag paths. Then it is clear from the
construction that there is a unique edge in D1 adjacent to n and no edge in D2 is
adjacent to n.

Take a node n in the interior of a large hexagon. We show that there is a unique edge
in D2 connected to n. Since p1 and p2 are minimal paths with the same source and
target, they are equivalent. Since p1 and p2 are not homotopic in T n fng, there are
two minimal paths q1 and q2 from the source vertex to the sink vertex inside the large
hexagon such that p1 is homotopic to q1 in T nfng, p2 is homotopic to q2 in T nfng,
and q2 is obtained from q1 by replacing pC.a/ by p�.a/ for an arrow a 2 AD E .
Then a must be adjacent to n, and either q1 or q2 passes through all edges incident
to n except a . Hence it suffices to show a 2D2 . Let r be a minimal path from the
source to the sink. Then r intersects neither z nor w by [21, Lemma 3.11] and hence r
stays inside the large hexagon. Take a zigzag path y which passes through a . Since
the dimer model is consistent and z and w have adjacent slopes, y divides the large
hexagon into two connected components such that the source and the sink are not in
the same component. By [21, Lemma 3.7], the number of intersections of y with r
coincides with that of y with pi � qi , which is 1. If r passes through a , the direction
of the intersection with y is different from that of the intersection of qi with y , which
is a contradiction. This shows a 2D2 , and Proposition 8.1 is proved.

Definition 8.2 For a pair .z; w/ of zigzag paths with adjacent slopes, the perfect match-
ing obtained as in the proof of Proposition 8.1 containing the edge at the intersection is
said to come from a pair of zigzag paths with adjacent slopes.

Recall from Section 5.8 that a path p on a quiver is allowed by a perfect matching D if
the path a does not contain any arrow dual to an edge in D . The proof of Proposition 8.1
also shows the following:
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q1

q2

a

n

Figure 11: The perfect matching associated with a pair of zigzag paths

Lemma 8.3 Let .z; w/ be a pair of zigzag paths with adjacent slopes and D be the
corresponding perfect matching. Then for any large hexagon and for any vertex v in the
large hexagon, there is a path allowed by D inside the large hexagon from the source
vertex to the sink vertex that passes through the vertex v .

9 Corner perfect matchings

We prove Proposition 1.3. in this section. We first prove the following as an application
of large hexagons:

Proposition 9.1 Let G be a consistent dimer model. Then any choice of a pair of
zigzag paths with adjacent slopes determines a corner c of the characteristic polygon �
and induces the following:

(1) The division of the torus T DR2=Z2 into large hexagons.

(2) A functor
��c W mod.CŒx; y; z�ÌA/!mod C�

from the category of representations of the McKay quiver of some finite small
abelian subgroup A � GL2.C/ � SL3.C/ to that of the path algebra of the
quiver � with relations associated with the dimer model G .

Geometry & Topology, Volume 19 (2015)



Dimer models and the special McKay correspondence 3433

(3) An embedding
'cW A–Hilb.C3/ ,!M�

of the A–Hilbert scheme as an open subscheme of the moduli space M� for
some generic stability parameter � .

We also show the following characterization of corner perfect matchings in this section:

Proposition 9.2 The following are equivalent for a perfect matching D in a consistent
dimer model :

(1) D is simple.

(2) D is multiplicity one.

(3) D is a corner perfect matching.

(4) D comes from a pair of zigzag paths with adjacent slopes.

The definitions of simplicity and multiplicity of a perfect matching are given in the
ends of Sections 5.8 and 5.2, respectively. We first prove Proposition 9.2.

Proof The proof is divided into four steps:

Step 1 A perfect matching is a corner perfect matching if and only if it comes from a
pair of zigzag paths with adjacent slopes.

Proof The “if” part follows from the fact that the height change of a perfect matching
coming from a pair of zigzag paths with adjacent slopes satisfies the equality in the
inequality (5-1) coming from both of these zigzag paths.

To show the “only if” part, consider three zigzag paths z1; z2; z3 with consecutive
slopes. Let D1 and D2 be the perfect matchings coming from z1; z2 and z2; z3 ,
respectively. Then (5-1) implies hh.D;D1/; Œz2�i � 0 for any D , where the equality
holds for DDD1;D2 . This shows that the line segment connecting the height changes
of the corner perfect matchings D1 and D2 is on the boundary of the Newton polygon.
In this way, we see that every corner perfect matching comes from a pair of zigzag
paths with adjacent slopes.

Step 2 A perfect matching coming from a pair of zigzag paths with adjacent slopes is
simple.
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Proof We have to show that the corresponding quiver representation M is simple, ie
has no non-trivial submodule. This follows from the fact that, in a perfect matching
coming from a pair of zigzag paths with adjacent slopes, one can find an allowed path
from any vertex to any other vertex in the quiver. Indeed, starting from any vertex, one
can first go to the sink of the large hexagon h1 where the vertex belongs, and then to
the adjacent vertex which is the source of the adjacent large hexagon h2 by the path
going around one of the nodes on the edge separating h1 and h2 . Recall that one can
go from the source of a large hexagon to any other vertex in the same large hexagon
only through an allowed path. Note also that one can go from the source of one large
hexagon to the source of another large hexagon adjacent in the x– and y–direction.
Since one can go from one large hexagon to any other large hexagon by multiplying
sufficiently many x and y , Step 2 is proved.

Step 3 A simple perfect matching is a corner perfect matching.

Proof Since simple modules are � –stable for any � , the divisor corresponding to a
simple perfect matching is not contracted in the affine quotient M0 . Hence it must be
a corner perfect matching.

Step 4 A perfect matching is multiplicity-free if and only if it is simple.

Proof Let us first prove the only if part. Assume M has a non-trivial submodule.
Then one can find a stability parameter � such that M is not � –semistable. Since M
is 0–semistable and the map M� !M0 is projective, there is another � –semistable
representation N with the same height change.

Now we prove the if part. Assume that M is simple, and take any module N with
the same height change as M . Choose a stability parameter � such that semistability
implies stability and N is � –stable [20, Lemma 6.2]. Since M is also � –stable with
the same height change as N , the modules N and M must belong to the same T –orbit,
so that the corresponding perfect matchings are identical.

This completes the proof of Proposition 9.2.

The proof of Step 1 also shows the following:

Corollary 9.3 The set of slopes of zigzag paths in a consistent dimer model is in
one-to-one correspondence with the set of sides of the characteristic polygon, so that
each slope is normal to the corresponding side.
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Proof of Proposition 9.1 Let A � GL.2;C/ be the finite small subgroup whose
McKay quiver ƒ is identified with the tessellation by large hexagons as in Section 7.3.
We discuss the embedding of A–Hilb.C3/ into M� for a suitable choice of � . Let D
be the perfect matching coming from a pair of zigzag paths with adjacent slopes. We
regard quivers as categories as in Section 5.9, and define a functor

�cW �!ƒ

as follows:

� A vertex of � is sent to the large hexagon containing it.

� An arrow inside a large hexagon that is not contained in D goes to the identity
of the large hexagon.

� An arrow inside a large hexagon that is contained in D goes to the small cycle
starting from the large hexagon.

� Suppose an arrow a of � is on the boundary of two large hexagons. Let b be
the arrow of ƒ connecting the two large hexagons. If a is in the same direction
as b , then a goes to b . If a is in the opposite direction, then a goes to the path
of length two that connects the two large hexagons in the same direction as a .

Recall that a representation of a quiver is regarded as a functor from the quiver as a
category to the category of vector spaces. Thus �c induces a functor

��c W mod Cƒ!mod C�:

The functor ��c sends a G–cluster to a representation of � with dimension vector
.1; : : : ; 1/.

Let h0 be the large hexagon identified with the trivial representation in the McKay
quiver ƒ of A. Choose a parameter � 2 Hom.ZV ;Q/ satisfying the following:

� If a vertex v is not the source of a large hexagon, then �.v/D 1.

� The sum of �.v/ inside a fixed large hexagon is 0.

Then take a sufficiently small � > 0 and define a stability parameter � 2Hom.ZV ;Q/
as follows:

� If v is the source of a large hexagon other than h0 , then �.v/D �.v/C � .

� If v is the source of h0 , then �.v/D �.v/� .#A� 1/� .

� For other vertices v , we set �.v/D �.v/.
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One can easily see that every A–cluster goes to a � –stable representation of � . This
gives an embedding 'cWA–Hilb.C3/ ,!M� , and Proposition 9.1 is proved.

Proof of Proposition 1.3 The open neighborhood Uc is given by the image of the em-
bedding 'cWA–Hilb.C3/ ,!M� : The closed subscheme A–Hilb.C2/� A–Hilb.C3/

consists of stable representations of the McKay quiver ƒ of A as a subgroup of
SL.3;C/ such that all the arrows corresponding to multiplication by z go to zero. It fol-
lows from the definition of the functor �c that such representations go to representations
of � such that any arrow contained in the corner perfect matching D goes to zero. Hence
the divisor A–Hilb.C2/�A–Hilb.C3/ goes to the corner toric divisor Dc�Uc�M�

under the embedding 'cWA–Hilb.C3/ ,!M� : The isomorphism (1-2) of tautological
bundles is clear from the construction of the embedding 'cWA–Hilb.C3/ ,!M� as a
morphism between moduli spaces coming from the universal property of the moduli
space, and Proposition 1.3 is proved.

10 Description of the algorithm

10.1 Removal of edges

Let GD .B;W;E/ be a consistent dimer model. The algorithm to remove the corner c
from the characteristic polygon � is the following:

Algorithm 10.1

(0) Remove all divalent nodes. This step in fact is not necessary but simplifies the
exposition below.

(1) Choose a pair of zigzag paths with adjacent slopes corresponding to the corner c.

(2) Choose an identification of the resulting large hexagons with vertices of the
McKay quiver for a finite small abelian group A � GL2.C/ � SL3.C/ by
choosing the large hexagon corresponding to the trivial representation.

(3) Remove the edges of the dimer corresponding to the arrows of the quiver going
from the sources of the large hexagons corresponding to special representations
to the sinks of the adjacent large hexagons related by multiplication by z .

One has a choice in Steps (1) and (2), and the result of the operation depends on this
choice. See Section 10.3 below for examples.
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10.2 Inversion of arrows

Removing an edge of a dimer model corresponds to merging adjacent vertices into a
single vertex. It also corresponds to adding an inverse arrow under a mild condition,
which is always satisfied when we remove a corner from the characteristic polygon of
a consistent dimer model:

Lemma 10.2 Let G D .B;W;E/ be a dimer model without divalent nodes, and
let � be the associated quiver with relations. Let further S be a subset of E . Then
G0 D .B;W;E nS/ is again a dimer model if and only if the following conditions are
satisfied:

(1) Every node is contained in at least two edges in E nS .

(2) There are no (not necessarily oriented) cycles of � consisting of arrows in S .

Moreover, if G0 is a dimer model, then the path algebra of the quiver with relations
associated with G0 is Morita equivalent to the path algebra of the quiver with relations
obtained from � by adding the inverses a�1 of arrows a 2 S together with relations
aa�1 D et.a/ and a�1aD es.a/ . Here ev is the idempotent element associated with a
vertex v of a quiver.

Proof Condition (1) holds if and only if all the nodes in G0 have valence at least two.
Condition (2) holds if and only if all the connected components of T n

S
e2EnS e are

simply connected. It is easy to see that the categories of representations of the above
two quivers with relations are equivalent to each other.

We show in Section 11 that the consistency condition is preserved by Algorithm 10.1,
so that Lemma 10.2 can be applied. The point of view of adding inverse arrows will be
used in Sections 16, 18 and 19 to prove the derived equivalence inductively.

10.3 Examples

As an example, consider the construction of dimer models for the hexagon in Figure 12,
right, starting from the dimer model in Figure 13 corresponding to the square lattice
polygon in Figure 12, left, by removing two vertices.

To remove the top left corner from the square lattice polygon in Figure 12, left, we
have to choose a pair of zigzag paths, one from each of those with homology classes
.�1; 0/ (shown in red in Figure 14) and .0; 1/ (shown in blue in Figure 14). There are
four choices in Step (1), which actually do not matter for symmetry reasons. There is
no choice in Step (2), and Figure 15 shows the resulting dimer model.
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Figure 12: Left: a square. Middle: a pentagon. Right: a hexagon.

Figure 13: A dimer model for the square lattice polygon

Figure 14: Zigzag paths

Figure 15: The dimer model for the pentagonal lattice polygon

Figure 16: Zigzag paths
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Figure 17: Dimer models for the hexagonal lattice polygon

Figure 18: A dimer model equivalent to the dimer model in Figure 17, top left

Figure 19: A dimer model equivalent to the dimer model in Figure 17, bottom left

Now consider the removal of the lower right corner from the pentagonal lattice polygon
in Figure 12, middle. In this case there are four choices in Step (1), which lead to
the dimer models shown in Figure 17. Note that the dimer models in the top right
and bottom right are obtained from the dimer models in the top left and bottom left,
respectively, by changing the colors of the nodes, so that the corresponding quivers are
related by the reversal of arrows.

The dimer model in Figure 17, top left, has a divalent white node, and one obtains the
dimer model in Figure 18 by removing it. The dimer model in Figure 17, bottom left,
is equivalent to the dimer model shown in Figure 19.
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Figure 20: Zigzag paths

Figure 21: From a hexagon to a triangle

Figure 22: From a hexagon to a square

Figure 23: Two characteristic polygons

The zigzag paths on the dimer model in Figure 18 are shown in Figure 20.

From the dimer model in Figure 18, one can construct the dimer model for P2 by
removing three vertices from the lattice polygon as in Figure 21.

Similarly, from the dimer model in Figure 18, one can construct the dimer model for
P1 �P1 by removing two vertices from the lattice polygon as in Figure 22.

Next we discuss a simple example where the special McKay correspondence plays a
role. Let AD

˝
1
5
.1; 2/

˛
be the subgroup of GL2.C/ generated by diag.�; �2/ for � D

exp.2�
p
�1=5/. Recall from Section 4 that the integers r , b1; : : : ; br and i0; : : : ; irC1
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0 1 2 3 4

2 3 4 0 1

4 0 1 2 3

1 2 3 4 0

Figure 24: The dimer model associated with �

are defined inductively by i0 WD n, i1 WD q , and

it D btC1itC1� itC2 .0 < itC2 < itC1/;

until we finally obtain ir D 1 and irC1 D 0. This gives

5D 3 � 2� 1;

2D 2 � 1� 0;

so that r D 2, .b1; b2/ D .3; 2/, and .i0; i1; i2/ D .5; 2; 1/. The continued fraction
expansion (4-2) is given by

n

q
D
5

2
D b1�

1

b2�
1

: : :�
1

br

D 3�
1

2
;

and the special representations are given by �5 D �0 , �1 and �2 . The McKay quiver
for A as a subgroup of SL3.C/ is the quiver associated with the dimer model shown in
Figure 24, where the parallelogram shows a fundamental region of the torus. To remove
the top right corner from the characteristic polygon shown in Figure 23, left, we have
to remove edges corresponding to multiplication by z from special representations.
These edges are shown in dotted lines in Figure 24, and by removing them, one obtains
the dimer model shown in Figure 25. This dimer model contains divalent nodes, and
by removing them, one obtains the dimer model shown in Figure 26, which is exactly
the dimer model corresponding to the characteristic polygon shown in Figure 23, right.
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1

0

0

1

0

1 00

1

0

1

1

Figure 25: The dimer model after the operation

1

0

0

1

0

1

00 1

0

1 1

Figure 26: The dimer model after removing divalent nodes

11 Preservation of the consistency

We use the same notation as in Section 4. We prove the following in this section:

Proposition 11.1 A consistent dimer model remains consistent after performing
Algorithm 10.1, if the lattice points of the polygon other than the removed one do
not lie on a line.

We need the following lemma to prove Proposition 11.1:

Lemma 11.2 Let t 2 Œ1; r C 1�, a 2 .0; it�1� it / and b 2 .0; jt � jt�1/ be integers.
Then it C aC bq is special if and only if aD b D 0.

Proof Write
aD dt it C dtC1itC1C � � �C dr ir ;

as in Theorem 4.2. Using the same theorem for the dual sequence, we can write

b D dt�1jt�1C dt�2jt�2C � � �C d1j1:
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Then Lemma 4.6 implies

it C aC bq � d1i1C � � �C dt�1it�1C .dt C 1/it C dtC1itC1C � � �C dr ir :

Therefore, if the sequence .d1; : : : ; dt�1; dt C 1; dtC1; : : : ; dr/ satisfies the condition
in Lemma 4.5, then it C aC bq is special if and only if d1 D � � � D dr D 0 by the
uniqueness of the expression in Theorem 4.2.

By using bt it D it�1C itC1 and the assumption a < it�1� it ; we obtain

.dt C 1� bt /it C .dtC1C 1/itC1C dtC2itC2C � � �C dr ir < 0;

which implies dt � bt � 2. Moreover, if the equality dt D bt � 2 holds, then we have

dtC1itC1C dtC2itC2C � � �C dr ir < it � itC1;

which is of the same form as the assumption a < it�1� it with t increased by 1 so
that we obtain dtC1 � btC1 � 2. Thus we can inductively show that if dk D bk � 1
for some k > t then there is an integer l 2 .t; k/ with dl � bl � 3.

We can argue in the same way to conclude that dt�1 � bt�1� 2, and if dk D bk � 1
for some k < t � 1 then there is an integer l 2 .k; t � 1/ with dl � bl � 3.

Thus we have shown that the sequence .d1; : : : ; dt�1; dt C 1; dtC1; : : : ; dr/ satisfies
the condition in Lemma 4.5.

Now we prove Proposition 11.1:

Proof of Proposition 11.1 We first note that if the zigzag paths of the bicolored graph
obtained by Algorithm 10.1 satisfy the consistency condition then the assumption of
Proposition 11.1 implies that the bicolored graph satisfies the conditions in Lemma 10.2
and hence is actually a dimer model. We prove the consistency conditions in two steps.

Step 1 The case A–Hilb.C3/ nA–Hilb.C2/ for AD
˝
1
n
.1; q/

˛
� GL2.C/.

Let ƒ be the hexagonal dimer model for A–Hilb.C3/. The associated quiver is
the McKay quiver of A, where the vertices are the irreducible representations of A
and there are three arrows from each vertex corresponding to the multiplications by
the coordinate functions x; y; z . Regard the set V of vertices as V D .Z=nZ/� D
Z=nZ and let ˛i ; ˇi ; 
i be the three arrows with the source i 2 V whose targets are
i C 1, i C q , i � q � 1, respectively. A zigzag path of ƒ is of one of the follow-
ing three forms according to its homology class: .: : : ; ˇiC1; ˛i ; ˇi�q; ˛i�q�1; : : : /,
.: : : ; 
iCq; ˇi ; 
iCqC1; ˇiC1; : : : / or .: : : ; ˛i�q�1; 
i ; ˛i�1; 
iCq; : : : /.
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it

it � q

it C 1

it�1 � q

it�1

it

it � q � 1

it C 1

it � q � 1

it � q

it�1 C q

it�1 � 1

it�1 � q � 1

Figure 27: New zigzag paths intersect at most once on the universal cover

Let ƒ0 be the bicolored graph obtained from ƒ by Algorithm 10.1 (ie by removing the
edges 
i for special i ). Of three homology classes of zigzag paths on ƒ, only the ones
consisting of ˛ and ˇ survive in ƒ0 . The other two zigzag paths will be transformed
into new zigzag paths on ƒ0 , indexed by t with t 2 Z=rZ, as follows: Start with the
edge ˇit�1�q whose target is the special hexagon it�1 , next choose the adjacent edge

it�1C1 if it�1C 1 is not special, and go along the old zigzag path consisting of ˇ
and 
 until one arrives at the next special hexagon it , where one is blocked by the
removed edge 
it . Then one changes the direction and go along the old zigzag path
consisting of ˛ and 
 . By virtue of (4-3), one comes back to the starting point without
meeting any other removed edges.

Now let us check the consistency of the new dimer model. It is obvious that a new
zigzag path has no self-intersection on the universal cover. Choose two zigzag paths
on ƒ0 . If they are both old, ie zigzag paths of ƒ, then they do not meet at all. If one is
old and the other is new, then they meet more than once in general but always in the
opposite direction. If they are both new, then they meet at most once on the universal
cover, since there are no special representations in the rectangular region in Figure 27,
by Lemma 11.2.

Step 2 The general case.

Old zigzag paths except the chosen two survive, and new zigzag paths are described in
the same way as above using the large hexagons. Let us analyze intersections of two
zigzag paths in the new dimer model. If two zigzag paths are both old or new, then
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the same reasoning as Step 1 shows that they do not intersect in the same direction
twice. Take one new zigzag path and one survivor from the old one, and suppose they
meet twice in the same direction. Since we have chosen two zigzag paths with adjacent
slopes to perform the operation, the slope of the survivor cannot be in between the
slopes of these two zigzag paths. This implies that the survivor must meet either of the
two zigzag paths twice in the same direction, thus contradicting the consistency of the
old dimer model.

12 Zigzag paths and characteristic polygons

We use the relation between zigzag paths and the characteristic polygon to show that
the characteristic polygon changes as expected under the operation.

Let .Œzi �/kiD1 be the sequence of slopes of zigzag paths ordered cyclically starting from
any zigzag path. Here k is the number of zigzag paths, and some of the slopes may
coincide, in general. Define another sequence .wi /riD1 in Z2 by w0 D 0 and

wiC1 D wi C ŒziC1�
0 .i D 0; : : : ; k� 1/;

where ŒziC1�0 is obtained from ŒziC1� by rotating by 90ı in the positive direction.
Note that one has wr D 0, since every edge is contained in exactly two zigzag paths
whose directions on that edge are opposite, and hence the homology classes of the
zigzag paths add up to zero. The convex hull of .wi /riD1 is called the zigzag polygon.

The following theorem was proved by Gulotta [16, Theorem 3.3] for properly ordered
dimer models and therefore it holds for consistent dimer models by [21, Proposition 4.4].

Theorem 12.1 For a consistent dimer model, the characteristic polygon � coincides
with the zigzag polygon up to translation.

Theorem 12.1 yields the second part of Theorem 1.1:

Proposition 12.2 The characteristic polygon of the dimer model after performing
Algorithm 10.1 is obtained by removing the chosen corner and taking the convex hull
of the rest.

Proof In the proof of Proposition 11.1, we have described the change of zigzag paths
under the operation. Theorem 12.1 shows that this induces the desired change in the
characteristic polygon.

Theorem 12.1 and Lemma 7.1 gives the following uniqueness result in the case of
lattice triangles:
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Proposition 12.3 For any lattice triangle �, there is a unique consistent dimer model
whose characteristic polygon coincides with �.

Proof In the case of a triangle, any pair of zigzag paths are adjacent or have the
same slope. If they have the same slope, then the consistency condition prevents them
from intersecting at all. If they are adjacent, then they can intersect only once on the
universal cover, by Lemma 7.1. These two conditions suffice to show that the resulting
dimer model gives a hexagonal tiling of the 2–torus, and the corresponding quiver is
the McKay quiver for some abelian subgroup of SL3.C/.

See also [34, Theorem 1.2] for a closely related uniqueness result. The uniqueness
fails even for squares; see eg [33] for a discussion of an example.

Another corollary is the following statement, which is stronger than Proposition 8.1:

Corollary 12.4 Let G be a consistent dimer model. Then for any edge of G there is
a corner perfect matching containing it.

Proof For an edge e , choose a zigzag path z containing e . Then we can construct a
corner perfect matching D of G which contains half of the edges of z as in the proof
of Proposition 8.1. If D contains e , we are done. If D does not contain e , then the
other corner perfect matching D0 in the proof of Theorem 12.1 contains e .

13 Effect of Algorithm 10.1 on the moduli space

Suppose a dimer model G0 is obtained from a consistent dimer model G D .B;W;E/
by performing Algorithm 10.1. Let � and � 0 be the quivers associated with G and G0 ,
respectively, and let S �E be the set of removed edges. A vertex of � 0 is the union
of vertices of � 0 connected by arrows in S .

Regarding quivers as categories, we can define a functor �W � ! � 0 as follows: A
vertex v of � is sent to the vertex of � 0 containing v . An arrow a is sent to itself if
a … S , and to the identity of the vertex containing a if a 2 S . The functor � induces
the functor

��W mod� 0!mod�:

For the stability parameter � in Proposition 9.1, we define a stability parameter � 0

for � 0 such that � 0.v0/ is the sum of �.v/ for vertices v � v0 . Then the above functor
gives an open embedding M0

� 0
!M� . In terms of the moduli spaces, Proposition 12.2

is interpreted as follows:
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Proposition 13.1 The image of M0
� 0

is the complement of the toric divisor Dc �M�

corresponding to the removed corner c.

As a corollary, we obtain Proposition 1.6:

Corollary 13.2 The edges in S are exactly those which correspond to morphisms
between tautological bundles vanishing only on the toric divisor Dc �M� .

Proof For an edge e , let ‰.e/ denote the corresponding morphism between tauto-
logical bundles on M� . First consider an edge e 2 S . By the construction of the
corner perfect matching Dc , the morphism ‰.e/ vanishes on Dc . On the other hand,
Proposition 13.1 shows that ‰.e/ does not vanish on any other toric divisor. Next
suppose e … S . Then e survives as an edge e0 in the consistent dimer model G0 , and
‰.e/ restricts to a morphism ‰0.e0/ of tautological bundles on M0

� 0
. By Corollary 12.4,

there is a corner perfect matching D0 of G0 containing e . Then the simplicity of D0

shows that ‰0.e0/ vanishes along the divisor corresponding to D0 .

14 Injectivity of the universal morphism

Let G be a dimer model and
L
v Lv be the tautological bundle on the moduli space M�

of quiver representations with respect to a generic stability parameter � .

Proposition 14.1 If G is consistent, then the universal morphism

C�! End
�M

v

Lv
�

is injective.

Proof A consistent dimer model is non-degenerate by Proposition 8.1. Therefore, the
moduli space contains a three-dimensional algebraic torus T as an open set by [20,
Proposition 5.1]. Fix a T –fixed point Œ‰� on M� which is the isomorphism class
of a representation ‰ of � . Then the toric affine open neighborhood U‰ of Œ‰� is
isomorphic to a closed subscheme of the space eM of all the representations of � by
[20, Lemma 4.3]. Then T � U‰ is lifted to a subgroup of the group zT of C�–valued
representations of � . Thus T acts on both C� and End.

L
v Lv/ in such a way that

the homomorphism is equivariant. If two paths p and q from u to v are not equivalent,
they are not weakly equivalent by the cancellativity, and hence they have different
weights with respect to the T –action. Since equivalence classes of paths form a basis
of C� and any path goes to a non-zero element in End.

L
v Lv/, the homomorphism

is injective.
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15 Preservation of the tilting condition: A–Hilb.C3/ versus
A–Hilb.C3/ n A–Hilb.C2/

Let A be a finite small subgroup of GL2.C/ and set

Y D A–Hilb.C2/; U D A–Hilb.C3/ and U 0 D U nY:

Let R� be the tautological bundle on U DA–Hilb.C3/ corresponding to an irreducible
representation � of A, and R0� DR�jU 0 be its restriction to U 0 . In this section, we
compare the tilting conditions of

L
�R� and

L
�R0� and prove two lemmas which

will be used later in a more general setting. We first prove a general result that the
restriction of a tilting object to an open subset is also a generator:

Lemma 15.1 Let E be a tilting object in DbcohU . Then the pull-back of E by an
open immersion �W U 0! U is a generator in DbcohU 0 .

Proof For any coherent sheaf F on U 0 , there is a coherent sheaf zF on U such that
�� zF DF ; see eg [18, Exercise 5.15]. Since E is a tilting object, F is a direct summand
of an object in DbcohU obtained from E by taking mapping cones. Since derived
restriction commutes with the operation of taking mapping cones, this shows that F is
obtained from ��E by taking direct summands and mapping cones. This implies that
��E is a generator in DbcohU 0 .

To compare tilting properties of
L
�R� and

L
�R0� , we use the exact sequence

(15-1) � � � !H i
Y .U;R

_
� ˝R� /!H i .U;R_� ˝R� /!H i .U 0;R0�

_
˝R0� /! � � � :

In this exact sequence, we have the following vanishing result.

Lemma 15.2 The local cohomology H i
Y .U;R

_
� ˝R� / vanishes for i � 2.

Proof We use

H i
Y .U;R

_
� ˝R� /Š lim

��!
n

ExtiU .OnY ;R
_
� ˝R� /

to compute the local cohomology. One has

(15-2) ExtiU .OnY ;R
_
� ˝R� /Š ExtiU .fOU .�nY /!OU g;R_� ˝R� /

ŠH i .fOU !OU .nY /g˝R_� ˝R� /

ŠH i�1.OU .nY /jnY ˝R_� ˝R� /:
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Since U has the trivial canonical bundle, the adjunction formula gives an isomorphism

OU .nY /jnY Š !nY

with the dualizing sheaf !nY of nY . Since Y is a resolution of an affine surface,
one has H 2.E/ D 0 for any coherent sheaf E on Y . It follows that any surjection
F ! G! 0 of coherent sheaves on Y induces a surjection H 1.F/!H 1.G/! 0 of
cohomology groups. By definition of full sheaves, one has H 1.R_� ˝!Y /D 0 and
R� jY is generated by global sections. The latter shows the existence of a surjection
O˚NU !R� jY ! 0 for some N 2N , which gives a surjection

R_� ˝!
˚N
Y !R_� ˝R� ˝!Y ! 0;

which, combined with H 1.R_� ˝!Y /D 0, gives

H 1.R_� ˝R� ˝!Y /D 0:
This proves

ExtiU .OnY ;R
_
� ˝R� /D 0

for nD 1.

For n > 1, note the exact sequence

0!OU .D�Y /j.n�1/Y !OU .D/jnY !O.D/jY ! 0;

which holds for any divisor D on Y . By substituting D D nY , one obtains

0!OU ..n� 1/Y /j.n�1/Y !OU .nY /jnY !O.nY /jY ! 0;

which is the same as

0! !.n�1/Y ! !nY ! !˝nY ! 0:

Since Y is the minimal resolution, !˝nY is generated by global sections and one has

H 1.R_� ˝R� ˝!˝nY /D 0

by the same argument as above. Together with the exact sequence

H 1.R_� ˝R� ˝!.n�1/Y /!H 1.R_� ˝R� ˝!nY /!H 1.R_� ˝R� ˝!˝nY /;

one can inductively show

H 1.R_� ˝R� ˝!˝nY /D 0

for any positive integer n.
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We obtain the following corollary, which we will not use. Note that its assumption
follows from [8].

Corollary 15.3 If the condition .T/ holds for U , then the direct sum
L
�R0� over

the set of irreducible representations of A is a tilting object.

Proof The restriction
L
�R0� is a generator by Lemma 15.1. The vanishing of

H i .R0�
_
˝R0� / for i � 1 follows from the long exact sequence (15-1) together with

Lemma 15.2.

16 Preservation of surjectivity: A–Hilb.C3/ versus
A–Hilb.C3/ n A–Hilb.C2/

We use the same notation as in Section 15. Let ƒ be the McKay quiver of A, and ƒ0

be the quiver obtained from ƒ by adding inverse arrows to the arrows starting from
special representations corresponding to multiplication by z .

We prove the following in this section:

Proposition 16.1 The natural map from Cƒ0 to the endomorphism algebra of
L
i R
0
i

is surjective.

Let zN D Z3 be the group of one-parameter subgroups of the dense torus in C3 . The
group N � zN of one-parameter subgroups of the dense torus in U D A–Hilb.C3/ is
given by

N D Z3CZ �
1

n
.1; q; n� .1C q//;

and the fan describing the quotient C3=A has the unique three-dimensional cone given
by the first quadrant .R�0/3 � zNR DNR .

Lemma 16.2 (Craw and Reid [11]) One-dimensional cones in the fan describing
U D A–Hilb.C3/ which are adjacent to R�0.0; 0; 1/ are generated by

1

n
.jt ; it ; n� .it C jt // 2N

for 0 � t � r C 1. Here we say two one-dimensional cones are adjacent if they are
contained in a common two-dimensional cone.
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Now let us express the tautological bundles as Q–linear combinations of exceptional
divisors, ie toric divisors except the three which correspond to the corners of the junior
simplex. Let x; y; z 2CŒ zM� be the coordinates of C3DSpec CŒx; y; z� corresponding
to the standard basis of zM D Hom. zN;Z/Š Z3 . Then rational sections of Rd form a
vector space with a basis consisting of Laurent monomials xaybzc with

aC bq� .1C q/c � d mod n:

On the other hand, the coordinate ring of the dense torus in C3=A is given by
CŒx˙1; y˙1; z˙1�A DCŒM �; where

M D Hom.N;Z/D f.a; b; c/ 2 zM j aC bq� .1C q/c � 0 mod ng:

It follows that one can embed the line bundle R˝n
d

into OU in a natural way and it
defines an effective exceptional divisor Ed on U with R˝n

d
DOU .�Ed /.

LetC D.cst /rs;tD1 be the negative of the intersection matrix of the resolution Y!C2=A:

cst D

8<:
bs if s D t;
�1 if js� t j D 1;
0 otherwise:

The lower-right principal minors

it D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
btC1 �1

�1 btC2 �1

�1
: : :

: : :

: : : br�1 �1

�1 br

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

give the integers appearing in the continued fraction expansion in Section 4, since they
satisfy (4-1). In particular, one has detC D i0 D n. Let �st be the .s; t/th entry of the
integer matrix nC�1 . Since0BBBBBB@

b1 �1

�1 b2 �1

�1
: : :

: : :

: : :
: : : �1

�1 br

1CCCCCCA

0BBBBB@
i1
i2
i3
:::

ir

1CCCCCAD
0BBBBB@

b1i1� i2
�i1C b2i2� i3
�i2C b3i3� i4

:::

�ir�1C br ir

1CCCCCAD
0BBBBB@
i0
0

0
:::

0

1CCCCCAD
0BBBBB@
n

0

0
:::

0

1CCCCCA
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and0BBBBB@
b1 �1

�1 b2 �1
: : :

: : :
: : :

�1 br�1 �1

�1 br

1CCCCCA

0BBBBB@
j1
j2
:::

jr�1
jr

1CCCCCAD
0BBBBB@

b1j1�j2
�j1Cb2j2�j3

:::

�jr�2Cbr�1jr�1�jr
�jr�1Cbrjr

1CCCCCAD
0BBBBB@

0

0
:::

0

jrC1

1CCCCCAD
0BBBBB@
0

0
:::

0

n

1CCCCCA ;
one has

(16-1) it D �t1 and jt D �tr

for 1� t � r .

Let Dt be the divisor on U corresponding to the ray R�0.jt ; it ; n� .it Cjt // in NR .
Since a line bundle on Y is determined by the degrees of the restrictions to the
exceptional curves, the fact that

degO.�Eis /jY\Dt D degR˝nis jY\Dt
D n degRis jY\Dt
D n degMis jCt

D nıst

implies the following:

Lemma 16.3 We can write

Eis D

rX
tD1

�stDt C .sum of other exceptional divisors/:

Therefore, for an integer d D
P
t dt it as in Theorem 4.2, the coefficient of Dt in Ed

is
P
s ds�st .

For integers f; g 2 Œ0; n� 1�, the space of rational sections of R_
f
˝Rg has

fxaybzc j aC bq� c.1C q/� g�f mod ng

as a basis. Write f D
P
t ft it and g D

P
t gt it as in Theorem 4.2.

Corollary 16.4 For integers a; b; c with aCbq�c.1Cq/� g�f mod n, the order
of zero of the rational section xaybzc of R_

f
˝Rg along Dt is given by the integer

(16-2) et WD
1

n

�
ajt C bit C c.n� .it C jt //�

rX
sD1

.gs �fs/�st

�
:
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Proof The order of zero of xaybzc along Dt as a section of OU is given by

ajt C bit C c.n� .it C jt //;

and the difference between the order of zero as a section of OU .�Ed /Š R˝n
d

and
that of OU is given by

P
s.gs �fs/�st .

It follows from Corollary 16.4 that a rational section xaybzc of R_
f
˝Rg is holomor-

phic on U 0 only if

(16-3) a � 0; b � 0; and et � 0 .1� t � r/:

By substituting t D 1 in (16-2), one obtains

e1 D
1

n

�
aj1C bi1C c.n� .i1C j1//�

rX
sD1

.gs �fs/�s1

�

D
1

n

�
aC bqC c.n� .qC 1//�

rX
sD1

.gs �fs/is

�
D
1

n
.aC bqC c.n� 1� q/� .g�f //;

and the condition aC bq� c.1C q/� g�f mod n is satisfied if e1 is an integer.

By multiplying (16-2) by the matrix C , one obtains
rX
tD1

cstet D
1

n

rX
tD1

cst

�
ajt C bit C c.n� .it C jt //�

rX
uD1

.gu�fu/�ut

�

D
1

n

rX
tD1

cst

�
a�tr C b�t1C c.n� .�t1C �tr//�

rX
uD1

.gu�fu/�ut

�

D aısr C bıs1C c

� rX
tD1

cst � ıs1� ısr

�
� .gs �fs/;

which gives

(16-4)

8̂<̂
:

b� b1e1C e2 D g1�f1� .b1� 2/c;

et�1� btet C etC1 D gt �ft � .bt � 2/c .2� t � r � 1/;

er�1� brer C aD gr �fr � .br � 2/c:

If xaybzc is a holomorphic section of R_
f
˝Rg on U 0 , then the solution .et / 2 Zr

to (16-4) must satisfy (16-3). Putting e0 WD b and erC1 WD a , we consider the second
difference

e00t WD et�1� 2et C etC1
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for 1� t � r . Then (16-4) can be written as

(16-5) e00t D gt �ft C .bt � 2/.et � c/ .1� t � r/:

If e00t � 0 for all t , then the function t 7! et is convex. This is not true in general, but
the situation is very close, as we will see now. To estimate e00t from below, we use the
following lemma:

Lemma 16.5 Let e � 0, bt � 2, ft � bt � 1 and c < 0 be integers. Then:

(1) �ft C .bt � 2/.e� c/� �1.

(2) If �ft C .bt � 2/.e� c/D�1, then ft D bt � 1.

(3) If �ft C .bt � 2/.e� c/D 0, then ft � bt � 2.

We omit the proof, which is elementary and straightforward. Since .f1; : : : ; fr/ satisfies
the condition in Lemma 4.5, this implies the following:

Corollary 16.6 Suppose .et /rC1tD0 2 ZrC2 is an integer solution to the difference
equation (16-5) for c < 0, and f D

P
t ft it , g D

P
t gt it as in Theorem 4.2. Then

we have the following:

(1) For a fixed t , et � 0 implies e00t � �1.

(2) If e00s D e
00
t D�1 for s < t and eu� 0 for any u2 Œs; t �, then there is an l 2 .s; t/

with e00
l
� 1.

(3) If e˛�1 > e˛ � 0 for some ˛ � 1, then we have e0 � � � � � e˛�1 > e˛ .

(4) If 0� eˇ < eˇC1 for some ˇ � r , then we have eˇ < eˇC1 � � � � � erC1 .

In particular, if et �0 for all t , then there are integers p and p0 with 0�p�p0� rC1
such that

(16-6) e0 � � � � � ep�1 > ep D � � � D ep0 < ep0C1 � � � � � erC1:

The following is the key to the proof of Proposition 16.1:

Lemma 16.7 Let xaybzc be a rational section of R_
f
˝Rg satisfying (16-3). If c is

negative, then there exist a special representation is and a rational section xa
0

yb
0

zc of
R_
f
˝Ris satisfying 0� a0 � a , 0� b0 � b , and

ht WD
1

n

�
a0jt C b

0it C c.n� .it C jt //�
X
u

.ıus �fu/�ut

�
� 0 .1� t � r/:
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Proof Since the claim is obvious if g is special, we assume that g is not special.
First, note that it suffices to show that for a suitable choice of s there is a solution
.h0; : : : ; hrC1/ 2 .Z�0/rC2 to

(16-7) h00t D ıts �ft C .bt � 2/.ht � c/ .1� t � r/;

with 0� ht � et for 0� t � rC1. Indeed, if .ht / is such a solution, then a0 WD hrC1
and b0 WD h0 determine a desired rational section xa

0

yb
0

zc of R_
f
˝Ris . Note also

that an integer solution .ht / 2ZrC2 satisfying (16-7) (without the assumption ht � 0)
is determined by any two consecutive values h˛; h˛C1 . Thus all we have to do is to
choose suitable s and values h˛; h˛C1 for some ˛ such that the corresponding solution
.ht / 2 ZrC2 to (16-7) satisfies 0� ht � et .

Let 0� p � p0 � r C 1 be as in (16-6) and put

e WD ep.D ep0/;

which is the minimum value of et . We note that if p < t < p0 , then e00t D 0 and

(16-8) �ft C .bt � 2/.e� c/D e
00
t �gt D�gt � 0:

Let q be the integer determined by

q WDmax ft 2 Z j 1� t � p and �ft C .bt � 2/.e� c/ > 0g

if this set is non-empty, and put q D 0 otherwise. Similarly, let q0 be the integer
determined by

q0 WDmin
˚
t 2 Z j p0 � t � r and �ft C .bt � 2/.e� c/ > 0

	
if this set is non-empty, and put q0 D r C 1 otherwise. Since we have (16-8) for
t 2 .p; p0/, our choice of q and q0 implies

(16-9) �ft C .bt � 2/.e� c/� 0 .q < t < q0/:

We first consider the case where there is an integer v 2 .q; q0/ such that

�fvC .bv � 2/.e� c/ < 0:

In this case, we have fv D bv � 1 and �fvC .bv � 2/.e� c/D�1 by Lemma 16.5.
Such an integer v 2 .q; q0/ is unique by (16-9), Lemma 4.5 and Lemma 16.5. Thus, if
t 2 .q; q0/ and t ¤ v , then

(16-10) �ft C .bt � 2/.e� c/D 0:
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Now we choose s as follows:

(1) If v 2 Œp; p0�, then s WD v .

(2) If v < p , then s WD p .

(3) If v > p0 , then s WD p0 .

Note that es D e and q < s < q0 in all cases. We have e00s � 0 >�fsC .bs�2/.es�2/
in (1) and e00s >0D�fsC.bs�2/.es�2/ in (2) and (3). Thus e00s >�fsC.bs�2/.es�2/
holds in all cases and we obtain gs > 0. This means that

ıst � gt

holds for any t .

Now we define .ht / satisfying (16-7) by the following two consecutive values:

(1) If v 2 Œp; p0�, then hp D hpC1 D e .

(2) If v < p , then hp D hpC1 D e .

(3) If v > p0 , then hp0�1 D hp0 D e .

Then, by (16-10) and by our choice of q , q0 and s , it satisfies the following conditions
in each case:

(1) hq�1 > hq D � � � D hq0 < hq0C1 .

(2) hp�1 > hp D � � � D hq0 < hq0C1 .

(3) hq�1 > hq D � � � D hp0 < hp0C1 .

By Corollary 16.6, we see that ht � e � 0 for any t . To compare ht and et , note that
(hp D ep and hpC1 � epC1 ) or (hp0�1 � ep0�1 and hp0 D ep0 ) hold. Moreover, by
our choice of s , we have ıst � gt for any t . Therefore, we inductively obtain h00t � e

00
t

and ht � et .

The case where there is no such v is similar and easier. If q ¤ q0 , we can take any s
with gs > 0 and we can define .ht / by hq D hqC1 D e . When q D q0 , we have
e00q D gq � fq C .bq � 2/.eq � 2/ � 2. If �fq C .bq � 2/.eq � 2/ D 1, then since
gq > 0, we can take s D q and we can define .ht / by hq D e , hqC1 D e C 1. If
�fqC .bq � 2/.eq � 2/� 2, then take any s with gs > 0 and define .ht / by hq D e ,
hqC1 D eC 1.

Now we prove Proposition 16.1:
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Proof of Proposition 16.1 Recall that a path in ƒ0 is obtained by concatenating paths
in ƒ and inverse arrows to the arrows in ƒ corresponding to multiplication by z from
special representations. We show that if xaybzc is a rational section of R_

f
˝Rg

satisfying (16-3), then there is a path in ƒ0 from f to g that is mapped to xaybzc .
Since the assertion is obvious if c is non-negative, we assume that c is negative. Then
we have s , a0 and b0 as in Lemma 16.7. We can regard xa

0

yb
0

zcC1 as a rational map
from Rf to RisCn�q�1 , whose orders of zeros along the divisors Dt are the same
as those of xa

0

yb
0

zc by Corollary 13.2. Therefore, we can represent the rational map
xaybzc W Rf !Rg as the product of the rational maps

xa
0

yb
0

zcC1W Rf !RisCn�q�1; z�1W RisCn�q�1!Ris ; xa�a
0

yb�b
0

W Ris!Rg :

The last rational map corresponds to a path in the McKay quiver and we can prove the
assertion by induction on �c .

The proof of Proposition 16.1 also shows the following:

Corollary 16.8 A rational section xaybzc of R_
f
˝Rg is holomorphic on U 0 if and

only if (16-3) is satisfied.

17 Some technical lemmas

This section is devoted to the proof of technical lemmas on the paths of the quiver
associated with a dimer model, which will be needed later. Consider a pair of zigzag
paths with adjacent slopes, which gives a corner perfect matching D as in Section 7.
We have a functor

�cW �!ƒ

with respect to the corner c corresponding to D , as in Section 9, where ƒ is the McKay
quiver whose vertices are large hexagons. There is a corner perfect matching D of ƒ
corresponding to D , which consists of the arrows representing multiplications by z .

Lemma 17.1 Let v be a vertex of � .

(1) Suppose v is the source of the large hexagon �c.v/ and a path p of ƒ starting
from �c.v/ does not intersect with D . Then there is a path Qp of � from v to any
vertex in the large hexagon t .p/ such that �c. Qp/D p and Qp does not intersect
with D .

(2) Suppose v is the sink of the large hexagon �c.v/ and a path p of ƒ ending at
�c.v/ does not intersect with D . Then there is a path Qp of � from any vertex
in the large hexagon s.p/ to v such that �c. Qp/ D p and Qp does not intersect
with D .
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The first assertion follows from the following lemma. We can also show the dual
statement, which implies the second assertion above.

Lemma 17.2 Suppose a vertex v of � is the source of the large hexagon �c.v/.

(1) For any vertex w of � in �c.v/, there is a path q from v to w with �c.q/De�c.v/
(the idempotent of �c.v/) which doesn’t contain arrows in D .

(2) If a is an arrow of ƒ with s.a/ D �c.v/ and a … D , then there is a path q0

from v to the source w of the large hexagon t .a/ with �c.q0/D a which doesn’t
contain arrows in D .

Proof For the first assertion, let w be a vertex in �c.v/ and take the minimal path q
from v to w inside �c.v/. Then, by the construction of the corner perfect matching D ,
q doesn’t contain arrows in D .

For the second assertion, one of the two zigzag paths used to construct the large
hexagons contacts both v and w , and one can take the path from v to w on � parallel
to this zigzag path as q0 .

Lemma 17.3 Suppose a is an arrow of � contained in the perfect matching D . Then
there is a path q of � with the following properties:

� q goes from s.a/ to the source w of the large hexagon that is adjacent to the
sink u of �c.t.a// by the arrow b in D with s.b/D w and t .b/D u.

� �c.bq/ is equivalent to �c.a/.

� q doesn’t contain arrows in D .

Proof Recall from Section 5.6 that two paths are equivalent if and only if they have
the same homology class and they contain the same number of arrows in D . First
assume that a is inside a large hexagon (ie �c.s.a//D �c.t.a//), as in Figure 28, left.
Then there is a minimal path q0 from s.a/ to u inside �c.t.a//. In this case, q is
obtained by composing q0 and the path from u to w that goes around a node. Next,
consider the case where a is on one of the two zigzag paths determining large hexagons
but not on the other one, as in Figure 28, middle. In this case, q is the path parallel to
the zigzag path on which a is lying. Finally, suppose that a is on the intersection of
the two zigzag paths, as in Figure 28, right. In this case, b coincides with a and we
can put q D es.a/ .

Lemma 17.1 and Lemma 17.3 and its dual yield the following:
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a

q0 b
wu

b

a

wu

q

wu
a

Figure 28: Left: case 1. Middle: case 2. Right: case 3.

Lemma 17.4 Let a be an arrow of � contained in the perfect matching D .

� Suppose p is a path from t .a/ to the sink u of some large hexagon and p does
not contain arrows in D . Let b be the arrow such that t .b/D u and s.b/ is the
source of the adjacent large hexagon. Then there is a path p0 such that pa is
equivalent to bp0 .

� Suppose q is a path from the source u of some large hexagon to s.a/ and q does
not contain arrows in D . Let c be the arrow such that s.c/ D u and t .c/ is
the sink of the adjacent large hexagon. Then there is a path q0 such that aq is
equivalent to q0c .

18 Preservation of the tilting condition: The general case

Let � be the quiver with relations associated with a consistent dimer model, and � 0 be
another quiver obtained from � by adding the inverses to the arrows from the sources
of special large hexagons to the sinks of the neighboring large hexagons corresponding
to multiplication by z . Let M be the moduli space of representations of � with
the stability parameter chosen in Section 9, so that M contains U D A–Hilb.C3/

as an open subscheme and Y D A–Hilb.C2/ as a closed subscheme for some finite
abelian small subgroup A of GL2.C/. The McKay quiver of A as a subgroup of
SL3.C/ is denoted by ƒ. The moduli space M carries the tautological bundles Lv
corresponding to vertices v of � . Let M0 be the complement M n Y and L0v be
the restriction of Lv to M0 . The restrictions of Lv and L0v to U and U 0 D U n Y
give the tautological bundle R�c.v/ on U D A–Hilb.C3/ and its restriction R0

�c.v/
to

U 0 D A–Hilb.C3/ nA–Hilb.C2/, respectively. We prove the following in this section:

Proposition 18.1 The tautological bundle
L
v2V Lv is a tilting object if and only if

so is
L
v2V L0v .
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Proof In both directions, we use the long exact sequence

(18-1) � � �!H i
Y .M;L_v ˝Lw/!H i .M;L_v ˝Lw/!H i .M0;L0v

_
˝L0w/!� � � :

Since Y is contained in U , one has H i
Y .M;L_v ˝Lw/ŠH i

Y .U;R
_
�c.v/
˝R�c.w//,

and the “only if” part follows immediately from Lemma 15.1 and Lemma 15.2.

To show the “if” part, assume that
L
v L0v is a tilting object. In this case, Lemma 15.2

and (18-1) imply the vanishing of H i .M;L_v ˝Lw/ for i � 2, and for acyclicity it
suffices to show the surjectivity of

(18-2) H 0.M0;L0v
_
˝L0w/!H 1

Y .M;L_v ˝Lw/:

Put Lvw WD L_v ˝Lw and note that

H 1
Y .M;Lvw/ŠH 1

Y .U;Lvw jU /

Š lim
��!
l

Ext1OU .OlY ;Lvw jU /

Š lim
��!
l

H 0.Lvw ˝OlY .lY //;

where the last isomorphism follows from (15-2). Then the surjectivity of (18-2) follows
from the surjectivity of

H 0.Lvw.lY //!H 0.Lvw ˝OlY .lY //

for each l > 0, which is reduced to the surjectivity of

H 0.Lvw.lY //!H 0.Lvw.lY /jY /

by induction on l with the aid of the commutative diagram:

0 // H 0.Lvw..l�1/Y // //

��

H 0.Lvw.lY // //

��

H 0.Lvw.lY /jY /

0 // H 0.Lvw ˝O.l�1/Y ..l�1/Y // // H 0.Lvw ˝OlY .lY // // H 0.Lvw.lY /jY /

Now, for a fixed l , H 0.Lvw.lY /jY / has a basis of the form xaybz�l satisfying (16-3),
where we replace c with �l . Then Corollary 16.8 shows that it can be lifted to a section
of Lvw jU 0 and therefore is given by a path of ƒ0 by Proposition 16.1. Moreover, by
the proof of Proposition 16.1 and the assumption l > 0, the path can be chosen so
that it contains an inverse arrow (corresponding to multiplication by z�1 to a special
representation) but not arrows in the corner perfect matching D . Since
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� an inverse arrow in ƒ0 can be lifted to an inverse arrow of � 0 going from a sink
to a source,

� a path to the source of an inverse arrow in ƒ0 can be lifted to a path from an
arbitrary vertex in the large hexagon to the source of the corresponding inverse
arrow in � 0 by the second statement of Lemma 17.1, and

� a path from the target of an inverse arrow in ƒ0 can be lifted to a path to an
arbitrary vertex in the large hexagon from the source of the corresponding inverse
arrow in � 0 by the first statement of Lemma 17.1,

the path can be lifted to a path of � 0 from v to w , and (18-2) is surjective.

Finally, we show that
L
v Lv is a generator. For an object ˛ of DbcohM, assume

that RHom
�L

v Lv; ˛
�
D 0. Let s be the source of the large hexagon corresponding

to a special representation of A and let t be the sink of the adjacent large hexagon
which is the target of multiplication by z from the special representation. Let � denote
the closed immersion Y !M. Lemma 18.2 below shows that

���
�L_s Š fL

_
t ! L_s g;

so that one has

RHom.��Ls; ��˛/DR�..��Ls/_˝ ��˛/DR�.��L_s ˝ �
�˛/

DR�.��.�
�L_s ˝ �

�˛//DR�.���
�L_s ˝˛/

DR�.fL_t ! L_s g˝˛/D 0:

Since
L
��Ls is a tilting object on Y by Theorem 2.8, we have ��˛ D 0. It follows

that Supp˛ �M0 , and we obtain ˛ D 0 by our assumption that
L
v L0v is a tilting

object.

Lemma 18.2 Let s be the source of the large hexagon corresponding to a special
representation of A and let t be the target of multiplication by z into the adjacent large
hexagon. Then we have an exact sequence

0! L_t ! L_s ! L_s jY ! 0:

Proof Since M0 is the moduli of representations of � 0 by Proposition 13.1, the
restriction of the map Ls! Lt to M0 is an isomorphism. Then the assertion follows
from Lemma 5.1.
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19 Preservation of surjectivity: The general case

We use the same notation as in Section 18. In particular, the quiver � 0 is obtained
from � by inverting some of the arrows.

Proposition 19.1 Assume that both
L

Lv and
L

L0v are tilting objects. Then the
map C�! End.

L
Lv/ is surjective if and only if so is C� 0! End.

L
L0v/.

Proof Take a pair .v; w/ of vertices of � and consider the commutative diagram

0 // evC�ew

f

��


 // evC� 0ew

g

��

ı // Q

k
��

// 0

0 // Hom.Lv;Lw/
˛ // Hom.L0v;L0w/

ˇ // H 1
Y .L

_
v ˝Lw/ // 0;

where Q is defined as the cokernel of 
 . The second row is exact by (18-1) and our
assumption. Moreover, f and g are injective by consistency and hence the first row is
also exact. The map k is defined so that the diagram is commutative, and it suffices to
show that k is an isomorphism.

In the proof of the surjectivity of (18-2) (D ˇ ), we show that ˇ ıg is surjective and
hence k is surjective. To see that k is injective, consider the commutative diagram

0 // evC�ew

 //

��

evC� 0ew

i
��

ı // Q

j

��

// 0

0 // e�c.v/Cƒe�c.w/

f 0

��

// e�c.v/Cƒ
0e�c.w/

g 0

��

ı 0 // Q0

k0

��

// 0

0 // Hom.R�c.v/;R�c.w// // Hom.R0
�c.v/

;R0
�c.w/

/ // H 1
Y .R

_
�c.v/
˝R�c.w// // 0

where ƒ is the McKay quiver whose vertices are large hexagons. Here k0 is an
isomorphism since f 0 and g0 are isomorphisms.

By Lemma 17.4, any path in C� 0 nC� is equivalent to a path that contains an inverse
arrow in the intersection of the two zigzag paths (corresponding to multiplication
by z�1 ) but not arrows in the corner perfect matching D . This implies that Q
(resp. Q0 ) is isomorphic to the subspace of evC� 0ew (resp. e�c.v/0Cƒ

0e�c.w/0 ) spanned
by (the classes of) paths that contain inverse arrows but not arrows contained in D .
Therefore, the injectivity of j is reduced to the injectivity of i , which follows from
Proposition 14.1. Now H 1

Y .R
_
�c.v/

˝R�c.w// coincides with H 1
Y .L

_
v ˝ Lw/, and

k D k0 ı j is injective.
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20 Proof of Theorem 1.4

We prove Theorem 1.4 in this section. Let G be a consistent dimer model. Since any
lattice polygon � can be turned into a triangle with unit area by successively removing
corners, one can find a sequence

G DG0 7!G1 7! � � � 7!Gk

of consistent dimer models, where each step is given by the operation in Theorem 1.1,
and the characteristic polygon of Gk is the triangle with unit area.

By Proposition 12.3, the dimer model Gk is determined uniquely by its characteristic
polygon. The corresponding quiver is the McKay quiver for the trivial group, and the
path algebra is isomorphic to the polynomial algebra in three variables. In this case, the
moduli space is the affine space and the tautological bundle is the trivial line bundle,
so that the conditions .T/ and .E/ are clearly satisfied.

Assume the existence of a derived equivalence

ˆ.�/DR�

��M
v

Lv
�
˝�

�
W DbcohMi;� !Dbmod C�i

for some i > 0 between the quiver �i associated with the dimer model Gi and the
moduli space Mi;� of � –stable representations of �i for some generic � . Then we
change the stability parameter to the one described in Proposition 1.3. This preserves
the conditions .T/ and .E/ by [22, Theorem 1.1].

Then we use the “if” part of Theorem 1.5 to show that conditions .T/ and .E/ hold
for Gi�1 for some generic stability parameter.

By repeating this process, we show that the conditions .T/ and .E/ hold for G with
any generic stability parameter, and Theorem 1.4 is proved.

References
[1] R J Baxter, Exactly solved models in statistical mechanics, Academic Press, London

(1982) MR690578

[2] M Van den Bergh, Non-commutative crepant resolutions, from: “The legacy of
Niels Henrik Abel”, (O A Laudal, R Piene, editors), Springer, Berlin (2004) 749–770
MR2077594

[3] M Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J.
122 (2004) 423–455 MR2057015

Geometry & Topology, Volume 19 (2015)

http://www.ams.org/mathscinet-getitem?mr=690578
http://www.ams.org/mathscinet-getitem?mr=2077594
http://dx.doi.org/10.1215/S0012-7094-04-12231-6
http://www.ams.org/mathscinet-getitem?mr=2057015


3464 Akira Ishii and Kazushi Ueda

[4] R Bocklandt, Consistency conditions for dimer models, Glasg. Math. J. 54 (2012)
429–447 MR2911380

[5] A I Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad.
Nauk SSSR Ser. Mat. 53 (1989) 25–44 MR992977 In Russian; translated in Math.
USSR-Izv. 34 (1990) 23–42

[6] A Bondal, D Orlov, Semiorthogonal decomposition for algebraic varieties, preprint
(1995) arXiv:alg-geom/9506012

[7] T Bridgeland, Flops and derived categories, Invent. Math. 147 (2002) 613–632
MR1893007

[8] T Bridgeland, A King, M Reid, The McKay correspondence as an equivalence of
derived categories, J. Amer. Math. Soc. 14 (2001) 535–554 MR1824990

[9] N Broomhead, Dimer models and Calabi–Yau algebras, Mem. Amer. Math. Soc. 1011,
Amer. Math. Soc. (2012) MR2908565

[10] A Craw, The special McKay correspondence as an equivalence of derived categories,
Q. J. Math. 62 (2011) 573–591 MR2825472

[11] A Craw, M Reid, How to calculate A–Hilb C3 , from: “Geometry of toric varieties”,
(L Bonavero, M Brion, editors), Sémin. Congr. 6, Soc. Math. France, Paris (2002)
129–154 MR2075608

[12] B Davison, Consistency conditions for brane tilings, J. Algebra 338 (2011) 1–23
MR2805177

[13] H Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math.
362 (1985) 63–71 MR809966

[14] S Franco, D Vegh, Moduli spaces of gauge theories from dimer models: proof of the
correspondence, J. High Energy Phys. (2006) MR2270405

[15] V Ginzburg, Calabi–Yau algebras, preprint (2007) arXiv:math/0612139

[16] D R Gulotta, Properly ordered dimers, R–charges, and an efficient inverse algorithm,
J. High Energy Phys. (2008) MR2453031

[17] A Hanany, D Vegh, Quivers, tilings, branes and rhombi, J. High Energy Phys. (2007)
MR2357949

[18] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New
York (1977) MR0463157

[19] A Ishii, On the McKay correspondence for a finite small subgroup of GL.2;C/ , J.
Reine Angew. Math. 549 (2002) 221–233 MR1916656

[20] A Ishii, K Ueda, On moduli spaces of quiver representations associated with dimer
models, from: “Higher dimensional algebraic varieties and vector bundles”, (S Mukai,
editor), RIMS Kôkyûroku Bessatsu B9, Res. Inst. Math. Sci., Kyoto (2008) 127–141
MR2509696

Geometry & Topology, Volume 19 (2015)

http://dx.doi.org/10.1017/S0017089512000080
http://www.ams.org/mathscinet-getitem?mr=2911380
http://dx.doi.org/10.1070/IM1990v034n01ABEH000583
http://www.ams.org/mathscinet-getitem?mr=992977
http://arxiv.org/abs/alg-geom/9506012
http://dx.doi.org/10.1007/s002220100185
http://www.ams.org/mathscinet-getitem?mr=1893007
http://dx.doi.org/10.1090/S0894-0347-01-00368-X
http://dx.doi.org/10.1090/S0894-0347-01-00368-X
http://www.ams.org/mathscinet-getitem?mr=1824990
http://dx.doi.org/10.1090/S0065-9266-2011-00617-9
http://www.ams.org/mathscinet-getitem?mr=2908565
http://dx.doi.org/10.1093/qmath/haq006
http://www.ams.org/mathscinet-getitem?mr=2825472
http://www.ams.org/mathscinet-getitem?mr=2075608
http://dx.doi.org/10.1016/j.jalgebra.2011.05.005
http://www.ams.org/mathscinet-getitem?mr=2805177
http://dx.doi.org/10.1515/crll.1985.362.63
http://www.ams.org/mathscinet-getitem?mr=809966
http://dx.doi.org/10.1088/1126-6708/2006/11/054
http://dx.doi.org/10.1088/1126-6708/2006/11/054
http://www.ams.org/mathscinet-getitem?mr=2270405
http://arxiv.org/abs/math/0612139
http://dx.doi.org/10.1088/1126-6708/2008/10/014
http://www.ams.org/mathscinet-getitem?mr=2453031
http://dx.doi.org/10.1088/1126-6708/2007/10/029
http://www.ams.org/mathscinet-getitem?mr=2357949
http://www.ams.org/mathscinet-getitem?mr=0463157
http://dx.doi.org/10.1515/crll.2002.064
http://www.ams.org/mathscinet-getitem?mr=1916656
http://www.ams.org/mathscinet-getitem?mr=2509696


Dimer models and the special McKay correspondence 3465

[21] A Ishii, K Ueda, A note on consistency conditions on dimer models, from: “Higher
dimensional algebraic geometry”, (S Mukai, N Nakayama, editors), RIMS Kôkyûroku
Bessatsu B24, Res. Inst. Math. Sci., Kyoto (2011) 143–164 MR2809653

[22] A Ishii, K Ueda, Dimer models and crepant resolutions, preprint (2013) arXiv:
1303.4028 To appear in Hokkaido Math. J.

[23] A Ishii, K Ueda, The special McKay correspondence and exceptional collection,
preprint (2013) arXiv:1104.2381 To appear in Tohoku Math. J.

[24] Y Ito, H Nakajima, McKay correspondence and Hilbert schemes in dimension three,
Topology 39 (2000) 1155–1191 MR1783852

[25] M Kapranov, E Vasserot, Kleinian singularities, derived categories and Hall algebras,
Math. Ann. 316 (2000) 565–576 MR1752785

[26] K D Kennaway, Brane tilings, Internat. J. Modern Phys. A 22 (2007) 2977–3038
MR2343711

[27] R Kenyon, An introduction to the dimer model, from: “School and Conference on
Probability Theory”, (G F Lawler, editor), ICTP Lect. Notes 17, Abdus Salam Int. Cent.
Theoret. Phys., Trieste (2004) 267–304 MR2198850

[28] A D King, Moduli of representations of finite-dimensional algebras, Quart. J. Math.
Oxford Ser. 45 (1994) 515–530 MR1315461

[29] S Mozgovoy, M Reineke, On the noncommutative Donaldson–Thomas invariants
arising from brane tilings, Adv. Math. 223 (2010) 1521–1544 MR2592501

[30] I Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001)
757–779 MR1838978

[31] M Reid, McKay correspondence, lecture notes (1997) arXiv:alg-geom/9702016

[32] J Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989)
436–456 MR1002456

[33] K Ueda, M Yamazaki, Dimer models for parallelograms, preprint (2010) arXiv:
math/0606548

[34] K Ueda, M Yamazaki, A note on dimer models and McKay quivers, Comm. Math.
Phys. 301 (2011) 723–747 MR2784278

[35] M Wemyss, The GL.2;C/ McKay correspondence, Math. Ann. 350 (2011) 631–659
MR2805639

[36] J Wunram, Reflexive modules on cyclic quotient surface singularities, from: “Singu-
larities, representation of algebras, and vector bundles”, (G-M Greuel, G Trautmann,
editors), Lecture Notes in Math. 1273, Springer, Berlin (1987) 221–231 MR915177

[37] J Wunram, Reflexive modules on quotient surface singularities, Math. Ann. 279 (1988)
583–598 MR926422

Geometry & Topology, Volume 19 (2015)

http://www.ams.org/mathscinet-getitem?mr=2809653
http://arxiv.org/abs/1303.4028
http://arxiv.org/abs/1303.4028
http://arxiv.org/abs/1104.2381
http://dx.doi.org/10.1016/S0040-9383(99)00003-8
http://www.ams.org/mathscinet-getitem?mr=1783852
http://dx.doi.org/10.1007/s002080050344
http://www.ams.org/mathscinet-getitem?mr=1752785
http://dx.doi.org/10.1142/S0217751X07036877
http://www.ams.org/mathscinet-getitem?mr=2343711
http://www.ams.org/mathscinet-getitem?mr=2198850
http://dx.doi.org/10.1093/qmath/45.4.515
http://www.ams.org/mathscinet-getitem?mr=1315461
http://dx.doi.org/10.1016/j.aim.2009.10.001
http://dx.doi.org/10.1016/j.aim.2009.10.001
http://www.ams.org/mathscinet-getitem?mr=2592501
http://www.ams.org/mathscinet-getitem?mr=1838978
http://arxiv.org/abs/alg-geom/9702016
http://dx.doi.org/10.1112/jlms/s2-39.3.436
http://www.ams.org/mathscinet-getitem?mr=1002456
http://arxiv.org/abs/math/0606548
http://arxiv.org/abs/math/0606548
http://dx.doi.org/10.1007/s00220-010-1101-0
http://www.ams.org/mathscinet-getitem?mr=2784278
http://dx.doi.org/10.1007/s00208-010-0572-9
http://www.ams.org/mathscinet-getitem?mr=2805639
http://dx.doi.org/10.1007/BFb0078846
http://www.ams.org/mathscinet-getitem?mr=915177
http://dx.doi.org/10.1007/BF01458530
http://www.ams.org/mathscinet-getitem?mr=926422


3466 Akira Ishii and Kazushi Ueda

Division of Mathematical and Information Sciences, Hiroshima University
1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan

Graduate School of Mathematical Sciences, University of Tokyo
3-8-1 Komaba, Meguro-ku 153-8914, Japan

akira141@hiroshima-u.ac.jp, kazushi@ms.u-tokyo.ac.jp

Proposed: Lothar Göttsche Received: 12 June 2014
Seconded: Richard Thomas, Jim Bryan Revised: 25 September 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:akira141@hiroshima-u.ac.jp
mailto:kazushi@ms.u-tokyo.ac.jp
http://msp.org
http://msp.org

	1. Introduction
	2. The special McKay correspondence
	3. Zero locus of the ``multiplication by z'' map
	4. Specials and continued fractions
	5. Dimer models and quivers
	5.1. Dimer models
	5.2. Perfect matchings and characteristic polygons
	5.3. Zigzag paths and their slopes
	5.4. Quivers
	5.5. A quiver with relations associated with a dimer model
	5.6. Small cycles, minimal paths and weak equivalence
	5.7. Moduli space of quiver representations
	5.8. Perfect matchings and moduli spaces
	5.9. Quivers as categories
	5.10. McKay quiver and hexagonal dimer models

	6. Consistency conditions on dimer models
	6.1. Divalent node
	6.2. Consistent dimer models
	6.3. Related notions

	7. Adjacent zigzag paths and large hexagons
	7.1. Adjacent zigzag paths
	7.2. Large hexagons
	7.3. Large hexagons and the McKay quiver

	8. Consistent dimer models are non-degenerate
	9. Corner perfect matchings
	10. Description of the algorithm
	10.1. Removal of edges
	10.2. Inversion of arrows
	10.3. Examples

	11. Preservation of the consistency
	12. Zigzag paths and characteristic polygons
	13. Effect of Algorithm 10.1 on the moduli space
	14. Injectivity of the universal morphism
	15. Preservation of the tilting condition: A-Hilb(C3) versus A-Hilb(C3) minus A-Hilb(C2)
	16. Preservation of surjectivity: A-Hilb(C3) versus A-Hilb(C3) minus A-Hilb(C2)
	17. Some technical lemmas
	18. Preservation of the tilting condition: The general case
	19. Preservation of surjectivity: The general case
	20. Proof of Theorem 1.4
	References

