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DIRICHLET SERIES FROM THE INFINITE DIMENSIONAL
POINT OF VIEW
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Dedicated to the memory of our
missed friend Paweł Domański

Abstract: A classical result of Harald Bohr linked the study of convergent and bounded Dirichlet
series on the right half plane with bounded holomorphic functions on the open unit ball of the
space c0 of complex null sequences. Our aim here is to show that many questions in Dirichlet
series have very natural solutions when, following Bohr’s idea, we translate these to the infinite
dimensional setting. Some are new proofs and other new results obtained by using that point of
view.
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1. Introduction

At the beginning of the 20th century the study of Dirichlet series attracted the
attention of many mathematicians. H. Bohr did a systematic study of the con-
vergence of ordinary Dirichlet series

∑∞
n=1 ann

−s. These series define holomorphic
functions in half-planes. Among other questions he was interested in comparing the
planes on which a given Dirichlet series converges absolutely and the ones in which
that series converges uniformly. To attack this problem, Bohr had a very deep idea.
It was to consider the sequence of primer numbers p = (pn), 1 < p1 < p2 < . . .,
and by using the fundamental theorem of arithmetics each n ∈ N has a unique
representation n = pα1

1 pα2
2 . . . pαnn = pα with α = (α1, . . . , αN , 0, . . .) ∈ N(N)

0 , being
N0 = N

⋃
{0}. Here N(N)

0 is the set of the sequences of elements of N0 that are 0
except for a finite number of entries. Thus Bohr associated to each Dirichlet series
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a formal power series in infinitely many variables in the following way:

∞∑
n=1

ann
−s an=apα=cα

!
∑

α∈N(N)
0

cαz
α.

Let us see what is the correspondence that Bohr stated.
A formal power series in infinitely many variables is a series of the form∑

α∈N(N)
0

cαz
α ,

where cα ∈ C and for z = (zn)∞n=1 and α ∈ N(N)
0 , α = (α1, . . . , αN , 0, . . .)

zα = zα1
1 zα2

2 · · · z
αN
N

If P denotes the algebra of all formal power series
∑
α∈N(N)

0
cαz

α and D denotes
the algebra of all Dirichlet series, the Bohr transform is defined:

B : P −−−−−−−−−−→ D∑
cαz

α apα=cα−−−−−−→
∑
ann

−s

This mapping is clearly bijective, linear and multiplicative; hence an algebra ho-
momorphism. Up to here there is no topological structure in any of the sets. Bohr
thought about that transform due to the fact that in 1909 Hilbert in [36] had in-
troduced the concept of infinite dimensional holomorphic function. His insight was
to translate a problem of one complex variable into another of infinite dimensional
nature. In modern terms and notation what happens is the following. Consider
the Banach space c0 of all null complex sequences and denote by H∞(Bc0) the
Banach algebra of all functions f : Bc0 → C that are bounded and holomorphic
(meaning to be complex FrĂŠchet-differentiable) on Bc0 endowed with the norm
‖f‖∞ = supz∈Bc0 |f(z)| (or ‖f‖Bc0 when we want to emphasize the setting).

A mapping P : X → Y (between Banach spaces) is an m-homogeneous poly-
nomial if there exists an m-linear mapping L : X × · · · × X → Y such that
P (x) = L(x, . . . , x) for every x ∈ X. The space of all continuous m-homogeneous
polynomials from X into Y will be denoted by P(mX;Y ) and by P(mX) if Y is
the complex field.

Let f be a function f : BX → Y (BX is the open unit ball of X). A very well-
known characterization of f to be complex FrĂŠchet-differentiable (holomorphic)
on BX is the following: for each a ∈ BX there exists a sequence P am : X → Y
of continuous m-homogeneous polynomials such that the series

∑∞
m=0 P

a
m(x − a)

converges absolutely and uniformly to f(x) on some neighbourhood of a. The series∑∞
m=0 P

a
m is called the Taylor series of f at a. Moreover, if Pm denotes P 0

m, then
f(x) =

∑∞
m=0 Pm(x) for every x ∈ BX .
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A continuous m-homogeneous polynomial P ∈ P(mX,Y ) has an extension
to the bidual X∗∗ of X, P̂ ∈ P(mX∗∗, Y ∗∗), which is called the Aron-Berner
extension of P (see [1]). In fact, P̂ is defined in the following way. Let A be the
symmetric m-linear mapping associated to P , A can be extended to an m-linear
mapping Â from X∗∗ into Y ∗∗ in such a way that for each fixed j, 1 6 j 6 m,
and for each fixed x1, . . . , xj−1 ∈ X and zj+1, . . . , zm ∈ X∗∗, the linear mapping
z → Â(x1, . . . , xj−1, z, zj+1, . . . , zm), z ∈ X∗∗, is (w∗, w∗)-continuous. In other
words, we define Â(x1, . . . , xj−1, z, zj+1, . . . , zm) to be the weak-star limit of the
net (Â(x1, . . . , xj−1, xα, zj+1, . . . , zm)) for a weak-star convergent net (xα) ⊂ X to
z. By this (w∗, w∗)-continuity A can be extended to an m-linear mapping Â from
X∗∗ into Y ∗∗, beginning with the last variable and working backwards to the first.
Then the restriction P̂ (z) = Â(z, . . . , z) is called the Aron-Berner extension of P .
Davie and Gamelin [22] proved that if f : BX → Y is a bounded holomorphic
function, f(x) =

∑∞
m=0 Pm(x) for x ∈ BX , then f̂(z) =

∑∞
m=0 P̂m(z) is a well-

defined holomorphic function on BX∗∗ and ‖f‖BX = ‖f̂‖BX∗∗ . In particular, for c0
we have an isometry from P(mc0) into P(m`∞) and from H∞(Bc0) into H∞(B`∞).
On the other hand, let C+ denote be the right half plane [Re s > 0] and by H∞ =
H∞(C+) we denote the Banach algebra of all Dirichlet series that are convergent
and bounded on [Re s > 0], again endowed with the respective supremum norm
denoted ‖ · ‖∞ or ‖ · ‖[Re s>0]. The following holds.

Theorem 1.1. The Bohr transform B : H∞(Bc0) −→ H∞ is an isometric iso-
morphism of Banach algebras.

This result was proved by Hedenmalm, Lindqvist and Seip in 1997 ([30]). A self-
contained direct proof can be found in [25]. The connection between a bounded
holomorphic function f on the open unit ball of c0 and a formal power series∑
α cα(f)zα is done in the following way. If f belongs to H∞(Bc0) and α belongs

to N(N)
0 as we can identify N(N)

0 = ∪∞N=1NN0 and DN with DN × {0} ⊂ Bc0 , then
if α = (α1, . . . , αN , 0, . . .), the Cauchy integral formula for holomorphic functions
on DN gives

cα(f) =
1

(2πi)N

∫
|ζ1|=r1

· · ·
∫
|ζN |=rN

f(ζ1, . . . , ζN , 0, . . .)

ζα1+1
1 · · · ζαN+1

N

dζN · · · dζ1 (1.1)

for every choice of 0 < rj < 1 with j = 1, . . . , N .
Actually more can be said. Another way to look at this transformation B is

to understand it as the evaluation of the function f in H∞(Bc0) in the sequence
z = (1/ps) = (1/psn)∞n=1, since the following equality holds

B
(
f
)
(s) = f

( 1

ps

)
, (1.2)

for any s ∈ [Re s > 0]. This result can be found in [25]. Even more, the series
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cα(f)

(
1
ps

)α
is always summable for s ∈ [Re s > 1/2] and then

∑
α∈N(N)

0

cα(f)
( 1

ps

)α
=

∞∑
n=1

an
1

ns
.

See again [25]. The inverse of the Bohr transform is called the Bohr lift,

L = B−1 : D −−−−−−−−−−→ P ,∑
ann

−s cα=apα−−−−−−→
∑
cαz

α

and then the preceding equality reads as follows

B−1(D)
(

1
ps

)
=
∑
n

an
1

ns
.

Bohr in 1912 defined the abscissa of absolute convergence σa(D) of a Dirichlet
series D =

∑∞
n=1 ann

−s

σa(D) = inf
{
σ ∈ R : D converges absolutely in [Re s > σ]

}
∈ [−∞,∞] ,

and defined the abscissa of uniform convergence σu(D) of a Dirichlet series D =∑∞
n=1 ann

−s

σu(D) = inf
{
σ ∈ R : D converges uniformly in [Re s > σ]

}
∈ [−∞,∞] ,

and also the abscissa of boundedness

σb(D) = inf
{
σ ∈ R : D converges and it is bounded on [Re s > σ]

}
∈ [−∞,∞].

One of his key fundamental result was to prove the equality σb(D) = σu(D).
Moreover, using the Bohr transform, he was able to obtain that

σa(D)− σu(D) 6
1

2
,

for every Dirichlet seriesD =
∑∞
n=1 ann

−s. But he was unable to find any Dirichlet
series such that σa(D) − σu(D) > 0. Toepliz, the same year, using the Bohr
lift for two homogeneous polynomials on c0, found a Dirichlet series such that
σa(D) − σu(D) > 1/4. Finally in 1931, in a remarkable paper, Bohenblust and
Hille [15], again through the Bohr lift, found a Dirichlet series D such that

σa(D)− σu(D) =
1

2
.

The modern theory of Dirichlet series connecting its study, i.e. complex analysis
and analytic number theory with harmonic and functional analysis, began with
the Acta Mathematica paper [34] by H. Helson and D. Lowdenslager [34] of 1958
and more recently in 1997 with the seminal paper [30]. Since then a lot of research
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has been given in Dirichlet series, see [4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20,
23, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43], the book [40] and the forthcoming [25]
where the proof of all unproven claims in this paper can be found. But most of the
results are based in techniques of one complex variable and of harmony analysis.

The object of this paper is to show how the point of view of infinite dimensional
holomorphy introduced by Harald Bohr together with modern tools of that theory
can produce new insights in Dirichlet series, by giving a different, but very natural
new proofs for some known results in Dirichlet series and even new results. But
also the other way around, thanks to the theory of Dirichlet series we are going to
produce new results on Banach spaces of bounded holomorphic functions on the
open unit ball of c0. In other words, as the Bohr transform and the Bohr lift allow
us to jump from Dirichlet series on a half plane to power series in infinitely many
variables and the other way around, we plan to show that some problems that in
one of the settings looks difficult to deal with from the other point of view are
easier to treat and even better to understand what is going on.

2. Controlling the supremum of a Dirichlet series on a half-plane

Before using infinite dimensional techniques let us begin with the following ques-
tion. Is there a general relationship between the supremum on a half plane of
a bounded Dirichlet series and the supremum on its corresponding boundary line
even if the Dirichlet series has no continuous extension to that boundary? The an-
swer is yes and given in the next result, where we use an extension of the classical
technique for Dirichlet series.

Given a Dirichlet series D(s) =
∑∞
n=1 an

1
ns that is convergent and bounded on

[Re s > 0], let us recall that for t ∈ R

lim|D(it)| = inf
r>0

sup
s∈D+(nit,r)

|D(s)|,

where D+(nit, r) = {s ∈ C : |s− nit| < r, Re s > 0}.

Lemma 2.1. For a Dirichlet series D(s) =
∑∞
n=1 an

1
ns that is convergent and

bounded on [Re s > 0] we have

sup
[Re s>0]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ = sup

t∈R
lim|D(it)|.

Proof. Let us write

A = sup
t∈R

lim|D(it)| and B = sup
[Re s>0]

∣∣∣ ∞∑
n=1

an
1

ns

∣∣∣.
By definition, A 6 B. For the converse inequality let us fix ε > 0 and consider the
function

gε(s) := e−ε
√
s
∞∑
n=1

an
1

ns
, Re s > 0,
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where
√
s denotes the principal square root of s. Then gε is a holomorphic function

on [Re s > 0]. Taking now s = reiα ∈ C with Re s > 0, we have

|gε(s)| = e−εRe
√
s
∣∣∣ ∞∑
n=1

an
1

ns

∣∣∣ = e−ε
√
r cos α2

∣∣∣ ∞∑
n=1

an
1

ns

∣∣∣ 6 Be−ε√r cos π4

and this tends to 0 as r →∞. Then there exists R > 0 such that |gε(reiα)| 6 A for
r > R. Taking now ∆ = {s ∈ C : Re s > 0, |s| < R}, since we have lim|gε(s)| 6 A
for every s in the boundary of ∆ and again for each t ∈ R

|limgε(it)| = e−εRe
√
it lim|D(it)| 6 Ae−ε

√
r cos π4 6 A.

As ∞ is not accessible from the open set ∆, by the maximum modulus principle
for subharmonic functions [28, Theorem 1], we have |gε(s)| 6 A for all s ∈ ∆.
This altogether gives |gε(s)| 6 A for every Re s > 0. Letting ε → 0 gives the
conclusion. �

Corollary 2.2. Let D(s) =
∑∞
n=1 an

1
ns be a Dirichlet series that is convergent

and bounded on [Re s > 0] which has continuous extension to [Re s > 0]. Then

sup
[Re s>0]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ = sup

t∈R
|D(nit)|.

Corollary 2.3. Let D(s) =
∑∞
n=1 an

1
ns be a Dirichlet series such that σb(D) <∞

and consider σ > σb(D). Then

sup
[Re s>σ]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ = sup

t∈R

∣∣∣ ∞∑
n=1

ann
−σ+it

∣∣∣.
3. Infinite dimensional approach to Dirichlet series

Above we have given a general result on Dirichlet series that clearly implies (Corol-
lary 2.2) that for a Dirichlet polynomial

∑N
n=1 ann

−s the supremum of its absolute
value on [Re s > 0] coincides with the supremum of its absolute value on the imag-
inary line [Re s = 0]. Let us now give a proof of this result based in several complex
variables techniques. This proof is by no means new, since it can be traced to the
classical work of H. Bohr. It has as an essential ingredient the Bohr’s fundamental
lemma (see [25, Highlight 3.2]), which is one of the most important application of
the Bohr transform and lift, stating that for every Dirichlet polynomial the Bohr
lift is isometric, and in a precise way reads as follows:

For every N ∈ N and a1, . . . , aN ∈ C

sup
t∈R

∣∣∣ N∑
n=1

ann
it
∣∣∣ = sup

w∈Tπ(N)

∣∣∣ ∑
α∈Nπ(N)

0
16pα6N

apαw
α
∣∣∣.

where π(N) denotes the prime counting function, it counts the number of primes
that are smaller than or equal to N .
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This lemma is one of the most important tools in the theory of Dirichlet series
and the Bohr transform plays a crucial role to prove it.

Proposition 3.1. For a1, . . . , aN ∈ C we have

sup
[Re s>0]

∣∣∣ N∑
n=1

ann
−s
∣∣∣ = sup

t∈R

∣∣∣ N∑
n=1

ann
−it
∣∣∣.

Proof. A classical result by Kronecker states that if
{

1, θ1, . . . , θN
}
are Z-linearly

independent set of real numbers, then the sequence zj =
(
e2πijθ1 , . . . , e2πijθN

)
,

j ∈ N, is dense in TN . In particular, the set
{

(pit1 , . . . , p
it
N ) : t ∈ R

}
is dense in TN .

Hence, by the continuity of a polynomial we have

sup
t∈R

∣∣∣ N∑
n=1

ann
−it
∣∣∣ = sup

t∈R

∣∣∣ ∑
α∈Nπ(N)

0
16pα6N

apα(p−it1 )α1 · · · (p−itπ(N))
απ(N)

∣∣∣
= sup
w∈TN

∣∣ ∑
α∈Nπ(N)

0
16pα6N

apαw
α
∣∣.

On the other hand

sup
[Re s>0]

∣∣∣ N∑
n=1

an
1

ns

∣∣∣ = sup
t∈R, σ>0

∣∣∣ ∑
α∈Nπ(N)

0
16pα6N

apα(
1

pσ+it
1

)α1 · · · ( 1

pσ+it
π(N)

)απ(N)

∣∣∣
6 sup
w∈DN

∣∣ ∑
α∈Nπ(N)

0
16pα6N

apαw
α
∣∣.

But, by the maximum modulus theorem for several variables we have that

sup
w∈TN

∣∣ ∑
α∈Nπ(N)

0
16pα6N

apαw
α
∣∣ = sup

w∈DN

∣∣ ∑
α∈Nπ(N)

0
16pα6N

apαw
α
∣∣ ,

from where the conclusion follows. �

Now we want to consider the following apparently silly question. Let D(s) =∑∞
n=1 an

1
ns be a non constant Dirichlet series such that σb(D) <∞. Is the function

M(σ) = sup[Re s>σ]

∣∣∣∑∞n=1 ann
−s
∣∣∣ strictly decreasing for σ > σb(D)?

A naive answer would be that this result is true as an immediate consequence
of the maximum modulus theorem. But a maximum modulus argument cannot be
applied, in general, to bounded holomorphic functions on half planes as the next
example shows.
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Example 3.2. Defined g(s) = 2s
s+1 that is holomorphic and bounded on the closed

right half plane, we have

|g(s0)| < 2 = sup
[Re s>σ]

|g(s)|

for every σ > 0 and every s0 ∈ [Re s > 0]. In other words M(σ) = 2 is a constant
function. A proof of our claim is the following: the function 1 + z attains the
maximum on the closed unit disc only at 1 and

sup
z∈A
|1 + z| = 2,

for A ⊂ D if and only if 1 ∈ A. Finally as g(s) = 1 + φ(s), where φ is the Cayley
transform that maps the half plane [Re s > 0] onto D. We have that φ is going to
map [Re s > σ] (for σ > 0) into a disc strictly contained in D and tangent to the
torus at 1. But φ−1(1) =∞ and this is why g does not attain a maximum at any
point in [Re s > 0].

The answer to the above question is yes and its proof with one complex variable
techniques is based on the use of properties of subharmonic functions. Here we are
going to present a different proof taking a detour through H∞(Bc0).

Theorem 3.3. Let D(s) =
∑∞
n=1 an

1
ns be a non constant Dirichlet series in H∞.

We have

sup
[Re s>σ]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ > sup

[Re s>η]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣,

for every 0 < σ < η.

Proof. Let define Dσ(s) = D(s + σ) =
∑∞
n=1

an
nσ

1
ns and Dη(s) = D(s + η) =∑∞

n=1
an
nη

1
ns . Clearly Dσ and Dη belong to H∞, and

sup
[Re s>σ]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ = sup

[Re s>0]

∣∣∣Dσ(s)
∣∣∣ = ‖Dσ‖[Re s>0],

sup
[Re s>η]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ = sup

[Re s>0]

∣∣∣Dη(s)
∣∣∣ = ‖Dη‖[Re s>0].

Moreover, if f, fσ, fη : Bc0 → C are the Bohr lift of D, Dσ and Dη, i.e. the
unique bounded holomorphic functions on the open unit ball of c0 such that their
monomial coefficients are cα(f) = apα , cα(fσ) =

apα

pασ and cα(fη) =
apα

pαη , we have

‖Dσ‖[Re s>0] = ‖fσ‖Bc0 and ‖Dη‖[Re s>0] = ‖fη‖Bc0 .

By c00 we denote the dense subspace of all finite sequences in c0. Clearly

fη(z) = f

(
1

pη
z

)
= fσ

(
pσ

pη
z

)
:= fσ

(
z1

2η−σ
,
z2

3η−σ
, . . . ,

zk

pη−σk

, . . .

)
,

for every z = (z1, z2, . . . , 0, . . .) ∈ Bc00 and, by density, for every sequence z =
(z1, z2, . . .) ∈ Bc0 .
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Hence
‖fη‖Bc0 = ‖fσ‖ 1

pη−σ
Bc0
6 ‖fσ‖ 1

2η−σ
Bc0

.

If we now denote by f̂η and f̂σ the Aron-Berner extensions of fη and fσ respectively,
we have by the Davie and Gamelin result ([22])

‖f̂η‖B`∞ = ‖fη‖Bc0 6 ‖fσ‖ 1

2η−σ
Bc0

= ‖f̂σ‖ 1

2η−σ
B`∞

.

But f̂σ is w(`∞, `1)-continuous on 1
2η−σB`∞ that is a w(`∞, `1)-compact. Hence

|f̂σ| has a maximum in that compact set, i.e. there exists z0 ∈ `∞ with ‖z0‖ 6 1
2η−σ

and
‖f̂σ‖ 1

2η−σ
B`∞

= |f̂σ(z0)|.

Now we have two possibilities. Either the holomorphic mapping ϕ : 2η−σD → C
defined by ϕ(λ) = fσ(λz0) is constant or not. If ϕ is constant this implies that
|f̂σ| has a maximum on 1

2η−σB`∞ at 0 that is an interior point. Hence, by the
Maximum Modulus Theorem applied to the restriction of that function to any
complex line crossing zero, f̂σ is constant on the whole B`∞ , thus fσ is constant
on Bc0 . This implies that Dσ is constant, which clearly implies that D is a constant
function. This is a contradiction with our hypothesis.

If ϕ is not constant, by the Maximum Modulus Theorem, there exists 2η−σ >
|λ0| > 1 such that

|f̂σ(λ0z0)| > |f̂σ(z0)|.
In that case

sup
[Re s>σ]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣ = ‖Dσ‖[Re s>0] = ‖f̂σ‖B`∞ > |f̂σ(λ0z0)|

> ‖f̂σ‖ 1

2η−σ
B`∞

= ‖f̂η‖B`∞

= ‖Dη‖[Re s>0] = sup
[Re s>η]

∣∣∣ ∞∑
n=1

ann
−s
∣∣∣,

and the conclusion follows. �

Another application of the Bohr transform will allow us to give some interesting
answers to the following question. Consider a Dirichlet series D =

∑∞
n=1 ann

−s

that is convergent and bounded on [Re s > 0], in other words that D ∈ H∞. Can
we find non trivial subsequences (nk) such that the series

∑∞
k=1 ankn

−s
k converges?

And if yes, when can we say that the new series is bounded?
For a fixed N consider the index set IN = {pα1

1 · · · p
αN
N : α ∈ NN0 }. We are

going to use the following notation. We will say that the series
∑
n∈IN ann

−s is
convergent at s if the Dirichlet series

∑∞
n=1 bnn

−s is convergent at s, where (bn)
is the sequence defined by bn = an if n = pα1

1 · · · p
αN
N and bn = 0 otherwise.

Given n = pα1
1 · · · p

αk
k , we write Ω(n) = α1 + · · ·+αk, and if D =

∑∞
n=1 ann

−s

is a formal Dirichlet series, we define in a similar way to above the convergence of
the Dirichlet series Dm =

∑
Ω(n)=m ann

−s.
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Theorem 3.4. Let D(s) =
∑∞
n=1 ann

−s be a Dirichlet series that is convergent
and bounded on [Re s > 0]. The following hold:

(1) The series
∑∞
k=1 apkp

−s
k is convergent on [Re s > 0].

(2) More in general, if N ∈ N then the Dirichlet series
∑
n∈IN ann

−s is conver-
gent on [Re s > 0] and sup[Re s>0] |

∑
n∈IN ann

−s| 6 sup[Re s>0] |
∑∞
n=1 an

1
ns |.

(3) Given m ∈ N, the Dirichlet series Dm =
∑

Ω(n)=m ann
−s is convergent on

[Re s > 0] and sup[Re s>0] |Dm| 6 sup[Re s>0] |
∑∞
n=1 an

1
ns |.

Proof. 3.4.(2). Fix N ∈ N and let f = B−1(D). We have that f belongs to
H∞(Bc0). Let us define g : Bc0 → C by g(z) = f(z1, . . . , zN , 0, . . .). Clearly g is
holomorphic on Bc0 and

sup
z∈Bc0

|g(z)| 6 sup
z∈Bc0

|f(z)| = sup
[Re s>0]

|D(s)|. (3.3)

Observe that in the last equality we are using that, in our setting, the Bohr trans-
form B is an isometry. On the other hand, cα(g) = cα(f) = apα for every α ∈ NN0
and cα(g) = 0 for every α ∈ N(N)

0 \ NN0 . Thus,
∑∞
n=1 bnn

−s = B(g) is a Dirichlet
series such that bn = an if n = pα1

1 · · · p
αN
N and bn = 0 otherwise. By Theorem 1.1,

B(g) is convergent and bounded on [Re s > 0] and

sup
[Re s>0]

∣∣∣∣∣
∞∑
n=1

bn
1

ns

∣∣∣∣∣ = sup
z∈Bc0

|g(z)|. (3.4)

Combining (3.3) and (3.4) we get the conclusion.

Now we proof 3.4.(3). Since f = B−1(D) is holomorphic on the unit ball Bc0
there exists a sequence of m-homogeneous continuous polynomials Pm : c0 → C
such that

f(z) =

∞∑
m=0

Pm(z),

for every z ∈ Bc0 . An appropriate application of the equality (1.1) shows that
cα(Pm) = cα(f) if α = (α1, . . . , αr, 0, . . .) with |α| = α1 + . . . + αr = m and
cα(Pm) = 0 otherwise. Moreover, Cauchy inequalities imply that

sup
z∈Bc0

|Pm(z)| 6 sup
z∈Bc0

|f(z)| = sup
[Re s>0]

|D(s)|. (3.5)

As a consequence Pm belongs to H∞(Bc0). Hence
∑∞
n=1 bnn

−s = B(Pm) ∈ H∞,
and

sup
[Re s>0]

∣∣∣∣∣
∞∑
n=1

bn
1

ns

∣∣∣∣∣ = sup
z∈Bc0

|Pm(z)|. (3.6)

Again, by definition of the Bohr transform, bn = an if n = pα1
1 · · · pαrr with α1 +

. . . + αr = m and bn = 0 otherwise. Finally, (3.5) and (3.6) give the desired
inequality. �
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The Hilbert criterion for bounded holomorphic functions on the open unit ball
of c0 (whose proof can be found in [25]) has the following corollary: if f : Bc0 → C
is a continuous function such that fN : CN → C defined by fN (z1, . . . , zN ) =
f(z1, . . . , zN , 0 . . .) is holomorphic for every N and supN ‖fN‖DN < +∞, then f ∈
H∞(Bc0) and ‖f‖Bc0 = supN ‖fN‖DN . This result, together with above theorem
and Theorem 1.1, give the following statement that is itself a Hilbert criterion for
bounded Dirichlet series.

Corollary 3.5. Given a Dirichlet series
∑
ann

−s, the following are equivalent:

(1)
∑
ann

−s ∈ H∞.
(2) supN

∥∥∑
n∈IN ann

−s
∥∥
∞ <∞.

In this case the supremum in (2) coincides with ‖
∑
ann

−s‖∞.

By using Taylor series expansion at 0 of any holomorphic function on the open
unit ball of c0 and the Cauchy inequalities, we obtain next corollary.

Corollary 3.6. Let D =
∑
ann

−s ∈ H∞ and Dm =
∑

Ω(n)=m ann
−s,m ∈ N.

Then

(1) For every m we have Dm ∈ H∞ and ‖Dm‖∞ 6 ‖D‖∞.
(2) For every σ > 0, D =

∑∞
m=0Dm uniformly on [Re s > σ].

Actually there is a close relationship between (1) and (2) of above result. That
is the content of next proposition whose proof relies again in the properties of the
Taylor series expansion of a holomorphic function.

Proposition 3.7. Let D =
∑
ann

−s be a formal Dirichlet series and Dm =∑
Ω(n)=m ann

−s, m ∈ N. If there exists M > 0 such that for every m we have
Dm ∈ H∞ and ‖Dm‖∞ 6 M , then for every σ > 0, D(s) =

∑
ann

−s converges
uniformly on [Re s > σ]. Also D(s) =

∑∞
m=0Dm(s) for every s so that Re s > 0.

Proof. Let Pm = B−1(Dm), we know that Pm ∈ P(mc0) and that ‖Pm‖ =
‖Dm‖[Re s>0] 6 M for every m. Hence the series f(z) =

∑∞
m=0 Pm(z) converges

absolutely and uniformly on rBc0 for every 0 < r < 1. Furthermore, f is bounded
on rBc0 as

|f(rz)| 6
∞∑
m=0

|Pm(rz)| =
∞∑
m=0

rm|Pm(z)| 6
∞∑
m=0

rm‖Pm‖ 6
M

1− r
,

for every 0 < r < 1 and every z ∈ Bc0 . Now consider 0 < δ < σ and let Φδ :
c0 → c0, defined by Φδ(z) = ( zk

pδk
). Clearly, it is a linear and continuous mapping.

Moreover, it is a compact mapping since Φδ(B̄c0) is a compact subset of Bc0 .
Thus there exists 0 < r < 1 such that Φδ(B̄c0) ⊂ rBc0 . Consequently f ◦ Φδ
belongs to H∞(Bc0). Now, we consider Dδ = B(f ◦ Φδ) that belongs to H∞. But
Dδ(s) =

∑∞
n=1

an
nδ

1
ns , and this series converges uniformly on [Re s > σ − δ]. Thus,

D converges uniformly on [Re s > σ].
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Finally, by applying (1.2) to D and each Dm, we have for every s so that
Re s > 0

D(s) = f

(
1

ps

)
=

∞∑
m=0

Pm

(
1

ps

)
=

∞∑
m=0

Dm(s). �

The following theorem, proved by F. Bayart in [8, Lemma 18], is a kind of
Montel theorem for Dirichlet series. We present now a proof based on the infinite
dimensional holomorphy point of view.

Theorem 3.8. Let (Dn) be a bounded sequence in H∞. Then there exists a sub-
sequence (Dnk) that converges to some D ∈ H∞ uniformly on each half plane
[Re s > σ] with σ > 0.

Proof. Let gn be the Bohr lift of Dn, i.e. gn = B−1(Dn). By Theorem 1.1, we
have that ‖gn‖Bc0 = ‖Dn‖[Re s>0]. Thus (gn) is a bounded sequence in H∞(Bc0).
By Montel’s theorem there exists a subsequence (gnk) that converges to some
g ∈ H∞(Bc0) uniformly on the compact subsets of Bc0 . We take D = B(g). We
see now how Theorem 1.1 actually transfers this convergence on compact sets
of Bc0 to convergence on half planes of Dirichlet series. Given σ > 0, the set
Kσ = {x = (xn) ∈ Bc0 : |xn| 6 1

pσn
for all n ∈ N} is a compact subset of Bc0 .

Then (1.2) gives

sup
s∈[Re s>σ]

|Dnk(s)−D(s)| = sup
s∈[Re s>σ]

|(gnk − g)
(

1
ps

)
| 6 sup

x∈Kσ
|(gnk − g)(x)|

for every k. Since supx∈Kσ |(gnk − g)(x)| converges to 0, we obtain our claim. �

Up to now we have not used that the Bohr transform is an isometric isomor-
phism of Banach algebras. Now we are going to give some applications of this
fact. Let D be the open unit disc and denote by A(D) the disc algebra, consisting
of all continuous functions f : D −→ C which are holomorphic on the open unit
disc D. On the other hand, recall that C+ denote the right half plane [Re s > 0]
and denote by A(C+) the set of all Dirichlet series D(s) =

∑∞
n=1

an
ns which are

convergent on C+ and define a uniformly continuous function on that half plane.
If X is a Banach algebra with identity, letM(X) be the maximal ideal space

(also called the spectrum) of X, i.e.M(X) consists of all non-zero complex valued
homomorphisms from X to C. By [27, II.1.10], M(A(D)) = {δz : z ∈ D}, where
δz is the evaluation at z, δz(f) = f(z) for all f ∈ A(D). It is well-known that the
set of polynomials is dense in A(D). On the other hand, by [2, Theorem 2.3], the
Dirichlet polynomials are dense in A(C+), i.e.

A(C+) = span
{

1

ns
: n ∈ N

}‖·‖∞
,

so the set of trigonometric polynomials is also dense in A(C+). Then a natural
question appears:

Is it true that M(A(C+)) = {δs : Re s > 0}? The answer is negative and we
are going to use the Bohr lift to prove that.
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Theorem 3.9. The set of evaluations {δs : Re s > 0} is a proper subset of
M(A(C+)).

Proof. By [2, Theorem 2.5], A(C+) is isometrically isomorphic to the algebra
Au(Bc0) of all holomorphic and uniformly continuous functions on the open unit
ball Bc0 of the space c0. The proof is done by showing that the Bohr lift

L : A(C+) −→ Au(Bc0)

is an isomorphic isometry. Taking the transpose of it we have that

Lt :M(Au(Bc0)) −→M(A(C+)).

On the other hand, the Aron-Berner extension in the case of c0, says that
every bounded holomorphic function f on the open unit ball of c0 can be extended
in an unique way to f̂ as a bounded holomorphic function on B`∞ , the open
unit ball of the Banach space `∞ of bounded complex sequences endowed with the
supremum norm. Moreover, this extension is multiplicative and preserves the norm.
Additionally if f ∈ Au(Bc0), then this process of extension can be done to the
closed unit ball B`∞ . Hence defined δ̃a(f) = f̂(a), we have that δ̃a ∈M(Au(Bc0))

for every a ∈ B`∞ . Actually M(Au(Bc0)) = {δ̃z : z ∈ B`∞} (see [3]). We claim
that if we take any a = (an)n∈N ∈ B`∞ satisfying that for some coordinate, say
aN = 0, then

δ̃z ∈M(A(C+)) \ {δs : Re s > 0}.

Indeed, we can assume a1 = 0. If our claim is not true, then there exists s0 with
Re s0 > 0 such that Lt(δ̃a) = δs0 . Hence Lt(δ̃a)( 1

2s ) = δs0( 1
2s ) = 1

2s0 . But

Lt(δ̃a)

(
1

2s

)
= δ̃a

(
L

(
1

2s

))
= δ̃a(z1),

thus

Lt(δ̃a)

(
1

2s

)
= δ̃a(z1) = a1 = 0.

Therefore 1
2s0 = 0. A contradiction. �

In [21] the authors study spaces of multiple Dirichlet series and their properties.
They used the Bohr transform and lift to get the main results.

A k-multiple Dirichlet series is a series of the form

∞∑
m1,...,mk=1

am1,...,mk

ms1
1 · · ·m

sk
k

,

where {am1,...,mk} ⊂ C is the k-multiple sequence of coefficients of the series, and
s1, . . . , sk ∈ C are complex variables.
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A k-multiple series is regularly convergent if it is convergent and all of its
j-dimensional subseries are convergent, where a j-dimensional subseries is a series
of the same multiple sequence in which we take the sum over j indexesmi1 , . . . ,mij ,
where the other indexes ml1 , . . . ,mlk−j remain fixed.

In an analogous way to the one dimensional case, in [21] is introduced the
Banach algebra A(Ck+) of all k-multiple Dirichlet series which are regularly con-
vergent on Ck+ and define uniformly continuous functions on Ck+. Since the algebra
of the disc A(D) and the algebra of the bidisc A(D2) are not topologically isomor-
phic, as it was proved in [35], it is natural to guess that the algebra A(C+) is not
topologically isomorphic to A(C2

+). But the answer is just the opposite.

Theorem 3.10. The Banach algebras A(Ck+), k ∈ N, are all isometrically iso-
morphic.

The proof of this result is given in [21, Theorem 3.5] where it is shown that
the natural extension of the Bohr transform and lift to several variables implies
that for each k, the Banach algebra A(Ck+), k ∈ N, is isometrically isomorphic to
Au(Bck0 ) that in turn, in a straightforward way, it is isometrically isomorphic as
Banach algebra to Au(Bc0).

This is another example of a problem that from the point of view of Dirichlet
series in several variables looks difficult to attach and it is transparent in the
infinite dimensional setting.

We finally introduce the concept of `1-multiplier for H∞-Dirichlet series. A se-
quence (bn) of complex numbers is said to be an `1-multiplier for H∞ whenever

∞∑
n=1

|anbn| <∞

for all
∑
n ann

−s ∈ H∞. Recall that a sequence (bn) of complex numbers is said
to be completely multiplicative whenever bnm = bnbm for all n,m.

The Bohr transform links the concept of completely multiplicative `1-multipliers
with concept of sets of monomial convergence for functions in H∞(Bc0)

monH∞(Bc0) =
{
z ∈ CN : ∀ f ∈ H∞(Bc0) :

∑
α∈N(N)

0

∣∣cα(f)zα
∣∣ <∞}.

introduced and first studied in [26]. The connection is the following.
Let (bn) be a completely multiplicative sequence of complex numbers, and 1 6

p 6∞. Then (bn) is an `1-multiplier for H∞ if and only if (bpk) ∈ monH∞(Bc0).

For each bounded sequence z = (zn) of complex numbers we define

b(z) =
(

lim sup
n→∞

1

log n

n∑
j=1

z∗2j

)1/2

,

where z∗ = (z∗n) is the decreasing rearrangement of z.
We recall that ` 2m

m−1 ,∞
= {z = (zn)n : ‖z‖ = supn z

∗
nn

m−1
2m <∞}.
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Theorem 3.11. Let (bn) be a completely multiplicative sequence of complex num-
bers, 1 6 p <∞ and m ∈ N.

(1) (bn) is an `1-multiplier for Hm∞ =
{∑

ann
−s ∈ H∞ : an 6= 0⇒ Ω(n) = m

}
if and only if (bpj ) ∈ ` 2m

m−1 ,∞
.

(2) (bn) is an `1-multiplier for H∞ provided we have that |bpj | < 1 for all j and
b
(
(bpj )

)
< 1.

Conversely, if (bn) is `1-multiplier for H∞, then |bpj | < 1 for all j and
b
(
(bpj )

)
6 1.

This result is obtained in [9], by describing the monomial sets of convergence
for H∞(Bc0) and applying that study to these spaces of Dirichlet series. The key
is the next theorem on monomial convergence given also in [9].

Theorem 3.12. For each z ∈ DN the following two statements hold:

(1) If lim sup
n→∞

1

log n

n∑
j=1

z∗2j < 1, then z ∈ monH∞(Bc0).

(2) If z ∈ monH∞(Bc0), then lim sup
n→∞

1

log n

n∑
j=1

z∗2j 6 1; moreover, here the

converse implication is false.

For m-homogeneous polynomials on c0 the set of convergence is completely
described. Defined

monP(mc0) =
{
z ∈ CN : ∀P ∈ P(mc0) :

∑
α∈N(N)

0

∣∣cα(P )zα
∣∣ <∞} ,

we have

Theorem 3.13 ([9]).
monP(mc0) = ` 2m

m−1 ,∞
.

4. Dirichlet series approach to infinite dimensional holomorphy

Now we want to show that the classical theory of Dirichlet series can give new
information on H∞(Bc0), the space of all holomorphic and bounded functions on
Bc0 .

Theorem 4.1. If f : Bc0 → C is holomorphic and bounded, then its monomial
coefficients (cα(f))

α∈N(N)
0

is an element of `2(N(N)
0 ) and its norm is less than or

equal to supz∈Bc0 |f(z)|.

Proof. Let D =
∑∞
n=1 an

1
ns = B(f). We know that

∑
ann

−s ∈ H∞. Now,
Carlson’s inequality, [25, Proposition 1.21], implies that( ∞∑

n=1

|an|2
)1/2

6 sup
[Re s>0]

|D(s)| = sup
z∈Bc0

|f(z)|.

But we have that cα(f) = apα for every α ∈ N(N)
0 . �
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This result was greatly improved working in the context of Sidon sets in [23,
Corollary 2] where it is proved that for every c < 1/

√
2 it holds that

∞∑
n=1

|an|n−
1
2 ec
√

logn log logn <∞, (4.7)

for every
∑
ann

−s ∈ H∞. (See also [5]).
Given N > 2 the Sidon number S(N) is defined as the best constant C > 0

such that for every Dirichlet polynomial
∑N
n=1 ann

−s

N∑
n=1

|an| 6 C sup
[Re s>0]

∣∣∣∣∣
N∑
n=1

an
ns

∣∣∣∣∣ .
Actually (4.7) is a corollary of [23, Theorem 3] where (improving a result by

R. de la Bretèche in [17]) it is established the following:

S(N) =
√
N exp

{(
− 1√

2
+ o(1)

)√
logN log logN

}
,

when N →∞.
As an immediate consequence we obtain the next result.

Theorem 4.2. Let J be a finite subset of N(N)
0 , N(J) = max{pα : α ∈ J}, and

let
∑
α∈J cαz

α be a polynomial of finite type on c0. We have∑
α∈J
|cα| 6 S(N(J))

∥∥∥∑
α∈J

cαz
α
∥∥∥
Bc0

,

when card(J)→∞.

In the previous section, we have described the results obtained in [9] on the set
of convergence of the monomial expansion of all bounded holomorphic function on
the open unit ball of c0. In particular, Theorem 3.13 states monP(mc0) = ` 2m

m−1 ,∞
.

Let us show how the use of a deep property of Dirichlet series allows us to give an
alternative proof of the inclusion

` 2m
m−1 ,∞

⊂ monP(mc0).

Proof. Let P ∈ P(mc0) and D = B(P ) ∈ H∞. We have that ‖D‖[Re s>0] = ‖P‖
and, moreover, that D(s) =

∑
Ω(n)=m an

1
ns where recall that apα = cα(P ) for

every α ∈ N(N)
0 . But we know from the theory of Dirichlet series, [5, Theorem 1.4],

that there is a constant Km > 0 so that for every bounded Dirichlet series of that
type it holds the following inequality

∑
Ω(n)=m

|an|
(log n)

m−1
2

n
m−1
2m

6 Km sup
t∈R

∣∣∣ ∑
Ω(n)=m

ann
it
∣∣∣. (4.8)
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On the other hand, for every finite family (xj)j with xj > 0 and all α ∈ N(N)
0 with

|α| = m, a simple application of the binomial formula yields

(xα)1/m 6
∑
j

αjxj . (4.9)

Now, if z ∈ ` 2m
m−1 ,∞

we have (z∗ denotes the decreasing rearrangement of z)

supn z
∗
nn

m−1
2m = ‖z‖ <∞. Then

z∗n 6 ‖z‖
1

n
m−1
2m

6 ‖z‖
( log(n log n)

n log n

)m−1
2m

6 ‖z‖A
( log(pn)

pn

)m−1
2m

where in the last step A is a constant that come from applying the Prime Number
Theorem. Hence∑

|α|=m

|cα|(z∗)α 6 (‖z‖A)m
∑
|α|=m

|cα|
(( log(pn)

pn

)m−1
2m

)α

= (‖z‖A)m
∑
|α|=m

|cα|

([
(log pn)α

]1/m)m−1
2

(pα)
m−1
2m

6 (‖z‖A)m
∑
|α|=m

|cα|

(∑
αk log pk

)m−1
2

(pα)
m−1
2m

= (‖z‖A)m
∑

Ω(n)=m

|an|
(log n)

m−1
2

n
m−1
2m

6 (‖z‖A)m ·Km sup
t∈R

∣∣∣ ∑
Ω(n)=m

ann
it
∣∣∣

= (‖z‖A)m ·Km‖P‖.

Above, to obtain the first inequality we apply (4.9). The second inequality is
consequence of (4.8).

This shows that z∗ ∈ monP(mc0). Now, since z ∈ ` 2m
m−1 ,∞

, we have that z
belongs to c0, and there is a permutation σ : N→ N such that (zn) = (z∗σ(n)). But
by [24, page 550], if a sequence is in monP(mc0), then every rearrangement by
a permutation is also there. Hence we have z ∈ monP(mc0) and we are done. �
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