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Abstract: We study the problem of characterizing membership of normalized holomorphic func-
tions of the disc to the class of infinitesimal generators and their sectorial analytical extension.
We provide new formulas and applications to dynamics of the corresponding semigroups using
filtrations of the class of infinitesimal generators.
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1. Preliminaries and motivations

Let D be the open unit disc in the complex plane C, denote by Hol(D,C) the set
of holomorphic functions on D, and by Hol(D) the set of holomorphic self-maps
of D.

Definition 1.1. A family {φt}t>0 ⊂ Hol(D) is called a one-parameter continuous
semigroup (or just semigroup) if

(a) φt+s = φt ◦ φs, t, s > 0; and
(b) limt→0+ φt = idD, where idD is the identity map on D and the limit is taken

with respect to the topology of uniform convergence on compact sets in D.

A remarkable result of Berkson and Porta [4] asserts that each one-parameter
semigroup of holomorphic self-maps of D is locally uniformly differentiable with
respect to the parameter t > 0, and, moreover, if

f = lim
t→0+

1

t
(idD−φt) ,
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then φt is the solution of the Cauchy problem:

∂φt(z)

∂t
+ f(φt(z)) = 0 and φ0(z) = z ∈ D. (1.1)

The function f is called the infinitesimal generator of the semigroup {φt}t>0 ⊂
Hol(D). The class of all holomorphic generators is denoted by G.

From the continuous version of the Denjoy-Wolff Theorem (see, for example,
[17] and [15]) a semigroup {φt}t>0 has at most one interior common fixed point
τ ∈ D, and this point is an attractive point of {φt}t>0 in the sense that

τ = lim
t→∞

φt(z), z ∈ D,

if and only if {φt}t>0 contains neither an elliptic automorphism of D nor the
identity mapping. This point τ is called the Denjoy-Wolff point for the semigroup
{φt}t>0 . It follows from the uniqueness of solutions to the Cauchy problem that
this point τ must be the (unique) null point of f in D.

Up to Möbius transformations Tτ
(
Tτ (z) = τ−z

1−zτ , τ ∈ D
)
of the unit disc for

a semigroup having an interior fixed point, one can always require the condition
f(0) = 0, or, what is the same, φt(0) = 0 for all t > 0.

A necessary and sufficient condition (see [4]) for a holomorphic function f such
that f(0) = 0 to be an infinitesimal generator is

Re
f(z)

z
> 0, z ∈ D \ {0}. (1.2)

In this paper, we reduce to consider the class A of functions which are holo-
morphic on the open unit disc D and normalized by f(0) = f ′(0) − 1 = 0, and
denote by G0 the subset of A consisting of infinitesimal generators, that is,

A := {f ∈ Hol(D,C) : f(0) = f ′(0)− 1 = 0} and G0 := A ∩ G. (1.3)

The class G0 is very important for the study of non-autonomous problems, such
as Loewner theory (see, e.g., [8, 6]). For this class G0, we consider the following
problems:

1. Criteria for membership to the class G0.
2. Analytic extension of a semigroup in its parameter into a domain in the

complex plane.
3. The study of the asymptotic behavior of semigroups.

The first problem has been investigated (also for the entire class G and in sev-
eral variables) by many authors, e.g., [2, 3, 4, 5, 9, 16] and [17] and, in essentially
all cases, the answer is given by suitable inequalities in terms of intrinsic objects
(hyperbolic metric, hyperbolic distance, Green function) or extrinsic ones (Eu-
clidean inequalities). For our purpose we recall the so-called Abate’s formula [1]:
a function f ∈ Hol(D,C) is an infinitesimal generator if and only if for all z ∈ D,

Re
[
2f(z)z + (1− |z|2)f ′(z)

]
> 0. (1.4)
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However, often in practice given f ∈ Hol(D,C), it is hard to verify (1.2) or
(1.4) (or the other equivalent conditions). For instance, it is not trivial to check
using (1.2) or (1.4) whether the function f(z) = −z−2 log(1−z) is an infinitesimal
generator. However, we will show in Theorem 1.3 that a sufficient condition for
g ∈ A to be an infinitesimal generator is that Re g′(z) > 0 for all z ∈ D. Hence,
since Re f ′(z) = Re 1+z

1−z > 0, z ∈ D, it follows at once that, in fact, f is an
infinitesimal generator.

The condition Re f ′(z) > 0 for f ∈ A implies by the Noshiro-Warschawski
Theorem [8, 11] that f is univalent. Since not all infinitesimal generators are
univalent, the condition Re f ′(z) > 0 is far from being a necessary condition for
membership in G0. Therefore, such a condition defines a natural subclass of G0.
How can we move in some natural way from such a subclass to the full class G0?

In order to properly answer the previous question, we introduce the notion of
filtration:

Definition 1.2. A filtration of G0 is a family F = {Fs}s∈[a,b] , Fs ⊆ G0, where
a, b ∈ [−∞,+∞], a < b, such that Fs ⊆ Ft whenever a 6 s 6 t 6 b. Moreover, we
say that
• the filtration {Fs}s∈[a,b] is strict if Fs ( Ft for s < t; and
• the filtration {Fs}s∈[a,b] is exhaustive if Fb = G0.

In this paper, we define and study some natural filtrations of G0 which are re-
lated to the questions (1) and (2) above and also detect some dynamical properties
of the associated semigroups. For instance, a natural filtration, due to (1.2), is the
one given by {f ∈ A : Re f(z)

z > −a,∀z ∈ D \ {0}}a∈(−∞,0]. Membership to one of
these classes reflects on the ratio of convergence of the associated semigroup to 0
(see Proposition 2.7).

The main result of this paper, which clearly is a consequence of Theorem 4.7,
is the following:

Theorem 1.3. Let f ∈ A satisfy the condition

Re

[
α|z|2 f(z)

z
+ (1− α)(1− |z|2)f ′(z)

]
> 0, z ∈ D \ {0}, (1.5)

for some α ∈ [0, 1]. Then f is a holomorphic generator. Moreover,
(i) If inequality (1.5) holds for some α ∈ [0, 2/3], then it also holds for all

β ∈ (α, 1].
(ii) For every β ∈ (0, 2/3] there exists fβ which satisfies (1.5) for α = β but

does not satisfy (1.5) for α ∈ [0, β).
(iii) If f ∈ A is an infinitesimal generator, then inequality (1.5) holds for all

α ∈ [2/3, 1].

In other words, the filtration of G0 defined by (1.5) for α ∈ [0, 2/3] is strict and
exhaustive.

Another result on the same line we prove is the following (see Theorems 4.12
and 4.15):
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Theorem 1.4. Let f ∈ A satisfy the condition

Re

[
α
f(z)

z
+ (1− α)f ′(z)

]
> 0, z ∈ D \ {0}, (1.6)

for some α ∈ [0, 1]. Then f is a holomorphic generator. Moreover,
(i) If inequality (1.6) holds for some α ∈ [0, 1), then it also holds for all

β ∈ (α, 1].
(ii) For every β ∈ (0, 1] there exists fβ which satisfies (1.6) for α = β but does

not satisfy (1.6) for α ∈ [0, β).
(iii) If {φt}t>0 ⊂ Hol(D) is the semigroup generated by f ∈ A satisfying (1.6)

with some α ∈ [0, 1), then the following estimate of convergence holds:

|φt(z)| 6 e−κ(α)t|z|, where κ(α) =

∫ 1

0

1− t1−α

1 + t1−α
dt > 0. (1.7)

In particular, the filtration of G0 defined by (1.6) for α ∈ [0, 1] is strict and
exhaustive.

Note that both inequalities (1.5) and (1.6) are the same for α = 0 and
α = 1. For α = 0 we have the class of univalent functions satisfying the Noshiro-
Warschawski condition, while for α = 1 we get the whole class G0 = A ∩ G.
However, the classes of functions characterized by inequalities (1.5) and (1.6) are
different for α ∈ (0, 1).

In order to make a filtration of G0 useful, for instance to get estimates like
(1.7), we introduce the following notion:

Definition 1.5. Let F ⊂ G0. We say that a function f∗ ∈ G0 is totally extremal
for F if

(i) f∗ ∈ F ;
(ii) for every λ ∈ C, r ∈ [0, 1] and f ∈ F ,

min
|z|=r

Re

(
λ
f(z)

z

)
> min
|z|=r

Re

(
λ
f∗(z)

z

)
.

Condition (ii) can be explained as follows. Given f∗ ∈ F , write f∗(z) = zp∗(z).
Then f∗ is totally extremal for F if and only if for every r ∈ [0, 1] and f ∈ F with
f(z) = zp(z), the image p(Dr) of the disc of radius r lies in the convex hull of
p∗(Dr).

If an infinitesimal generator is totally extremal in F , the semigroup it gener-
ates has some extremal dynamical behavior among those semigroup generated by
infinitesimal generators of the class F , from which the reason of the name.

Definition 1.6. We say that a filtration F = {Fs}s∈[a,b] admits a net {fs}s∈[a,b] of
totally extremal functions if for every s ∈ [a, b], the function fs is totally extremal
for the class Fs.

In the paper, we will consider also the problem of finding nets of totally ex-
tremal functions for the filtrations we consider.
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2. Exponentially squeezing filtration

The issue of the asymptotic behavior of semigroups can be found in many sources
(see, for instance, the books [9, 17] and references therein). In the context of this
paper we need the following notion.

Definition 2.1. We denote by C = {Cα}α∈[0,1] the family of sets defined by

Cα :=
{
f ∈ A : Re f(z)z > (1− α)|z|2 ∀z ∈ D

}
.

Clearly, C is a filtration, which we call the exponentially squeezing filtration.
By definition, C1 = G0, while the class C0 is trivial since it reduces to the identity
function.

Theorem 2.2. The filtration C is strict and exhaustive and admits a net
{fα}α∈(0,1] of totally extremal functions, where

fα(z) = z
1 + (1− 2α)z

1 + z
.

Proof. The filtration C is exhaustive since C1 = G0.
On the other hand, a function f(z) = zp(z) belongs to the class Cα, α ∈ (0, 1],

if and only if p(0) = 1 and Re p(z) > 1− α. Since the function pα defined by

pα(z) =
fα(z)

z
=

1 + (1− 2α)z

1 + z

maps the open unit disc D conformally onto the half-plane {w ∈ C : Rew > 1−α},
we conclude that fα /∈ Cβ whenever α < β, so the filtration C is strict. In addition,
this subordination implies that f(z) = zp(z) ∈ Cα if and only if p ≺ pα, that is,
fα is totally extremal for Cα. �

Next elementary lemma will be useful to bound the argument of Carathéodory
functions associated with certain infinitesimal generators.

Lemma 2.3. Let 0 < R < C < +∞. Then

max
|w−C|=R

|argw| = arctan

(
R√

C2 −R2

)
.

Since the image of |z| = r by the function pα (defined in the proof of The-
orem 2.2) is the circle centered at 1−r2(1−2α)

1−r2 and radius 2αr
1−r2 , Lemma 2.3 and

Theorem 2.2 imply:

Corollary 2.4.

(i) If f ∈ G0, then f ∈ Cα if and only if for any r ∈ [0, 1),

min
|z|=r

Re
f(z)

z
> Re

fα(r)

r
=

1 + (1− 2α)r

1 + r
.
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(ii) If f ∈ Cα, then for any r ∈ [0, 1),

max
|z|=r

∣∣∣∣arg
f(z)

z

∣∣∣∣ 6 max
|z|=r

∣∣∣∣arg
fα(z)

z

∣∣∣∣
= arctan

(
2αr√

(1− r2)(1− (1− 2α)2r2)

)
.

Remark 2.5. It is well known (see, e.g., [8, p. 73]) that if f is a normalized convex
function then, for every z ∈ D, z 6= 0,

Re
f(z)

z
>

1

2
.

Hence, every normalized convex function is an infinitesimal generator and belongs
to the class C 1

2
.

The study of the asymptotic behavior of the semigroups is mostly connected
with establishing the local or global rates of convergence or the growth estimates of
the semigroup with respect to the parameter. A well known result of Gurganus [13]
states that for all z ∈ D, the asymptotic behavior of a semigroup {φt}, generated
by f ∈ G0 can be described as follows:

|z| exp

(
−s1 + |z|

1− |z|

)
6 |φs(z)| 6 |z| exp

(
−s1− |z|

1 + |z|

)
, s ∈ [0,∞).

However, these estimates are not uniform on the whole disc. Also, it might
happen that for specific subclasses of G0 the rate of convergence can be improved.
Now we show that this is the case for the elements of the exponentially squeezing
filtration. To do this we need the following notion.

Definition 2.6. A continuous semigroup {φt}t>0 ⊂ Hol(D) is said to be expo-
nentially squeezing with squeezing ratio a > 0 if |φt(z)| 6 e−at|z| for all z ∈ D.

Proposition 2.7. Given f ∈ G0, the following are equivalent:
(1) {φt}t>0 is exponentially squeezing with squeezing ratio a ∈ [0, 1],
(2) f ∈ C1−a.

Proof. Given z ∈ D, let g(t) := |φt(z)|2 − e−2at|z|2. Note that g(0) = 0 and
differentiating in t we obtain

g′(t) = −2 Re f(φt(z))φt(z) + 2a|φt(z)|2 − 2ag(t).

If (1) holds, then g(t) 6 0. Therefore, from

g′(0) = lim
t→0+

g(t)− g(0)

t
= lim
t→0+

g(t)

t
6 0,

we get (2).
Now, assume (2) holds. Setting h(t) = g′(t)+2ag(t) and solving the differential

equation g′(t) + 2ag(t) − h(t) = 0 with the initial value g(0) = 0, we obtain
g(t) = e−2at

∫ t
0
e2ash(s)ds 6 0, since h(t) 6 0 for all t > 0. Hence (1) holds. �
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In turn, Proposition 2.7 and Remark 2.5 imply the following fact.

Corollary 2.8. Let {φt}t>0 be a semigroup generated by a convex function. Then
this semigroup is exponentially squeezing with squeezing ratio 1

2 .

Example 2.9. Consider the Cauchy problem:

∂u(t, z)

∂t
+ log(1 + u(t, z)) = 0, u(0, z) = z ∈ D.

Since f(z) = log(1 + z) is a convex function, its solution satisfies the estimate

|u(t, z)| 6 e−t/2|z|.

3. Sectorial filtration

We next consider the following filtration, which we call the sectorial filtration.

Definition 3.1. We denote by S = {Sα}α∈[0,1] the family of sets defined by

Sα :=

{
f ∈ A :

∣∣∣∣arg
f(z)

z

∣∣∣∣ 6 πα

2
∀z ∈ D \ {0}

}
.

This definition immediately implies that S is a filtration with S1 = G0 and
S0 = {idD}.
Theorem 3.2. The filtration S is strict and exhaustive and admits a net {fα}α∈(0,1]

of totally extremal functions, where

fα(z) = z

(
1− z
1 + z

)α
.

Proof. The filtration S is exhaustive since S1 = G0. A function f(z) = zp(z)
belongs to the class Sα, α ∈ (0, 1] if and only if p(0) = 1 and | arg p(z)| 6 πα

2 .

Since the function pα defined by pα(z) = fα(z)
z =

(
1−z
1+z

)α
, maps the open unit disc

D conformally onto the sector {w ∈ C : | argw| 6 πα
2 }, we conclude that fα /∈ Sβ

whenever α < β, so the filtrationS is strict. In addition, this subordination implies
that f(z) = zp(z) ∈ Sα if and only if p ≺ pα, that is, fα is totally extremal
for Sα. �

As an immediate consequence of this result, and using again Lemma 2.3, we
have the following.

Corollary 3.3.
(i) If f ∈ G0, then f ∈ Sα if and only if for any r ∈ [0, 1),

max
|z|=r

∣∣∣∣arg
f(z)

z

∣∣∣∣ 6 max
|z|=r

∣∣∣∣arg
fα(z)

z

∣∣∣∣ = α arctan

(
2r

1− r2

)
.

(ii) If f ∈ Sα, then for any r ∈ [0, 1),

min
|z|=r

Re
f(z)

z
> Re

fα(r)

r
=

(
1− r
1 + r

)α
.
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4. Linear filtrations

In this section, we deal with filtrations defined by expressions that depend linearly
on a function f and its derivative f ′. Such filtrations can be determined as follows.
Let K be the set consisting of all functions k : [0, 1) × [0, 1) → [0,+∞) such that
for every r ∈ [0, 1) the function [0, 1) 3 α 7→ k(α, r) is non-decreasing. We set
k(1, r) := lim

α→1−
k(α, r), possibly infinite.

Definition 4.1. Given k ∈ K, we denote by F[k] = {Fα[k]}α∈[0,1] the family of
sets defined by

Fα[k] :=

{
f ∈ A : Re

[
k(α, |z|)f(z)

z
+ f ′(z)

]
> 0 ∀z ∈ D \ {0}

}
. (4.1)

Theorem 4.2. For any k ∈ K, the family F[k] is a filtration of G0. If, in addition,
for some γ0 ∈ [0, 1], we have

k(γ0, r) >
1 + r2

1− r2
, (4.2)

then Fγ0 [k] = G0. Hence, the filtration {Fα[k]}α∈[0,γ] is exhaustive for every γ ∈
[γ0, 1].

Proof. Let f ∈ Fα[k] for some α ∈ [0, 1]. Let p(z) := f(z)
z . To see that Fα[k] ⊆ G0,

it is enough to show that Re p(z) > 0 for all z ∈ D. Equation (4.1) can be rewritten
as

(1 + k(α, |z|)) Re p(z) + Re zp′(z) > 0, z ∈ D. (4.3)

By [17, Lemma 3.5.3], Re p(z) > 0 for all z ∈ D, and, hence, Fα[k] ⊂ G0 for all
α ∈ [0, 1].

Fix 0 6 α < β 6 1 and let f(z) = zp(z) ∈ Fα[k]. By (4.3), for all z ∈ D,

Re zp′(z) > −1− k(α, |z|) Re p(z).

Hence, since k(·, |z|) is non-negative and non-decreasing, for all z ∈ D, z 6= 0, we
have

Re

[
k(β, |z|)f(z)

z
+ f ′(z)

]
= Re [(1 + k(β, |z|))p(z) + zp′(z)]

> Re [(1 + k(β, |z|))p(z)− (1 + k(α, |z|))p(z)]
= [k(β, |z|)− k(α, |z|)] Re p(z) > 0.

Therefore, Fα[k] ⊆ Fβ [k], that is, F[k] is a filtration of G0.
Assume (4.2) holds. We show that any f ∈ G0 belongs to Fγ [k]. Indeed, given

f ∈ G0, let p(z) := f(z)
z . By (1.2), Re p(z) > 0 for all z ∈ D. It is well-known that
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|zp′(z)| 6 2 Re p(z)

1− |z|2
(see, for example, [11] or [12]). Therefore, according to our

assumption

Re

[
k(γ, |z|)f(z)

z
+ f ′(z)

]
= Re [(k(γ, |z|) + 1) p(z) + zp′(z)]

>

[
(k(γ, |z|) + 1)− 2

1− |z|2

]
Re p(z) > 0.

The proof is complete. �

Setting k(α, r) := α, we immediately get the following.

Corollary 4.3. Let f : D→ C be a holomorphic function such that f(0) = 0 and
f ′(0) = 1. If Re f ′(z) > 0 for all z ∈ D, then f ∈ G0.

Question 4.4. What conditions on k(α, |z|) imply that the filtration F[k] is strict?

Now we see how linear filtrations can be used to get some information on the
boundary behavior of a semigroup.

Let f ∈ G0. We say that the boundary point ζ = 1 ∈ ∂D is a boundary
singularity of order λ ∈ (0, 1] for f if

lim
r→1−

f(r)

(1− r)λ
= ω 6= 0,∞ (4.4)

and

lim
r→1−

f ′(r)

(1− r)λ−1
= −λω. (4.5)

By [7, Theorem 6.4], for every λ ∈ (0, 1] there exists fλ ∈ G0 having a boundary
singularity of order λ at 1. A simple example of a function that satisfies (4.4) and
(4.5) is f(z) = z(1− z)λ, λ ∈ (0, 1]. Since Re f(z)

z > 0, it follows immediately that

Reω > 0. (4.6)

Proposition 4.5. Let k ∈ K. Assume moreover that for every α ∈ [0, 1) the limit

`(α) := lim
r→1−

k(α, r)(1− r)

exists and `(α) 6= ∞. If f ∈ Fα[k] has a boundary singularity of order λ ∈ (0, 1]
at 1 then

`(α) > λ.

Proof. Setting z = r ∈ (0, 1) in (4.1) and dividing by (1− r)λ−1, we obtain

Re

[
k(α, r)(1− r) f(r)

r(1− r)λ
+

f ′(r)

(1− r)λ−1

]
> 0.

Taking limit as r → 1−, we obtain

Re[`(α)ω − λω] > 0.

Hence, (`(α)− λ) Reω > 0. By (4.6), we have the result. �
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4.1. Hyperbolic filtration

A particularly interesting filtration of type F[k] is the one obtained by taking
k1 : [0, 1)× [0, 1)→ R+ defined by

k1(α, r) :=
αr2

(1− α)(1− r2)
.

In this case, condition (4.1) can be rewritten as

Re

[
α|z|2 f(z)

z
+ (1− α)(1− |z|2)f ′(z)

]
> 0, z ∈ D \ {0}. (4.7)

Definition 4.6. We say that f ∈ A belongs to Hα if f satisfies (4.7). We denote
by H = {Hα}α∈[0,1] and call it the hyperbolic filtration.

The reason for the name comes from the fact that the inequalities defining
the filtration can be obtained by suitably differentiating a convex combination
of inequalities containing the infinitesimal hyperbolic metric and the hyperbolic
distance:

ω(φt(z), φt(w)) 6 ω(z, w) or κ(φt(z); f(φt(z))) 6 κ(z; f(z)),

which hold for every semigroup (φt(z)) with infinitesimal generator f , where ω
denotes the hyperbolic distance and κ the infinitesimal hyperbolic metric on D.

Note also that for α ∈ [0, 1), the sufficient condition for exhaustiveness of
Theorem 4.2 does not hold, while obviously H1 = G0. Hence, {Hα}α∈[0,γ] is an
exhaustive filtration of G0 with some γ 6 1. In fact, for α = 2

3 , equation (4.7)
reduces to the Abate’s formula (1.4). Therefore,

Hα = G0 for all α ∈
[

2

3
, 1

]
.

Theorem 4.7. The filtration {Hα}α∈[0, 23 ] is strict and exhaustive.

Proof. As we already observed, {Hα}α∈[0,γ] is an exhaustive filtration for some
γ 6 2

3 . Hence, it suffices to show that {Hα}α∈[0, 23 ] is strict.

To end this, we have to find for every given β ∈ [0, 2
3 ] , some function fβ ∈ Hβ

such that fβ 6∈ Hα for α < β. To this end, set

fη(z) := z(1 + ηz2).

A straightforward computation shows that

Re

[
α|z|2 fη(z)

z
+ (1− α)(1− |z|2)f ′η(z)

]
= (1− α) + (2α− 1)|z|2 + η[α|z|2 + 3(1− α)(1− |z|2)] Re z2

> (1− α) + (2α− 1)|z|2 − η[α|z|2 + 3(1− α)(1− |z|2)]|z|2.
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Hence, noticing that we have equality in the last inequality for z = ir, r ∈ [0, 1),
we see that fη ∈ Hα if and only if

η 6
(1− α) + (2α− 1)r2

αr4 + 3(1− α)(1− r2)r2
=: ψ(α, r), r ∈ (0, 1). (4.8)

Now, for α ∈ [0, 2
3 ], let r(α) ∈ [0, 1] be such that

ψ(α, r(α)) = min
r∈(0,1]

ψ(α, r).

Then, by (4.8), it follows that

fη ∈ Hα ⇐⇒ η 6 ψ(α, r(α)). (4.9)

Now fix r ∈ (0, 1] and write

ψ(α, r) =
Aα+B

Cα+D
,

where A = 2r2 − 1, B = 1 − r2, C = r4 − 3(1 − r2)r2, and D = 3(1 − r2)r2.
Differentiating in α, we obtain

∂ψ(α, r)

∂α
=

AD − CB
(Cα+D)2

.

Since
AD − CB = 2r4(1− r)2,

the function [0, 2
3 ] 3 α 7→ ψ(α, r) is strictly increasing for r ∈ (0, 1).

It is easy to check that for α = 2
3 , the minimum is attained at r( 2

3 ) = 1 and
ψ( 2

3 , 1) = 1. While, if α = 0, the minimum is attained at r = 1 and is ψ(0, 1) = 1
3 .

We claim that r(α) ∈ (0, 1) and ψ(α, r(α)) < 1 if α ∈ (0, 2
3 ).

To see this, note that ψ(α, 1) = 1 for every α ∈ (0, 2
3 ] and ψ(α, r) → +∞

for r → 0+. Hence, it is enough to show that there exists r ∈ (0, 1) such that
ψ(α, r) < 1. Indeed, this is equivalent to say that there exists r ∈ (0, 1) such that
the function

Φ(r) := (1− α) + (2α− 1)r2 − [αr4 + 3(1− α)(1− r2)r2]

= (1− α) + (5α− 4)r2 + (3− 4α)r4 < 0.

Since Φ(1) = 0 and Φ′(1) = 2(2 − 3α) > 0 as α ∈ [0, 2
3 ), it follows that for r < 1

and r sufficiently close to 1, Φ(r) < 0; hence, ψ(α, r) < 1, and the claim is proved.
Now set η(α) := ψ(α, r(α)). Then by (4.9), fη(α) ∈ Hα for all α ∈ [0, 2

3 ].
Moreover, let β, α ∈ [0, 2

3 ] be such that α < β. Then, taking into account that
α 7→ ψ(α, r) is strictly increasing for every fixed r ∈ (0, 1), that r(β) ∈ (0, 1) for
all β ∈ (0, 2

3 ), and that ψ(α, r(α)) < 1 = ψ(1, r(1)), we have

η(β) = ψ(β, r(β)) > ψ(α, r(β)) > ψ(α, r(α)).

Hence, fη(β) does not satisfy (4.9) and so fη(β) 6∈ Hα. �
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Obviously, Theorem 4.7 implies Theorem 1.3. At the same time, the following
question is still open.

Question 4.8. Does the filtration H admit a net of totally extremal functions?

4.2. Analytic filtration

Now we concentrate on the filtration of type F[k] obtained by choosing k = k0 :
[0, 1)× [0, 1)→ R+, where

k0(α, r) :=
α

1− α
.

In this case, condition (4.1) can be rewritten as

Re

[
α
f(z)

z
+ (1− α)f ′(z)

]
> 0, z ∈ D \ {0}. (4.10)

Definition 4.9. We denote by Aα the set of all f ∈ A which satisfy (4.10). We
let A = {Aα}α∈[0,1] and call it the analytic filtration.

Lemma 4.10. A function f ∈ A belongs to Aα if and only if

f(z) = z

∫ 1

0

q
(
t1−αz

)
dt (4.11)

for some function q in the Carathéodory class.

Proof. If f ∈ Aα, then the function

q(z) := α
f(z)

z
+ (1− α)f ′(z), z ∈ D, (4.12)

belongs to Carathéodory class. Expanding f and q in this equality in power series
around zero, one can see that (4.11) holds. On the other hand, given q of the
Carathéodory class, the function f defined by (4.11) satisfies (4.12) and then it
belongs to f ∈ Aα. �

Recall that the family A forms a filtration by Theorem 4.2, while the sufficient
condition for exhaustiveness of Theorem 4.2 is satisfied only if α = 1. It is not
clear a priori whether Aα = G0 for some α < 1.

To study this filtration in more detail, we denote

pα(z) :=

∫ 1

0

1− t1−αz
1 + t1−αz

dt and fα(z) = zpα(z). (4.13)

Note that

inf
z∈D

Re pα(z) =

∫ 1

0

1− t1−α

1 + t1−α
dt =: κ(α), (4.14)

where function κ is decreasing and maps [0, 1] onto [0, 2 ln 2− 1].
The proof of the first statement of the following assertion was suggested by

P. Gumenyuk.
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Proposition 4.11.
(i) For every α ∈ [0, 1], the function pα is univalent.
(ii) For every α ∈ [0, 1], fα ∈ Aα. Moreover, if f ∈ G0 then f ∈ Aα if and only

if for all z ∈ D, z 6= 0,

Re

[
α
f(z)

z
+ (1− α)f ′(z)

]
> Re

[
α
fα(|z|)
|z|

+ (1− α)f ′α(|z|)
]
. (4.15)

Proof. To prove (i), consider the function P (θ) = Re
[

1−t1−αreiθ
1+t1−αreiθ

]
, where r ∈

(0, 1). Differentiating we get

P ′(θ) = 2 Im

[
t1−αreiθ

(1 + t1−αreiθ)2

]
= 2 Im

[
z

(1 + z)2

]∣∣∣∣
z=t1−αreiθ

.

Thus, the function P (θ) is increasing on [0, π] and decreasing on [π, 2π]. Therefore,
for every fixed r ∈ (0, 1), the function Re pα(reiθ) is also increasing on [0, π] and
decreasing on [π, 2π]. This implies that for every fixed w ∈ C, the variation of
arg(pα(z)−w) on each circle |z| = r is not greater than 2π. Hence, pα is univalent.

Now we have to show that fα ∈ Aα. Indeed, since the function q1 defined
by q1(z) = 1−z

1+z belongs to the Carathéodory class, this statement follows from
Lemma 4.10. Furthermore, since the function fα is a solution to the differential
equation αu(z)

z + (1 − α)zu′(z) = q1(z), inequality (4.15) follows by Harnack’s
inequality. �

Theorem 4.12. The filtration A is strict and exhaustive and admits the univalent
net of totally extremal functions {fα} defined in (4.13).

Proof. We already know by Proposition 4.11 that fα ∈ Aα.
If f ∈ Aα, it can be represented by (4.11). By the subordination q ≺ q1, where

q1(z) = 1−z
1+z , we conclude that for every λ ∈ C,

min
|z|=r

Re

(
λ
f(z)

z

)
> min
|z|=r

Re (λpα(z)) , (4.16)

so the family of functions {fα} forms a net of totally extremal functions for the
filtration A. The functions of this net are univalent by Lemma 4.11.

To complete the proof, it is enough to show that fβ /∈ Aα whenever 0 6

α < β 6 1. Indeed, we have already seen inf
z∈D

Re
fβ(z)

z
= κ(β) < κ(α), while

Re
f(z)

z
> κ(α) for any f ∈ Aα. �

Now we discuss other consequences of Theorem 4.12.

Corollary 4.13. Let 0 6 α 6 β 6 1 and f ∈ Aα. Then, for all z ∈ D \ {0},

Re

[
β
f(z)

z
+ (1− β)f ′(z)

]
> Re

[
β
fα(|z|)
|z|

+ (1− β)f ′α(|z|)
]
.
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Proof. Take p(z) = f(z)
z , z ∈ D, z 6= 0. Inequality (4.16) and the very definition

of pα imply that Re p(z) > Re pα(|z|) for all z ∈ D. This fact and inequality (4.15)
show

Re

[
β
f(z)

z
+ (1− β)f ′(z)

]
= Re [p(z) + (1− β)zp′(z)]

=
1− β
1− α

Re

[(
1− α
1− β

− 1

)
p(z) + p(z) + (1− α)zp′(z)

]
>

1− β
1− α

Re

[(
1− α
1− β

− 1

)
pα(|z|) + pα(|z|) + (1− α)|z|p′α(|z|)

]
= Re

[
β
fα(|z|)
|z|

+ (1− β)f ′α(|z|)
]
. �

Theorem 4.14. Let α ∈ [0, 1] and f ∈ Aα. Then

sup
z∈D

∣∣∣∣arg
f(z)

z

∣∣∣∣ 6 sup
z∈D

∣∣∣∣arg
fα(z)

z

∣∣∣∣ 6 πb

2
,

where b = b(α) is the unique solution in [0, 1] to the equation

πb

2
+ arctan ((1− α)b) =

π

2
.

Proof. The first inequality immediately follows by Theorem 4.12. Consider the
function pα defined in (4.13). A straightforward calculation shows that

pα(z) + (1− α)zp′α(z) =
1− z
1 + z

.

Hence, by [14, Theorem 3.1c] applied with λ = 1− α, we have pα(z) ≺
(

1− z
1 + z

)b
,

and the assertion follows. �

Using numerical computations we get b(0) ≈ 0.6383 and b(0.5) ≈ 0.7669.
Membership to the analytic filtration allows to control the rate of convergence

to the origin. Indeed, Proposition 2.7 and the inequality (4.16) in the proof of
Theorem 4.12 directly imply:

Theorem 4.15. Let f ∈ Aα. Then the semigroup {φt(z)}t>0 generated by f is
exponentially squeezing with squeezing ratio

a =

∫ 1

0

1− t1−α

1 + t1−α
dt =: κ(α) > 0.

Thus, Theorem 1.4 follows from Theorems 4.12 and 4.15.
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5. Analytic extension of semigroups

In this section, for a given semigroup of holomorphic self-mappings on the unit
disc D, we consider the problem of its analytic extension in a complex parameter.

Given θ ∈
(
0, π2

]
, we denote

Λ(θ) = {ζ ∈ C : | arg ζ| < θ} . (5.1)

Definition 5.1. A family {Fζ}ζ∈Λ of holomorphic self-mappings of D indexed by
a parameter ζ in a sector Λ := Λ(θ) ∪ {0} of the complex plane is said to be a
one-parameter analytic semigroup if

(i) ζ 7→ Fζ is analytic in Λ;
(ii) limΛ3ζ→0 Fζ = F0 = I;
(iii) Fζ1+ζ2 = Fζ1 ◦ Fζ2 whenever ζ1, ζ2 ∈ Λ.

Recall that the family of sets S = {Sα}α∈[0,1] (see Definition 3.1) forms a fil-
tration of the class G0. Our approach to analytic extension of semigroups of holo-
morphic self-mappings is based on the following result [10].

Theorem 5.2. Let {Ft}t>0 be a semigroup of holomorphic self-mappings of D
generated by f ∈ G0, and let α ∈ [0, 1). Then this semigroup extends analytically
to the sector Λ

(
π(1−α)

2

)
in C if and only if f ∈ Sα.

As an immediate consequence of this theorem and Theorem 4.14, we have the
following.

Corollary 5.3. Let α ∈ [0, 1). Then Aα ⊂ Sb, where b = b(α) is the unique
solution in [0, 1) to the equation

arctan ((1− α)b) =
π(1− b)

2
.

Consequently, the semigroup generated by f ∈ Aα extends analytically to the sec-
tor Λ

(
π(1−b(α))

2

)
.

Now we consider the restriction of the semigroup generated by f ∈ G0 to the
disc Dr of radius r ∈ (0, 1). It is easy to see that this restriction is the semigroup
generated by function fr ∈ G0 defined by fr(z) = 1

rf(rz). Obviously, the restricted
semigroup can be analytically extended to a sector wider than the sector of an-
alyticity for the original semigroup. More precisely, using Corollaries 2.4 and 3.3
and Theorem 4.14, one concludes the following.

Corollary 5.4. Let f ∈ G0 and r ∈ (0, 1). The restriction of the semigroup
generated by f to the disc Dr can be analytically extended to the sector Λ

(
π
2 − θ

)
,

where θ is defined as follows:

(a) If f ∈ Cα, then θ = arctan

(
2αr√

(1− r2)(1− (1− 2α)2r2)

)
;

(b) If f ∈ Sα, then θ = α arctan
(

2r
1−r2

)
;

(c) If fα ∈ Aα, then θ = max
|z|=r

∣∣∣∣arg

(∫ 1

0

1− t1−αz
1 + t1−αz

dt

)∣∣∣∣.
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