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ON SPECTRAL LARGE SIEVE INEQUALITIES 

MATTI JUTILA 

Abstract: The spectral large sieve inequality due to H. Iwaniec, that is an estimate for the 
mean square over a spectral interval of a linear form in the Fourier coefficients of l\faass wave 
forms. is reported by nse of a formula of Y. ~1otohashi and the "hybrid" large sieve inequality. 
Then the result is generalized to the case, where the coefficients of the linear form may depend 
on the respective eigenvalue of the hyperbolic Laplacian, and also on a well-spaced set of points. 
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1. Introduction 

l'vfodcrn spectral methods in analytic number theory frequently lead to spectral 
sums of linear forms involving Fourier coefficients of l\Iaass wave forms (for sur
veys of these topics, sec e.g. [4]. [5]). By analogy with the well-known character 
large sieve inequalities, estimates for such spectral averages are customarily called 
spertral largP sievP ineqnalities; in fact, there is common basis for both types of the 
large sieve, as we shall sec below. H. hvaniec [2] was the first to establish spectral 
large sieve estimates, on the basis of the fundamental work of N. V. Kmmetsov 
[16] and motivated by an application to the fourth moment of Riemann's ~eta
function over short intervals. His inequalities were related to Maass wave forms 
for the full modular group, and the case of congruence subgroups was dealt with by 
Deshouillers and I waniec [1]. As another variation of his original results, I waniec 
[3] gave analogous mean value estimates for sums involving Fourier coefficients of 
holomorphic cusp forms or Eisenstein series. 

Our object in this paper is to generalize Iwaniec's large sieve estimates in 
a different direction, variating the functional structure of the sums rather than 
their coefficients. More precisely, the terms in the sums are allowed to depend 
explicitly on the respective eigenvalue in a flexible way. Thus the eigenvalue itself 
may appear in addition to the Fourier coefficients of the corresponding Maass wave 
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form. Also, a parameter running over a well-spaced set may occur. The underlying 
motivation for such generalizations will be explained below. 

Before that, we recall Iwaniec's basic inequalities. To formulate these, we 
introdnce some notation (for basic definitions. see [2]-[5], [7], [16], or [21]). The 
Maass wave form fJ(z) = Jj(x + yi), automorµhic under the full modular group 
and attached to the eigenvalue >.j = 1/ 4 + KJ of the hyperbolic Laplacian, is 
defined in the upper half plane y > 0, where it can be represented by its Fourier 

series (see [16], eq. (3.38), or [21], Lemma 1.4) 

n=-x 
n#O 

in the standard notation. Writing p1 (n) = p1 (1 )t1 (n) and o1 = 1Pj(l)l2 / cosh(1rKJ), 
we ma:,: now state I waniec 's first inequality as follows: 

L Oji L antj(nf « (K2 + N1+c)JlaJl2. 
K)<;K n:s;v 

(1.1) 

where a= (a1, .... aN), JlaJI is the usual norm of this vector, and E is any fixed 
small positive number (see Theorem 1 in [2] or Theorem 1 in [3]). A "locar· variant 
of (1.1) reads 

L Oji L antJ(n)( « (K +N)(Kl\·l"·llall2. (1.2) 
K:s;K 1 °:SK+l n:SN 

and the inequality (1.3) below covers both (1.1) and (1.2) aci special cases. 
ThP inequality (1.2) was pointed out without proof by Iwaniec in [6]. Proofs 

were given in 1991, independently, by W. Luo [17] and the author (in the first 

unpublished version of the present paper). Some years later, a simplified approach 
to the spectral large sieve was opened by Y. ~Iotohashi [20] through his new elegant 
"elementary·· proofs for Kuznetsov's trace and sum formulae. A kind suggestion 
of l'rof. Motohashi in 1995 to the author gave rise to a revision of the above 

mentioned paper. Though the new proof of the spectral large sieve inequality 

contained in that revised paper ( essentially the present one) is now available in 
[21] (see Theorem 3.3 therein), we prefer to give a brief account of a slightly less 
precit:>e version of the argumeut in sec. 3 below to make the presentation more 

self-contained. The point of the new method is to reduce the spectral large sieve 
to the ordinary ("hybrid'') large sieve. 

Theorem 1.1. For 1 :S ~:SK, we have 

L Oji L a,,tj(n)l
2 ~ (K~ + N)llall2(KN)°. (1.3) 

K5c,., 1 :s;K+.6. n:s;N 
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It should be noted that estimates for analogous short interval sums weighted 
by values uf H1 ( s), the generating Dirichlet series of tj ( n), have been established 
by Iwaniec [o] and Motohashi [19], for Re s = 1/2 or s = 1/2. 

Let us discuss briefly some applications of the spectral large sieve. To start 
from relatively recent work, we used (1.3) in [13], [14] as one of the main tools to 
estimate in mean the inner product of the square of a cusp form against Maass 
wave forms. 

Next, going back to the roots of the theory, the inequality ( 1.1) played a 
vital role in Iwaniec's proof [2] of the estimate 

rT+T2/3 1((112 + it)l4 dt « T2/J+e_ 
lr (1.4) 

We gave a different proof for this in [8] by a more elementary "transformation 
method" without appealing to the spectral theory in any way, and extended the 
same argument subsequently to more general mean value problems for exponential 
sums and £-functions ([9] [11]). For instance, one may cope with mean values of 
the form 

1vl L d(m)g(m, v)e(f(m, v))l 2 
dv, 

0 m~J\1 

(1.5) 

where the functions f and _q satisfy certain regularity conditions, and m ::c:: ]1,J 
means that M « m « M. Attempts to apply spectral methods to problems like 
this or its generalizations led (see [12], [15]) to spectral sums of the type 

L ":11 L ant1(n)¢n(K1)e(1J•n(h"j})l
2

, 
K/'-'ff n:!:_N 

( 1. G) 

where ~ indicates that the summation is restricted to the interval [K, 2K]. The 
presence of the functions ¢,, and 1/Jn of the variable Kj here is a new problem, 
especially if the exponential factor is allowed to oscillate rapidly as a function of 
h" :J • 

Generalizing the lac;t mentioned problem still a bit, we let <l>n and 1/·,, depend 
even on a parameter y running over a well-spaced set {Yr} of real numbers which 
may be normalized to lie in the interval [O. 1]. Also, we let Kj run over an interval 
[K, K + ~] with 1 :S ~ <:'.: K. The basic problem then is estimating the sum 

L aJI L I:anrtj(n)ct>n(K1,Yr)e(1J;n(K:1,Yr))r (1.7) 
K :!,.KJ :!,_K +6. n:!,_N r=l 

A model of the estimate we are looking for is Iwaniec's secon<l main theorem 
(Theorem 2 in [2]), namely the inequality 

L OjlL anfj(nflLbrriK1
1

2 «K(K+R)llall 2 llbll 2 , (1.8) 
K 1~1-( n:!,_N r:!,_H 
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where N « K. In the sum over r, we may replace each r be the normalized 
number Yr= r/R, so (1.8) turns out to be is a special case of (1.7). 

In the work of Iwaniec, the inequality (1.8) played an important role when 
the fourth moment (1.4) over a single interval was to be generalized to a system of 
non-overlapping intervals, and likewise an estimate for the sum ( 1. 7) enables one to 
deal with an analogous generalization of the problem (1.5) involving a well-spaced 
set of parameters Yr (see [9], [10]). Our result on the sum (1. 7) will be formulated 
and proved as Theorem 4.1 in sec. 4. Its proof combines aspects of the classical 
and spectral large sieve. This theorem was recently applied in [15] to mean value 
problems for Dirichlet £-functions and exponential sums twisted with characters. 
Acknowledgement. The author is grateful to Professors Aleksandar Ivie, Henryk 
Iwaniec, Wenzhi Luo and Yoichi Motohashi for kind comments and discussions, 
and for informing on their work. 

2. Motohashi's formula 

The philosophy ofKuznetsov's trace or sum formulae is expressing sums of Kloost
erman sums in terms of the spectral theory of the hyperbolic Laplacian, or vice 
versa. The formula (2.2) below due to Motohashi (see [20], eq. (2.2), or [21], the 
proof of Lemma 2.4) is of this flavour. Its main advantage is perhaps that the 
variables are nicely separated on the right. We are using standard notations; in 
particular, ao:(n) = I:dln d°', c5m,n is the Kronecker symbol, fca) means that the 
integral is taken over the line with real part a , and 

~ (md+nd) S(m,n;c)= Le c , 
l<d<c 

dd=l (mode) 

(c-;-d)~l 

is the Kloosterman sum. 

Lemma 2.1. For all real numbers t, we have 

~ Pj(m)pj(n) 1100 0'2ir(m)a-2ir(n) d 
~ ~c~os-h~(1r~K~j)-p(t, "-j) +; -x (m/n)irl((l + 2ir)l 2 p(t, r) r 

t 2t ~ -l ( 41rjmn) = c5m,n 2 . h( t) + . h( t) Le S(m,n;c)w t, --- , 7r sm 7r 7rSlll 7r C 
c=l 

where 

and 

cosh(1rr) p(t,r) = -----~--, 
cosh( 1r(r + t)) cosh( 1r(r - t)) 

1 1 sin(1r17) (X) l-2T/ w(t,x) = -2 . ~~r(17+it)f(17-it) -2 dry 
1ri ( 0:) 1T1J 

(2.1) 

(2.2) 
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with0<o<l/4. 

Integration over t in (2.2) with a Gaussian weight gives rise to the integral 

iK+~logK ( (t _ 1()2) 
l(ry) = sin(1r77) , r(77 + it)r(77 - it) exp - ~ dt, 

K-~logK 
(2.3) 

where 77 = u + iu with n bounded. This integral is easy to estimate. 

Lemma 2.2. Let I( be a large positive number, c: > 0 a fixed small number, 
77 =er+ iu, and suppose that 

Then, for fixed a E (0, 1), we have 

wl1ere A is any fixed positive number. Further, 

if o_ lies in a given finite interval. 

Proof. By Stirling's formula, we have 

(2.4J 

(•) r:) _,,) 

(2.6) 

(2.7) 

if a- is bounded. This implies immediately the estimate (2.6). Also, looking at 
the exponential factors, we may verify (2.5) for lul S. K - K 1-~ in the same way. 
To deal with the ranges lu ± Kl S. J(l-c, complete the segment of integration in 
!(77) to a rectangular contour with one side on the line Im t ==FE, where B is a 
sufficiently large positive number. Then, applying (2.7) again, we see that I(r1) is 
small. 

In the remaining case 

we utilize the oscillatory nature of the integral. By Stirling's formula, the oscilla
tory factor of the integrand of I ( 77) is 

exp(i((u + t) log(u + t) + (u - t) log(u - t))) = exp(i<p(t)), 

say, where 

l'P'(t)I = llog (~~:)I» IK/ul >> !).- 1 KE. 

Hence, we may verify (2.5) by repeated integration by parts. • 
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3. Proof of Theorem 1. 1 

We suppose that ~ lies in the interval (2.4); it will be clear that this is no essential 
restriction. 

To create the sum on the left of (1.3), we multiply the formula (2.2) by the 
factor 

Kt- 1amansinh(1rt)exp (-C -::t)'), 
integrate over It - KI s ~ log K, and finally sum over m, n s N. Then we obtain 

L Oji L antj(n)l
2 « K~llall2 

K-Llt.:::;K1:::;K+Llt. n:::;N 

(3.1) 

+ Kif L aman j 1; 17 ) (21r) 1- 21J(mn)1/ 2-1Jc2'11- 2 S(m, n; c) d171; 
c=l m.n:::;N (a) 11 

note that the integral on the left of (2.2) gives a nonnegative contribution which 
can be omitted in the upper estimation. 

By Lemma 2.2, the significant range for 17 is lul 2: K 1-e: ~- In the cor
responding two integrals (for positive and negative values of u ), we move the 
integration to the left for all c > N K-1+2e: ~-I. Then it turns out, by (2.6), 
that the contribution of these values of c is small, whence the sum over c can be 
truncated to 

CS NK-1+2e:~-l-

This shows that the second term on the right of (3.1) is negligible if N < K 1- 2e: ~, 
and the assertion (1.3) is clear in that case. Henceforth we may suppose that N 
exceeds a power of K , so any factor K 0 may be viewed as Ne: for some other 
small c. 

Let now U;:::: K 1-e:~, C < NK- 1+2e:~- 1 , a= 1/2-c, and consider the the 
second term on the right of (3.1) over c ~ C and u ~ U. Insert the Kloosterman 
sums according to the definition (2.1) and apply Cauchy's inequality to the sum 
over d. Noting that !(17) « ~u-20 by (2.6), we end up with expressions of the 
type 

K~c-1-2e:u-1-2e: L L 12UI L anne:-iue (:d) 12 du. 
c~C 1:::;d:::;c U n:::;N 

(c.d)=l 

By the hybrid large sieve inequality (see [21], Lemma 3.11), this is 

which is « N 1+2e:K2e:u-2e:llall 2 by our bounds for C and U. Summing finally 
over the c- and u-ranges, we complete the proof of the theorem. 
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4. A generalized large sieve inequality 
The following theorem gives a bound for the sum (1.7), and also for the sum (1.6) 
after an obvious mo<lification for the case when the set {yr} is missing (see Remark 
1 below). 

Theorem 4.1. Let K 2 1, 1 S fl :S: K, N 2 1, 0 < 6 s 1, and let Yr E [0.1] 
for r = 1, ... , R be real numbers with IYr Ysl ::::: c5 > 0 for r =/=- 8. Let anr 
for n ~ N and 1 s; r s; R be arbitrary complex numbers, and let a be the 
vector composed of these numbers. Let </>n ( x, y) and '1jJ,, ( x, :i;) for n ~ N be real 
continuous functions defined for K s x s; K + fl and O s; y s 1. Suppose that 

{JJ<f>n_ // cT,J{-j £0 . () 1 2 
"-"- cl' l< r ) = , , , [)xJ 

[)J '1jJ . 
__ n « W /{-J for j = 1, 2, 
8x1 

[)'2 
~ » \II' g- 1 
8x8:i; ' 

03'1/Jn « \II' g-2 
8x2 8y ' 

('1.1) 

(4.2) 

(4.3) 

( 4.4) 

for certain positive parameters <t>, '11, and \11 1 , with the assumption that the partial 
derivatives here are continuous. Define 

,\=min(~, K/\11). (4.5) 

Then, for any fixed c > 0, we have 

(4.6) 

« q,2 ( J( + l{: N) (fl+ J{(\11'5)- 1 log(2/c5)) llall 2 (KN)". 

Proof. Denote the sum on the left of (4.fi) by S, µut ko = [fl/.\], and let S(x) 
be the subsum where Kj is restricted to the interval [x, x + .\). Then 

ko 

s = LS(K + k.\), (4.7) 
k=U 

whpre the last suLsurn may be incomplete. However, for the uniformity of notation, 
we write the upper limit of summation in the kth sum throui:;hout as K + (k + 1 ).\ 
with the understanding that for k = ko this means actually K + fl. 
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Next we eliminate the dependence of S'(I{ + k>..) on the distribution of the 
numbern "'j. To this end, we apply the basic inequality of the large sieve method: 

b ( b ) 1/2 ( 1, ) 1/2 
lf(u)l 2 ~ (b- a)- 1 i 1f(x)l2 dx + 2 i 1f'(x)l2 dx i 1f(x)l2 dx 

j ,b 

« (b - ar 1 a (lf(x)l 2 + (h·- a/lJ'(xJl 2 ) dx 

for any u E [a, b] if f is a continuous function in [a, b] with f' continuous in (a, b) 
(see [18], Lemma 1.1, applied to f2). Accordingly, for K +k>.. ~ "'j ~ K +(k+l)>.., 
we have 

where 

and J2 (k,j) is a similar expression except that ¢n is replaced by the function 

;;_ _ ( O</>n . •) ,- 1 8'1j;n) , 
'l'n - ~ -r -7rt9,, ;::i /\. 

uX uX 

In the subsequent treatment of 11 ( k, j), we are going to need the assumption ( 4.1) 
concerning d>n for j = 0, 1 only, and these conditions hold, by (4.1), (4.2), and 
(4.5), even for ¢n· Therefore it will suffice to deal with fi(k,j) alone. 

Now, by (4.7) and (4.8), 

ko 

s«I:: 

say, and as we pointed out above, it will be suffice to estimate the sum S1 . 

The local large sieve inequality (1.3) is applicable to the inner sum in S1 , 

giving 

L O'.jl1(k, j) « >._- 1(K(>.. + 1) + N)(K N)" 
K +k>-::5:"'j ::5:K+(k+l)>.. 
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Then, summing over k, we obtain 

rK+t::. 
X }K d1,,(.r,yr)</ln(X,Ys)e(1/Jn(X,Yr)-i/Jn(X,Ys))dx. 

The diagonal terms with r = s give 

Turning to the nondiagonal terms, note that for r c/= s we have 

I d2 ( I . / ,-21 I dx2('l/JnX,Yr)-'l/Jn(.r,ys)) <<WR Yr-Ys 

by (4.:3) and (4.4). Therefore the integral on the right of (4.9) is 

to see this, write the exponential in the integrand as 

e(ipn (x, Yr) - 'l/Jn (x, Ys)) (U.·~ (:r. Yr) - 'l/J~ (x, Ys)) 
'l/J~(:r, Yr) - ~j~(J:, Ys) 

an<l integrate by parts. Consequently, the nondiagunal terms contribute 

2 / , ( K +N) " € "'"'"'"' 1-1 « <I> ( J( \Ji ) J( + A (n N) L.,, L.,, [an rans II Yr - Ys . 
n~N r·d-s 

« <P 2 (K/\JJ') (J( + J(: N) (KN)" Lt Janr[ 2 L IYr -ysl-l 
n~N r=I sfr 

(4.9) 

( 4.10) 

( 4.11) 

(1.12) 

(4.13) 
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Combined with (4.10), this completes the proof of the theorem. • 
Remark 1. Suppose that no parameters Yr occur in our sum (so that the functions 
<Pn and 1/Jn depend on x only). Then Theorem 4.1 remains valid if all conditions 
pertaining to Yr, y, and 6 are omitted, and the statement of ( 4.6) is modified as 
follows: 

L <tj I L antj(n )<Pn (11:.7 )e( l/!n (K·j) { 
K'5_,,;, 1 '5_K+.:::. n-vS 

« <f> 2 ( K + K: N) ~llaf(KN)". 

Remark 2. Theorem 4.1 contains Iwaniec's estimate (1.8) (up to an unimportant 
factor) as an immediate corollary. It suffices to show it with the condition r ~ R 

for the r-sum. Let now Li= K, Yr= r/ R - l, 6 = R- 1 , anr = anbr, d>n(x, y) = 
1, and 1/Jn(x,y) = (21r)- 1xlog(y+ 1). Then the assumptions of the theorem are 
satisfied with <f> = 1 and \JI= \JI'= K, so that ,\ = 1. We conclude that 

2 2 

Note that this holds independently of the condition N « K assumed in (1.8). 
Also, under this condition, we recover essentially the estimate ( 1.8). 

Remark S. The condition ( 4.4) was needed to secure the validity of the estimate 
(4.13), which is actually a consequence of the familiar "first deri\'ative test" (see 
[22], Lemma 4.2) if the derivative in ( 4.11) is monotonic ( or has only ·'fow1• intervals 
of monotonicity). Thus, if suitable additional properties of the functions ~'n(x. y) 
are known, the condition (4.4) may become redundant. 

\Ve take the opportunity to point out that a situation like this occurred in 
[15], where the condition (4.4) was unfortunately missing when Theorem 4.1 was 
quotted ( as Lemma 5). In that particular application, where extra information 
(holomorphy in x) on the functions fn(x.y) was available, this omission was of 
no consequence. 
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