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A NOTE ON COMPLEX SYMMETRIC COMPOSITION
OPERATORS ON THE BERGMAN SPACE A2(D)
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To the memory of our colleague
and friend Paweł Domański

Abstract: In this note complex symmetric composition operators Cϕ on the Bergman space
A2(D) are studied. It is shown that if an operator Cϕ is complex symmetric on A2(D) then either
ϕ : D → D has a Denjoy–Wolff point in D or is an elliptic automorphism of the disc. Moreover in
the latter case ϕ is either a rotation or has an order smaller than six.

Keywords: complex symmetric operator, composition operator, Denjoy-Wolff point, Bergman
space.

1. Introduction

The space of analytic functions on the open unit disc D in the complex plane C is
denoted by H(D). Every analytic map ϕ : D→ D induces a composition operator
Cϕf = f ◦ϕ on H(D). Operators of this type have been considered on many spaces
of analytic functions for several decades, starting from the papers on Hardy spaces
Hp(D) in the beginning of the 20th century. One of the main lines of research is
to study the interplay between properties of the composition operator Cϕ and its
generating function ϕ. We refer the reader to the monographs [4, 11] for more
information on this topic.

A new class of Hilbert space operators, called complex symmetric operators,
was recently introduced and studied in [7]. In [3] it was proved that if ϕ is an
automorphism of the disc which is not a rotation or elliptic of order three, then
Cϕ : H2(D) → H2(D) is complex symmetric if and only if ϕ = ϕα for some
α ∈ D \ {0}, where ϕα(z) = (α − z)/(1 − αz). However, the question of which
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composition operators are complex symmetric on the Hardy–Hilbert space H2(D)
is still not fully answered. We refer the reader to the above papers and to article [6]
and references therein.

In this note we study complex symmetric composition operators on the Bergman
space A2(D). Our main results are contained in Theorem 2, where we show that
a complex symmetric composition operator Cϕ on the Bergman space A2(D) needs
either to be induced by an elliptic automorphism ϕ : D→ D or has a Denjoy–Wolff
point in D, and Theorems 8 and 10, where we prove that if ϕ is an elliptic auto-
morphism (but not rotation) of order at least six (or infinite), then Cϕ is not
complex symmetric. It should be mentioned that in general we follow the ideas
used for the Hardy space H2(D) in [3], but still in the Bergman case some new
facts are needed and the calculations are more involved.

2. Preliminaries

Let us recall that a bounded linear operator T : H → H on a separable Hilbert
space H is called complex symmetric if T = CT ∗C for some conjugate-linear
operator C : H → H satisfying C2 = I and 〈Cf,Cg〉H = 〈f, g〉H for all f, g ∈ H.
An operator C : H → H with the above mentioned properties is called a conjuga-
tion (see [7]).

The Bergman space A2 = A2(D) is the separable Hilbert space consisting of
all functions f ∈ H(D) such that

‖f‖A2 =

(∫
D
|f(z)|2dA(z)

)2
<∞,

where dA(z) is the normalized area measure on D and the Hardy space H2 =
H2(D), consists of all functions f ∈ H(D) such that

‖f‖H2 = sup
r∈[0,1)

1

2π

(∫ 2π

0

|f(reiθ)|2dθ
)2

<∞.

The inner product in A2 is defined as (cf. [4])

〈f, g〉A2 =

∫
D
f(z)g(z)dA(z) =

∞∑
n=0

f̂(n)ĝ(n)

n+ 1
, (1)

where f, g ∈ A2 have series expansions

f(z) =

∞∑
n=0

f̂(n)zn and g(z) =

∞∑
n=0

ĝ(n)zn, z ∈ D.

The reproducing kernel Kα on A2 is given by

Kα(z) =
1

(1− αz)2
, α, z ∈ D, (2)

and has the property that 〈f,Kα〉A2 = f(α) for every f ∈ A2 (see [4, p. 17]). For
more information on Bergman spaces we refer to the books [4, 5].
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A function f ∈ A2 is said to be cyclic in A2 if the closed linear span of
f, zf, z2f, . . . is all of A2, and f ∈ A2 is called A2-outer, if every g ∈ A2 such that
‖gp‖A2 6 ‖fp‖A2 holds for all polynomials p has the property |g(0)| 6 |f(0)|. By
Theorem 7.2 in [9] the cyclic elements in A2 are known to be precisely the A2-outer
functions in A2. Since the inequality ‖f‖A2 6 ‖f‖H2 holds for every f ∈ H2, any
cyclic element in H2 is also cyclic in A2.

3. Complex symmetric composition operators on the Bergman space

We will study complex symmetric composition operators on A2. It is well known
that Cϕ : A2 → A2 is a bounded operator for every analytic self-map ϕ of the unit
disc. The article [6] contains results on complex symmetric composition operators
on the Bergman space. In fact from [6, Proposition 2.9] it follows that for any
α ∈ C, |α| 6 1, if ϕ(z) = αz, z ∈ D, then the operator Cϕ is complex symmetric
on A2 and even a normal operator. See also the comment after Theorem 2 for
a direct argument.

For |α| < 1, let ϕα denote the automorphism of D given by

ϕα(z) =
α− z
1− αz

, z ∈ D. (3)

A disc automorphism ϕ is called elliptic if there exists λ ∈ ∂D such that

ϕ = ϕα ◦ (λϕα), |α| < 1. (4)

Below we obtain that if Cϕ is a complex symmetric operator on A2, then ϕ
is either an elliptic automorphism of the unit disc or has a Denjoy–Wolff point
in D. To do this we need the following lemma, where we use the relationship
RanT = (KerT ∗)⊥, which is valid for any operator T : H → H. From this if
follows that T has dense range if and only if KerT ∗ =

{
0̄
}
. For a H2 version of

the result see [2, Proposition 2.1].

Lemma 1. Suppose that the analytic self-map ϕ of D has a Denjoy–Wolff point
in ∂D. If λ is an eigenvalue of Cϕ : A2 → A2 with an A2-outer function as
a corresponding eigenfunction, then Cϕ − λI has dense range.

Proof. By assumption Cϕg = λg for some nonzero A2-outer function g ∈ A2. By
Theorem 7.2 in [9] the function g is cyclic in A2. The operator Cϕ− λI has dense
range if and only if Ker(C∗ϕ− λ̄I) = {0̄}. In order to reach a contradiction assume
that λ̄ is an eigenvalue of C∗ϕ. Thus C∗ϕh = λ̄h for some nonzero h ∈ A2. By
assumption ϕ has a Denjoy–Wolff point ω ∈ ∂D. For any integers n, k > 0,

λk
〈
zn(ω − z)g(z), h

〉
A2 =

〈
zn(ω − z)g(z), λ̄kh

〉
A2

=
〈
zn(ω − z)g(z),

(
C∗ϕ
)k
h
〉
A2

=
〈
Cϕk

(
zn(ω − z)g(z)

)
, h
〉
A2

=
〈
ϕnk (ω − ϕk)g ◦ ϕk, h

〉
A2

= λk
〈
ϕnk (ω − ϕk)g, h

〉
A2 ,
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where ϕn := ϕ ◦ ϕn−1 for n > 1 and ϕ0 := Id: D→ D. This shows that〈
zn(ω − z)g(z), h

〉
A2 =

〈
ϕnk (ω − ϕk)g, h

〉
A2 . (5)

Since
∣∣ϕnk (ω−ϕk)gh̄

∣∣ 6 2|gh| ∈ L1(D) and the iterate sequence {ϕk}∞k=0 converges
pointwise to ω on D (even uniformly on compact subsets of the disc, see [4, Theo-
rem 2.51]), we can use the Lebesgue Dominated Convergence Theorem and obtain
from the equality (5) that〈

zn(ω − z)g(z), h
〉
A2 = lim

k→∞

〈
ϕnk (ω − ϕk)g, h

〉
A2 = 0, n > 0. (6)

The function z 7→ ω − z belongs to H∞ and is outer in H2, and consequently
cyclic in H2 by Beurling’s theorem. Therefore the function z 7→ (ω − z)g(z) is
cyclic in A2 by [5, Theorem 8.3.2], so the linear span S of the set of functions
{z 7→ zn(ω − z)g(z)}∞n=0 is dense in A2. This means that if f ∈ A2 then there
exists a sequence {fk}∞k=0 ⊂ S converging to f in the norm of A2. This shows
that 〈f, h〉A2 = limk→∞〈fk, h〉A2 = 0 by (6), and we obtain the contradiction
h ≡ 0. �

The proof of the promised theorem heavily relies on Lemma 1 and mimics the
steps of [3, Proposition 2.1], so no proof is given. Note that the function 1 is cyclic
in A2, since the set of polynomials is dense in A2.

Theorem 2. If the composition operator Cϕ : A2 → A2 is complex symmetric then
ϕ is either an elliptic automorphism of the unit disc or has a Denjoy–Wolff point
in D.

In the rest of the paper we will only analyze elliptic automorphisms ϕα of D that
induce complex symmetric operators Cϕ on the Bergman space A2. The case when
α = 0, that is ϕα is a rotation, follows from [6, Proposition 2.9]. Indeed, if α = 0
then it is easy to see that C∗ϕ = Cψ, where ψ(z) = λz. Thus Cϕ : A2(D)→ A2(D)
is a unitary operator, and hence complex symmetric since all normal operators
have this property. To resolve the remaining cases α ∈ D \ {0} we need some
additional results.

Let ϕ be an automorphism of the form

ϕ = ϕα ◦ (λϕα), |α| < 1.

If N is the smallest positive integer such that λN = 1, then ϕ is said to be of finite
order N . If no such integer exists, then ϕ is said to have infinite order.

Lemma 3. Consider the multiplication operator MId : A2 → A2 with symbol
Id(z) := z. The adjoint operator acts on any function f ∈ A2 with corresponding
series expansion f(z) =

∑∞
n=0 f̂(n)zn as

M∗Idf(z) =

∞∑
n=0

n+ 1

n+ 2
f̂(n+ 1)zn, z ∈ D, (7)
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and in particular for integers m > 0 we have

M∗Idz
m =

{
0, m = 0
m
m+1z

m−1, m > 1.
(8)

Proof. By using the latter form of the Bergman inner product in (1) we obtain
that

f̂(n+ 1)

n+ 2
= 〈f, zn+1〉A2 = 〈f,MIdz

n〉A2

= 〈M∗Idf, zn〉A2 =
M̂∗Idf(n)

n+ 1

and hence
M̂∗Idf(n) =

n+ 1

n+ 2
f̂(n+ 1).

This proves the equality (7), from which the formula (8) follows. �

Lemma 4. The sequence {en}∞n=0 of functions en := Kαϕ
n
α is orthogonal in A2,

and ‖en‖A2 = 1
(1−|α|2)

√
n+1

.

Proof. Choose arbitrary integers n,m > 0. The reproducing kernel Kα given in
the equality (2) is related to the derivative of ϕα in the following manner

ϕ′α(z) =
|α|2 − 1

(1− αz)2
= (|α|2 − 1)Kα(z).

After substituting w = ϕα(z) we obtain

〈en, em〉A2 =

∫
D
en(z)em(z)dA(z) =

∫
D
ϕα(z)nϕα(z)m|Kα(z)|2dA(z)

=
1

(|α|2 − 1)2

∫
D
ϕα(z)nϕα(z)m|ϕ′α(z)|2dA(z)

=
1

(|α|2 − 1)2

∫
D
wnwmdA(w) =

1

(|α|2 − 1)2
〈

Idn, Idm
〉
A2

=
δn,m

(|α|2 − 1)2(n+ 1)
.

The last equality with the Kronecker delta function δn,m holds in view of the latter
form of the Bergman inner product in (1). This completes the proof. �

For the Hardy space version of the following result see [3, Lemma 2.2].

Lemma 5. Let α ∈ D \ {0}, consider Cϕα : A2 → A2 as an operator on the
Bergman space A2 and define vn := C∗ϕαz

n for integers n > 0. Then vn ⊥ vm if
and only if |n−m| > 3.
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Proof. According to [10, Theorem 2], the adjoint operator of Cϕα takes the form

C∗ϕα = MKαCϕαM
∗
1/Kα

. (9)

Since

1

Kα(z)
= (1− αz)2 = 1− 2αz + α2z2,

the following equations hold

M1/Kα = I − 2αMId + α2MId2 = I − 2αMId + α2(MId)2.

From the above and the equality (9) it follows that

C∗ϕα = MKαCϕα
(
I − 2αM∗Id + α2(M∗Id)2

)
.

Applying this representation and the formula (8) on vn = C∗ϕαz
n, we obtain v0 =

Kα, v1 = Kα(ϕα − α) and for integers n > 2:

vn = MKαCϕα
(
zn − 2αM∗Idz

n + α2(M∗Id)2zn
)

= MKαCϕα
(
zn − 2α n

n+1z
n−1 + α2 n

n+1M
∗
Idz

n−1)
= MKαCϕα

(
zn − 2α n

n+1z
n−1 + α2 n

n+1
n−1
n zn−2

)
= Kαϕ

n
α − 2α n

n+1Kαϕ
n−1
α + α2 n−1

n+1Kαϕ
n−2
α .

The above results can be summarized in terms of the functions en := Kαϕ
n
α

(consult Lemma 4, where it was shown that {en} are orthogonal in A2) as
v0 = e0

v1 = e1 − αe0
vn = en − 2α n

n+1en−1 + α2 n−1
n+1en−2, n > 2.

(10)

Assume now that n,m > 2. By the last formula of (10), we have

〈vn, vm〉A2 =
〈
en − 2α n

n+1en−1+ α2 n−1
n+1en−2, em − 2α m

m+1em−1+ α2m−1
m+1em−2

〉
A2

= 〈en, em〉A2 − 2α m
m+1 〈en, em−1〉A2 + α2m−1

m+1 〈en, em−2〉A2

− 2α n
n+1 〈en−1, em〉A2 + 4|α|2 n

n+1
m
m+1 〈en−1, em−1〉A2

− 2|α|2α n
n+1

m−1
m+1 〈en−1, em−2〉A2 + α2 n−1

n+1 〈en−2, em〉A2

− 2|α|2αn−1n+1
m
m+1 〈en−2, em−1〉A2 + |α|4 n−1n+1

m−1
m+1 〈en−2, em−2〉A2 .

It follows immediately from the above expression that vn ⊥ vm if |n − m| > 3,
since the sequence {en}∞n=0 is orthogonal. It remains to check the case when
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|n − m| < 3, that is when m = n − 2, m = n − 1, m = n, m = n + 1 and
m = n + 2. The corresponding inner products can be computed from the above
general expression (10) by again using the orthogonality of {en}∞n=0

〈vn, vn−2〉A2 = α2 n−1
n+1‖en−2‖

2
A2

〈vn, vn−1〉A2 = −2α
(

n
n+1‖en−1‖

2
A2 + |α|2 (n−1)2

(n+1)n‖en−2‖
2
A2

)
〈vn, vn〉A2 = ‖en‖2A2 + 4|α|2

(
n
n+1

)2‖en−1‖2A2 + |α|4
(
n−1
n+1

)2‖en−2‖2A2

〈vn, vn+1〉A2 = −2α
(
n+1
n+2‖en‖

2
A2 + |α|2 n2

(n+1)(n+2)‖en−1‖
2
A2

)
〈vn, vn+2〉A2 = α2 n+1

n+3‖en‖
2
A2 .

None of these inner products can be zero since α 6= 0, so for integers n,m > 2 it
holds that vn ⊥ vm if and only if |n−m| > 3. Again, from (10) it can also be seen
that v0 ⊥ vn if and only if n > 3 and v1 ⊥ vn if and only if n > 4, so the proof is
complete. �

Remark 6. It follows from the above proof that ‖v0‖A2 = ‖e0‖A2 , ‖v1‖A2 =(
‖e1‖2A2 + |α|2‖e0‖2A2

) 1
2 and

‖vn‖A2 =
(
‖en‖2A2 + 4|α|2

(
n
n+1

)2‖en−1‖2A2 + |α|4
(
n−1
n+1

)2‖en−2‖2A2

) 1
2

for n > 2. Hence ‖vn‖A2 6= 0 for every n ∈ N by Lemma 4.

The following fact was already used in [3, p. 108]. Therefore we leave out the
proof.

Lemma 7. If T : H → H is a complex symmetric operator with conjugation C
and the equation C(T − λI) = (T ∗ − λI)C holds for some λ ∈ C, then

f ∈ Ker(T − λI)⇐⇒ Cf ∈ Ker(T ∗ − λI).

Recall, that an operator T : H → H on a Hilbert space H is called cyclic if
there exists a vector x ∈ H such that the orbit

Orb(T, x) =
{
Tnx : n ∈ N

}
has dense linear span in H.

The proof of the following result is based on the approach taken in [3, Propo-
sition 3.1] for the case of Cϕ : H2 → H2.

Theorem 8. Suppose ϕ is an elliptic automorphism of infinite order and is not
a rotation. Then Cϕ : A2 → A2 is not complex symmetric.
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Proof. The elliptic automorphism ϕ is of the form (4), where α ∈ D \ {0} and λ
is not a root of unity, so Cϕ = CϕαCλzCϕα . We begin by showing that the adjoint
operator

C∗ϕ = C∗ϕαCλzC
∗
ϕα (11)

is cyclic. Since (
C∗ϕα

)2
= C∗ϕα◦ϕα = C∗Id = I, (12)

we see from the equality (11) that(
C∗ϕ
)n

= C∗ϕαC
n
λz
C∗ϕα , n ∈ N. (13)

Choose some β ∈ D \ {0} and notice that

Cn
λz
Kβ(z) = Kβ

(
λ
n
z
)

= Kλnβ(z). (14)

Now, using equations (13) and (14) we conclude that

Orb(C∗ϕ, C
∗
ϕαKβ) =

{
C∗ϕαKλnβ : n ∈ N

}
has dense linear span in A2 since this is the case for the set{

Kλnβ : n ∈ N
}
.

This shows that C∗ϕ is cyclic. It is known that if an operator is cyclic, then its
adjoint has simple eigenvalues (see [1, Proposition 2.7]). Thus Cϕ : A2 → A2 has
simple eigenvalues.

In order to reach a contradiction suppose that Cϕ : A2 → A2 is complex sym-
metric with conjugation C. If we define vn := C∗ϕαz

n as in Lemma 5, then by
formulas (11) and (12) we have that vn ∈ Ker(C∗ϕ − λ

n
I) and(

C∗ϕ − λ
n
I
)
vn = C∗ϕC

∗
ϕαz

n − λnC∗ϕαz
n

= C∗ϕαCλz(C
∗
ϕα)2zn − λnC∗ϕαz

n

= λ
n
C∗ϕαz

n − λnC∗ϕαz
n = 0.

Furthermore by the complex symmetry

C
(
C∗ϕ − λ

n
I
)

= CC∗ϕ − λnC = CϕC − λnC = (Cϕ − λnI)C, (15)

and it follows from Lemma 7 that Cvn ∈ Ker(Cϕ − λnI) for every n ∈ N, which
means that Cvn is an eigenfunction of Cϕ − λnI. Indeed,

‖Cvn‖2A2 = 〈Cvn, Cvn〉A2 = 〈vn, vn〉A2 = ‖vn‖2A2 6= 0,

as noted in Remark 6. But we also have that ϕnα ∈ Ker(Cϕ − λnI):(
Cϕ − λnI

)
ϕnα = (ϕα ◦ ϕ)n − λnϕnα

= (ϕα ◦ ϕα ◦ (λϕα))n − λnϕnα

= λnϕnα − λnϕnα = 0.
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Since Cϕ : A2 → A2 has simple eigenvalues, the function Cvn is a scalar multiple
of ϕnα, say Cvn = µnϕ

n
α for some nonzero constant µn. Now using Lemma 5 we

get that

0 = 〈v0, v3〉A2 = 〈Cv0, Cv3〉A2

= µ0µ3〈1, ϕ3
α〉A2 = µ0µ3ϕα(0)

3

= µ0µ3α
3,

which implies that α = 0, and so ϕ is a rotation. This contradicts the assumption
and the proof is complete. �

Lemma 9. Suppose ϕ = ϕα ◦ (λϕα) is an elliptic automorphism of finite order N
that is not a rotation, and define Vn := Ker(C∗ϕ − λ

n
I) for n ∈ N. Then V0 ⊥ V3

if and only if N > 6.

Proof. Define vn := C∗ϕz
n as in Lemma 5 and recall that vn ∈ Vn for every n ∈ N

as shown in the proof of Theorem 8. We first prove that V0 6⊥ V3 when N < 6.
If N = 1 then ϕ is a rotation, so this case needs not to be considered. If N = 2,
then λ2 = 1 and

V2 = Ker(C∗ϕ − λ
2
I) = Ker(C∗ϕ − I) = V0.

Hence v2 ∈ V2 = V0 and v3 ∈ V3. But v2 6⊥ v3 by Lemma 5 so V0 6⊥ V3 when
N = 2. For the other cases we obtain similarly:

V0 = V3, N = 3

V0 = V4, N = 4

V0 = V5, N = 5,

and another usage of Lemma 5 shows that V0 6⊥ V3 for these cases.
Now suppose that N > 6. Since

Ker(Cλz − λ
n
I) = span{zkN+n}k∈N

we have that

f ∈ Vn ⇔ (C∗ϕ − λ
n
I)f = 0⇔ C∗ϕαCλzC

∗
ϕαf − λ

n
f = 0

⇔ CλzC
∗
ϕαf − λ

n
C∗ϕαf = 0

⇔ C∗ϕαf ∈ Ker(Cλz − λ
n
I) = span{zkN+n}k∈N

⇔ f ∈ span{C∗ϕαz
kN+n}k∈N = span{vkN+n}k∈N,

and thus Vn = span{vkN+n}k∈N. Now consider vkN ∈ V0 and vjN+3 ∈ V3 for any
k, j ∈ N. Since N > 6 it holds that∣∣kN − (jN + 3)

∣∣ =
∣∣(k − j)N − 3

∣∣ > 3,

so Lemma 5 gives that vkN ⊥ vjN+3, and hence V0 ⊥ V3. �
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Below we show that, as in the case of the Hardy space H2 (see [3, Proposi-
tion 3.3]), the class of disc self-maps which induce complex symmetric composition
operators on the Bergman space A2 is quite sparse.

Theorem 10. Suppose ϕ is an elliptic automorphism of finite order N > 6 and
is not a rotation. Then Cϕ : A2 → A2 is not complex symmetric.

Proof. In order to reach a contradiction assume that Cϕ : A2 → A2 is complex
symmetric, with a conjugation C. By the formula (15) and Lemma 7 it follows
that

f ∈ Vn := Ker(C∗ϕ − λ
n
I)⇐⇒ Cf ∈ Ker(Cϕ − λnI).

Now, using the property C2 = I we see that C maps Vn onto Ker(Cϕ − λnI) for
every n ∈ N. Thus if f ∈ Ker(Cϕ − I) and g ∈ Ker(Cϕ − λ3I) then there exist
functions u ∈ V0 and w ∈ V3 such that f = Cu and g = Cw. Hence since N > 6
from Lemma 9 it follows

〈f, g〉A2 = 〈Cu,Cw〉A2 = 〈u,w〉A2 = 0.

This shows that
Ker(Cϕ − I) ⊥ Ker(Cϕ − λ3I),

and in particular 1 ⊥ ϕ3
α because ϕnα ∈ Ker(Cϕ−λnI) for every n ∈ N (cf. the proof

of Theorem 8). This gives the contradiction α = 0 and the proof is complete. �

After summarizing what has been proven we see that if the composition oper-
ator Cϕ : A2 → A2 is complex symmetric then ϕ has a Denjoy–Wolff point in the
disc D, is a rotation (and in this case Cϕ : A2 → A2 is a normal operator) or is an
elliptic automorphism of finite order N = 2, 3, 4 or 5. Using the following result
from [8] we can solve the case N = 2.

Theorem 11 ([8, Theorem 2]). If an operator T : H → H on a Hilbert space
H satisfies p(T ) = 0 for some polynomial of degree 2 or less, then T is complex
symmetric.

Theorem 12. Suppose ϕ = ϕα ◦ (λϕα) is an elliptic automorphism of order two.
Then Cϕ : A2 → A2 is complex symmetric.

Proof. The n-th iterate of Cϕ can be written as in the formula (13)

Cnϕ = CϕαC
n
λzCϕα = CϕαCλnzCϕα , n ∈ N.

Using this with n = 2 and recalling that λ2 = 1, we see that Cϕ satisfies a poly-
nomial equation of order two. Indeed,

C2
ϕ = C2

ϕα = I,

so Cϕ : A2 → A2 is complex symmetric by Theorem 11. �
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