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A NOTE ON LANDAU’S FORMULA
J. KACZOROWSKI*, A. LANGUASCO AND A. PERELLI

Abstract: In this paper we obtain a weighted form of Gonek’s [5] uniform version of the classical
Landau formula. The results are based on Kaczorowski-Perelli’s [10] technique for the Riemann-
von Mangoldt explicit formula. The main feature of our results is a more flexible remainder term,
which in particular gives better mean-values estimates.
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1. Introduction
In 1911, Landau [11] proved that for any fixed = > 1

T
E zf = —é—A(;c) + O(log T') as T — oc, (1.1)
0<y<LT @

where p runs over the non-trivial zeros of the Riemann zeta function ¢{(s) and

logp x = p™. p prime
Aw) = {
(z) 0 otherwise

is the extended von Mangoldt function. Since the use of (1.1) is limited by its
lack of uniformity in x, we are interested in a version of (1.1) that is uniform in
both variables. The first result in this direction was obtained by Gonek [4], [5].
He proved that for T > 1

Z xf = ——2?:1\(17) + O(x log 22T log log 3z)
0<'}‘§T T (1 )

+O(Iogscmin<T;——;E—))+O(Iog2Tmin<T; ! ))
<zr> log x
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where < x > denotes the distance between x and the nearest prime power other
that z itself.

We remark that (1.1) follows from (1.2) provided that z is fixed and T — 2.
We also remark that if £ = n € N and T > n, then the last two error terms in
(1.2) are absorbed in the first one and hence (1.2) becomes

T .
z nf = —;A(n) + O(nlog 2nT log log 3n). (1.3)
0<y&T g

This is due to the fact that the last two error terms in (1.2) exhibit the contribution
of the spikes of the zeta-zeros sum when z is a real number near to a prime power.
Observe that (1.2) and (1.3) are of interest when 7" = oo(xlog zloglogz) and T' =
oo(nlognloglogn), respectively. Here f(z) = oc(g(x)) means g(x) = o(f(x)).
We further remark that Fujii [2], [3] gave a stronger form of (1.2) assuming the
Riemann Hypothesis.

Deeper insight into the nature of the Landau formula and its connection with
the classical Riemann-von Mangoldt explicit formula can be gained by the study

of the function
k(z) = Z ef*,
vy >0

where Imz > 0 and the summation is taken over non-trivial zeros with posi-
tive imaginary parts. This function was considered by Cramér [1], Guinand [6]
and Kaczorowski [8], who described its basic analytic properties such as analytic
continuation, functional equations and boundary values on the real axis. For sim-
plicity let us restrict our attention to the set @ = C\(~o00,0]. Of course k(z) is
holomorphic on the upper half-plane and one can prove that it has meromorphic
continuation to 2. The only singularities are simple poles at logarithms of prime
powers ¢ = p”", with residues

Res k(z) = —=.
z:lg&g’ q (2) 271
It is now clear that the poles of k(z) are responsible for the term

T
—— Alx
5 A )
in (1.1) and for the spikes of the corresponding zeta-zeros sum.

In order to explain connections with the classical explicit formula, let us
consider the following function defined on the upper half-plane Imz > 0

K(z) ::/ k(s)ds,

2 1e's)
where the path of integration is the half-line s = 2 + iy, 0o > y > 0. Of course .
K(z) is holomorphic for Im 2 > 0, and for such z we have

K(z)-:z

v>0

eP?

r
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The integral representation of K(z) immediately gives analytic continuation of
K(z) along every curve lying inside 2 and avoiding the poles of k(z). Moreover,
near logq, where g is a fixed prime power, we have

K(z) = % log(z — logq) + G4(2),

where G,(z) is holomorphic at loggq. Consequently, the poles of k(z) become
logarithmic branch points of K(z).

Let us fix a real number 0 < zy < log2. For real * > zy which is not a
logarithm of a prime power, let us consider the curve consisting of the half-line
from zp +i00 to zo and of the segment [z, 2] of the real axis, with small detours
around poles of k(z) if x > log2. One can easily observe that near loggq the real
part of K(z) decreases by 3A(n) and therefore we have

1
Re K (2) = ~ 5u(¢”) + ()
with a continuous function g(z) and

Yla) =Y Aln).
n<z
This computation can be made precise (see [8], Th. 4.1) and the result is as follows.
For z > 0 let
F(z) =2 lim Re K(z + iy).

y—0+

Then :
F(z) = €® — yp(e”) - 3 log(1 — e™%) — log 2,
where .
Yo(z) = 5 (F(z = 0) + F(z +0)).

This is a form of the explicit formula. One can therefore say that Landau’s formula
is the “derivative” of the classical explicit formula.

Our aim here is to prove a weighted form of the Landau-Gonek formula,
in which the error term has a more flexible shape and a better mean-square and
individual bound. We will follow the technique that Kaczorowski-Perelli [10] ap-
plied to obtain similar results for the error term of a weighted form of the classical
Riemann-von Mangoldt explicit formula. Writing

3N )
J(N,H) = /N /2@3(:6 + H) —y(z) — H)*da,
JINH)= > ($(n+H)=v(n) - H),
N/2<n<3N

2 T T i1
watn =z [ ([ (5) @)

iy
21 and L =loguz,
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our first result is

Theorem 1.1. Let x > 16, 4 <T < x/4 and 1 < M <T/4. Then

T — ‘%Tw(a—%—Wx" = R(z,T), (1.4)
where p = 3 + iy runs over the non-trivial zeros of ((s),
R(z,T) = Ry(z,T) + Rz(x,T) + R3(z,T) (1.5)
and )
Ri(@,T) = - > | A(n)H(z.T,n), (1.6)
z—Mz/T<n<z+Mz/T
Ro(x,T) < ﬁﬁ’%ﬁ paloedAaps 4 ?%i + %L::;N(a, T) + ML + %{-
for every a € (0.1] and o € [3,1), and
1 2\ ? xL
Ry(z,T) < = > A(n) (log;;) < N hoeta/T)

né(z/2.x—Mx/T|U(z+Mz/T 2z)

We remark that the properties of the function H(x,T,n) are similar to those
of the function G(x,T,n) in [10], see Lemmas 2.1 and 2.2 in section 2. Moreover,
there is a relation between H(x,T,n) and G(x,T,n). In fact, following the proof
of Lemma 4 of [10] we see that

1 2 (T /1 "t
~sgu(e — n)0(z, Ton) = 7. [ (5—/ (-) _)dT
i T/2 Tt > 71 t

and hence, by straightforward computations, for |n — x| < Mx/T we obtain

/ H(u,T, n)% = ——%sgn(:c - n)G(z, T,n) + O(1).
0

We can write (1.4) in a form which is more similar to (1.2). Let {x} the
fractional part of x.

Corollary 1.2. Let 2 > 16, 4 <T < z/4 and 1 < M <T/4. Then
Z w(m)x" = L{z,T),

T
[vgT

where
L(x,T) = Ly(2,T) + Lo(@.T) + Ls(a, T)
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with |
Li(x,T) = == > (A(n) — DH(z,T,n),
T a—Mz/T<n<x+Mz/T
xM T
Ly(z,T) = —Ra(x, T)+O(H + 1+ Tlog ’\/I)
x T
Ol {z}log — + (1 — {z}) log ———
(teh1og 2+ 1=t T
+Tlo + Tlog ——— )
ST T )
for x ¢ R\ N,

M T
La(x,T) = —Ro(x, Ty + O(Z_\j + L+ —T—log 7

f-) forze N

and
L3($, T) = —R3(.’E? T)

We remark that the main term Li(x,T') absorbs the term —T'/27A(z) and
depends, in fact, on the values of (A(n) — 1)H(z,T,n) for n in the whole interval
(x—Mz/T,x+ Mz/T]. In other words, L;(x,T') contains the contribution of the
above mentioned spikes.

We have the following explicit bounds for R(z,T) and L(z,T).

Corollary 1.3. Let x > 16 and 4 <T < z/4. Then

zL xzL

(1.7)

Observe that Corollary 1.3 sharpens the error terms in (1.2). Our final result
provides a mean-square bound for L(z,T") and R(z,T).

Theorem 1.4. Let 16 < N < 2 < 2N, 4<T < N/dand 1 < M < min(N/®/L4 T

Then

2N 2
AN I 4N
™2 3 1y2 — 1 + N, — .
/N IL(m T de < N7+ (TM) ‘](N TM) M?J(l T ) (18)

and

AN ™ T2 AMN
. 2 3 —_— T

E: |L(n,T)}* < N? + (T'M) J(N 4)*(}\72 M4)J(f\ = )
N<n<2N

() (0 7)o
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Moreover, the same bounds hold for R(z,T) and R(n,T) as well.

Since for 1 < H < N we have
J(N,H), J(N,H) < H*N + HNL, -

see Languasco [12], choosing M =1 in Theorem 1.4 we obtain

e~z

2N
/ IL(z, T)|?dx <« N? max(N,TL) uniformly for T <
N

and

. N
Z |L(n, T))* < N? max(N, TL) uniformly for T < T
N<n<2N

and similarly for R(z,T) and R(n,T).

2. Proof of Theorem 1.1 and Corollaries
We start with several lemmas.

Lemma 2.1. Let > 16, 4 < T < z/4, |t —n| = o(z) and h = o(x). Then

H(LT,n)«min(T;%( z )2) (2.1)

|z —n]

and

: T%h x
T h) — e, T —— mi it B
H(z,T,n+h) — Hz,T,n) <« N mm(L T —n[)

Proof. By straightforward computations, for z # n we have

4 T{log(x/n)|
H(x,t,n) = ————-—/ sinu du. 2.2
(x,1.m) T'log(x/n)? J1/2(108(2/m)| (22)

Hence the first upper bound in (2.1) follows using sinu < u in (2.2). The second
upper bound in (2.1) follows computing the integral in the right hand side of (2.2),

thus obtaining
T Iog(%) ) —cos(T Iog(%) ))
(2.3)

4
tn)=—=————|cos[ =
H(x,t,n) Tlog(a/n)? (coa( 5
<«
Tlog(z/n)?
Hence (2.1) follows using log(z/n)"% < (z/|x — nl)? in (2.3) and observing that
H(n,T,n)= %T.
The second part of Lemma 2.1 follows using Lagrange theorem, partial inte-
gration and (2.1).




A note on Landaw’s formula 179

Lemma 2.2. Let £ > 16, 4 <T < z/4 and 1 < M < T/4. Then, for x € R\ N,
we have

1
5 > H(z,T,n)

x—Me/T<nlz+Mz/T

xM T z
= O T ——1 O log —— —d{rVlog ———
=z + <M+ + 5 ogM>+ ({x}o {}+( {a‘})og(l_{x})
x x
+ T'log +T10g——-—~—-).
T{x} T(1-{z})
(2.4)
Moreover, for x = m € N, we get
! > H(m,T
27 m, T’ n)
m—Mm/T<n<m+Mm/T (25)
=m+ 0 1 Ml £l +T1
=1m M,—%ogm-%~ T og ogT

and, if we further assume that oo(M) < T < o(m) and (1) < M < T/4 as
m— 0o,

1
gy Z H(m,T,n) =m(1+ o(1)) as m — 0o.
m—Mm/T<n<m+MNm/T

Proof. Let x € R\ N. By (2.2) we have
L > H(z,T,n)
27 B

- \I;r <'n<1+ Al

2 \ —2 sTllog(x/n}|
== E log<£) f sinu du = 1.
™ n

r—Me/T<n<z+Maz/T /2] log(x/n}|

(2.6)

say. Interchanging summation and integration in (2.6) we obtain, writing [z] to
denote the integer part of x, that

9 T log(1+M/T)| 2\ 2
I=— / ( Z log(—) )sina du
wT Tllog(({z]+1) /x| [el+1<n<t+Mz/T n
u/ T oglx /)| <2u/T

T log(1—A1/T)| -2 2.7
+f ( z log<£> ) sinu du) &9
T/ log([z] /)| (e] n

r-Mx/T<n<
u/Tg]log(z/n)|<2u/T

=II+I23

say.
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Since the two conditions in the summations are equivalent, by partial sum-

mation we get
u
—idu
7%)

o Tllog(1+M/T)| .. o (TVlog(1+A1/T)|
(L
T

I = — —sinu du + O
T Jr)10g((2]+1)/2)] 2t T J1)10g((12]+1) /)|

1 2

+ O(T / [sinu] du> +O(T)
T|log(([z]+1)/2)] U
r [~ sinu
== du+0O
T /0 U ut ( M )

M T
+O(—T-10gx-[- +(1—{a:})iog( { 7] +T10gT(1_{ })>

Analogously we can prove

Iy = E/x Sinudu
is G U
M

T T
+O<M_ +T + —T—IODM +{x}log{ }+T10°T{3:}>‘

(2.8)

(2.9)

Hence, recalling fooc sinu/udu = 7 /2, we have, by (2.7)-(2.9), that

:ch T
M T %877

I=x+0( + T+ —

+ T'log

+ O({x} log T% + (1= {z})log (2.10)

1 {a}) T{z}

FTlog R {x})>

and so, by (2.6) and (2.10), we obtain (2.4).
If z € N, using H(z,T,x) = 3T we get

1 ,
3 Z H(z,T,n)
e-Mz/T<n<z+Maz;T
3
=T+ > H(z,T,n).
n€{z—Mz/T x2—1]U[z+1,2+Mz/T)]

(2.11)

To obtain (2.5) we evaluate the second term in (2.11) using a simplified version
of the previous argument. The asymptotic formula stated in the last part of
Lemma 2.2 is an immediate consequence of (2.5).

We need the following three lemmas, whose proofs follow by the argument
in [10] and are therefore omitted.
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Lemma 2.3. Let z > 16, 4 < T < z/4 and 1 < M < T/4. Let further
c=1+1/logz, s € C,

Uls) = > A(n)n™* and f(s)-:—%(s)~—U(s).

e~Mzx/T<n<z+Mz/T

Then, for every 7 € [T/2,T], we have

L o f(8)x*ds = gi{z, T
omi J,_ ;. =a(nT)
and
2 (7 x
T qi(x, 7)dr < R3(z,T) + 7 log x,
T/2
where
~2
1 x x L
a3, — A log — — .
Ra(@.T) < T Z (n)( °8 n) Y logx/T
n€(x/2a—Mzx/T\U(z+Mz/T,22)
Moreover,
2N 2 73
T 4N N
2 r
; dr < —=J[ N, — — ]
/N |R3(x, T :C<<A!2J( , T)—f_ﬂj? as N — o
and .
: 1% -/ AN N3
2 - H N
T;V lR3(?’l,T}] <& ‘WJ(N, T) -+ “W as N — oc.

Lemma 2.4. Let z > 16 and 4 < T < z/4. Let further s € C, a € (0.1],
oel3.1) and
s 1 Cir C!
h{z,7) = —— = (s)z’*ds.
2mi c—ir C(

Then for every 7 € [T'/2,T] we have

h{z,7) =2 - Z z? + go(x, 7)

fyl<r

and T X
2 » T xl
“"/ go(x, T)dr < PR TA) AT + T1i-a

= N(o,T).
T Jr)2 T°L (@)

Lemma 2.5. Assume the same hypotheses of Lemma 2.3. For 7 € [T/2,T], let

further .
1 i
k(z,7) = ——/ U(s)z®ds.

27t Joir
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Then
) T
= k(x, )dr
T Iy (x,7)
1 ‘ MzxL ’
"o Z A(m)H (z, T,72)+O<W +AIL).

z—Mzx/T<n<z+Mz/T

Now we are ready for the proof of Theorem 1.1. For + € [T/2,T], from
Lemmas 2.3, 2.4 and 2.5 we get

z - Z z? + g2z, T) = k(z, 1) + 91 (. 7), (2.12)

fyi<r

and hence Theorem 1.1 follows integrating (2.12) over 7 € [T/2,T].
Corollary 1.2 follows easily from Theorem 1.1 and Lemma 2.2.
Finally, choosing M = 1, 0 = 3 and a = { in Theorem 1.1, using

Lemma 2.1 and Ingham-Huxley’s density estimate (see chapter 11 of Ivié [7])

T31=0)/ (2= jog®T 1l <o <3
’ 2 =Y =1
N(o,T) <« {Tg(l_a)/{Sa—l) Iog‘“T % <o<l,
we obtain
Ri(x,T) €z, Ro(a.T)<z and Ry(z.T)< — v
€T, b xz, z s N
' 2 s log(z/T)

and hence we have the first part of (1.7). The second part of (1.7) follows easily
using L(x,T) =2 — R(z,T), and Corollary 1.3 follows.

3. Proof of Theorem 1.4
By (1.4) we get

12 w(F)
1

Choosing o = % and a = ¢ in Theorem 1.1 and using Ingham-Huxley’s density
estimate we get

2 2N
dr = / |z — R(z.T)|* dx.

N

N
. M
Hence, by (1.5), (3.1), Lemma 2.3 and the inequality (a+b)? < 2a2 + 2b? we have

Ro(x,T) < (3.1)

2N 2N T‘},‘ 4}\({
/ @ — Rz, T)2dzx < / \Ry(x, T)dx + N® + ——2J<N, ) (3.2)
~ v M T
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To estimate the contribution of R;(z,T) we follow the argument in Kaczo-
rowski-Perelli [9]. We subdivide the interval (z— Mz /T, 2+ Mz /T] into P < M?
subintervals of the form

. T . _
Hence
Ri@T) <)+, (3.3)
where
P
S =Y HE@ Tl Y. Am)
3=l nel, (w)
and
P
>.,=2. > AMIH@T,n) - Hiz, T,n,)l. (3.4)
j=1nel;(x)

By Lemma 2.1 we get

T 1<j<M
H(z,T,n;) < {T(M'/j)z M<j<P,

T/M 1<j<M

T/)j M<j<P, (3:5)

H(z,T,n)— H{z,T,n,) <<{

for n € I;(x).
Now we proceed to estimate the mean-square of > ,. By (3.4) and (3.5) we

get
2N
/N [ZQ Pde < Jy + Ja, (3.6)
where
Jp o= e / Z Z A(n) dx
i=1nel;(2N)
and

2
dx.

Z} > An)

g=M nel, (2N}

J2:T2/

Using the Cauchy-Schwarz inequality, the substitution y = z + jK(2N) and the
fact that [N £ jK(2N),2N £ jK(2N)] C [N/2,3N], we have

3N (¥ +HK(2N) 2
J1 < T? / > Aw)
L2 R—

and
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. 3N (y+K(2N) 2
Jy <« T? IOgQ(A{ +1) /N/2 Z A(n)| dy.
n=y

Hence, using the inequality (a + b)? < 2a% + 2b*, we obtain
AN N3
2 [R—— —-
J T J(N T’W) + ek

4N> N

< (127N,
‘]2<<< ‘]( M) T

2) log?(M + 1),

and, by (3.6), we finally get

aN 2 3
4N N
. 2 1 M 3.7
/N >, dar<<<TJ< TM)+M)Og( +1). (3.7)
The estimation of the mean-square of Y, can be performed analogously,
thus obtaining
2N ) AN \
A N, — N3, 3.8
/N > | de<T IJ(z TM)+ (3.8)

Hence (1.8) follows from (3.2), (3.3), (3.7) and (3.8).
Now we prove the second part of Theorem 1.4. We hdve, by (1.6) and (3.1),

() 23

2

that

(vIsT VT
= R(z,T) — R([z],T) + O(1)
1
= AMY(H{(x,T.n) — H{[z|,T,n
o G(}n_x]gwn () (H @ Ton) = B T)
1
+ oy z A(n)YH(z,T,n)
Mlz)/T<In—x|<Mz/T
A.v'
+ Rs{z,T) — Rs([z},T) + O( M)'
Clearly

S Am)(H(z,T,n) - H([a], T, n))
1
<7
In~—z <2MN/T

0<in—al<Mlz]/T
]T,fz /;‘r (%) K—}‘) 1} dudr

< % > A,

[n—x|<2MN/T

(3.10)
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Moreover, by (2.1), we also obtain

> Am)H(z,T,n) < 52 > Am). (3.11)

Mlzl/T<\n—2|<Mx/T in—x|<2AMN/T

Hence, by (3.9)-(3.11), we have

= (B)er- 3 w(3)

ST

=T

2
< (% + —%—5) > Aln)+ Rs(z,T)+ Rs([a}, T) + v

In—xz|<2ZMN/T

(3.12)

So, for any n € [V,2N], we obtain, by (3.12), that

2

dz

S w (l;l)xp

T
g
n=tlgi<r

T4 TQ T
(e L2
|m—x|<2MN/T

+/ |Ra(x, T)*dz + |R3(n. T)|* + —

| w([;[)np
LT

V2
A2

The second part of Theorem 1.4 now follows summing over n, using (a+b)?2

2a? + 2b% | Lemma 2.3 and (1.8).
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