ON SUMS OF THREE UNIT FRACTIONS WITH POLYNOMIAL DENOMINATORS

A. Schinzel

Abstract

The equation $m /(a x+b)=1 / F_{1}(x)+1 / F_{2}(x)+1 / F_{3}(x)$ is shown to be impossible under some conditions on polynomials $a x+b$ and F_{1}, F_{2}, F_{3}. Keywords: parametric solutions, polynomials, unit fractions

A well known conjecture of Erdös and Straus [2] asserts that for every integer $n>1$ the equation

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

is solvable in positive integers x_{1}, x_{2}, x_{3}. Sierpiński [10] has made an analogous conjecture concerning $5 / n$ and the writer has conjectured that for every positive integer m the equation

$$
\begin{equation*}
\frac{m}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \tag{1}
\end{equation*}
$$

is solvable in positive integers x_{1}, x_{2}, x_{3} for all integers $n>n_{0}(m)$ (see [10], p. 25). For $m \leq 12$ one knows many identities

$$
\begin{equation*}
\frac{m}{a x+b}=\frac{1}{F_{1}(x)}+\frac{1}{F_{2}(x)}+\frac{1}{F_{3}(x)} . \tag{2}
\end{equation*}
$$

where a, b are integers, $a>0$ and F_{i} are polynomials with integral coefficients and the leading coefficients positive, see [1], [5], [7], [8], [11], Section 28.5. It could seem that a proof of solvability of (2) for a fixed m and $n>n_{0}(m)$ could be obtained by producing a finite set of identities of the form (2) with a fixed a and b running through the set of all residues $\bmod a$. The theorems given below show that this is impossible.

Theorem 1. Let a, b be integers, $a>0,(a, b)=1$. If b is a quadratic residue $\bmod a$, then there are no polynomials F_{1}, F_{2}, F_{3} in $\mathbb{Z}[x]$ with the leading coefficients positive, satisfying (2) with $m \equiv 0 \bmod 4$.

Theorem 2. Let m, a, b be integers, $a>0, m>3 b>0$. There are no polynomials F_{1}, F_{2}, F_{3} in $\mathbb{Z}[x]$ with the leading coefficients positive, satisfying (2).

Theorem 1 in the crucial case $m=4$ has been quoted in the book [4] (earlier inaccurately in [3]), but the proof has not been published before. The theorem is closely related to a result of Yamamoto [12] and the crucial lemma is a consequence of his work. Possibly, Theorem 2 can be generalized as follows. Let k, m, a, b be positive integers, $m>k b$. There are no polynomials $F_{1}, F_{2}, \ldots, F_{k}$ in $\mathbb{Z}[x]$ with the leading coefficients positive such that

$$
\frac{m}{a x+b}=\sum_{i=1}^{k} \frac{1}{F_{i}(x)}
$$

Note that by a theorem of Sander [9] the above equation has only finitely many solutions in polynomials F_{i} for fixed a, b, m and k.
Notation. For $\Omega \subset \mathbb{R}[x]$ we shall denote by Ω^{+}the set of polynomials in Ω with the leading coefficient positive.

For two polynomials A, B in $\mathbb{Z}[x]$, not both zero, we shall denote by (A, B) the polynomial $D \in \mathbb{Z}[x]^{+}$with the greatest possible degree and the greatest possible leading coefficient such that $A / D \in \mathbb{Z}[x]$ and $B / D \in \mathbb{Z}[x]$.

Lemma 1. If A, B, C, D are in $\mathbb{Z}[x],(A, B)=1$ and $A / B=C / D$, then $C=$ $H A, D=H B$ for an $H \in \mathbb{Z}[x]$. If $(C, D)=1$ then $H= \pm 1$.

Proof. This follows from Theorem 44 in [6], the so called Gauss's lemma.
Lemma 2. The equations

$$
\begin{equation*}
n^{2}=4\left(c s-b^{*}\right) b^{*} r-s \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{2} s=4\left(c s-b^{*}\right) b^{*} r-1 \tag{4}
\end{equation*}
$$

have no solutions in positive integers b^{*}, c, n, r, s.
Proof. This is a consequence of Theorem 2 in [12]: according to this theorem n^{2} does not satisfy either of the two congruences

$$
\begin{align*}
n^{2} & \equiv-s\left(\bmod 4 a^{*} b^{*}\right), \tag{5}\\
n^{2} s & \equiv-1\left(\bmod 4 a^{*} b^{*}\right) \tag{6}
\end{align*}
$$

where a^{*}, b^{*}, s are positive integers and $s \mid a^{*}+b^{*}$, while just such congruences follow from (3) and (4) with $a^{*}=c s-b^{*}$. The impossibility of the congruences
(5) and (6) is established in [12] by evaluation of the Kronecker symbol ($-s / a b$); instead one can use the Jacobi symbol as follows.
(3) gives $n^{2}=\left(4 b^{*} c r-1\right) s-4 b^{* 2} r$, (4) gives $(n s)^{2}=\left(4 b^{*} c r s-1\right) s-4 b^{* 2} r s$, while for $e=2^{\alpha} e_{0}>0, e_{0}$ odd, we have by the reciprocity law ([6], Section 42)

$$
\begin{aligned}
\left(\frac{-4 b^{* 2} e}{4 b^{*} e s-1}\right) & =-\left(\frac{\epsilon_{0}}{4 b^{*} e s-1}\right)=-(-1)^{\left(e_{0}-1\right) / 2}\left(\frac{4 b^{*} e s-1}{e_{0}}\right) \\
& =-(-1)^{\left(e_{0}-1\right) / 2}\left(\frac{-1}{\epsilon_{0}}\right)=-1
\end{aligned}
$$

Proof of Theorem 1. It is clearly sufficient to prove the theorem for $m=4$. Assume that we have (2) with $m=4$. Thus

$$
4 F_{1}(x) F_{2}(x) F_{3}(x)=(a x+b)\left(F_{2}(x) F_{3}(x)+F_{1}(x) F_{3}(x)+F_{1}(x) F_{2}(x)\right)
$$

hence

$$
F_{1}(-b / a) F_{2}(-b / a) F_{3}(-b / a)=0
$$

If we had $F_{i}(-b / a)=0$ for each $i \leq 3$, then there would exist polynomials $G_{i} \in \mathbb{Q}[x]^{+}$such that $F_{i}(x)=(a x+b) G_{i}(x)$. Since $(a, b)=1$ it follows from Gauss's lemma that $G_{i} \in \mathbb{Z}[x]^{+}$. Choosing an integer k such that $(a k+b) G_{1}(k) G_{2}(k) G_{3}(k) \neq 0$ we should obtain

$$
4=\frac{1}{G_{1}(k)}+\frac{1}{G_{2}(k)}+\frac{1}{G_{3}(k)} \leq 3, \quad \text { a contradiction } .
$$

Hence, up to a permutation of F_{1}, F_{2}, F_{3} there are two possibilities

$$
\begin{gather*}
F_{1}(-b / a)=F_{2}(-b / a)=0 \neq F_{3}(-b / a) \tag{7}\\
F_{1}(-b / a)=0 \neq F_{2}(-b / a) F_{3}(-b / a) \tag{8}
\end{gather*}
$$

In the case $(7) F_{i}(x)=(a x+b) G_{i}(x)(i=1,2),\left(F_{3}(x), a x+b\right)=1$, where $G_{i} \in \mathbb{Z}[x]^{+}$. Let us put

$$
\begin{aligned}
& D=\left(G_{1}, G_{2}\right), \quad G_{i}=D H_{i}(i=1,2) \\
& C=\left(4 D H_{1} H_{2}-H_{1}-H_{2}, D H_{1} H_{2}\right)=\left(H_{1}+H_{2}, D\right) \\
& D=C R, \quad H_{1}+H_{2}=C S
\end{aligned}
$$

H_{i}, C, R, S are in $\mathbb{Z}[x]^{+}$and we have $\left(H_{1}, H_{2}\right)=1,\left(R H_{1} H_{2}, S\right)=1$. By (2) with $m=4$

$$
\frac{a x+b}{F_{3}}=\frac{4 D H_{1} H_{2}-H_{1}-H_{2}}{D H_{1} H_{2}}=\frac{4 R H_{1} H_{2}-S}{R H_{1} H_{2}}
$$

Since $\left(a x+b, F_{3}\right)=1=\left(4 R H_{1} H_{2}-S, R H_{1} H_{2}\right)$ and both F_{3} and $R H_{1} H_{2}$ are in $\mathbb{Z}[x]^{+}$, it follows by Lemma 1 that

$$
\begin{equation*}
a x+b=4 R H_{1} H_{2}-S=4\left(C S-H_{2}\right) H_{2} R-S . \tag{9}
\end{equation*}
$$

Since b is a quadratic residue for a and C, H_{2}, R, S are in $\mathbb{Z}[x]^{+}$there exist integers k and n such that

$$
a k+b=n^{2} \quad \text { and } \quad b^{*}=H_{2}(k), c=C(k), r=R(k), s=S(k) \quad \text { are in } \mathbb{Z}^{+},
$$

which in view of (9) contradicts Lemma 2.
Consider now the case (8). We have here

$$
F_{1}(x)=(a x+b) G_{1}(x), F_{i}=D H_{i}(i=2,3)
$$

where $G_{1} \in \mathbb{Z}[x]^{+}, D=\left(F_{2}, F_{3}\right),\left(H_{2}, H_{3}\right)=1$ and $\left(D H_{2}, a x+b\right)=1(i=2,3)$, $H_{i} \in \mathbb{Z}[x]^{+}$. Hence, by (2) with $m=4$

$$
\begin{align*}
& \frac{4}{a x+b}=\frac{1}{(a x+b) G_{1}}+\frac{H_{2}+H_{3}}{D H_{2} H_{3}} \\
& \frac{D H_{2} H_{3}}{a x+b}=\frac{G_{1}\left(H_{2}+H_{3}\right)}{4 G_{1}-1} . \tag{10}
\end{align*}
$$

Let us put $C=\left(D, H_{2}+H_{3}\right), D=C R, H_{2}+H_{3}=C S$, so that C, R, S are in $\mathbb{Z}[x]^{+}$. Since $\left(D H_{2} H_{3}, a x+b\right)=1$ we infer from Lemma 1 that $4 G_{1}-1=$ $(a x+b) H_{1}$, where $H_{1} \in \mathbb{Z}[x]^{+}$. Hence, by (10),

$$
\frac{R H_{2} H_{3}}{S}=\frac{G_{1}}{H_{1}} .
$$

Since $\left(R H_{2} H_{3}, S\right)=1=\left(G_{1}, H_{1}\right)$ and S and H_{1} are in $\mathbb{Z}[x]^{+}$it follows from Lemma 1 that $H_{1}=S, G_{1}=R H_{2} H_{3}$ and

$$
\begin{equation*}
(a x+b) S=4 G_{1}-1=4 R H_{2} H_{3}-1=4\left(C S-H_{2}\right) H_{2} R-1 . \tag{11}
\end{equation*}
$$

Since b is a quadratic residue $\bmod a$ and C, H_{2}, R, S are in $\mathbb{Z}\{x]^{+}$there exist integers k and n such that

$$
a k+b=n^{2} \quad \text { and } \quad b^{*}=H_{2}(k), c=C(k), r=R(k), s=S(k) \quad \text { are in } \mathbb{Z}^{+} .
$$

which in view of (11) contradicts Lemma 2.
Proof of Theorem 2. If $F_{i}(0) \neq 0$ for all i it follows from (2) on substituting $x=0$ that

$$
\frac{m}{b}=\sum_{i=1}^{3} \frac{1}{F_{i}(0)} \leq 3,
$$

contrary to the assumption $m>3 b$.
If $F_{i}(0) \neq 0$ for all but one i, it follows from (2) on taking the limit for $x \rightarrow 0$

$$
\frac{m}{b}= \pm \infty
$$

a contradiction.
If $F_{i}(0)=0$ for all i, it follows $F_{i}(x)=x G_{i}(x), G_{i} \in \mathbb{Z}[x]^{+}$and by (2)

$$
\frac{m x}{a x+b}=\sum_{i=1}^{3} \frac{1}{G_{i}(x)}
$$

When $x \rightarrow \infty$ the terms on the left hand side are less than the limit m / a, the terms on the right hand side are greater or equal to the limit, which contradicts the equality.

Thus $F_{i}(0)=0$ for exactly two $i \leq 3$ and we may assume without loss of generality that

$$
F_{i}(0)=0(i=1,2), \quad F_{3}(0) \neq 0
$$

Arguing as in the proof of Theorem 1 we infer that $F_{i}(-b / a)=0$ for at least one i. Hence up to a permutation of F_{1}, F_{2} there are the following possibilities:

$$
\begin{array}{ll}
F_{i}(-b / a)=0(i=1,2.3) ; & \\
F_{i}(-b / a)=0(i=1,2), & F_{3}(-b / a) \neq 0 \\
F_{i}(-b / a)=0(i=1,3), & F_{2}(-b / a) \neq 0 \\
F_{i}(-b / a) \neq 0(i=1,2), & F_{3}(-b / a)=0 \\
F_{i}(-b / a) \neq 0(i=1,3), & F_{2}(-b / a)=0 \tag{16}
\end{array}
$$

We shall consider these cases successively.
Case (12). Here $F_{i}(x)=(a x+b) G_{i}(x), G_{i} \in \mathbb{Q}[x]^{+}(i=1,2,3)$ and by Gauss's lemma $(a, b) G_{i} \in \mathbb{Z}[x]^{+}$. Taking an integer k such that $G_{i}(k) \neq 0$ we obtain from (2)

$$
m=\sum_{i=1}^{3} \frac{1}{G_{i}(k)} \leq 3(a, b) \leq 3 b
$$

contrary to the assumption.
Case (13). Here $F_{i}(x)=x(a x+b) G_{1}(x), G_{i} \in \mathbb{Q}[x]^{+}(i=1,2)$

$$
m=\frac{1}{x G_{1}(x)}+\frac{1}{x G_{2}(x)}+\frac{a x+b}{F_{3}}
$$

and taking the limit for $x \rightarrow \infty$ we infer that $F_{3}=c x+d$, where $c=a / m$. Hence

$$
0=\frac{1}{x G_{1}}+\frac{1}{x G_{2}}+\frac{b-m d}{c x+d}
$$

For x large enough the first two terms are positive, hence $b-m d<0$ and $d>0$. Without loss of generality $G_{2}(-d / c)=0$, hence $G_{2}=(c x+d) H_{2}(x), H_{2} \in$ $\mathbb{Q}[x]^{+}$,

$$
0=\lim _{x \rightarrow \infty} \frac{c x+d}{x G_{1}(x)}+b-m d
$$

thus $G_{1}(x)=c /(m d-b)$ and

$$
0=\frac{m d-b}{c x}+\frac{1}{x(c x+d) H_{2}}+\frac{b-m d}{c x+d}=\frac{(m d-b) d}{x(c x+d)}+\frac{1}{x(c x+d) H_{2}} .
$$

This is impossible, since for x large enough both terms on the right hand side are positive.
Case (14). Here $F_{1}=x(a x+b) G_{1}, F_{2}=x G_{2}, F_{3}=(a x+b) G_{3}$, where $G_{i} \in$ $\mathbb{Q}[x]^{+}(i=1,2,3)$ and

$$
m=\frac{1}{x G_{1}}+\frac{a x+b}{x G_{2}}+\frac{1}{G_{3}} .
$$

The first and the second term on the right hand side are greater than their limits for $x \rightarrow \infty$, the third term is greater or equal, while the left hand side is constant: this gives a contradiction.
Case (15). Here $F_{i}=x G_{i},(i=1,2), F_{3}=(a x+b) G_{3}$, where $G_{i} \in \mathbb{Z}[x]^{+}$, $G_{i}(-b / a) \neq 0(i=1,2), G_{3} \in \mathbb{Q}[x]^{+}$and

$$
\frac{m x}{a x+b}=\frac{1}{G_{1}(x)}+\frac{1}{G_{2}(x)}+\frac{x}{(a x+b) G_{3}(x)} .
$$

If $G_{3} \notin \mathbb{Q}^{+}$all three terms on the right hand side are greater than or equal to their limits for $x \rightarrow \infty$, while the left hand side is less than the limit, a contradiction. Hence $G_{3}=g \in \mathbb{Q}^{+}$and

$$
\frac{(m-1 / g) x}{a x+b}=\frac{1}{G_{1}}+\frac{1}{G_{2}},
$$

which contradicts $G_{1} G_{2}(-b / a) \neq 0$.
Case (16). Here $F_{1}=x G_{1}, F_{2}=x(a x+b) G_{2}$, where $G_{1} \in \mathbb{Z}[x]^{+}, G_{2} \in \mathbb{Q}[x]^{+}$ and

$$
\begin{equation*}
\frac{m x}{a x+b}=\frac{1}{G_{1}}+\frac{1}{(a x+b) G_{2}}+\frac{x}{F_{3}} . \tag{17}
\end{equation*}
$$

If $\operatorname{deg} F_{3}=0$ we take the limit for $x \rightarrow \infty$ and obtain $m / a=\infty$, a contradiction.
If $\operatorname{deg} F_{3}>1$, when $x \rightarrow \infty$ the left hand side of (17) is less than its limit. while all three terms on the right hand side are greater than or equal to their limits, which gives a contradiction. Thus

$$
\begin{equation*}
\operatorname{deg} F_{3}=1, F_{3}=c x+d, \quad \text { where } c \in \mathbb{Z}^{+}, d / c \neq b / a \text {. } \tag{18}
\end{equation*}
$$

We consider four subcases:

$$
\begin{align*}
& \operatorname{deg} G_{1}>1 \tag{i}\\
& \operatorname{deg} G_{1}=1, G_{1} / F_{3} \notin \mathbb{Q} ; \tag{ii}\\
& \operatorname{deg} G_{1}=1, G_{1} / F_{3} \in \mathbb{Q} ; \tag{iii}\\
& \operatorname{deg} G_{1}=0 . \tag{iv}
\end{align*}
$$

Subcase (i). Taking the limit for $x \rightarrow \infty$ we infer from (17) and (18) that $a=\mathrm{cm}$ and

$$
\begin{align*}
& \frac{m x}{c m x+b}=\frac{1}{G_{1}}+\frac{1}{(c m x+b) G_{2}}+\frac{x}{c x+d} \\
& \frac{x(m d-b)}{c x+d}=\frac{c m x+b}{G_{1}}+\frac{1}{G_{2}}, \tag{19}
\end{align*}
$$

hence $m d-b>0, d>0$. When $x \rightarrow \infty$ the left hand side of (18) is less than its limit, while both terms on the right hand side are greater than or equal to their limits, which gives a contradiction.

Subcase (ii). As in the subcase (i) we have $m d-b>0, d>0$. Let $G_{1}=e x+f$, $e>0, f / e \neq b / a, d / c$. It follows from (19) that

$$
G_{2}=g^{-1}(c x+d)(e x+f) \cdot g \in \mathbb{Q}^{+}
$$

and substituting $x=0$ we obtain

$$
0=\frac{b}{f}+\frac{g}{d f} ; \quad g=-b d<0
$$

a contradiction.
Subcase (iii). Let $G_{1}=e^{-1}(c x+d), e \in \mathbb{Q}^{+}$. We obtain from (17) and (18)

$$
\frac{m x}{a x+b}=\frac{1}{(a x+b) G_{2}}+\frac{x+e}{c x+d},
$$

hence $G_{2}=f^{-1}(c x+d), f \in \mathbb{Q}^{+}$and substituting $x=0$

$$
0=\frac{f}{b d}+\frac{e}{d} ; \quad f=-b e<0
$$

a contradiction.
Subcase (iv). Let $G_{1}=g$. It follows from (17) and (18) that $G_{2}=e^{-1}(c x+d)$, $e \in \mathbb{Q}^{+}$,

$$
\frac{m x}{a x+b}=\frac{1}{g}+\frac{e}{(a x+b)(c x+d)}+\frac{x}{c x+d}
$$

and multiplying both sides by $(a x+b)(c x+d)$

$$
(c g m-a c-a g) x^{2}+(d g m-b g-a d-b c) x-b d-e=0 .
$$

Hence

$$
\begin{align*}
& c g m-a c-a g=0 \tag{20}\\
& d g m-b g-a d-b c=0 \tag{21}\\
& b d+e=0 \tag{22}
\end{align*}
$$

which is impossible, since (20) gives $g m-a=a g / c>0,(21)$ gives $d=(b g+b c) /(g m-a)>0$, contrary to (22).

References

[1] A. Aigner, Brüche als Summe von Stammbrüchen, J. Reine Angew. Math. 214/215 (1964), 174-179.
[2] P. Erdős, On the integer solutions of the equation $1 / x_{1}+1 / x_{2}+\ldots+1 / x_{n}=$ a / b. (Hungarian), Mat. Lapok 1 (1950), 192-210.
[3] R. K. Guy, Some unsolved problems, Computers in Number Theory (ed. A.O.L. Atkin and B.J. Birch), 415-422, Academic Press 1971.
[4] R. K. Guy, Unsolved Problems in Number Theory. Second Edition, SpringerVerlag 1994.
[5] E. Kiss, Remarques relatives à la représentation des fractions subunitaires en somme des fractions ayant le numérateur égal à l'unité (Romanian), Acad. R.P. Romine Fil. Cluj Stud. Cerc. Mat. 11 (1960), 319-323.
[6] T. Nagell, Introduction to Number Theory. Second Edition. Chelsea Publ. Co. 1964.
[7] R. Obláth, Sur l'équation diophantienne $4 / n=1 / x_{1}+1 / x_{2}+1 / x_{3}$, Mathesis 59 (1950), 308-316.
[8] G. Palamà, Su di una congettura di Sierpiński relativa alla possibilità in numeri naturali della $5 / n=1 / x_{1}+1 / x_{2}+1 / x_{3}$, Boll. Un. Mat. Ital. (3) 13 (1958), 65-72.
[9] J. W. Sander, Egyptian fractions and the Erdös - Straus conjecture, Nieuw Archief voor Wiskunde (4) 15 (1997), 43-50.
[10] W. Sierpiński, Sur les décompositions de nombres rationnels en fractions primaires, Mathesis 65 (1956), 16-32, see also Oeuvres choisies, T. I, 169-184, Varsovie 1974.
[11] B. M. Stewart, Theory of Numbers. Second Edition, The Macmillan Company 1964.
[12] K. Yamamoto, On the diophantine equation $4 / n=1 / x+1 / y+1 / z$, Mem. Fac. Sci. Kyushu Univ. Ser. A 19 (1965), 37-47.

Address: Institute of Mathematics. Polish Academy of Science, ul. Sniadeckich 8 , $00-950$ Warszawa.
Received: 4 April 2000

