To Professor Whodzimierz Stas on his 75 th birthday

THE MULTIDIMENSIONAL DIRICHLET DIVISOR PROBLEM AND ZERO FREE REGIONS FOR THE RIEMANN ZETA FUNCTION

A. A. Karatsuba

Abstract: We show a connection between the multidimensional Dirichlet divisor problem and the zero free region for the Riemann zeta function.
Keywords: Riemann zeta function, Dirichlet divisor problem.

Let $\tau_{k}(n)$ denote the number of positive integer solutions of the equation $n_{1} n_{2} \ldots n_{k}=n, k \geq 1$. Let us define the function $R_{k}(x), x>1$, by the equality

$$
R_{k}(x)=\sum_{1<n \leq x} \tau_{k}(n)-x P_{k-1}(\log x)
$$

where

$$
x P_{k-1}(\log x)=\operatorname{Res}_{s=1}\left(\zeta^{k}(s) \frac{x^{s}}{s}\right)
$$

and $\zeta(s)$ is the Riemann zeta - function. L. Dirichlet proved in 1848 that $R_{k}(x)=$ $O\left(x^{1-1 / k} \log ^{k-2} x\right)$.

In [4], on the basis of the method of trigonometric sums of I. M. Vinogradov (see [13], [14]), the estimate

$$
\begin{gather*}
\left|R_{k}(x)\right| \leq x^{1-\alpha(k)}\left(c_{1} \log x\right)^{k} \tag{1}\\
\alpha_{k}=c k^{-\frac{2}{3}} \tag{2}
\end{gather*}
$$

with absolute positive constants c and c_{1} was obtained.
Let us notice that the first result here is due to H . Richert [11] (after classical works by Dirichlet-Voronoi-Hardy-Littewood-Landau), who proved the inequality:

$$
\begin{equation*}
\left|R_{k}(x)\right| \leq x^{1-\alpha(k)+\varepsilon}, \quad x \geq x_{1}(\varepsilon)>0 \tag{3}
\end{equation*}
$$

1991 Mathematics Subject Classification: $11 \mathrm{M} 26,11 \mathrm{~N} 25$.
where ε is on arbitrary small fixed positive number. Afterwards this result was repeted by the author [5]. I was informed kindly about the paper [11] of H . Richert by Professor A. Ivic. The subsequent research on this theme - in particular computing the constant c from (2)-followed the scheme of [4] and [5] (cf. [6], [1], $[2],[3],[10])$. The possibility of obtaining estimate the type (1) or (3) was stated also in [15] (cf. [7], pp. 127-130).

The uniform estimates of the type (1) make it possible to obtain results about a boundary for the zeros of the Riemann zeta-function. Let us note that the estimate (3) and even the Lindelöf hypothesis cannot be successfully applied in order to obtain any bound for the zeros of the Riemann zeta-function.

The aim of the paper is to establish a connection between the estimates of the type (1) and the problem to give a boundary for the zeros of the Riemann zetafunction and to estimate zeta-sums as well. Results of this type were obtained by the author in [8], p. 112, Problem 1.

In this paper the standard notation will be used; in particular:

- $s=\sigma+i t, i^{2}=-1$, where σ and t are real numbers,
- $\Gamma(s)$ is the Euler gamma-function,
- c, c_{1}, c_{2}, \ldots are absolute positive constants which may differ in the different statements,
- constants implied by the O-symbols are absolute,
- $P_{k-1}(x)$ denotes a polynomial of x of the degree $\leq k-1$,
$-[x]=$ integral part of x,
- $\{x\}=$ fractional part of x.

The following lemma is basic for all the paper.
Lemma. Let $\alpha(y)$ be an arbitrary real function of the real variable $y, y \geq 2$, such that $y^{-1} \leq \alpha(y) \leq \frac{1}{2}$. Let $c \geq 2$ and k be a natural number ≥ 2. Suppose that for all $x \geq 2$ the estimate

$$
\begin{equation*}
\left|R_{k}(x)\right| \leq x^{1-\alpha(k)}(c \log x)^{k} \tag{4}
\end{equation*}
$$

holds. Then for all $t \geq 2$ and $\frac{3}{2} \geq \sigma>1-\alpha(k)$ the following inequality holds:

$$
\begin{equation*}
|\zeta(\sigma+i t)|<8 c k t^{1 / k}(\sigma+\alpha(k)-1)^{-1-1 / k} \tag{5}
\end{equation*}
$$

Proof. For $\operatorname{Re} s>1$ we have

$$
\begin{equation*}
\zeta^{k}(s)=\sum_{n=1}^{\infty} \tau_{k}(n) n^{-s}=\lim _{N \rightarrow+\infty}\left(1+\sum_{1<n \leq N} \tau_{k}(n) n^{-s}\right) \tag{6}
\end{equation*}
$$

Using partial summation we find that

$$
\begin{equation*}
S_{N}=\sum_{1<n \leq N} \tau_{k}(n) n^{-s}=s \int_{1}^{N} \mathbb{C}_{k}(u) u^{-s-1} d u+\mathbb{C}_{k}(N) N^{-s} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{C}_{k}(u)=\sum_{1<n \leq u} \tau_{k}(n)=u P_{k-1}(\log u)+R_{k}(u) \tag{8}
\end{equation*}
$$

From (7) and (8) it follows that

$$
\begin{equation*}
S_{N}=s \int_{1}^{N} u^{-s} P_{k-1}(\log u) d u+s \int_{1}^{N} R_{k}(u) u^{-s-1} d u+C_{k}(N) N^{-s} \tag{9}
\end{equation*}
$$

The polynomial $P_{k-1}(\log u)$ is of the form

$$
P_{k-1}(\log u)=\sum_{j=0}^{k-1} b_{j}(\log u)^{j}=\frac{1}{u} \operatorname{Res}_{s=1}\left(\zeta^{k}(s) \frac{u^{s}}{s}\right)
$$

The following estimates and transformations are obvious:

$$
\begin{align*}
& \int_{1}^{N} u^{-s} \log ^{j} u d u=\int_{0}^{\log N} e^{-v(s-1)} v^{j} d v \\
&=\int_{0}^{\infty} e^{-v(s-1)} v^{j} d v+O\left(N^{-\sigma+1} \log ^{j} N\right) \\
&=(s-1)^{-j-1} \int_{0}^{\infty} e^{-v} v^{j} d v+O\left(N^{-\sigma+1} \log ^{j} N\right) \\
&=\Gamma(j+1)(s-1)^{-j-1}+O\left(N^{-\sigma+1} \log ^{j} N\right) \\
&=j!(s-1)^{-j-1}+O\left(N^{-\sigma+1} \log ^{j} N\right) \\
& \int_{1}^{N} u^{-s} P_{k-1}(\log u) d u=\sum_{j=0}^{k-1} j!b_{j}(s-1)^{-j-1}+O\left(N^{-\sigma+1} \sum_{j=0}^{k-1}\left|b_{j}\right| \log ^{j} N\right) \\
& S_{N}=s \sum_{j=0}^{k-1} j!b_{j}(s-1)^{-j-1}+s \int_{1}^{N} R_{k}(u) u^{-s-1} d u \tag{10}\\
&+O\left(N^{-\sigma+1} \sum_{j=0}^{k-1}\left|b_{j}\right| \log ^{j} N\right)+\mathbb{C}_{k}(N) \cdot N^{-s} .
\end{align*}
$$

Since $\sigma>1$ and $\mathbb{C}_{k}(N)=O\left(N \log ^{k} N\right)$, we can take the limit in (10) as $N \rightarrow+\infty$ and get the new formula instead of (6) :

$$
\begin{equation*}
\zeta^{k}(s)=1+s \sum_{j=0}^{k-1} j!b_{j}(s-1)^{-j-1}+s \int_{1}^{\infty} R_{k}(u) u^{-s-1} d u \tag{11}
\end{equation*}
$$

By (4), the last improper integral converges for $\sigma=\operatorname{Re} s>1-\alpha(k)$, i.e. (11) holds for $\operatorname{Re} s>1-\alpha(k)$ by the principle of analytic continuation. Let us estimate
the right hand side of (11) for $t \geq 2$ and $\sigma>1-\alpha(k)$. Estimating it and using (4) we obtain:

$$
\begin{align*}
|\zeta(s)|^{k} \leq 1 & +|s| \sum_{j=0}^{k-1} j!\left|b_{j}\right| t^{-j-1}+|s| \int_{1}^{\infty} u^{-\sigma-\alpha(k)}(c \log u)^{k} d u \tag{12}\\
& +|s| \int_{1}^{2}\left|R_{k}(u)\right| u^{-\sigma-1} d u
\end{align*}
$$

Let us evaluate

$$
J=\int_{1}^{\infty} u^{-\sigma-\alpha(k)}(c \log u)^{k} d u
$$

Putting $\log u=v$ we successively obtain:

$$
\begin{aligned}
J & =c^{k} \int_{0}^{\infty} e^{(-\sigma-\alpha(k)) v+v} v^{k} d v=c^{k}(\sigma+\alpha(k)-1)^{-k-1} \int_{0}^{\infty} e^{-w} w^{k} d w \\
& =c^{k} k!(\sigma+\alpha(k)-1)^{-k-1}
\end{aligned}
$$

Next, since $\mathbb{C}_{k}(u)=0$ for $1<u<2$, we obtain for $1<u<2$:

$$
R_{k}(u)=-\sum_{j=0}^{k-1} b_{j}(\log u)^{j}
$$

and

$$
\begin{align*}
\int_{1}^{2}\left|R_{k}(u)\right| u^{-\sigma-1} d u & \leq \sum_{j=0}^{k-1}\left|b_{j}\right| \int_{1}^{2} u^{-\sigma-1} \log ^{j} u d u \tag{14}\\
& <\sum_{j=0}^{k-1}\left|b_{j}\right|(j+1)^{-1} \log 2
\end{align*}
$$

Let us estimate $\left|b_{j}\right|, j=0,1, \ldots, k-1$, from above. From (11) and the Cauchy residue theorem it follows that

$$
\begin{equation*}
j!b_{j}=\frac{1}{2 \pi i} \int_{|s-1|=\frac{1}{2}} \zeta^{k}(s)(s-1)^{j} \frac{d s}{s} \tag{15}
\end{equation*}
$$

Let us use the fact that for Res >0 we have

$$
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}+s \int_{1}^{\infty} \varrho(u) u^{-s-1} d u
$$

where

$$
\varrho(u)=\frac{1}{2}-\{u\}
$$

In the formula (15) we have $s=1+\frac{1}{2} e^{i \varphi}, 0 \leq \varphi<2 \pi$, so $\operatorname{Re} s \geq \frac{1}{2}$, and $\frac{1}{2} \leq|s| \leq \frac{3}{2}$. Consequently,

$$
|\zeta(s)| \leq 2+\frac{1}{2}+\frac{3}{4} \int_{1}^{\infty} u^{-\frac{3}{2}} d u=4
$$

and

$$
\begin{equation*}
j!\left|b_{j}\right| \leq 4^{k} 2^{-j} \tag{16}
\end{equation*}
$$

From (12)-(16), for $s=\sigma+i t, \frac{3}{2} \geq \sigma>1-\alpha(k), t \geq 2$ we successively obtain:

$$
\begin{aligned}
&|\zeta(s)|^{k} \leq 1+\sqrt{t^{2}+4} \sum_{j=0}^{k-1} 4^{k} \cdot 2^{-j} \cdot t^{-j-1} \\
&+\sqrt{t^{2}+4} \cdot c^{k} \cdot k!\cdot(\sigma+\alpha(k)-1)^{-k-1} \\
&+\sqrt{t^{2}+4} \cdot \sum_{j=0}^{k-1} 4^{k} \cdot 2^{-j} \cdot(j!)^{-1} \cdot \log 2 \\
& \quad<(8 c k)^{k} \cdot t \cdot(\sigma+\alpha(k)-1)^{-k-1} \\
&|\zeta(s)|<8 c k \cdot t^{1 / k}(\sigma+\alpha(k)-1)^{-1-1 / k}
\end{aligned}
$$

The lemma is proved.
Thorem 1. Let $\alpha(y)$ denote a nonincreasing function of $y, y \geq 2$. Suppose that for all $k \geq 2$ condition of the lemma are fulfilled.
Then in the region

$$
\sigma \geq 1-0.5 \alpha(\log t), \quad t \geq e^{2}
$$

the following estimate holds:

$$
\begin{equation*}
|\zeta(\sigma+i t)| \leq 16 e^{3} c \log ^{2} t \tag{17}
\end{equation*}
$$

Proof. Put in the Lemma $k=[\log t]$ and

$$
\begin{equation*}
t \geq e^{2}, \quad \sigma \geq 1-0.5 \alpha(k) \tag{18}
\end{equation*}
$$

Then we have the inequality:

$$
\sigma+\alpha(k)-1 \geq 0.5 \alpha(k) \geq 0.5 k^{-1} \geq 0.5(\log t)^{-1}
$$

Hence, from (5) we find that

$$
|\zeta(\sigma+i t)|<8 c \log t \cdot e^{2}(2 k)^{1 / k} \cdot 2 \log t<16 e^{3} c \log ^{2} t
$$

Since $\alpha(y)$ in a nonincreasing function, the theorem follows from the last inequality and (18).

Corollary. If (4) holds for any $x \geq 2$ and $k \geq 2$, then the function $\alpha(y)$ tends to zero as $y \rightarrow+\infty$.

Proof. Let us assume the contrary. Since $\alpha(y) \geq y^{-1}>0$ and $\alpha(y)$ in a nonincreasing function, there exists $\alpha>0$ such that $\alpha(k) \geq \alpha>0, k=2,3, \ldots$. Consequently, estimate (4) can be replaced by

$$
\left|R_{k}(x)\right| \leq x^{1-\alpha}(c \log x)^{k}
$$

Without loss of generality we can assume that $\alpha<0.5$. From the above theorem it follows that for $\sigma \geq 1-0.5 \alpha$ the following estimate holds:

$$
\begin{equation*}
|\zeta(\sigma+i t)|<16 e^{3} c \log ^{2} t, \quad t \geq e^{2} \tag{19}
\end{equation*}
$$

On the other hand, by the known Ω-theorems, for $\frac{1}{2}<\sigma<1$ the following relation holds:

$$
\begin{equation*}
\zeta(\sigma+i t)=\Omega\left(\exp \left(c_{1} \frac{(\log t)^{1-\sigma}}{(\log \log t)^{\sigma}}\right)\right) \tag{20}
\end{equation*}
$$

(compare e.g. [9] or a weaker result in [15], p. 291 and [16]).
For $\sigma=1-0.5 \alpha$ the estimates (19) and (20) contradict each other. Therefore our assumption that $\alpha(y) \nrightarrow 0$ as $y \rightarrow+\infty$ is not true. The corollary is proved.

In what follows we assume that $\alpha(y) \longrightarrow 0$ monotorically as $y \rightarrow+\infty$.
Theorem 2. Suppose that the assumptions of Theorem 1 are fulfilled. Then $\zeta(s) \neq 0$ in the region:

$$
\sigma \geq 1-c_{2} \frac{\alpha(\log |t|)}{\log \log |t|}, \quad t \geq e^{2}
$$

Proof. Assume that $t \geq e^{2}$. We use the following proposition (cf. [12], p. 57):
Let

$$
\zeta(s)=O\left(e^{\varphi(t)}\right)
$$

as $t \rightarrow+\infty$ in the region

$$
1-\Theta(t) \leq \sigma \leq 2, \quad t \geq e^{2}
$$

where $\varphi(t)$ and $\Theta^{-1}(t)$ positive nondecreasing functions such that $\Theta(t) \leq 1$. $\varphi(t) \rightarrow+\infty$, and

$$
\frac{\varphi(t)}{\Theta(t)}=o\left(e^{\varphi(t)}\right)
$$

Then $\zeta(s) \neq 0$ in the region

$$
\sigma \geq 1-c_{1} \frac{\Theta(2 t+1)}{\varphi(2 t+1)}, \quad t \geq e^{2}
$$

Put here $\Theta(t)=\alpha(\log t), \varphi(t)=2 \log \log t$. Since $\alpha(y) \geq y^{-1}$, it follows that

$$
\frac{\varphi(t)}{\Theta(t)} \leq(2 \log \log t) \log t=o\left(e^{\varphi(t)}\right)=o\left(\log ^{2} t\right)
$$

It is clear that $\varphi(t)$ and $\Theta^{-1}(t)$ are nondecreasing positive functions and $\Theta(t)<1$. Therefore $\zeta(s) \neq 0$ in the region

$$
\sigma \geq 1-c_{1} \frac{\alpha(\log (2 t+1))}{2 \log \log (2 t+1)}, \quad t \geq e^{2}
$$

From this the theorem follows.
Examples. Let us consider some examples of concrete functions $\alpha(k)$ in Theorem 2.

1. Let $\alpha(k)=k^{-\alpha}, 0<\alpha<1$. Then $\zeta(s) \neq 0$ in the region

$$
\sigma \geq 1-\frac{c_{2}}{\log ^{\alpha}|t| \log \log |t|}, \quad|t| \geq e^{2}
$$

In particular, putting $\alpha=\frac{2}{3}$ we obtain the result of I. M. Vinogradov [13].
2. Let $\alpha(k)=(\log k)^{-\alpha}, \quad \alpha>0$. Then $\zeta(s) \neq 0$ in the region

$$
\sigma \geq 1-\frac{c_{2}}{(\log \log |t|)^{\alpha+1}}, \quad|t| \geq e^{2}
$$

3. Let $\alpha(k)=(\log \log k)^{-\alpha}, \alpha>0$. Then $\zeta(s) \neq 0$ in the region

$$
\sigma \geq 1-\frac{c_{2}}{(\log \log |t|)(\log \log \log |t|)^{\alpha}}, \quad|t| \geq e^{e^{e}}
$$

From Theorem 1 estimates for short zeta-sum can be derived. For $t \geq e^{2}$ the following trigonometric sum

$$
S(a)=\sum_{n \leq a} n^{i t}, \quad 0<a \leq t
$$

is called a zeta - sum. The number a is called the length of $S(a)$. We say that the sum $S(b)$ is shorter than the sum $S(a)$ if $b<a$. The upper estimates for $|S(a)|$ are closely related to the estimates for $|\zeta(s)|$ (compare e.g. [8], [15]).

Theorem 3. Let the assumptions of Theorem 1 are fulfilled. Then the following estimate for $|S(a)|$ holds:

$$
\begin{equation*}
|S(a)| \leq c_{1} a^{1-0.5 \alpha(\log t)}(\log t)^{3} . \tag{21}
\end{equation*}
$$

Proof. Using the inversion formula (see e.g. [8]. p. $75,[15]$, p. 347) we obtain

$$
\begin{aligned}
S(a)= & \frac{1}{2 \pi i} \int_{b-i T}^{b+i T} \zeta(w+i t) \frac{a^{w}}{w} d w \\
& +O\left(\frac{a^{b}}{T(b-1)}\right)+O\left(\frac{a \log a}{T}\right)
\end{aligned}
$$

where $2 \geq b>1 . T \geq 1$ and the constants implied by the O-symbols are absolute. Set here

$$
b=1+(\log a)^{-1} . \quad a \geq e^{2} . \quad T=0.5 t
$$

We obtain

$$
S(a)=\frac{1}{2 \pi i} \int_{b-i T}^{b+i T} \zeta(w+i t) \frac{a^{u}}{u} d w+O\left(\frac{a \log a}{T}\right) .
$$

Consider the rectangular Γ with the vertices $b \pm i T, u \pm i T$. where

$$
u=1-0.5 \alpha(\log t)
$$

Using the Cauchy residue theorem we find that

$$
\frac{1}{2 \pi i} \int_{\Gamma} \zeta(w+i t) \frac{a^{w \prime}}{w} d w=0
$$

Consequently.

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \int_{b-i T}^{b+i T} \zeta(w+i t) \frac{a^{w}}{w} d w\right| \leq J_{1}+J_{2}+J_{3} \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{1}=\frac{1}{2 \pi}\left|\int_{-T}^{T} \zeta(u+i(v+t)) \frac{a^{u+i}}{u+i v} d u\right| \\
& J_{2}=\frac{1}{2 \pi}\left|\int_{u}^{b} \zeta(\sigma+i(T+t)) \frac{a^{\sigma+i T}}{\sigma+i T} d \sigma\right| \\
& J_{3}=\frac{1}{2 \pi}\left|\int_{u}^{b} \zeta(\sigma+i(-T+t)) \frac{a^{\sigma-i T}}{\sigma-i T} d \sigma\right|
\end{aligned}
$$

Let us estimate $J_{1} . J_{2}$ and J_{3} from above. Applying (17) to $|\zeta(s)|$ we obtain:

$$
\begin{aligned}
& J_{1}=O\left(\left(\log ^{2} t\right) \int_{0}^{T} \frac{a^{u} d v}{\sqrt{u^{2}+v^{2}}}\right)=O\left(a^{u} \log ^{3} t\right) \\
& J_{2}=O\left(\left(\log ^{2} t\right) \int_{0}^{b} \frac{a^{\sigma} d \sigma}{T}\right)=O\left(\frac{a}{T} \log ^{2} t\right) \\
& J_{3}=O\left(\frac{a}{T} \log ^{2} T\right)
\end{aligned}
$$

From (22) we find that

$$
S(a)=O\left(a^{u} \log ^{3} t\right)+O\left(\frac{a}{T} \log ^{2} t\right)=O\left(a^{u} \log ^{3} t\right)
$$

The theorem is proved.
Remarks. 1. The estimate (21) is non-trivial if

$$
a>\exp \left(\frac{6 \log \log t+2 \log c_{1}}{\alpha(\log t)}\right)
$$

From this it follows that the estimates for $S(a)$ obtained in this way are of any value only if

$$
\alpha(k) \geq \frac{c_{2} \log k}{k}
$$

Let us note that in the classical Dirichlet theorem we have $\alpha(k)=1 / k$ (compare c.g. [12]: pp. 313-314).
2. Let $\alpha(k)=k^{-\alpha} .0<\alpha<1$. Then (21) is of the form:

$$
\begin{gathered}
|S(a)| \leq c_{1} a^{1-0.5(\log t)^{-a}} \log ^{3} t=a \Delta . \\
\Delta=c_{1} a^{-0.5(\log t)^{-n}} \log ^{3} t
\end{gathered}
$$

Putting $a=\frac{2}{3}$ we obtain

$$
\begin{equation*}
\Delta=c_{1} \exp \left(-0.5 \frac{\log a}{(\log t)^{2 / 3}}\right) \log ^{3} t \tag{23}
\end{equation*}
$$

The known estimate of I. M. Vinogradov is of the form:

$$
\begin{gather*}
|S(a)| \leq a \Delta_{1} \\
\Delta_{1}=\epsilon_{1} \exp \left(-c_{2} \frac{\log ^{3} a}{\log ^{2} t}\right) \tag{24}
\end{gather*}
$$

Comparing the estimates (23) and (24) we can easily see that for all a the estimate (24) is the better one.

Let us finally note that the estimate (23) is nontrival for

$$
a \geq \exp \left(c_{3}\left(\log ^{2 / 3} t\right)(\log \log t)\right)
$$

and the estimate (24) is nontrival for

$$
a \geq \exp \left(c_{1}(\log t)^{2 / 3}\right)
$$

References

[1] Zh. Edgorov, Asymptotic behaviour of a sum of poducts of the divisor function, Dokl. Akad. Nauk Uz. SSR 10 (1973), 3-5.
[2] A. Fujii, On the problem of divisors, Acta Arith. 31 (1976), 355-360.
[3] A. Ivić, The Riemann Zeta-Function, Wiley, New York 1985.
[4] A. A. Karatsuba, On the uniform estimate of the remainder term in the problem of Dirichlet divisors, Math. USSR-Izv. 6 (1972), 467-475.
[5] A. A. Karatsuba, The estimates for trigonometric sums by Vinogradov's method and some applications, Proc. Steklov Inst Mat. 112 (1973), 251-265.
[6] A. A. Karatsuba, The Dirichlet divisor problem in number fields, Soviet Math. Dokl. 13 (1972), 697-698.
[7] A. A. Karatsuba, Complex analysis in number theory, CRC Press, 1995.
[8] A. A. Karatsuba, Principles of analytic number theory, Nauka, Moscow 1983, 2nd ed.
[9] H. L. Montgomery, Extreme values of the Riemann zeta-function, Comment. Math. Helv. 52 (1977), 511-518.
[10] E. J. Panteleeva, Dirichlet divisors in number fields, Math. Notes 44 (1998) 750-757.
[11] H. E. Richert, Einführung in die Theorie der starken Rieszschen Summierbarkeit von Dirichletreihen. Nachr. Akad. Wiss. Göttingen Math.- Phys. Kl. II (1960), 17-75.
[12] E. C. Titchmarsh, The theory of the Riemann Zeta-Function, Clarendon Press, Oxford 1986.
[13] I. M. Vinogradov, A new estimate of the function $\zeta(1+i t)$, Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 161-164.
[14] I. M. Vinogradov, Selected works, Izd. Akad. Nauk SSSR, Moscow 1952, and Springer, Berlin 1985.
[15] S. M. Voronin and A. A. Karatsuba, The Riemann zeta-function, Fizmatlit, Moscow 1994, and Walter de Gruyter. Berlin 1992.
[16] S. M. Voronin, On Ω-theorems in the theory of the Riemann zeta-function, Math. USSR-Izv. 32 (1989), 429-442.

