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Let n,(n) denote the number of positive integer solutions of the equation 
n1n2 .. ,nk = n, k 2: 1. Let us define the function Rk(.r), x > 1, by the equality 

Rk(x) = L Tk(n) - xPk-1 (log x) , 
l<n::;x 

where 

xPk-1(Iogx) = Res ((,..(srrs) 
s=I S 

and ((s) is the Riemann zeta - function. L. Dirichlet proved in 1848 that Rk(x) = 
O(:rI-1/k loi-2 x). 

In [4], on the basis of the method of trigonometric sums of I. 1\1. Vinog;radov 
(see [13], [14]), the estimate 

2 
o:k = ck- 3 

with absolute positive constants c and c1 was obtained. 

(1) 

(2) 

Let us notice that the first result here is due to H. Richert [ 11] ( after classical 
works by Dirichlet-Voronoi-Hardy-Littewood-Landau), who proved the inequality: 

(3) 
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·where c is on arbitrary small fixed positive number. Afterwards this result was 
repeted by the author [5]. I was informed kindly about the paper [11] of H. 
Richert by Professor A. Ivie. The subsequent research on this theme-in particular 
computing the constant c from (2) followed the scheme of [4] and [5] ( cf. [6], [1], 
[2], [3], [10]). The possibility of obtaining estimate the type (1) or (:3) \Vas stated 
also in [15] (cf. [7], pp. 127-130). 

The uniform estimates of the type ( 1) make it possible to obtain results 
about a boundary for the zeros of the Riemann zeta-function. Let us note that 
the estimate (3) and even the Lindelof hypothesis cannot be successfully applied 
in order to obtain any bound for the zeros of the Riemann zeta-function. 

The aim of the paper is to establish a connection between the estimates of 
the type (1) and the problem to give a boundary for the zeros of the Riemann zeta
function and to estimate zeta-sums as well. Results of this type were obtained by 
the author in [8], p. 112, Problem 1. 

In this paper the standard notation will be used; in particular: 

- s = CJ + it, i 2 = -1, where CJ and t are real numbers, 
- f(.s) is the Euler gamma-function, 
- c, c1 , c2 , •.. are absolute positive constants which may differ in the different 

statements, 
- constants implied by the O-symbols are absolute, 

Pk 1 (:r) denotes a polynomial of x of the degree S k - 1, 
- [x] = integral part of x, 
- { x} = fractional part of x. 

The following lemma is basic for all the paper. 

Lemma. Let o:(y) be an arbitrary real function of the real variable y, y ~ 2, 
such that y- 1 S o:(y) S ½. Let c ~ 2 and k be a natural number ~ 2. Suppose 
that for all x ~ 2 the estimate 

(4) 

holds. Then for all t ~ 2 and ~ ~ CJ > 1 - o:( k) the following inequality holds: 

l((CJ + it)I < 8ckt 1 fk(CJ + o:(k) - 1)-I-l/k . (5) 

Proof. For Res > 1 we have 

(6) 

Using partial summation we find that 

S_rv = L Tk(n)n-·' = s JN Ck(u)u_ 5 _ 1du + Lk(N)N-s, (7) 
l<n5,N l 
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where 
Ci.Ju)= L Tk(n) = vPk-i(logu) + Rk(u). (8) 

l<n~u 

From (7) and (8) it follows that 

N N 
SN= s J u-s P1.-1 (log u)du + ti J Rk(u)u-s- 1du + C,..(N)N-s . (9) 

The polynomial Pk- I (log u) is of the form 

The following estimates and transformations are obvious: 

(N r"lgN Ji u-~ logj udu = Jo e v(s-l)vidv 

= loc e-v(s-l )vj dv + O(N-a+l logj N) 

= (s - 1)-j-l fox e-vvjdv + O(N-a+l logj N) 

= f(j + l)(s -1)-j-l + O(N-a+l log1 N) 
= j!(s - 1)-j-l + O(N-a+I logi N) , 

k-1 N 
S ~ 'lb ( 1)-j-l 1 R ( ) -s-ld N = S L__J· j S - + S k U U :u 

j=O 1 

k-1 

+ o(N-a+I L Jb1I logj N) + Ck(N) · N-s. 
]=0 

(10) 

Since CY> 1 and Ck(N) = O(Nlol N), we can take the limit in (10) as N - +oc 
and get the new formula instead of (6): 

(k(s) = 1 + s ~j!b1 (s - 1)-j-l + s lx: Rk(u)n-s-Idu. (11) 
j=U 1 

By (4), the last improper integral converges for CY= Res> 1-o(k), i.e. (11) 
holds for Res > 1-o( k) by the principle of analytic continuation. Let us estimate 
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the right hand side of (11) for t 2 2 and CJ > 1 - n(k). Estimating it and using 
(4) we obtain: 

k-1 co 

l((s)lk S 1 + Isl L.i!ib1lt-j-l + Isl 1 ll-a a(kl(clogutdu 
j=O l 

2 

+ isl 1 /Rk(u)lu-u-ldll. 

Let us evaluate 

Putting log u = v we successively obtain: 

J = ck 1x e(-a-o(k))t+uvkdv = ck(CJ + ex(k) - l)-k-1 ix e-u·wkdw 

= ck k ! ( CJ + ex ( k) - 1 )-k- 1 . 

Next, since C1;,(u) = 0 for 1 < u < 2. we obtain for 1 < u < 2: 

and 

k-1 
Rk(u) = - L bj(log1l)1 

j=O 

2 k-1 2 1 IRk(u)lu-a-ldu SL lb1I J u- 0 - 1 log1 udu 
1 j=O 1 

k-1 
< L I b.i I (j + 1) - l log 2 . 

j=O 

(12) 

(14) 

Let us estimate lbjl, j = 0.1, ... , k - l, from above. From (11) and the Cauchy 
residue theorem it follows that 

1 
j!b·=-

1 21ri J 
js-11=½ 

Let us use the fact that for Res > 0 we have 

((s) = -- + - + s g(v.)v.-s- 1du, 
1 1 Jex 

s - l 2 1 

where 
1 

g( u) = 2 - { u} . 

(15) 
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In the formula (15) we have s 
½ S isl S ~. Consequently, 

1 + ½ci'P, 0 S cp < 27!', so Res 2 ½, and 

1 3 ix 3 l((s)l:S:2+ 2 + 4 u- 2 du=4 
. 1 

and 

(16) 

From (12)-( 16), for s =a+ it, ~ 2 a > 1 - a(k), t 2 2 we successively obtain: 

k-1 
l((s)ik s 1 + J~t2_+_4 L 4k • 2-i. ci- 1 

j=O 

+ Jt 2 + 4 ·ck· k! ·(a+ a(k) - 1)-k-l 
k-1 

+ Jt 2 + 4 • L 4k • 2-i • (j!)- 1 • log 2 
j=U 

< (8ck)"' · t ·(a+ a(k) - 1)-k 1 , 

I ( ( s) I < 8 ck • t 1 I k ( a + a ( k) - 1) - 1- 1 / k • 

The lemma is proved. • 
Thorem 1. Let a(y) denote a nonincreasing function of y, y 2 2. Suppose that 
for all k 2 2 condition of the lemma are fulfilled. 
Then in the region 

a 2 1 - 0.5a(log t) , 

the following estimate holds: 

2 t 2 e , 

l((a + it)I S 16e3 rlog2 t . 

Proof. Put in the Lemma k = [log t] and 

2 , t 2 e , a 2 1 - 0.5a(k) . 

Then we have the inequality: 

a+ a(k) - 1 :2:: 0.5a(k) :2:: 0.5k- 1 2 0.5(logt)- 1 

Hence, from (5) we find that 

j((a + it) I < 8clogt · e2(2k) 1/k · 2 log t < 16e3 clog2 t . 

(17) 

(18) 
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Since a(y) in a nonincreasing function, the theorem follows from the last inequality 
and (18). • 
Corollary. If (4) holds for any x 2 2 and k 2 2, then the function o(y) tends 
to zero as y ---t +oo. 

Proof. Let us assume the contrary. Since o:(y) 2 y- 1 > 0 and o:(y) in a 
nonincreasing function, there exists a> 0 such that cr(k) 2 a> 0, k = 2, :3, .... 
Consequently, estimate ( 4) can be replaced by 

Without loss of generality we can assume that o: < 0.5. From the above theorem 
it follows that for CY 2 1 - 0.5a the following estimate holds: 

i((CT + it)i < 16e3clog2 t , 2 t 2 e . (19) 

On the other hand, by the known fl-theorems, for ½ < CT < 1 the following relation 
holds: 

( ( (logt) 1-o-)) 
((CY+it)=fl exp c1(loglogt)a- (20) 

( compare e.g. [9] or a \veaker result in [15], p. 291 and [161). 
For CY= 1-0.50 the estimates (19) and (20) contradict each other. Therefore 

our assumption that a(y) -f, 0 as y -----, +oo is not true. The corollary is proved. 

• 
In what follows we assume that a(y) --+ 0 monotorically as y-----, +oc:. 

Theorem 2. Suppose that the assumptions of Theorem 1 are fulfilled. Then 
((s) f- 0 in the region: 

a(log itl) 
CT> 1- C2--~ 

- log log It! 
t 2 e2 . 

Proof. Assume that t 2 e2 . We use the following proposition (cf. [12], p. 57): 
Let 

((s) = O(ecp(t)) 

as t --+ +:xi in the region 

1 - 0(t) S CY S 2 , 

where r.p(t) and 0- 1 (t) positive nondecreasing functions such that 0(t) < 1, 
r.p(t) ---t +oo, and 
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Then ( ( s) -I O in the region 

. 0(2t + 1) 
(T > 1- CJ--'----'-

- cp(2t + 1) ' 
') t 2'. e~ . 

Put here 0(t) = n(logt), cp(t) = 2loglogt. Since a(y) 2:: y- 1 , it follows that 

·0(t) 
~(t) S (2loglogt)logt = o(e.p(t)) = o(Iog2 t). 

It is clear that cp(t) and e-1 (t) are nondecreasing positive functions and 8(t) < 1. 
Therefore ( ( s) "I O in the region 

a(log(2t + 1)) 
CT> 1- C1------, 

- 2 log log(2t + 1) 

From this the theorem follows. 

2 t2'.e . 

• 
Examples. Let us consider some examples of concrete functions a( k) in Theo
rem 2. 

1. Let a(k) = k-°', 0 < a< 1. Then ((s) -:/ 0 in the region 

CT > l - c2 
- loga jtj log log jtj ' !ti 2 e2 • 

•. 

In particular, putting a= 1 we obtain the result of I. 1\.1. Vinogradov [13]. 
2. Let a(k) = (logk)-a, a> 0. Then ((s) -IO in the region 

C2 CT>l------- (loglogitl)a+l ' 
Jtl 2:: e2 . 

3. Let o(k) = (log log k)-a, a> 0. Then ((s) -:/ 0 in the region 

c2 CT>l------------ (log log jtj)(log log log itJ)a 

From Theorem 1 estimates for short zeta-sum can be derived. For t 2'. e2 the 
following; trigonometric sum 

S(a) = ~ nit , 0 <a::; t 
n'.5.a 

is called a zeta- sum. The number a is called the length of S(a). We say that the 
sum S ( b) is shorter than the sum S (a) if b < a. The upper estimates for IS (a) I 
are closely related to the estimates for j((.';)I (compare e.g. [8], [L5]). 
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Theorem 3. Let the assumptions of Theorem 1 are folfilled. Then the following 
estimate for ! S (a)/ holds: 

IS(o)i::; c1al -0.5a(lugt)(logtfl. (21) 

Proof. Using the invf'rsion formula (see e.g. [8]. p. 7,5, [15], p. 347) \Vf' obtain 

1 1b+iT . w a 
S(a) = -. ((w + it)-d11 1 

21ri b-1T 111 

0 ( ab ) . 0 ( a log a) 
+ T(b- 1) -t- T 

where 2 2:: b > 1. T 2:: 1 and the constants implied by the O-symbob are absolute. 
Set here 

b=l+(loga)- 1 . a2::e 2 . T=O.Gt. 

\\·e obtain 

1 1b+iT a11 • . (a log a) S(a) = -. ((n· +it)-., dw + 0 
2m 1, iT IL T 

Consider the rectangular r with the vertices b ± iT, u ± iT. where 

u = l - 0.5a(log t) . 

Using the Cauchy residue theorem we find that 

1 1 a1" -. ((w + it)-dw = 0 . 
2TLZ r W 

Consequently. 

1

1 lb+iT aw I 
-. ((w + it)-dw ::; J1 + h + -h . 
2TLI b-iT W 

(22) 

where 

l1=_!_1ilT C:(tt+i(r+t))au+i_,.<frl. 
2Tt -T u+11• 

1 11'' 0 rr+
1
T I h=-2 ((a+i(T+t)) "Tda. 

TL 11 a+1 
1 I 1/, a,,-,T ! 

Ji = 27r I 
11 

((a+ i(-T t t)) a_ iTda\ 
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Let us estimate 11 . h and 1:3 from above. Applying (17) to l((s)/ we obtain: 

11 = 0 (log2 t) -----;:=::;:::::::::::::=;: = O(a 1' log'1 t) . ( 1T auciv ) . 
o ✓u2 + v2 

2 a CY a 2 ( l b ad ) h = 0 (log t) 
0 
~ = 0 (T log t) 

'a ) h = 0 (T log2 T 

From (22) we find that 

S( a) = O(a 11 log3 t) + 0 ( ;, log2 t) = O(a11 log3 t) . 

The theorem is proved. 

Remarks. 1. The estimate (21) is non-trivial if 

( 6 log log t + 2 log c1 ·) a> exp 
0:(log t) 

• 

From this it follows that the estimates for S(a) obtained in this way are of any 
value only if 

(k , . c2 log k 0: "} > --- . - k 

Let us nott' that in the classical Dirichlet theorem we haw a(k) 
(compare e.g. [12]: pp. 313-314). 

2. Let 0:(k) = k- 0 • 0 < o < 1. Then (21) is of the form: 

/S(a)I::;: c1al-(J.S(logt)-o log3 t =a~. 

Putting n = 1 we obtain 

( loga ) 3 ~ = c1 exp -0.5 2 ''{ log t . 
(log t) i· 

The kno\Vll f'stimatc of I. :\I. Vinogradov is of th(' form: 

(23) 

(24) 
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Comparing the estimates (23) and (24) we can easily see that for all a the estimate 
(24) is the better one. 

Let us finally note that the estimate (23) is nontrival for 

a 2 exp(c:1(log213 t)(loglogt)), 

and the estimate (24) is nontrival for 

a> exp(c1(logt) 2({) • 
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