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1. Introduction 

1. 1 Problems and results. One of the long-standing conjectures in the theory of 
numbers dates from 17 42 when Goldbach asked whet.her any even integer exceeding 
4 is the sum of two primes. Exceptions, if any, are sparse. This is the essence of 
a celebrated theorem of l\Iontgomery and Vaughan (1975). Refining earlier work 
of Estermann (1938), van der Corput (19:38) and Chudakov (1938), they showed 
that the number E(N) of even integers not exceeding N 1 and not the sum of 
two primes, satisfies an inequality E(N) « N 1-s with some 6 > 0. The best 
numerical value for b is currently due to Hongze Li (1999) who obtained the 
bound E(N) << N°· 921 . 

Numerous variants and generalisations of Goldbach's original question have 
been studied, and it is hopeless to survey these developments. \Ve shall mainly be 
concerned with linear forms. Let p, p 1 , p2, p3 denote prime variables and consider 
a binary linear form ,\ 1p 1 + >... 2p2 with real coefficients .-\1, .-\2. When ,\ 1 , A2 are 
integers. one obtains results very similar to those on Goldbach ·s problem. Very 
recently, Arkhipov, Buriev and Chubarikov (1999) considered the equation 

(1. I) 

where >... > 0 is a given algebraic irrational number, and as usual. [] denotes the 
integer part functional. Arkhipov, Buriev and Chudarikov estimated the number 
E>..(N) of natural numbers n :S N for ,vhich (1.1) has no solution 1 and obtained 
E>..(N) << N 7/9+r::. The uninitiated reader may find it surprising that the exponent 
7 /9 in this seemingly harder problem is better than in the corresponding result 
for Goldbach's problem. However, some years prior to Arkhipov, Buriev and 
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Chudarikov, iu work on the distribution of binary linear forms at prime argument, 
Cook, Perelli and the author (1997) have implicitly obtained the superior estimate 

(1.2) 

tfore generally, the following theorem was established. 

Theorem 1.1. Let O < T < 1. Let V(N) be a set of real numbers contained 
in [½N, N] such that jv1 - v2I > 2T whenever VI, v2 E V(N) are distinct. Let 
)q, .-\2 ?: 1 be real numbers and >,. i/ .-\ 2 be algebraic and irrational. Then, the 
number of v E V ( N) for which the inequality 

IAIPI + .A2P2 - v\ < T 

has no solution, does not exceed O(N213+c:T- 2 ). 

In this result, take ,\ 1 = 1, .-\2 = ,\ > 0 algebraic and irrational. Furthermore, 
take T = ¼ and V(N) as the set of all numbers n + ½ with n EN and ½NS n < 
N. If 

(1.3) 

has a solution, then 
3 3 

n - 4 < Pr + [ .Ap2] < n + 4 , 

and hence, (1.1) is also soluble. Thus, at least when,\> 1, Theorem 1.1 implies 
(1.2), but an inspection of the work of Briidern, Cook and Perelli (1997) shows 
that the conditions Ai ?: 1 have been introduced merely for technical convenience, 
and Theorem 1.1 remains valid for any fixed positive .-\ 1 , A.2. 

\t\!Tith the simple derivation of a bound for E>.(N) in mind, which in a sense 
is preborn to the result on which it improves, one is tempted to predict a more 
general result concerning the values of [.AIPl] + [>,.2p2] which contains our estimate 
for E>. (N) as a special case. However. the elementary transition from (1.3) to 
(1.1) fails if ,\1 and >,.2 are both non-integral. Yet, it is still possible to draw a 
successful conclusion. 

Theorem 1.2. Let AI, .-\2 be positive real algebraic numbers such that l, .-\1, .Ai/ A.2 
are linearly independent over the rationals. Let E >. 1 ,>. 2 ( j\T) denote the num/Jer of 
natural numbers n s N for which there is no solution of the equation 

Then, 

\\Then three or more variables are present, the fundamental questions con
cerning sums of primes have been answered affirmatively by Vinogradov (1937). 
\Ve recall his epoch-making asymptotic formula in weighted form. The sum 

r(n) = (log Pr) (log P2) (log p3) 



Some additive problems of Goldbach's type 4 7 

satisfies 

r(n) = }n2 II (1 - (p - 1)-2) II (1 - (1 - p)- 3 ) + OA ( (lo;~)A) (1.4) 
pin pj'n 

for any A > 0. In this formula, the size of the error term is directly linked with the 
distribution of primes in arithmetic progressions, and the horizontal distribution 
of the zeros of Dirichlet L-series. In this spirit, Montgomery and Vaughan (1973) 
showed that if it ,vere possible to replace the error term in (1.4) by O(n 1+8) with 
some 0 E ( ½, 1), then the Riemann zeta function has no zeros in R( s) > 0. In the 
opposite direction, Friedlander and Goldston (1997) showed that if all Dirichlet 
L-functions have no zeros in R(s) > 0 2 t, then the error term in (1.4) reduces to 
O(n1+0+=:). If coefficients are introduced in the same manner as in Theorem 1.2, 
it suffices to assume the Riemann hypothesis for the Riemann zeta function alone 
to verify an analogous statement. 

Theorem 1.3. Let ..\1, ..\2, ..\3 be positive algebraic numbers such that the sets 
1, ..\ 1, Ai/ ..\2 and 1, ..\ 1 , ;\i/ ..\3 are linea.rly independent. over the rationals. Let 

r>,(n) = (log Pi) (log P2) (log p3). 
[>-1 P1] +[>-21>2] +[>.3p3) =n 

Then 
1 2 1 2 ~ r>, (n) = 2n ( J\1 J\2J\3)- + O(n e- g ). 

If the Riemann l1ypothesis holds for the Riemann zeta function. then 

r>,(n) = ~ri2(A1A2A:3) 1 + O(n75133+c). 

The results in Theorem 1.3 should be of a fairly predictable nature to an 
expert in additive prime number theory. We have included them here for illustra
Lional purposes, to serve as a model for an approach to asymptotic formulae which 
differs from the work of earlier writers in various aspects. 

Our last theorem is of a slightly different flavour. Questions concerning 
integers representable as the sum of a prime and a perfect square also have their 
root in correspondence of Goldbach and Euler. Davenport and Heilbronn (1937) 
showed that for any fixed k 2 2, almost all natural numbers are of the shape 
p+xk, and more recently, a bound for the exceptional set of the same quality as for 
Goldbach's problem was obtained by various writers; the best account is Zaccagnini 
(1992). Attempt8 to replace xk by a sequence increasing more rapidly than any 
polynomial have had limited success. Romanov (193,1) studied the integers of the 
form p + 2,... and showed that these form a set of positive density. Then, also the 
sequence of numbers representable as 

p + 2k1 + 2k2 + ... + 2k,, 

must have positive density, depending on r. Gallagher (197.5) established that 
this density tends to 1 as r grows, but 80 far no "natural" sequence seems to be 
known where the density is actually 1. VVe prove 
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Theorem 1.4. Let l < 1 < g. Let D~,(N) de11otethenumberofw-1turalnumber::; 
n :::; N For which the equation 

p + [ exp ((logk)')] = n 

has no solution. Then 

where()= min(~ -2. ½)-

1.2. Methods. A common feature in our theorems is the occurrence of an integer 
part. Traditional approaches to additive problems of this type make use of the 
Hardy-Littlewood method. One then encounters exponential sums like 

L e(n[,\p]) logp. 
p'5c.'\" 

( 1.5) 

and the aforementioned work of Arkbipov. Buriev and Chubarikov is 110 exception. 
Bounds of \Veyl"s type for (1.5) may be deduced from estimates for the more 
familiar sum 

by ·writing 

S(a) -= L e(np) logp 
p:5:N 

[.\p] = ,\p - {,\p}. 

( 1.6) 

(1. 7) 

and removing { ,\p} by a Fourier analysis. The disadvantage is that not only S (,\a:) 
occurs. but also S( ,\( a + h)) for many integers h. The elementary argument 
which links (1. 1) and (1.3) avoids such a Fourier analysis altogether. Instead. 
we directly solve the diophantine inequality (1.3) by the Davenport-Heilbronn 
Fourier transform method which in many ways is simpler than the classical Hardy
Littlewood method. This sirnplicistic idea also suffices to establish Theorem 1.4. 
We present the details as a vvarm-up iu §2. 

More care is required when the equation in question contains two or more 
variables with integer parts. Rather than applying a Fourier analysis to the term 
a:{,\p} implicit in (1.,5), one may use (1.7) in the equation 

(1.8) 

and then dissolve { ,\p} by a Fourier analysis, performed either on the level of the 
diophantine equation, or again within an exponential sum. To fix ideas, consider 
a solution of the inequality 

(1.9) 
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subject to the additional constraint 

(1.10) 

Then {.~1pi} + {-X2P2} E [O, ¾), and consequently, (1.8) holds. Thus. in order to 
solve (1.8), it suffices to find solutions to (1.9) satisfying (1.10). This can be done 
by the Davenport-IIeilbronn method, in much the same way as Briidern, Cook 
and Perelli (1997). The analysis will involve S(.X 1a:) and, according to (1.10), an 
exponential sum like 

L e(0:p)logp. 
p-5'N 

P211}< ¼ 

(1.11) 

The condition { .X2p} < ¼ can be removed from the summation condition by 
developing it into a Fourier series. It turns out that the interplay of this series and 
the Fourier transform underlying the Davenport-Heilbronn approach is smooth 
and does not cause much extra trouble. In §3 we describe a weighted version of 
the above argument, and use it to establish Theorem 1.3. 

Asymptotic formulae for numbers of solutions as in Theorem 1.4 are not 
available by naive tricks such as introducing a harmless condition like (1. 10) into 
a diophantine inequality ( 1.8). A further elaboration of this idea is no,v necessary. 
One may sort the primes P2, p:-1, in the sum r;, (n) into subsets where the extra 
conditions 

(1.12) 

are satisfied, and then perform a transition to a diophantine inequality as before. 
The recombination of the main terms entails some technical complication because 
we will have to "smooth'' the constraints (1.12). Fortunately, certain unpleasant 
error terms in this process have an interpretation as a diophantine counting prob
lem, and may be readily dismissed. The work in §4 will be devoted to this most 
elaborate variant of the simple observation which links (1.1) and (1.3). 

The methods of this paper should be applicable whenever an integer part 
occurs in a diophantine problem, and promise success provided the cognate dio
phantine inequality can be treated. The moral is that diophantine inequalities are 
easier to deal with by the analytic machinery, but related integer part equations 
are not genuinely harder. It appears to this writer that this point has been over
looked. Not only is there a noticeable difference between Theorem 1.1 and the 
work of Arkhipov, Buriev and Chudarikov, but also in other similar situations. To 
mention just one example, we turn our attention briefly to the ongoing chase for 
the largest real number c > 1 such that the inequality 

IP~+ P2 + p~ - nl < (logn)- 1 

has prime solutions for all large n, and that 

[p~] + [p2] + [P~] = n 

( 1.13) 

(1.14) 
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is soluble. In recent years, the largest admissible value for (1.14) has always been 
inferior to the record for (1.13): see Kumchev and NedPva (1998) and Cao and 
Zhai (1999, 2000), for example. Although we have not checked any details, the 
arguments in §§~s-4 should suffices to close the gap bet,vccn (1.13) and (1.1/1). 

1.3. Notation. Most of our notation is standard or otherwise explained at 
the appropriate stage of the argument. The letter p, with or without subscript, 
denotes prime numbers. Whenever f occurs in a statement. it is asserted that the 
statement is true for any fixed value of f > 0. with implicit constants depending 
on f. All constants implicit in Vinogradov or Landau symbols also depend on 
J\, J\ 1, J\2, ,\3, but on no other parameter. 

2. Adding primes to a rapidly increasing sequence 
2.1. Some useful functions. \Ve recall some basic facts from elementary Fourier 
analysis before we move on to establish Theorem 1.4 which is the main concern in 
this section. 

For any function f E L 1 (JR), define the Fourier transform 

}( a) = I: J (/3)e(-a;3)df3. 

For functions f. g E L 1 (JR). the convolution is defined by 

f * g(a) = 1-: J(o - /3)g(f3)d.3, 

-- A provided that this integral exists. One has J * g = J · g. 
Let 11 > 0 and define 

( sin 1r170 ) 2 
k71 (o,) = --- ; 

7ra 

--- .---, 

(2.1) 

Then kT/ = YT/ and Y.17 = k,-,. Because these functions are all even, the interplay 
formula for Fourier transforms and convolutions gives 

k;f1 = Y 11 * ... * T,1 (2.2) 

where m is any natural number, and the convolution on the right is m-fold. 

Lemma 2.1. Let m be any natural number. The function K: JR-----+ JR, defined 
for o =J=. O by 

(2.3) 
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has tile properties K(cx) 2: 0 for all a E JR.,J((o:) = 0 for lal 2: ¾, and K(n) 2: 
Cm > 0 for la:1 ::::; ½ and some constant Cm depending only on m. 

Proof. Note that Km = kf;(sm). The lemma is novv immediate from (2.1) and 
(2.2). 

2.2. The Fourier transform method initiated. We now begin our approach 
to Theorem 1.4. Fix I E ( 1, i) and a constant C with O < C < 1 - l. Let N 
denote a large real parameter, and define J\;f by the equation 

exp((logl\/) 1 ) = N. (2.4) 

In addition to the exponential sum S(cx) defined in (1.6), we require the sum 

T(o:) = L e(o:exp((logl)')). 
½M<l~M 

(2.5) 

Our next lemma is merely a special case of Theorem 1.3 in Briidern and Perelli 
(1998). 

Lemma 2.2. For N- 11 112 ::::; la:I ::::; Ne one has 

IT(o:)I « Al exp ( - K(log 1\1)3 - 21 ) 

where K is a ;-;uitable positive constant. 

Fix an integer m with 3Crn > 2, define K(o:) by (2.3), and introduce the 
integral 

j x l 
R(n) = -x S(o)T(o:)e( - cx(n + 2) )K(cx)dcx. (2.6) 

By (1.6), (2.5) and Lemma 2.1, we see that R(n) > 0 implies that there is a 
solution to the inequality 

IP+ e(logl)-Y - n - ti<~' 
and for any such solution, we necessarily have 

p + [e(logl)'] = n. 

\Ve now proceed to show that for all but O(N c-(log N) 0
) (with 0 as in Theorem 1.4) 

values of n E [½N, N], one has R(n) > 0. By summing over dyadic intervals, this 
implies Theorem 1.4. 

2.3. A mean square estimate. A formal application of the methods of Dav
enport and Heilbronn ( 1946) leads one to expect that for n E [ ½ N, N] one has 
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R( n) >> !vf, and indeed this is true for most values n. We begin by dissecting the 
real line into the major arc 

(2.7) 

the pair of minor arcs 

(2.8) 

and the tail 

(2.9) 

The treatment of the tail is straightforward. The bounds IS(a)I « N (which 
follows from Chebychev's upper bound) and IT(a)I S Al together with (2.3) suffice 
to confirm the inequalities 

(2.10) 

on recalling the choice for rn. 
The minor arcs require a mean square approach for which we borrow an idea 

from Briidern, Cook and Perelli (1997). In L2(lR), equipped with the standard 
inner product 

the functions 

(2.11) 

satisfy (<l'>n,<PJ) = 0 for n =J=-j, whence <Pn/(4>n,<Pn) 1/ 2 is an orthonormal family. 
But (<l'>n,<Pn) = J~= K(o)da is independent of n. The function 

F(o) = { i·(a)T(o)K(o)l/2 

is in L2(lR), and we have 

for o Em, 
otherwise, 

i S(o)T(a)K(a)e( - a(n +}))do= (F. <Pn)• 

By Bessel's inequality, 

f l(F, <Pn)l 2 « (F, F) = J 1s(a)T(o)l2 K(o)do. 
n=-x m 

(2.12) 

(2.13) 
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We observe that Lemma 2.1 and elementary prime number theory suffice to es
tablish the bound 

j = IS(n)l 2 K(n)do « I:(logp) 2 « NlogN. 
-= <N p_ 

(2.14) 

and therefore. from Lemma 2.2, (2.12) and (2.13). we may conclude that 

t 11 S(o)T(n)K(o)e( - o( n + ~) )dnJ 2 

n=-= m 

« N A12 (log N) exp ( - 21'c(log A1) 3 - 21 ). 

By a standard argument, this implies an upper bound for the number of n for 
,vhich the contribution of m can be large. Since the tail makes no contribution by 
(2.10), we may conclude as follows. 

Lemma 2.3. The number of integers n E [ ½ N, NJ for which the inequality 

1 1 Af 
I S(n)T(n)K(o)e(- o(n + -))da\ > -1 N 

lnl>N-11/12 2 og 

holds, does not exceed 

« N(log N) 3 exp(-21'c(log A1) 3 - 21 ). 

2.4. The approximation of the major arc contribution. Although our work 
on the major arcs is standard in principle, some care has to be exercised due to 
the ''slow" convergence of the singular integral. The early steps follow the pattern 
laid down by Vaughan (1974). Let 

I(n) = iN e(f3a)df3, J(cr) = I: I:ze-1e(0:l), 
lSN e 

(2. LS) 

where on the right the sum over (! is over all zeros of the Riemann zeta function 
with R(e) :? ~, and IC}(e)I < N 113 . Now define the function ~ by 

S(cr) = J(o,) - J(a) + ~(er). (2.16) 

We then recall from Vaughan (1974), Lemma 5 and Lemma 8, the estimates 

uniformly for a E IR., and 

1/2 j IJ(o)l 2do, « Nexp( - (logN)½-=J 
-1/2 

(2.17) 

(2.18) 
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Note that Vaughan (1974) has the exponent ½-c in (2.18) replaced by the weaker 
value ½, but an inspection of his proof clearly yields (2.18). 

By (2.16), we can write 

jiJR S(a)T(a)K(a)e( - a( n + t) )da = R1(n) - RJ(n) + RA(n) (2.19) 

where 

R 1 (n) = jiJR I(a)T(a)K(a)e( - a( n + ~) )da, 

and likewise defined numbers RJ(n), RA(n). The term RA(n) is always small. To 
see this, note that (2.17) yields ~(a)« N 3f4+c: for a E 9.Jt. The trivial bounds 
for T(a) and K(a) together with fiJR da « N- 11/ 12 give 

(2.20) 

By Bessel's inequality, used in the same manner as in the previous section, we 
have 

f IRJ(n)l 2 « 1 IJ(o)T(a)l2 K(a)da. 
n=-:x, iJJt 

The trivial bound for T and (2.18) yield 
X 

n=-x 

and by a familiar argument, we may now conclude as follows. 

Lemma 2.4. The number of natural numbers n :S N for which IR.,(n)I > 
lvf/logN holds does not exceed« Nexp(-(logN)½-c:). 

Finally, we compare R1(n) with the integral 

1::x: 1 
R*(n) = -= I(a)T(a)K(a)e( - a( n + 2) )da. (2.21) 

The argument used to establish (2.10) also shows that the contribution to (2.21) 
arising from the tail t does not exceed O(N- 1 AI)= O(N- 112 ), whence 

R1(n) - R*(n) « N-½ + i II(a)T(a)IK(a)da. 

By (2.15) and a partial integration, /(a) « lnl- 1 for a =j=. 0. The trivial bound 
K(a) « 1 and Lemma 2.2 now show that 

r II(a)T(a)IK(a)da « M exp ( - K(log Af) 3 - 2'r) IN("" da Jm } N-11/12 Q 

« A/(log N) exp ( - K(log J\,/) 3- 2-Y) 

so that we also have I R1 ( n) - R* ( n) I :S Af / log N when N is large. \Ve combine 
this with (2.19), (2.20) and Lemma 2.4, and summarize the result in the next 
lemma. 
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Lemma 2.5. The number of integers n ,vith 1 :Sn :SN and 

IR*(n) - fm S(o)T(n)K(n)e( - n( n + ~) )doj > 1::~ 

docs not exceed 0( N exp ( - (log N) ½-e)). 

2.5. The endgame. It remains to evaluate R*(n). By (2.5), (2.15), and (2.21), 

R*(n) = 1N :z= k(f3 + e(logl)' - n - ~)da. 
½M<l-:;J\.f 

Now suppose that ½N :S n :S N, and that ½1\.[ < l :S ~1U. Then, a short 
calculation shows that the interval of all real numbers ,B satisfying the inequality 

li3 + e(log!)' - n - !/ < ! 
' 2 - 8 

is a subset of [0. N]. From Lemma 2.1, we know that k(n) ~ 0 for all a, and 
k(o.) » 1 for lal :S ½- It follows that 

uniformly for ½ 1U < l :S ~ 1\1 and ½ IV :S n :S N. Summing over l yields 

R* (n) » 1\./ (2.22) 

for all n E [½N, N]. If we now recall (2.6) and combine (2.22) with the results in 
Lcmmata 2.:3 and 2.5, we arrive at the conclusion that R(n) » 1\1 must hold for 
all but 

o(N exp ( - (logN)~- 2-E) + N exp ( - (logN)½-E)) 

values of n in the range ½ N :S n :S N. As we have remarked earlier, this suffices 
to establish Theorem 1.4. 

3. Binary linear forms at prime arguments 

3.1. Another useful function. Let i = T 71 be defined by (2.1). Then the 
function 

= 
W11 (n) = L i 11 (n + h) (3.1) 

li=-x 
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is of p!riod 1, and the Fourier transform of the function h 1----+ T(n + h) is h 1----+ 

e(ah)T(h). The Poisson summation formula, applied to (3.1 ), now yields the 
Fourier series 

::,0 

w,,(n) = L kT/(h)e(ah). (3.2) 
h=-x 

3.2. Counting solutions of (1.9). In this section, we use the function '1T = \¥ 1; 8 

only, and form the sum 

S1(n, >.) = L w( ,\p + 1)e(ap) logp. 
p~N 

(3.3) 

Note that \lf(,\p + ! ) =I= 0 if and only if O < {>.p} < ¼- With K given by (2.3), 
we now consider the integral 

(3.4) 

and observe that 

I ( n) = L K ( A 1P + A2P - n -1) '¥ ( A2P2 + 1 )-
P1 ,P2 ~ N 

In particular, I(n) > 0 implies that there is at least one solution of (1.9) satisfying 
(1.10), and hence also of (1.8). \Ve now proceed to show that indeed I(n) > 0 
holds for all but O(N516+c:) values of n in the interval 

(3.5) 

Theorem 1.3 follows from this by a dyadic splitting up argument. 
By (3.2) and (3.3), 

x h 
S1(>-2n.>.2)= L k1;8(h)e(8)s(>.2(0:+h)), 

h=-x 

and accordingly, we deduce from (3.4) that 

(3.6) 

where 
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This identity may be viewed as a Fourier expansion of the weighted count I ( n) for 
the number of solutions of the simultaneous conditions (1.9), (1.10). One expects 
that only I 0 (n) is large and contributes roughly N for all n satisfying (3.5). We 
proceed to confirm this for almost all n. 

3.3. Some simple terms. We dismiss from (3.6) large values of h. For this 
purpose we note that Lemma 2.1 and elementary prime number theory show that 

1= IS(,,\10:)j 2 K(ct)dn = L K(,,\(p1 - p2))(logp1) logp2 
-x p1.p2~N 

whence 

Jx jS(,,\ 1a:)i 2K(a:)da: « L (logp) 2 « NlogN. 
-x p~N 

(3.7) 

and likewise, 

(3.8) 

uniformly in h E Z. Since k(h) « h-2 , it now follows from (3.7), (3.8) and 
Schwarz's inequality that 

L k1;s(h)IIh(n)! « N(logN)H- 1 . 

lhl>H 

We take H = (log N) 2 and then infer from (3.6) that 

L (h) ( N ) I(n) = k1;s(h)e ~ Ih(n) + 0 -1 -r • 
8 ogl'v 

[hl~log2 N 

(3.9) 

Next, we remove from the remaining integrals Ih(n) a tail la:I > log N. 
By a simple change of variable and an argument similar to, but easier than the 
deduction of (3. 7), one readily confirms that the chain of inequalities 

(3.10) 

is valid uniformly for A E IR. Since K(a:) « la:l-'1 holds for all a with la:I ~ 1, 
it follow that for X ~ 1 one has 

and similarly, uniformly for h E Z, 
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We choose X = log TV an<l then infer from Schwarz's inequality that 

(":; IS(>.10:)S(>.2(0: + h))IK(o:)do: « N(logN)-2 
JlogN 

also holds uniformly in h. Consequently, the integral 

differs from Ih(n) by at most O(N(logN)-2 ), and the inequality k1/ 8 (h) ~ h-2 

(when h-::/ 0) suffices to deduce from (3.9) that 

I(n) = L k1/s(h)e(i)I~(n) + oco:N )· 
fhf:=:;tog 2 N 

(3.11) 

3.4. Another mean square estimate. The initial treatment now completed. 
we turn our attention to a prospective main term and bound the remaining terms 
in (3.11) on average over n. In a detour from previous practise, the major and 
minor arcs are redefined as 

¼Te formulate the key result as a lemma, but postpone its proof to §3.5 below. 

Lemma 3.1. Suppose ,,\ 1 • ,,\2 are real algebraic numbers such that L ,,\ 1 , ,,\if >-2 
span a :{ -dirnem,ionaJ <QJ-vectorspace in JR. Let 6 > 0. Then, far sufficiently large 
N. far any n E JR. h E Z with lnl S: log N and lhl S: log2 N, tlw inequality 

implies that h - 0 and tllat lnl S: N- 1 . 

Define a function -v on JR by writing 

Vo(o:) = L k1;s(h)e(i)s(>.10:)S(>.2(0: + h)), 
O<flif:=:;log2 N 

and 

{ 
k1;8 (0)S(>.1n)S(,,\2n) + Vo(n) 

V(o:) = Vii(a) 
0 

For later reference1 we note that Lemma 3.1 yields 

for a Em. 
for a E 9Tt, 
for lol > log]V. 

(3.12) 
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Furthermore, we have from (3.11) that 

I(n) = k1;R(O)J(n) + V(n) + oco:N) (3.13) 

where 

J(n) = f S(,,\ 1a)S(,,\2 a)K(a)e( - o( n + ~))da, 1~ 4 

1= 3 
V(n) = -x V(o)K(a)e( - a(n + 4) )da. 

From Lemma 5 of Brudern, Cook and Perelli (1997) we invoke the lower bound 1 

J(n) » N (3.14) 

for all integers n ,vith ¼(,,\ 1 + A2)N ::; n::; ½(,,\ 1 + A2)N. 
We now imitate the principle underlying the proof of Lemma 2.3 to estimate 

V(n) in mean square. \Vith 

3 
<I>n( a) = K(o) 112 e ( - a( n + 4)), F( o) = V(n )K( 0) 112 

and the identity V(n) = (F, <Pn), Bessel's inequality shows just as in (2.13) that 

f IV(n)l 2 << jc,o IV(a:)1 2 K(a)do.. 
n=-X -ex; 

By (3.7), (3.8) and Schwarz·s inequality, 

1-: IV(o)IK(n)da << NlogN, 

so that from (3.12) and (3.15) we infer the bound 
X L IV(n)l2 <::: N17/6+E:. 

n=-x 

(3.15) 

(:3.16) 

Theorem 1.3 is now available. Suppose that the integer n satisfies IV(n) / ::; 
N/logN. Then, for ¾(,,\ 1 +,,\2)N::; n ~ ½(,,\ 1 +,,\2 )N, we conclude from (3.11) 
and (3.14) that I(n) ~ N holds. It follows that I(n) = 0 for n in the above 
range implies that IV(n)I > N/logN. By (3.16) this is possible for at most 
0( N 5/ 6+") integers n. We have remarked already in §:1.2 that this suffices to 
establish Theorem 1.3. 

3.5. A method from diophantine approximation. Our main tool in this 
section, which is solely devoted to the proof of Lemma 3.1, is Schmidt's famous 
generalisation of Roth ·s theorem to linear forms. We record only the special case 
we require, as a lemma. It is an immediate corollary of Schmidt (1980), Corollary 
lE. 

1 Lernma 5 of the reference given is subject to the conditions .X.1, .\2? 1, and claims (3.14) for 
½N::; n :SN, but an inspection of the proof shows that (3.1,1) holds in the relevant range for n 
provided only that )q > 0, A2 > 0. 



60 .Jorg Rriidern 

Lemma 3.2. Let µ 1 , µ2 be real algebraic numbers such that 1, µ 1 , µ2 are lin
early independent over the rationals. Let t5 > 0. Then there is a constant 
C = C(µ 1, µ2, 6) > 0 such that for all (m1, m2, m3) E :-I?\ { (0. 0, 0)} one has 

\Ve also requiw Vinogradov's classical estimat(' for exponential sums over 
primes. A convenient version occurs as Lemma 3 in Briidern, Cook and Perelli 
(1997), which we restate here. 

Lemma 3.3. Let 1 :SA :S N 115 (logN)- 5 and suppose that jS(Q)I 2 ~. Then 
there are coprime integers a, q with 

To launch our approach to Lemma 3.1, we investigate the consequences of 
the hypotheses therein in the light of Lemma 3.3. We trivially have IS(0c)I « N. 
Hence, the inequality IS()qQ)S(.\2(a + h))I 2 N 11 /5H implies that there are 
numbers A1, A2 with A1 2 1. A2 2 1 and 

Two applications of Lemma ;3_;3 now yield integers a1 , Qi with 

The last two inequalities we divide by Aj and then diminate Q to obtain 

This we rewrite, after multiplication by q1 , q2, as 

(:3.17) 

The numbers 1, )..1, .\i/.\2 arc linearly independent OV('r Q, and thus, this is also 
true for 1, µ 1, µ2 with µ1 = ,,\- 1 . We now apply Lemma 3.2 with m 1 = a 1q2, m2 = 
-a2q1, m3 = hq1q2. Since lhl ~ (logN) 2, we must have lmd « AIA~(logN) 18 . 

To bound m 1 , note that l0cl :s; log N gives 
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so that we also have lrn1 I « Ai A~ (log N) 18 . A similar argument confirms the 
same bound for lm21 so that we now conclude that 

By (3.17) and Lemma 3.2, it follmvs that for sufficiently large N we must have 
a1q2 = a2q1 = hq1q2 = 0. This is possible only if a1 = a2 = h = 0. But a1 = 0 
implies that 

and the Lemma is proved. 

4. Ternary linear forms at prime arguments 
4.1 Partitions of unity and envelopes. If one attempts to prove an asymptotic 
formula for the number of solutions of an equation involving fractional parts, the 
ideas of Chapter 3 are still applicable when combined with a partition of unity, as 
we shall now explain. This makes it possible to localize the fractional parts of some 
terms, and one can then link the original equation with an associated inequality as 
in earlier descriptions of the method. Rather than proceeding in undue' generality, 
we concentrate on the special case considered in Theorem 1.3. 

Let LE N,L ~ 10 and write TJ = L- 1 . Then, by (2.1) and (3.1), 

L-1 
L '¥71(a + lTJ) = ·rJ ( 4.1) 
l=O 

holds for all a E IR. Suppressing dependence on L, we write 

( 4.2) 

Then ( 4.1) reads 

L('l/1o(a) + 4Ji(a) + ... + WL-1(a)) = 1 (4.3) 

for any a E IR. We use this with o = AiPi (i = 1, 2) in the definition of r>,(n) (in 
Theorem 1.3) to sort the solutions of 

(4A) 

according to the values of { >. 1p 1 } and { A2p2}. One then obtains an identity 

L- l 

r>,(n) = L2 L r(n;l1,l2) (4.5) 
Ii ,/2=0 
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where 
r(n;l1,l2) = L 1/J1iC>..1pi)'l/,112 (),,2p2)logp; 

Pl ,P2,P3 
(4.4) 

(4.6) 

here the summation is restricted to all triples p = (p 1 ,p2 ,p3 ) of primes satisfying 
(4.4), and 

log p = (log p1 )(logp2)(logp3) (4.7) 

is used as a shorthand. 
\Vith the decomposition (4.5) we have reached the final formula for r>.(n) 

based on partitions of unity. In the next step we provide an envelope for r( n; l 1, l 1), 
that is, upper and lower bounds for r(n; l1, l 2 ) in which the enveloping functions 
are more suitable for the analytic treatment. and are defined in terms of solutions 
of diophantine inequalities. 

To put these ideas into effect. let TF*. W* be the continuous functions on IR 
defined by 

W*(o) = { 1 for lol::; t + 2r;, 
o for Io I 2 2 + 4r;. 

TV*(o) = { 1 for lol::; t-4ry, 
o for Io I 2 2 - 2 r,i. 

(4.8) 

and which rire linem on the pairs of intervals ½ + 2ry < i0:I < ½ + 4ry and ½ -
4r; < lol < ½ - 2ry, respectively. Furthermore, for any pair li. l 2 of integers with 
1 s; li s; f,. - 1 , put 

1 
g = g(l1. 12) = n + 2 + (l1 + l2)ry, (4.9) 

and then define the counting functions 

r* ( n; l 1. l2) = L TV* ( A1P1 + A2P2 + A3p3 - g )1/11i ( A1PiJVJb ( A2p2) log P, ( 4.10) 
p 

and analogously. r * (n; Li. Li) with TV* replaced by W*. Their enveloping effect is 
exhibited in 

Lemma 4.1. Let 1 s; li ::; L - 1. Then 

Proof. \Ve begin with the second inequality. Let p be a solution of (4.4), which 
makes a non-zero contribution to r(n;l 1 .l2 ) in (4.6). Then, by (4.2), (3.1) and 
(2.1), one has 

(i = 1,2) ( 4.11) 

The identity 
3 3 3 

L AiPi = L[AiPi] + L {Aipi} (4.12) 
i=l i=l i=l 



Some additive problPms of Goklbach's type 63 

now shows that 

3 

n + (l1 + l2 - 2)17 < L AiPi < n + l + (l, + l2 + 2)17. 
i--= 1 

and by (4.8) and (4.9) we conclude that ~V*(>-.1p1 + A2P2 + A3p:3 - g) = 1. The 
inequality r(n;l 1 ,l2 )::; r*(n;li,l2 ) is now immediate from (4.6) and (4.10). 

The proof of the lower bound is similar. Any triple p with a non-zero 
contribution to r* (n; l1, l2) satisfies ( 4.11) and 

3 

n + (l1 + l2 + 2)rJ < L AiPi < n + 1 + (l1 + l2 - 2)rJ. 
i=l 

By (4.12) and (4.11) it follows that 

3 

n - 1 < L[A1Pd < n + 1. 
i=l 

whence ( 4.4) holds. Therefore, p is counted by r( n: fi. b). and this establishes 
the first inequality in the Lemma. 

Note that the above argument does not apply when l1l2 = 0. For example, 
if l1 = 0, then ip0(>-. 1p1) =f- 0 does no longer imply ( 4.11 ). but the inequalities 
0 ::; { >-. 1p 1} < 17 or 1 - TJ < { >-.1p 1} < 1. Although a more elaborate transition 
from r( n; 0, b) to a diophantine inequality is still possible, it is easier to consider 
such terms in ( 4.5) as error terms. 

Lemma 4.2. Let 10 ::; L < n 112 . Then, subject to the conditions in Theorem 1.3 _. 
one has 

L-1 

L r(n:li,b) « n 2 (logn) 3 L-:-i_ 
Ii ,/2=0 
/1/z=0 

We postpone the proof of this lemma to s4.6 below; it is a fairly straightfor
ward consequence of well-known techniques. 

4.2. Fourier integrals for the envelope. The functions W* and H'* can be 
expressed as a linear combination of Y -functions. By (2.1) and ( 4.8), one has 

'* 8 + L 4 + L H-' (n) = ---i 1+417 (ct) - --Y 1+211 (n) 2 + 1617 2 2 + 81] 2 

whence 
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The upper bound IW*(a)I ~ J IW*(o)lda ~ 1 + 817 is trivial, and since O < 17 < ½ 
certainly holds, we deduce from (2.1) that 

( 4.13) 

A similar analysis is possible for i,V*(a), and the analogue of (4.13) again holds. 

Since iv* and W* are even functions, we also have 

W* = W*, 

vVe are now in a position to express r*(n; l 1 , l2 ) and r*(n; li, l2 ) in terms of a 

Fourif'r integral. Let 

and write, for i = 1 or 2. 

Ti(a, l) = L i/Jz(Aip)e(>..iap) logp. 
z,5:cN 

Then, for any O ~ l i ~ L - 1, one finds from ( 4.10) and the properties of W* that 

----and likewise, with r* and n·* in place of r*. W*. The Fourier series (3.2) and 

( 4.2) transform Ti into 

Ti(n, l) = L kri(h)e(lh17)S(>..,1(0 + h)), 
h=-x 

and therefore, 

r*(n; l1, l2) = L kr1(h1 )kri(h2)e((lih2 + l2h2)r1)s*(n; L h) (4.15) 

h1.h2EZ 

where 

----A similar formula is available' for r *, with Hl* replaced by iv* , The double series 

in ( 4.15) is the final decomposition of the enveloping functions on which the later 

analysis rests. One expects that only the summand with h = (0, 0) contributes a 

main term, and this is indeed the case. The next two lemmata make this precise. 
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Lemma 4.3. For 1 ::; Ii, l2 ::; L - 1 one has, subject to the hypotheses in Theo
rem 1.3, 

s* (n· 1. (0 0)) = n
2 + 0 (n 2e-~ + n 2 L- 1 ) ' . . 2..\1..\2..\3 . .· ' 

and if furthermore the Riemann hypothesis for the Riemann zeta function is true, 
then 

n2 
s*(n;l,(0,0)) = ~--+O(n2+0:17+n19110+e:). 

2>.1>-2>.3 

Aforeover, the same asymptotic formulae are valid for s* (n; I, (0, 0)). 

All terms with h i= (0, 0) are treated as error terms. We summarize the 
result in 

Lemma 4.4. For 1 ::; 11 ::; 12 ::; L - 1, one hai:-!, subject to the hypothe1:,es in 
Theorem 1.3, 

L k71 (h1)k71 (h2)ls*(n: 1, h)I « n 2 +0:17 + n 75 / 3s+e:. 
O#hEV 

and the same bound holds with s* in place of s* . 

We deduce Theorem 1.3 from these lemmata in the next section, and then 
prove Lemma 4.3 in §4.4 and Lemma 4.4 in §4.5. 

4.3. Proof of Theorem 1.3. Assume the Riemann hypothesis, and choose 
L = [n1138]. Then, by ( 4.15), Lemmata 4.3 and 4.4, 

for all pairs Li, h with 1 ::; l1 , b ::; L - 1. By ( 4.5), Lemma 4.1 and Lemma 4.2, 
we deduce that 

L-l 

r>,(n) :S L 2 L r*(n; lr, l2) + O(n2+0:17) 
Ii ,12=1 

n2 
< --- + O(n2+0:17). 

2>.1>-2>.3 . 

and the opposite inequality 

is obtained likewise, using r* in place of r* . This establishes the conditional part 
of Theorem 1.3, and the unconditional part follows in like manner. 

4.4. An asymptotic formula. We now discuss Lemma 4.3. A detailed proof is 
given subject to the Riemann hypothesis. At the end of the section, a guideline for 
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the necessary adjustments in the unconditional case is provided. The argument is 
essentially standard, so we shall be brief. 

Before we embark on the main argument we provide an estimate for frequent 
use later. From (3.10) and (4.13) we have 

and for any Y 2: L 

(4.16) 

In particular, it follows that 

( 4.17) 

Now recall from ( 4.15) that 

say. As usual, we begin by removing the tail t = {o : lol > N½}. We use 
(4.16) with j = 1, 2 and Y = N 115 . A trivial estimate for S(>.;io) and Schwarz's 
inequality then confirm that 

(4.18) 

The major and minor arcs are defined by 

and we proceed by estimating the contribution of the minor arcs. For i = 1 or 2. 
let 

9 ,5 
mi= {o: Em: IS(>.io:)I ::; Nw+ } 

where O < 8 < i6o is still at our disposal. By ( 4.17) and an obvious use of 
Schwarz's inequality we infer that 

(4.19) 

It remains to show that the set of all o: E m with 

(4.20) 
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is empty to conclude from ( 4.19) that 

(4.21) 

To confirm this claim, note that from ( 4.20) and Lemma 3.2 one finds that there 
are coprime integers ai. Qi (i = 1, 2) with 

1 < · < N½-c5 - q1 - ' ,,\ i < -1N---c5 I a I 4 ·()' - - q. 5 
l Qi - i . 

As in §3.3, it follows that 

( 4.22) 

but that la1 I « Q1 lol + 1 « q1N1/5 , whence 

( 4.23) 

By Roth's theorem in diophantine approximation, recalling that ,,\if ,,\2 is algebraic 
and irrational, (4.22) and (-1.2:l) can hold, for IV sufficiently large, only if a 1a 2 = 0. 
But then la,I « N-¾-ti, whence a, E 9J1. Hence the set of all a, E m with ( 4.20) 
is indeed empty. 

The treatment of the major arc is very routine. If the Riemanu hypothesis 
holds, an argument very similar to the proof of Lemma 5 of Vaughan (1974) will 
show that 

and one then readily establishes the formulae 

J9YC S(--\1 a, )S(--\20 )S(,,\3o)e( -ga) W* ( o)do 

= J'Ul /(,,\1o)/(,,\2a,)/(,,\30:)e(-ga,)W*(a,)d0: + O(Nf+e) 

= 1: l(--\10,)J(,,\20,)/(,,\:30,)e(-ga:)W*(a,)da, + O(Ni+c:) 

= f lV* (--\101 + --\20,2 + ,,\303 - g)d(o1, a,2, a,3) + O(Ni+") 
j[O.N]3 

By ( 4.9), we have n < g < n + 2. From the definitions of W* and N it is now 
2 

immediate that the final integral equals 2A1
1~ 2 A3 + O(n277), and it follows that 
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and from (·1.18) and (4.21) we finally deduce that 

because o > 0 in ( 4.21) can be made arbitrarily small. If {.V* is replaced by iv* 
throughout the argument, one obtains the same asymptotic formula for s* (n; I, 0). 

The necessary modifications in the unconditional version of Lemma 4.3 are 
mainly in the choice of major arcs. One now chooses 

and 

The ahove argument then remains valid with only modest adjustment of detail 
which we may leave to the reader. 

4.5. Proof of Lemma 4.4. The proof of Lemma 4.4 is not dissimilar to the 
ideas underlying the argument used to establish Lemma 3.1. However, a reason
ably efficient treatment of the double sum over h in (4.1.S) results into a tedious 
discussion of cases. 

\Ve begin by removing dependence on I. By ( 4.15) one has 

L k71 (h1)k 71 (h2)ls*(n; I, h)j :s; L kr1(h1)k1J(h2)S(h) (4.24) 
h#O h#O 

where 

S(h) = [': \S(A1(0: + h1))S(A2(a + h2))S(A30:)W*(a)Jdn. 

We split the sum in (4.24) into /h1I :s; jh21 and /h 1/ > h2 , and from now on 
concentrate on the former case, the latter can be handled likewise by observing 
symmetry. 

By Schwarz's inequality and ( 4.17): one has S(h) « N 2(log N) 4 uniformly 
in h. Recalling the simple bound k,1(h) ~ h-2 we now see that the contribution 
to (4.24) of terms with 1h2121h11 2 L 512 does not exceed 

« N2(logN)4 L h12 L h:;2 « 1"vT2(logN)4L-5 
h 1 >L5 l 2 h2?:h1 

which is acceptable in view of the claim of the Lemma. We are left with terms 
satisfying 1h1 1 :s; L 512 , and these we split further into the special case h1 = 0 and 
dyadic ranges H s h1 < 2H with 1 s H s L 512 running over powers of 2. 

\Ve also split the integral S(h) into the center 

(4.25) 
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the integral Sy(h), defined as in ('1.25) but with integration over Y < lal :::; 2Y, 
and the tail S=(h) where in (·1.25) integration is over lo:I > L4 . By (4.16) we 
have Sx:(h) « N 2 (logN) 4 L- 3 , and since (3.1) shows that 

we conclude that 

L kri(h) = 17, 
hEZ 

L kr7(h1)kr7(h2)S=(h) « N 2(log lv)4r/' 
h'f',O 

( 4.26) 

which is again acceptable. By a standard dyadic splitting up argument, we now 
see that (4.24) is bounded by N 2+crJ6 plus O(log2 N) terms 

E0 (Y) = rt2 L k,1(h)Sy (0, h ), 
h'f',O 

(4.27) 

( 4.28) 

where 1:::; H s L 512 and Y = 0 or satisfies Ls Y s L4 . We proceed by verifying 
the bounds 

('1.29) 

for the above ranges of H and Y. It follows that the contribution to ( 4.24) 
of terms with h 1 s h2 does not exceed O(N2+crJ5), and the aforementioned 
symmetry argument is then sufficient to complete the proof of Lemma 4.4. 

\Ve begin with E 1 (H, Y). Let 1 :::; B s N 116 be a parameter to be 
determined later. In the integral defining Sy(h) the subset of all n where 
IS(.\30)1 s 1vn-1 contributes 

NB- 1 r IS(.X1(n + hi))S(.\2(0: + h2))W*(n)ida 
}lnl>Y 

to Sy (h) (this is true also if Y = 0 ), and by ( 4.16) and Schwarz's inequality, this 
does not exceed N n- 1 N(log IV) 4 L}~- 1 where 

Yo= Y (Y 2 L), Yo= L (Y = 0) ( 4.30) 

By exchanging the roles of S(>.3a) and S(>.1 (a + h 1)), the same upper bound is 
valid for the contribution to Sy(h) arising from the set of all a where IS(>.1 (a + 
h 1)) I ::::; NB- 1 holds for all H s h 1 < 2H. We shall choose B such that the set 
of n with the simultaneous conditions 

(4.31) 
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for somP H :::; h1 < 2H is empty. It then follows from the above discussion that 

( 4.32) 

uniformly for all h with H ~ h 1 < 2H. The estimation of E 1 ( H, Y) is now 
readily completed by verifying the bound 

( 4.33) 

In fact, if H ::; L. two application of ( 4.26) show that the left hand side of ( 4.33) 
does not excPPd r-,2, and for H > L the inequality k,1(h) « h-2 bounds the sum 
in qupstion by H- 2 , as required. 

By (4.27L (4.32) and (4.33), 

and ( 4.29) follows by choosing 

(4.34) 

It remains to verify that B::; N 116 , and that no a can satisfy (4.31). Note that 
Yo ~ L whence by (4.34), we have B ::; L 5 ,J2 = £ 3 :::; N 116 : as required. Next, 
suppose that (4.31) holds for some a relevant for Sy(h). By Lemma 3.3, we then 
find integers ai, qi with 

1 ::; qi « B 2 log8 N, 

I a1 I B 2 log8 N >.1(a+h1)-- « V , 
qi q11 

I a3 I B 2 log8 N 
-\30 - - « ~---. 

q:i q:3N 

As in §3.5, the argument leading to (3.17) now shows that 

( 4.35) 

and that 

lh1Q1Q2I « HH4 log16 N, la3q1I « YoB4 log16 N, la1q3I « (H + Y0 )H4 log 16 N. 
(4.36) 

If, for some 8 > 0, we would have 

(4.37) 
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then from (4.35), (4.36) and Lemma 3.2 we could conclude that, in particular, 
hq1q2 = 0 which is a contradiction. Thus, it remains to verify ( 4.37). A simple 
verication based on ( 4.34) shows that 

and ( 4.37) follows for L ::; n° with 0 < }8 , as required. 
The estimation of E0 (Y) is very similar. By (2.1) and (4.17), one has 

L k11 (h )Sy (0. h) « N 2 (log N) 4 L-3 • 

lhl>L3 

so that the contribution of terms with lhl > L:i to E0(Y) is O(N2+c:1J5), which is 
acceptable. The remaining summands in ( 4.28) are split into O(log N) subsums 
E0 (H, Y) stemming from ranges H ::; h < 2H with 1 ::; H::; £ 3 . The estimation 
of E0 (H, Y) can be performed exactly as we did with E 1 (H, Y), but with S(.\2 (n+ 
h)) in the role of S ( .\1 ( a + h 1 )) . The factor TJ 2 in ( 4.28) makes it possible to 
choose 

which makes the overall treatment even simpler, ~d ( 4.29) follows for E 0 (Y) also. 
In all arguments we may replace Hl* by W* , and then deduce the bound 

for s* in place of s"'. This completes the proof of Lemma 4.4. 

4.6. Proof of Lemma 4.2. The next Lemma is well-known. and a proof is 
included only for completeness. 

Lemma 4.5. Let ,\ be a real algebraic irrational number. Then, for N- 1/ 2 < 
Tl< 1 one has 

L W(.\m) « TJ 2 N. 
mSN 

Proof. Ry (3.1), 

= 

The term with h = 0 contributes r;2[N]. Trivial estimates and k77 (h) « h- 2 

show that the tail lhl >- 77- 2 also contributes O(TJ2 N). The remaining range 
1 ::; lhl ::; n- 2 we split into lhl :S 77- 1 and dyadic ranges H s h < 2H \Vith 
77- 1 ::; H < r7- 2 . Since k71 (h) « TJ 2 for lhl ::; '7 1 , we see that this range 
contributes to the sum in question at most 

TJ 2 L min(N, ll.\hll- 1), (4.38) 
hSr1-1 
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where 11/311 = minmEZ 1/3-ml. For any coprime rational numbers a, q with l.-\-!I s 
q-2 , Lemma 2.1 of Vaughan (1997) bounds (4.38) by 

N -1 

r1 2 ( + + N + qlogq), 

and by Roth's theorem on diophantine approximation, one can always find a q 
with the required property, in the range Nfi/8 « q « N 314 , so that ( 4.38) is 
indeed O(r;2 N). For r;- 1 ::; H :s; ry- 2 , an interval H :s; lhl < 2H will contribute 
to the sum in question ( on using k11 ( h) « h- 2 « H- 2 ) at most 

H- 2 L min(N,ll.-\hll-1)«H-2 (NH +N+qlogq). 
H'5:h<2H q 

This does not exceed r;21V 718 , and the Lemma follmvs. 
To prove Lemma ,1.2, we first observe that by (4.3), (4.6) and (4.7). one finds 

that 
L-l 

L r(n;O,l2) = r; L \J! 17 (.-\1p1)logp. ( 4.39) 
p 

(4.4) 

Note that log p « log3 IV. For any fixed prime p1 ::; n/ ,\1 < N, the number of 
solutions (4.4) in primes p2 ,p3 does not exceed O(n - .-\1p1 ) = O(n). Hence the 
sum in ( 4.39) does not exceed 

P1::::n/>..1 m~N 

and Lemma 4.5 yields 

L-l 

L r(n; 0, l2) « n 2r/(log n/. 
l2=0 

The same argument also yields 

L-1 

and Lemma 4.2 follows. 
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