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THE CHAMPERNOWNE CONSTANT IS NOT POISSONIAN

Ísabel Pirsic, Wolfgang Stockinger

Abstract: We say that a sequence (xn)n∈N in [0, 1) has Poissonian pair correlations if

lim
N→∞

1

N
#

{
1 6 l 6= m 6 N : ‖xl − xm‖ 6

s

N

}
= 2s

for every s > 0. In this note we study the pair correlation statistics for the sequence of shifts of
α, xn = {2nα}, n = 1, 2, 3, . . ., where we choose α as the Champernowne constant in base 2.
Throughout this article {·} denotes the fractional part of a real number. It is well known that
(xn)n∈N has Poissonian pair correlations for almost all normal numbers α (in the sense of
Lebesgue), but we will show that it does not have this property for all normal numbers α,
as it fails to be Poissonian for the Champernowne constant.

Keywords: Poissonian pair correlation, normal numbers.

1. Introduction and main result

The concept of Poissonian pair correlations has its origin in quantum mechanics,
where the spacings of energy levels of integrable systems were studied. See for ex-
ample [1] and the references therein for detailed information on that topic. Rudnik
and Sarnak first studied this concept from a purely mathematical point of view and
over the years the topic has attracted wide attention, see e.g., [7, 13, 14, 15, 16].
Recently, Aistleitner, Larcher and Lewko (see [2]) could give a strong link between
the concept of Poissonian pair correlations and the additive energy of a finite set
of integers, a notion that plays an important role in many mathematical fields,
e.g., in additive combinatorics. Roughly speaking, they proved that if the first N
elements of an increasing sequence of distinct integers (an)n∈N, have an arbitrarily
small energy saving, then ({anα})n∈N has Poissonian pair correlations for almost
all α. This result implies the metrical Poissonian pair correlation property for
lacunary sequences as well. In this paper the authors also raised the question if
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an increasing sequence of distinct integers with maximal order of additive energy
can have Poissonian pair correlations for almost all α. Jean Bourgain could show
that the answer to this question is negative, see the appendix of [2] for details
and a second problem which was also solved by Bourgain. Recently, the results of
Bourgain have been further extended, see [1, 9, 10, 11].

Let ‖ · ‖ denote the distance to the nearest integer. A sequence (xn)n∈N of real
numbers in [0, 1) has Poissonian pair correlations if

lim
N→∞

1

N
#
{
1 6 l 6= m 6 N : ‖xl − xm‖ 6

s

N

}
= 2s (1)

for every s > 0. Due to a result by Grepstad and Larcher [6] (see also [3, 18]), we
know that a sequence which satisfies property (1), is also uniformly distributed in
[0, 1), i.e., it satisfies

lim
N→∞

1

N
#{1 6 n 6 N : xn ∈ [a, b)} = b− a

for all 0 6 a < b 6 1. Note that the other direction is not necessarily correct.
For instance the Kronecker sequence ({nα})n∈N, does not have this property for
any real α; a fact that can be argued by a continued fractions argument or by the
main theorem in [12] in combination with the famous Three Gap Theorem, see [17].
Poissonian pair correlation is a typical property of a sequence. Random sequences,
i.e., almost all sequences, have Poissonian pair correlations. Nevertheless, it seems
to be extremely difficult to give explicit examples of sequences with Poissonian pair
correlations. We note that ({

√
n})n∈N has Poissonian pair correlations, [4] (see [5]

for another explicit construction). Apart from that – to our best knowledge –
no other explicit examples are known. Especially, until now we do not know any
single explicit construction of a real number α such that the sequence of the form
({anα})n∈N has Poissonian pair correlations.

We recall that the sequence ({2nα})n∈N has Poissonian pair correlations for
almost all α. In this note, we study the distribution of the pair correlations of
the sequence ({2nα})n∈N, where α is the Champernowne constant in base 2, i.e.,
α = 0.1101110010111011 . . .2. It is a well known fact that the Champernowne
constant in base 2 is normal to base 2. Moreover we know that the sequence
({2nα})n∈N is uniformly distributed modulo 1 if and only if α is normal, see e.g., [8].
If we want to investigate, whether the distribution of the pair correlations for some
explicit given sequence is Poissonian, i.e., satisfies property (1), the sequence has
to be uniformly distributed modulo 1. Therefore, if we investigate the distribution
of the spacings between the sequence elements of ({2nα})n∈N, the only reasonable
choice for α is a normal number. We obtain the following result.

Theorem 1. The sequence ({2nα})n∈N where α is the Champernowne constant
in base 2, i.e., α = 0.1101110010111011 . . .2 does not have Poissonian pair cor-
relations.

This paper was initiated by the conjecture of G. Larcher (mentioned during
a personal discussion) that all normal numbers are Poissonian, due to the lacu-
narity of ({2n})n∈N. To make it more tangible why this conjecture is reasonable,
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we recall that Kronecker sequences are not Poissonian for any α and ({αnd})n∈N,
d > 2 is Poissonian for almost all α, whereby it is known that α has to satisfy
some Diophantine condition, see e.g., [16]. Hence, one would expect the sequence
({2nα})n∈N to have the Poissonian property for all normal numbers α, as it shows
less structure than the Kronecker and polynomial sequences. The motivation to
study the sequence described in Theorem 1 was to find the first explicit exam-
ple of a real number α such that the sequence ({2nα})n∈N has Poissonian pair
correlations. At least our result allows to immediately deduce that the sequence
({2nα})n∈N cannot have Poissonian pair correlations for all normal numbers α.

To prove Theorem 1 we use elementary combinatorics. We give a short outline
of the proof. Let e, d, be two integers, where d = 2e is understood to be very
large compared to e. Further, we set s = 1 and N = 2d+e in (1). The reason for
choosing N in such a manner is the following. The Champernowne constant is the
concatenation of the numbers which have a digit expansion (with a leading 1) in
base 2 of length 1, 2, 3, . . . , d, . . . and so forth. In order to account for all blocks of
words of length 1, . . . , d, we have to choose N large enough, i.e., in our case at the
beginning of the block of words having length d + 1. Note that the length of the
block containing the words of length d is d2d−1 = 2d+e−1 and for a very large e
all previous blocks of words with length 1, . . . , d − 1 have in total approximately
this length. We then count the occurrence of bit patterns (in the block of words
of length d), which correspond to shifts of α having a distance (i.e., the Euclidean
distance on R) < 1/N (we will henceforth abbreviate to simply saying that the
patterns have this distance). If we have two patterns which match in the first d+e
bits or which are of the form a1a2 . . . 01 . . . 1︸ ︷︷ ︸

d+e

b1b2b3 . . . and a1a2 . . . 10 . . . 0︸ ︷︷ ︸
d+e

c1c2c3 . . .

with c1c2c3 . . . < b1b2b3 . . ., then their distance is < 1/N . It turns out that already
the number of pairs matching in the first d+e bits (in the block of words of length d)
yields a too large contribution. The second case is studied in the appendix. Though
the number of pairs (with distance < 1/N) is small compared to the first case, it
is of interest in its own right to see how to count the occurrence of such patterns.

2. Proof of the main theorem

Proof. Let s = 1 and set N = 2d+e where d and e are defined as in the previous
section (at first we will not use the relation between d and e, though). Let a bit
pattern a1 . . . aw be given where w = d + e, e > 0. We are aiming to count the
occurrences of the pattern in the full block

c0,1 . . . c0,d . . . c2d−1−1,1 . . . c2d−1−1,d,

and put cn := 2d−1+n =
∑d
i=1 cn,i2

i−1. Note that ci,1 = 1 for i = 0, . . . , 2d−1−1.
That is, the pattern has an overlap of e bits to the word length d. The overlap e
is understood to be small.

First, we investigate the patterns where the first e bits match the last ones,
i.e., ai = ad+i for i = 1, . . . , e. We denote the index before the start of a possible



256 Ísabel Pirsic, Wolfgang Stockinger

matching word by z > 0, i.e., if a match occurs then there is an n such that

az+1az+2 · · · = cn,1cn,2 . . .

and at least one of
azaz−1 · · · = cn−1,dcn−1,d−1 . . . ,

az+d+1az+d+2 · · · = cn+1,1cn+1,2 . . . .

Basic facts:

(BF1) For a match to occur, az must not equal az+d since these bits correspond
to the least significant bits of consecutive digit expansions cn−1, cn.

(BF1) As a first consequence of BF1, z must be zero or greater than e since
otherwise az = az+d and similarly z must be at most d, else az−d = az,
i.e., z ∈ {0, e+ 1, . . . , d}.

(BF1) Furthermore, for a match with z > 0 to occur it is necessary that az+1 =
1 and at least one zero occurs in the sequence ae+1 . . . az. This excludes
subpatterns of the forms

ae+1 . . . az+1 = 1 . . . 10 or 1 . . . 11,

which cannot occur due to the fact that in this case cn = cn−1 + 1 has
carries affecting ad . . . ad+e.

We now make case distinctions according to the number k of ones in the ‘middle
block’ ae+1 . . . ad.

If k = 0 the pattern can occur in the full block only if z = 0 and az+1 = cn,1 = 1
which cannot happen in the middle block or if a1 = 0.

If k = 1 this type of pattern (or “meta-pattern”) can occur in the case ae+1 = 1
only if a1 = 1 and z = 0; BF3 forbids z > 0 and for z = 0 again az+1 = a1 = 1
is necessary. If the 1 appears later in the middle block, again z = 0 is possible, if
a1 = 1 or z = j if j + 1 is the index of the 1. This gives

• 2e−1 + 2e−1(d− e− 1) patterns occuring only one time
• 2e−1(d− e− 1) patterns occuring two times.

Let us also look at the case k = 2: first, ae+1 = ae+2 = 1 by BF2 again
necessitates z = 0 and a1 = 1, and can occur only in one match. If ae+1 = 1 6= ae+2

there are one or two possible matches in dependence of a1 = 0 or 1. Finally, two
or three possible matches can happen if both ones occur later in the middle block.
The tally thus is:

• one match: 2e−1(1 + (d− e− 2)) patterns
• two matches: 2e−1((d− e− 2) +

(
d−e−1

2

)
) patterns

• three matches: 2e−1
(
d−e−1

2

)
patterns
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We can now present the general case 2 < k < d− e:
• a1 = 0, ae+1 = 1, ae+2 = 0: we have 2e−1

(
d−e−2
k−1

)
patterns having k − 1

matches
• a1 = 0, ae+1 = ae+2 = 1: let ae+1 = · · · = ae+j = 1 6= ae+j+1, i.e., there

are j consecutive ones at the start of the middle block followed by a zero.
Then there are k− j ones left to distribute on d− e− j − 1 places. We have
a match for each of those ones, so there are 2e−1

(
d−e−j−1
k−j

)
patterns having

k − j matches, where j = 1, . . . , k.
• a1 = 0, ae+1 = 0: we have 2e−1

(
d−e−1
k

)
patterns having k matches

• a1 = 1, ae+1 = 0: we have 2e−1
(
d−e−1
k

)
patterns having k + 1 matches

• a1 = 1, ae+1 = 1: let ae+1 = · · · = ae+j = 1 6= ae+j+1, i.e., there are j
consecutive ones at the start of the middle block followed by a zero. Then
there are k − j ones left to distribute on d − e − j − 1 places. We have
a match for each of those ones plus one attributed to z = 0, i.e., there are
2e−1

(
d−e−j−1
k−j

)
patterns having k − j + 1 matches, where j = 1, . . . , k.

The case k = d− e has only patterns matching just once.
Taking all together we get the following formula for the number of pairs

cn1,i1 , cn2,i2 such that there is a match in (at least) w bits. Note that the pairs are
ordered.

2e
d−e−1∑
k=1

(
k−1∑
j=0

(
k − j
2

)(
d− e− j − 1

k − j

)
+

k−1∑
j=0

(
k − j + 1

2

)(
d− e− j − 1

k − j

))

= 2e
d−e−1∑
k=1

k−1∑
j=0

(k − j)2
(
d− e− j − 1

k − j

)

By Stirling’s formula,
(
2n
n

)
� 22n√

n
, and considering j = 0 and k = bd−e−12 c in the

above sum, we obtain a contribution of magnitude

2ek2
(
d− e− 1

k

)
� d2√

d
2d =

√
d2d+e.

Therefore, if we divide this amount of pairs by N = 2d+e (recall that we set
d = 2e) and consider e→∞, we obtain +∞ in the limit and deduce that the pair
correlations distribution cannot be asymptotically Poissonian.

For the sake of completeness, we study two further types of patterns. We will
see that these two structures of patterns yield a negligible amount of pairs. The
next type of pattern is where the matching cn ends in a string of ones, inducing
a chain of carries for cn+1. I.e., there are j0, j1, 1 6 j0 6 e < j1 6 d− 1 such that

aj0aj0+1 . . . aeae+1 . . . aj1aj1+1 = 01 . . . 11 . . . 10

and ai = ad+i for 1 6 i < j0, ai = 1 − ad+i for j0 6 i 6 e. Again, a possible
matching cn can obviously not start with an index earlier than e + 1 since then
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inevitably mismatches ai 6= ad+i that cannot be accounted for by carries occur.
But then each of the consecutive ones can be taken as start of a cn-block, i.e.,
z = e, . . . , j1 − 1 are all possible, giving j1 − e matches. Given j0, j1 there are
2j0−1+ d−j1−1 such patterns. For the case j1 = d there are d − e matches as well,
plus an additional one if a1 = 1. Both subcases have 2j0−2 according patterns for
j0 > 2 and additionally there is one further case for j0 = 1 with d − e matches,
the pattern 01d0e−1. The number of ordered pairs thus equals:

2

(
e∑

j0=1

d−1∑
j1=e+1

(
j1 − e

2

)
2j0+d−j1−2

+

((
d− e
2

)
+

(
d− e+ 1

2

)) e∑
j0=2

2j0−2 +

(
d− e
2

))

=
2e − 1

2e−1
(2d − 2e)− (d− e)2e < 2d+1.

The next type of pattern, which only yields a negligible amount of relevant
pairs, is the one where a1 . . . ae = 1 . . . 1 and ae+1 . . . az+1 = 1 . . . 1, where z ∈
{e, . . . , d− 1}. As a consequence thereof ad+1 . . . ad+e = 0 . . . 0. Hence, we have

d−e∑
i=3

(
i− 1

2

)
=

1

6
(d− e− 2)(d− e− 1)(d− e)

pairs with distance < 1/N . �

Remark 1. In the proof we have only studied the case, where a fixed bit pattern of
length w overlaps two words of length d. Of course, an overlap of the pattern with
three words might also occur, but these cases yield a small number of pairs with
prescribed distance. Therefore we have omitted the exact study of these structures.
If the relative number of pairs in the block of words of length d would have given
a number less than 2s, then a study of the occurrence of the pattern in the block
of words of length d− 1 (and so forth) would have been necessary.

Remark 2. The techniques from above can of course be adapted to any other
base b, i.e., we can conclude that the Champernowne constant in base b > 2 (note
that the Champernowne constant in base b is normal to base b) is not Poissonian.

3. Open problems and outlook

In this section we first want to state an open problem, which involves the notion of
weak pair correlations (introduced by Steinerberger in [18]), a concept that relaxes
the requirements of (1).



The Champernowne constant is not Poissonian 259

We state the following open problem.

Problem 1. Does the sequence (xn)n∈N = ({2nα})n∈N, where α is the Champer-
nowne constant in base 2, satisfy the notion of weak pair correlation, i.e., is there
an 0 < β < 1, such that

lim
N→∞

1

N2−β#
{
1 6 l 6= m 6 N : ‖xl − xm‖ 6

s

Nβ

}
= 2s

for every s > 0?

Further, we still need to find an explicit construction of an α such that a se-
quence of the form ({anα})n∈N has Poissonian pair correlations and maybe criteria
which relax the definition of Poissonian pair correlations, e.g., that it possibly suf-
fices to show that (1) holds for s ∈ N only. A possible approach would be to modify
the Champernowne constant in a certain way, e.g., by shifts, such that we avoid
the situation that we have too many patterns where the first and last e bits match.

4. Appendix

Though the here presented results are not needed for the proof of Theorem 1, they
give additional interesting information about the pair correlation structure of the
Champernowne constant and therefore we add them as appendix.

In the previous section we have counted the occurrence of a bit pattern a1 . . . aw
in the full block of words of length d. Now, we consider patterns of the form b :=
a1a2 . . . awb1b2b3 . . . = a1a2 . . . aj01 . . . 1︸ ︷︷ ︸

w

b1b2b3 . . . and c := a
′

1a
′

2 . . . a
′

wc1c2c3 . . . =

a1a2 . . . aj10 . . . 0︸ ︷︷ ︸
w

c1c2c3 . . ., with b1b2b3 . . . > c1c2c3 . . .. These two types of bit

words also have a distance less than 1/N .
We only study the case b1 = 1 and c1 = 0 in detail. The ideas used for the

special case can be readily generalized. Therefore, we are aiming at counting the
occurrences of bit blocks of the form B := a1a2 . . . aj01 . . . 1︸ ︷︷ ︸

w

1 (in the full block of

words of length d) and the ones of the form C := a1a2 . . . aj10 . . . 0︸ ︷︷ ︸
w

0.

Corollary 1. The patterns of the form B and C yield for j = d at least

2d−e−1(d− e− 5) (2)

pairs with distance less than 1/N . For j > d we obtain at least

2−1−e(2e − 2)(22+e + 2dd+ 21+ed− 2de− 21+ee− 22+d) (3)

pairs with distance less than 1/N .
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Proof. We start by studying the occurrence of the first pattern. Note that we first
consider the case, where the first and the last e bits of a1a2 . . . aj01 . . . 1︸ ︷︷ ︸

w

match.

In the following, we distinguish several cases, depending on the position of the
index j. Later, we will see that the only relevant cases are the ones where j > d.
Thus, we will examine only those in more detail.
• j = d:

– First, let ae+1 = 1 and due to j = d, a1a2 . . . ae = ad+1ad+2 . . . ad+e =
01 . . . 1. Let k be the number of ones in the block ae+1 . . . ad. Then, we
obtain

d−e−1∑
k=2

k−1∑
l=1

(k − l)
(
d− e− l − 1

k − l

)
matches.

– Consider now ae+1 = 0. If there exists z 6 d with ae+1ae+2 . . . az =
01 . . . 1, then this case yields

d−e−1∑
k=1

k∑
l=1

l

(
d− e− l − 2

k − l

)
matches.

• j > d:
– Let ae+1 = 1. We have the structure (the first and last e digits are

again equal) a1 . . . ae = ad+1 . . . ajaj+1 . . . ad+e = ad+1 . . . aj0 . . . 1. In
total there are

2j−d−1

[
d−e−1∑
k=2

(
k∑
l=1

(k−l)
(
d− e− l − 1

k − l

)
+(k−l+1)

(
d− e− l − 1

k − l

))]
matches.

– Let ae+1 = 0. Here, we get (similar to above)

2j−d

(
d−e−1∑
k=1

k∑
l=1

l

(
d− e− l − 2

k − l

))
matches.

A similar study can be carried out for the structure of the second pattern men-
tioned at the beginning.

It remains to check if above cases allow starting and end blocks of the form
a1 . . . ae = a1 . . . am−101 . . . 1 and ad+1 . . . ad+e = a1 . . . am−110 . . . 0, respectively.
If d > j > e, or j 6 e, then this cannot happen. The case j > d allows starting
and end blocks of this form for the second pattern.

Above, we have investigated how often (and for which cases) one of the two
patterns B and C occurs. It remains to analyse how many matches of the respective
patterns agree in the first j digits. The only relevant cases are where j > d.
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• j = d: Here we have for the pattern B the structure a1a2 . . . ae =
ad+1ad+2 . . . ad+e = 01 . . . 1. For the pattern C we have the feasible structure
a1a2 . . . ae = 01 . . . 1 and ad+1ad+2 . . . ad+e = 10 . . . 0. I.e., we obtain

2

d−e−1∑
k=2

k−1∑
l=1

(l − 1)(k − l)
(
d− e− l − 1

k − l

)
pairs with distance < 1/N . Note that the last equation can be simplified
to (2).

• j > d: Here, we therefore get

2j−d

[
d−e−1∑
k=2

(
k∑
l=1

(l − 1)(k − l)
(
d− e− l − 1

k − l

)

+ (l − 1)(k − l + 1)

(
d− e− l − 1

k − l

))]

pairs with distance < 1/N . Summation for d+ 1 6 j 6 d+ e− 1 yields (3).
To make this formula more tangible, we note that for the first pattern we
have shifts according to the number of ones after the first zero in the middle
block ae+1 . . . ad. If ad+1 = 1, then we have one additional shift. The second
pattern allows (due to the necessary carry and c1 = 0) l − 1 shifts, where l
denotes the number of ones at the beginning of the block ae+1 . . . ad. �
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