A NOTE ON COMPLEX SYMMETRIC COMPOSITION OPERATORS ON THE BERGMAN SPACE $\boldsymbol{A}^{2}(\mathbb{D})$

Ted Eklund, Mikael Lindström, Pawee Mleczko

To the memory of our colleague and friend Paweł Domański

Abstract

In this note complex symmetric composition operators C_{φ} on the Bergman space $A^{2}(\mathbb{D})$ are studied. It is shown that if an operator C_{φ} is complex symmetric on $A^{2}(\mathbb{D})$ then either $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ has a Denjoy-Wolff point in \mathbb{D} or is an elliptic automorphism of the disc. Moreover in the latter case φ is either a rotation or has an order smaller than six.

Keywords: complex symmetric operator, composition operator, Denjoy-Wolff point, Bergman space.

1. Introduction

The space of analytic functions on the open unit disc \mathbb{D} in the complex plane \mathbb{C} is denoted by $H(\mathbb{D})$. Every analytic map $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ induces a composition operator $C_{\varphi} f=f \circ \varphi$ on $H(\mathbb{D})$. Operators of this type have been considered on many spaces of analytic functions for several decades, starting from the papers on Hardy spaces $H^{p}(\mathbb{D})$ in the beginning of the 20th century. One of the main lines of research is to study the interplay between properties of the composition operator C_{φ} and its generating function φ. We refer the reader to the monographs [4, 11] for more information on this topic.

A new class of Hilbert space operators, called complex symmetric operators, was recently introduced and studied in [7]. In [3] it was proved that if φ is an automorphism of the disc which is not a rotation or elliptic of order three, then $C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D})$ is complex symmetric if and only if $\varphi=\varphi_{\alpha}$ for some $\alpha \in \mathbb{D} \backslash\{0\}$, where $\varphi_{\alpha}(z)=(\alpha-z) /(1-\bar{\alpha} z)$. However, the question of which

[^0]composition operators are complex symmetric on the Hardy-Hilbert space $H^{2}(\mathbb{D})$ is still not fully answered. We refer the reader to the above papers and to article [6] and references therein.

In this note we study complex symmetric composition operators on the Bergman space $A^{2}(\mathbb{D})$. Our main results are contained in Theorem 2, where we show that a complex symmetric composition operator C_{φ} on the Bergman space $A^{2}(\mathbb{D})$ needs either to be induced by an elliptic automorphism $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ or has a Denjoy-Wolff point in \mathbb{D}, and Theorems 8 and 10 , where we prove that if φ is an elliptic automorphism (but not rotation) of order at least six (or infinite), then C_{φ} is not complex symmetric. It should be mentioned that in general we follow the ideas used for the Hardy space $H^{2}(\mathbb{D})$ in [3], but still in the Bergman case some new facts are needed and the calculations are more involved.

2. Preliminaries

Let us recall that a bounded linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ on a separable Hilbert space \mathcal{H} is called complex symmetric if $T=C T^{*} C$ for some conjugate-linear operator $C: \mathcal{H} \rightarrow \mathcal{H}$ satisfying $C^{2}=I$ and $\langle C f, C g\rangle_{\mathcal{H}}=\langle f, g\rangle_{\mathcal{H}}$ for all $f, g \in \mathcal{H}$. An operator $C: \mathcal{H} \rightarrow \mathcal{H}$ with the above mentioned properties is called a conjugation (see [7]).

The Bergman space $A^{2}=A^{2}(\mathbb{D})$ is the separable Hilbert space consisting of all functions $f \in H(\mathbb{D})$ such that

$$
\|f\|_{A^{2}}=\left(\int_{\mathbb{D}}|f(z)|^{2} d A(z)\right)^{2}<\infty
$$

where $d A(z)$ is the normalized area measure on \mathbb{D} and the Hardy space $H^{2}=$ $H^{2}(\mathbb{D})$, consists of all functions $f \in H(\mathbb{D})$ such that

$$
\|f\|_{H^{2}}=\sup _{r \in[0,1)} \frac{1}{2 \pi}\left(\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right)^{2}<\infty
$$

The inner product in A^{2} is defined as (cf. [4])

$$
\begin{equation*}
\langle f, g\rangle_{A^{2}}=\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z)=\sum_{n=0}^{\infty} \frac{\hat{f}(n) \overline{\hat{g}(n)}}{n+1} \tag{1}
\end{equation*}
$$

where $f, g \in A^{2}$ have series expansions

$$
f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n} \quad \text { and } \quad g(z)=\sum_{n=0}^{\infty} \hat{g}(n) z^{n}, \quad z \in \mathbb{D} .
$$

The reproducing kernel K_{α} on A^{2} is given by

$$
\begin{equation*}
K_{\alpha}(z)=\frac{1}{(1-\bar{\alpha} z)^{2}}, \quad \alpha, z \in \mathbb{D} \tag{2}
\end{equation*}
$$

and has the property that $\left\langle f, K_{\alpha}\right\rangle_{A^{2}}=f(\alpha)$ for every $f \in A^{2}$ (see [4, p. 17]). For more information on Bergman spaces we refer to the books [4, 5].

A function $f \in A^{2}$ is said to be cyclic in A^{2} if the closed linear span of $f, z f, z^{2} f, \ldots$ is all of A^{2}, and $f \in A^{2}$ is called A^{2}-outer, if every $g \in A^{2}$ such that $\|g p\|_{A^{2}} \leqslant\|f p\|_{A^{2}}$ holds for all polynomials p has the property $|g(0)| \leqslant|f(0)|$. By Theorem 7.2 in [9] the cyclic elements in A^{2} are known to be precisely the A^{2}-outer functions in A^{2}. Since the inequality $\|f\|_{A^{2}} \leqslant\|f\|_{H^{2}}$ holds for every $f \in H^{2}$, any cyclic element in H^{2} is also cyclic in A^{2}.

3. Complex symmetric composition operators on the Bergman space

We will study complex symmetric composition operators on A^{2}. It is well known that $C_{\varphi}: A^{2} \rightarrow A^{2}$ is a bounded operator for every analytic self-map φ of the unit disc. The article [6] contains results on complex symmetric composition operators on the Bergman space. In fact from [6, Proposition 2.9] it follows that for any $\alpha \in \mathbb{C},|\alpha| \leqslant 1$, if $\varphi(z)=\alpha z, z \in \mathbb{D}$, then the operator C_{φ} is complex symmetric on A^{2} and even a normal operator. See also the comment after Theorem 2 for a direct argument.

For $|\alpha|<1$, let φ_{α} denote the automorphism of \mathbb{D} given by

$$
\begin{equation*}
\varphi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z}, \quad z \in \mathbb{D} \tag{3}
\end{equation*}
$$

A disc automorphism φ is called elliptic if there exists $\lambda \in \partial \mathbb{D}$ such that

$$
\begin{equation*}
\varphi=\varphi_{\alpha} \circ\left(\lambda \varphi_{\alpha}\right), \quad|\alpha|<1 . \tag{4}
\end{equation*}
$$

Below we obtain that if C_{φ} is a complex symmetric operator on A^{2}, then φ is either an elliptic automorphism of the unit disc or has a Denjoy-Wolff point in \mathbb{D}. To do this we need the following lemma, where we use the relationship $\overline{\operatorname{Ran} T}=\left(\operatorname{Ker} T^{*}\right)^{\perp}$, which is valid for any operator $T: \mathcal{H} \rightarrow \mathcal{H}$. From this if follows that T has dense range if and only if $\operatorname{Ker} T^{*}=\{\overline{0}\}$. For a H^{2} version of the result see [2, Proposition 2.1].

Lemma 1. Suppose that the analytic self-map φ of \mathbb{D} has a Denjoy-Wolff point in $\partial \mathbb{D}$. If λ is an eigenvalue of $C_{\varphi}: A^{2} \rightarrow A^{2}$ with an A^{2}-outer function as a corresponding eigenfunction, then $C_{\varphi}-\lambda I$ has dense range.
Proof. By assumption $C_{\varphi} g=\lambda g$ for some nonzero A^{2}-outer function $g \in A^{2}$. By Theorem 7.2 in [9] the function g is cyclic in A^{2}. The operator $C_{\varphi}-\lambda I$ has dense range if and only if $\operatorname{Ker}\left(C_{\varphi}^{*}-\bar{\lambda} I\right)=\{\overline{0}\}$. In order to reach a contradiction assume that $\bar{\lambda}$ is an eigenvalue of C_{φ}^{*}. Thus $C_{\varphi}^{*} h=\bar{\lambda} h$ for some nonzero $h \in A^{2}$. By assumption φ has a Denjoy-Wolff point $\omega \in \partial \mathbb{D}$. For any integers $n, k \geqslant 0$,

$$
\begin{aligned}
\lambda^{k}\left\langle z^{n}(\omega-z) g(z), h\right\rangle_{A^{2}} & =\left\langle z^{n}(\omega-z) g(z), \bar{\lambda}^{k} h\right\rangle_{A^{2}} \\
& =\left\langle z^{n}(\omega-z) g(z),\left(C_{\varphi}^{*}\right)^{k} h\right\rangle_{A^{2}} \\
& =\left\langle C_{\varphi_{k}}\left(z^{n}(\omega-z) g(z)\right), h\right\rangle_{A^{2}} \\
& =\left\langle\varphi_{k}^{n}\left(\omega-\varphi_{k}\right) g \circ \varphi_{k}, h\right\rangle_{A^{2}} \\
& =\lambda^{k}\left\langle\varphi_{k}^{n}\left(\omega-\varphi_{k}\right) g, h\right\rangle_{A^{2}},
\end{aligned}
$$

where $\varphi_{n}:=\varphi \circ \varphi_{n-1}$ for $n \geqslant 1$ and $\varphi_{0}:=\mathrm{Id}: \mathbb{D} \rightarrow \mathbb{D}$. This shows that

$$
\begin{equation*}
\left\langle z^{n}(\omega-z) g(z), h\right\rangle_{A^{2}}=\left\langle\varphi_{k}^{n}\left(\omega-\varphi_{k}\right) g, h\right\rangle_{A^{2}} . \tag{5}
\end{equation*}
$$

Since $\left|\varphi_{k}^{n}\left(\omega-\varphi_{k}\right) g \bar{h}\right| \leqslant 2|g h| \in L^{1}(\mathbb{D})$ and the iterate sequence $\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ converges pointwise to ω on \mathbb{D} (even uniformly on compact subsets of the disc, see [4, Theorem 2.51]), we can use the Lebesgue Dominated Convergence Theorem and obtain from the equality (5) that

$$
\begin{equation*}
\left\langle z^{n}(\omega-z) g(z), h\right\rangle_{A^{2}}=\lim _{k \rightarrow \infty}\left\langle\varphi_{k}^{n}\left(\omega-\varphi_{k}\right) g, h\right\rangle_{A^{2}}=0, \quad n \geqslant 0 . \tag{6}
\end{equation*}
$$

The function $z \mapsto \omega-z$ belongs to H^{∞} and is outer in H^{2}, and consequently cyclic in H^{2} by Beurling's theorem. Therefore the function $z \mapsto(\omega-z) g(z)$ is cyclic in A^{2} by [5, Theorem 8.3.2], so the linear span \mathcal{S} of the set of functions $\left\{z \mapsto z^{n}(\omega-z) g(z)\right\}_{n=0}^{\infty}$ is dense in A^{2}. This means that if $f \in A^{2}$ then there exists a sequence $\left\{f_{k}\right\}_{k=0}^{\infty} \subset \mathcal{S}$ converging to f in the norm of A^{2}. This shows that $\langle f, h\rangle_{A^{2}}=\lim _{k \rightarrow \infty}\left\langle f_{k}, h\right\rangle_{A^{2}}=0$ by (6), and we obtain the contradiction $h \equiv 0$.

The proof of the promised theorem heavily relies on Lemma 1 and mimics the steps of [3, Proposition 2.1], so no proof is given. Note that the function 1 is cyclic in A^{2}, since the set of polynomials is dense in A^{2}.

Theorem 2. If the composition operator $C_{\varphi}: A^{2} \rightarrow A^{2}$ is complex symmetric then φ is either an elliptic automorphism of the unit disc or has a Denjoy-Wolff point in \mathbb{D}.

In the rest of the paper we will only analyze elliptic automorphisms φ_{α} of \mathbb{D} that induce complex symmetric operators C_{φ} on the Bergman space A^{2}. The case when $\alpha=0$, that is φ_{α} is a rotation, follows from [6, Proposition 2.9]. Indeed, if $\alpha=0$ then it is easy to see that $C_{\varphi}^{*}=C_{\psi}$, where $\psi(z)=\bar{\lambda} z$. Thus $C_{\varphi}: A^{2}(\mathbb{D}) \rightarrow A^{2}(\mathbb{D})$ is a unitary operator, and hence complex symmetric since all normal operators have this property. To resolve the remaining cases $\alpha \in \mathbb{D} \backslash\{0\}$ we need some additional results.

Let φ be an automorphism of the form

$$
\varphi=\varphi_{\alpha} \circ\left(\lambda \varphi_{\alpha}\right), \quad|\alpha|<1 .
$$

If N is the smallest positive integer such that $\lambda^{N}=1$, then φ is said to be of finite order N. If no such integer exists, then φ is said to have infinite order.

Lemma 3. Consider the multiplication operator $M_{\mathrm{Id}}: A^{2} \rightarrow A^{2}$ with symbol $\operatorname{Id}(z):=z$. The adjoint operator acts on any function $f \in A^{2}$ with corresponding series expansion $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ as

$$
\begin{equation*}
M_{\mathrm{Id}}^{*} f(z)=\sum_{n=0}^{\infty} \frac{n+1}{n+2} \hat{f}(n+1) z^{n}, \quad z \in \mathbb{D}, \tag{7}
\end{equation*}
$$

and in particular for integers $m \geqslant 0$ we have

$$
M_{\mathrm{Id}}^{*} z^{m}= \begin{cases}0, & m=0 \tag{8}\\ \frac{m}{m+1} z^{m-1}, & m \geqslant 1\end{cases}
$$

Proof. By using the latter form of the Bergman inner product in (1) we obtain that

$$
\begin{aligned}
\frac{\hat{f}(n+1)}{n+2} & =\left\langle f, z^{n+1}\right\rangle_{A^{2}}=\left\langle f, M_{\mathrm{Id}} z^{n}\right\rangle_{A^{2}} \\
& =\left\langle M_{\mathrm{Id}}^{*} f, z^{n}\right\rangle_{A^{2}}=\frac{\widehat{M_{\mathrm{Id}}^{*} f(n)}}{n+1}
\end{aligned}
$$

and hence

$$
\widehat{M_{\mathrm{Id}}^{*} f}(n)=\frac{n+1}{n+2} \hat{f}(n+1) .
$$

This proves the equality (7), from which the formula (8) follows.
Lemma 4. The sequence $\left\{e_{n}\right\}_{n=0}^{\infty}$ of functions $e_{n}:=K_{\alpha} \varphi_{\alpha}^{n}$ is orthogonal in A^{2}, and $\left\|e_{n}\right\|_{A^{2}}=\frac{1}{\left(1-|\alpha|^{2}\right) \sqrt{n+1}}$.

Proof. Choose arbitrary integers $n, m \geqslant 0$. The reproducing kernel K_{α} given in the equality (2) is related to the derivative of φ_{α} in the following manner

$$
\varphi_{\alpha}^{\prime}(z)=\frac{|\alpha|^{2}-1}{(1-\bar{\alpha} z)^{2}}=\left(|\alpha|^{2}-1\right) K_{\alpha}(z) .
$$

After substituting $w=\varphi_{\alpha}(z)$ we obtain

$$
\begin{aligned}
\left\langle e_{n}, e_{m}\right\rangle_{A^{2}} & =\int_{\mathbb{D}} e_{n}(z) \overline{e_{m}(z)} d A(z)=\int_{\mathbb{D}} \varphi_{\alpha}(z)^{n} \overline{\varphi_{\alpha}(z)^{m}}\left|K_{\alpha}(z)\right|^{2} d A(z) \\
& =\frac{1}{\left(|\alpha|^{2}-1\right)^{2}} \int_{\mathbb{D}} \varphi_{\alpha}(z)^{n} \overline{\varphi_{\alpha}(z)^{m}}\left|\varphi_{\alpha}^{\prime}(z)\right|^{2} d A(z) \\
& =\frac{1}{\left(|\alpha|^{2}-1\right)^{2}} \int_{\mathbb{D}} w^{n} \overline{w^{m}} d A(w)=\frac{1}{\left(|\alpha|^{2}-1\right)^{2}}\left\langle\operatorname{Id}^{n}, \operatorname{Id}^{m}\right\rangle_{A^{2}} \\
& =\frac{\delta_{n, m}}{\left(|\alpha|^{2}-1\right)^{2}(n+1)} .
\end{aligned}
$$

The last equality with the Kronecker delta function $\delta_{n, m}$ holds in view of the latter form of the Bergman inner product in (1). This completes the proof.

For the Hardy space version of the following result see [3, Lemma 2.2].
Lemma 5. Let $\alpha \in \mathbb{D} \backslash\{0\}$, consider $C_{\varphi_{\alpha}}: A^{2} \rightarrow A^{2}$ as an operator on the Bergman space A^{2} and define $v_{n}:=C_{\varphi_{\alpha}}^{*} z^{n}$ for integers $n \geqslant 0$. Then $v_{n} \perp v_{m}$ if and only if $|n-m| \geqslant 3$.

Proof. According to [10, Theorem 2], the adjoint operator of $C_{\varphi_{\alpha}}$ takes the form

$$
\begin{equation*}
C_{\varphi_{\alpha}}^{*}=M_{K_{\alpha}} C_{\varphi_{\alpha}} M_{1 / K_{\alpha}}^{*} . \tag{9}
\end{equation*}
$$

Since

$$
\frac{1}{K_{\alpha}(z)}=(1-\bar{\alpha} z)^{2}=1-2 \bar{\alpha} z+\bar{\alpha}^{2} z^{2}
$$

the following equations hold

$$
M_{1 / K_{\alpha}}=I-2 \bar{\alpha} M_{\mathrm{Id}}+\bar{\alpha}^{2} M_{\mathrm{Id}^{2}}=I-2 \bar{\alpha} M_{\mathrm{Id}}+\bar{\alpha}^{2}\left(M_{\mathrm{Id}}\right)^{2} .
$$

From the above and the equality (9) it follows that

$$
C_{\varphi_{\alpha}}^{*}=M_{K_{\alpha}} C_{\varphi_{\alpha}}\left(I-2 \alpha M_{\mathrm{Id}}^{*}+\alpha^{2}\left(M_{\mathrm{Id}}^{*}\right)^{2}\right)
$$

Applying this representation and the formula (8) on $v_{n}=C_{\varphi_{\alpha}}^{*} z^{n}$, we obtain $v_{0}=$ $K_{\alpha}, v_{1}=K_{\alpha}\left(\varphi_{\alpha}-\alpha\right)$ and for integers $n \geqslant 2$:

$$
\begin{aligned}
v_{n} & =M_{K_{\alpha}} C_{\varphi_{\alpha}}\left(z^{n}-2 \alpha M_{\mathrm{Id}}^{*} z^{n}+\alpha^{2}\left(M_{\mathrm{Id}}^{*}\right)^{2} z^{n}\right) \\
& =M_{K_{\alpha}} C_{\varphi_{\alpha}}\left(z^{n}-2 \alpha \frac{n}{n+1} z^{n-1}+\alpha^{2} \frac{n}{n+1} M_{\mathrm{Id}}^{*} z^{n-1}\right) \\
& =M_{K_{\alpha}} C_{\varphi_{\alpha}}\left(z^{n}-2 \alpha \frac{n}{n+1} z^{n-1}+\alpha^{2} \frac{n}{n+1} \frac{n-1}{n} z^{n-2}\right) \\
& =K_{\alpha} \varphi_{\alpha}^{n}-2 \alpha \frac{n}{n+1} K_{\alpha} \varphi_{\alpha}^{n-1}+\alpha^{2} \frac{n-1}{n+1} K_{\alpha} \varphi_{\alpha}^{n-2} .
\end{aligned}
$$

The above results can be summarized in terms of the functions $e_{n}:=K_{\alpha} \varphi_{\alpha}^{n}$ (consult Lemma 4, where it was shown that $\left\{e_{n}\right\}$ are orthogonal in A^{2}) as

$$
\left\{\begin{array}{l}
v_{0}=e_{0} \tag{10}\\
v_{1}=e_{1}-\alpha e_{0} \\
v_{n}=e_{n}-2 \alpha \frac{n}{n+1} e_{n-1}+\alpha^{2} \frac{n-1}{n+1} e_{n-2}, \quad n \geqslant 2
\end{array}\right.
$$

Assume now that $n, m \geqslant 2$. By the last formula of (10), we have

$$
\begin{aligned}
\left\langle v_{n}, v_{m}\right\rangle_{A^{2}}= & \left\langle e_{n}-2 \alpha \frac{n}{n+1} e_{n-1}+\alpha^{2} \frac{n-1}{n+1} e_{n-2}, e_{m}-2 \alpha \frac{m}{m+1} e_{m-1}+\alpha^{2} \frac{m-1}{m+1} e_{m-2}\right\rangle_{A^{2}} \\
= & \left\langle e_{n}, e_{m}\right\rangle_{A^{2}}-2 \bar{\alpha} \frac{m}{m+1}\left\langle e_{n}, e_{m-1}\right\rangle_{A^{2}}+\bar{\alpha}^{2} \frac{m-1}{m+1}\left\langle e_{n}, e_{m-2}\right\rangle_{A^{2}} \\
& -2 \alpha \frac{n}{n+1}\left\langle e_{n-1}, e_{m}\right\rangle_{A^{2}}+4|\alpha|^{2} \frac{n}{n+1} \frac{m}{m+1}\left\langle e_{n-1}, e_{m-1}\right\rangle_{A^{2}} \\
& -2|\alpha|^{2} \bar{\alpha} \frac{n}{n+1} \frac{m-1}{m+1}\left\langle e_{n-1}, e_{m-2}\right\rangle_{A^{2}}+\alpha^{2} \frac{n-1}{n+1}\left\langle e_{n-2}, e_{m}\right\rangle_{A^{2}} \\
& -2|\alpha|^{2} \alpha \frac{n-1}{n+1} \frac{m}{m+1}\left\langle e_{n-2}, e_{m-1}\right\rangle_{A^{2}}+|\alpha|^{4} \frac{n-1}{n+1} \frac{m-1}{m+1}\left\langle e_{n-2}, e_{m-2}\right\rangle_{A^{2}} .
\end{aligned}
$$

It follows immediately from the above expression that $v_{n} \perp v_{m}$ if $|n-m| \geqslant 3$, since the sequence $\left\{e_{n}\right\}_{n=0}^{\infty}$ is orthogonal. It remains to check the case when
$|n-m|<3$, that is when $m=n-2, m=n-1, m=n, m=n+1$ and $m=n+2$. The corresponding inner products can be computed from the above general expression (10) by again using the orthogonality of $\left\{e_{n}\right\}_{n=0}^{\infty}$

$$
\begin{aligned}
\left\langle v_{n}, v_{n-2}\right\rangle_{A^{2}} & =\alpha^{2} \frac{n-1}{n+1}\left\|e_{n-2}\right\|_{A^{2}}^{2} \\
\left\langle v_{n}, v_{n-1}\right\rangle_{A^{2}} & =-2 \alpha\left(\frac{n}{n+1}\left\|e_{n-1}\right\|_{A^{2}}^{2}+|\alpha|^{2} \frac{(n-1)^{2}}{(n+1) n}\left\|e_{n-2}\right\|_{A^{2}}^{2}\right) \\
\left\langle v_{n}, v_{n}\right\rangle_{A^{2}} & =\left\|e_{n}\right\|_{A^{2}}^{2}+4|\alpha|^{2}\left(\frac{n}{n+1}\right)^{2}\left\|e_{n-1}\right\|_{A^{2}}^{2}+|\alpha|^{4}\left(\frac{n-1}{n+1}\right)^{2}\left\|e_{n-2}\right\|_{A^{2}}^{2} \\
\left\langle v_{n}, v_{n+1}\right\rangle_{A^{2}} & =-2 \bar{\alpha}\left(\frac{n+1}{n+2}\left\|e_{n}\right\|_{A^{2}}^{2}+|\alpha|^{2} \frac{n^{2}}{(n+1)(n+2)}\left\|e_{n-1}\right\|_{A^{2}}^{2}\right) \\
\left\langle v_{n}, v_{n+2}\right\rangle_{A^{2}} & =\bar{\alpha}^{2} \frac{n+1}{n+3}\left\|e_{n}\right\|_{A^{2}}^{2} .
\end{aligned}
$$

None of these inner products can be zero since $\alpha \neq 0$, so for integers $n, m \geqslant 2$ it holds that $v_{n} \perp v_{m}$ if and only if $|n-m| \geqslant 3$. Again, from (10) it can also be seen that $v_{0} \perp v_{n}$ if and only if $n \geqslant 3$ and $v_{1} \perp v_{n}$ if and only if $n \geqslant 4$, so the proof is complete.

Remark 6. It follows from the above proof that $\left\|v_{0}\right\|_{A^{2}}=\left\|e_{0}\right\|_{A^{2}},\left\|v_{1}\right\|_{A^{2}}=$ $\left(\left\|e_{1}\right\|_{A^{2}}^{2}+|\alpha|^{2}\left\|e_{0}\right\|_{A^{2}}^{2}\right)^{\frac{1}{2}}$ and

$$
\left\|v_{n}\right\|_{A^{2}}=\left(\left\|e_{n}\right\|_{A^{2}}^{2}+4|\alpha|^{2}\left(\frac{n}{n+1}\right)^{2}\left\|e_{n-1}\right\|_{A^{2}}^{2}+|\alpha|^{4}\left(\frac{n-1}{n+1}\right)^{2}\left\|e_{n-2}\right\|_{A^{2}}^{2}\right)^{\frac{1}{2}}
$$

for $n \geqslant 2$. Hence $\left\|v_{n}\right\|_{A^{2}} \neq 0$ for every $n \in \mathbb{N}$ by Lemma 4 .
The following fact was already used in [3, p. 108]. Therefore we leave out the proof.

Lemma 7. If $T: \mathcal{H} \rightarrow \mathcal{H}$ is a complex symmetric operator with conjugation C and the equation $C(T-\lambda I)=\left(T^{*}-\bar{\lambda} I\right) C$ holds for some $\lambda \in \mathbb{C}$, then

$$
f \in \operatorname{Ker}(T-\lambda I) \Longleftrightarrow C f \in \operatorname{Ker}\left(T^{*}-\bar{\lambda} I\right)
$$

Recall, that an operator $T: \mathcal{H} \rightarrow \mathcal{H}$ on a Hilbert space \mathcal{H} is called cyclic if there exists a vector $x \in \mathcal{H}$ such that the orbit

$$
\operatorname{Orb}(T, x)=\left\{T^{n} x: n \in \mathbb{N}\right\}
$$

has dense linear span in \mathcal{H}.
The proof of the following result is based on the approach taken in [3, Proposition 3.1] for the case of $C_{\varphi}: H^{2} \rightarrow H^{2}$.

Theorem 8. Suppose φ is an elliptic automorphism of infinite order and is not a rotation. Then $C_{\varphi}: A^{2} \rightarrow A^{2}$ is not complex symmetric.

Proof. The elliptic automorphism φ is of the form (4), where $\alpha \in \mathbb{D} \backslash\{0\}$ and λ is not a root of unity, so $C_{\varphi}=C_{\varphi_{\alpha}} C_{\lambda z} C_{\varphi_{\alpha}}$. We begin by showing that the adjoint operator

$$
\begin{equation*}
C_{\varphi}^{*}=C_{\varphi_{\alpha}}^{*} C_{\bar{\lambda} z} C_{\varphi_{\alpha}}^{*} \tag{11}
\end{equation*}
$$

is cyclic. Since

$$
\begin{equation*}
\left(C_{\varphi_{\alpha}}^{*}\right)^{2}=C_{\varphi_{\alpha} \circ \varphi_{\alpha}}^{*}=C_{\mathrm{Id}}^{*}=I, \tag{12}
\end{equation*}
$$

we see from the equality (11) that

$$
\begin{equation*}
\left(C_{\varphi}^{*}\right)^{n}=C_{\varphi_{\alpha}}^{*} C_{\bar{\lambda} z}^{n} C_{\varphi_{\alpha}}^{*}, \quad n \in \mathbb{N} \tag{13}
\end{equation*}
$$

Choose some $\beta \in \mathbb{D} \backslash\{0\}$ and notice that

$$
\begin{equation*}
C_{\bar{\lambda} z}^{n} K_{\beta}(z)=K_{\beta}\left(\bar{\lambda}^{n} z\right)=K_{\lambda^{n} \beta}(z) . \tag{14}
\end{equation*}
$$

Now, using equations (13) and (14) we conclude that

$$
\operatorname{Orb}\left(C_{\varphi}^{*}, C_{\varphi_{\alpha}}^{*} K_{\beta}\right)=\left\{C_{\varphi_{\alpha}}^{*} K_{\lambda^{n} \beta}: n \in \mathbb{N}\right\}
$$

has dense linear span in A^{2} since this is the case for the set

$$
\left\{K_{\lambda^{n} \beta}: n \in \mathbb{N}\right\} .
$$

This shows that C_{φ}^{*} is cyclic. It is known that if an operator is cyclic, then its adjoint has simple eigenvalues (see [1, Proposition 2.7]). Thus $C_{\varphi}: A^{2} \rightarrow A^{2}$ has simple eigenvalues.

In order to reach a contradiction suppose that $C_{\varphi}: A^{2} \rightarrow A^{2}$ is complex symmetric with conjugation C. If we define $v_{n}:=C_{\varphi_{\alpha}}^{*} z^{n}$ as in Lemma 5 , then by formulas (11) and (12) we have that $v_{n} \in \operatorname{Ker}\left(C_{\varphi}^{*}-\bar{\lambda}^{n} I\right)$ and

$$
\begin{aligned}
\left(C_{\varphi}^{*}-\bar{\lambda}^{n} I\right) v_{n} & =C_{\varphi}^{*} C_{\varphi_{\alpha}}^{*} z^{n}-\bar{\lambda}^{n} C_{\varphi_{\alpha}}^{*} z^{n} \\
& =C_{\varphi_{\alpha}}^{*} C_{\bar{\lambda} z}\left(C_{\varphi_{\alpha}}^{*}\right)^{2} z^{n}-\bar{\lambda}^{n} C_{\varphi_{\alpha}}^{*} z^{n} \\
& =\bar{\lambda}^{n} C_{\varphi_{\alpha}}^{*} z^{n}-\bar{\lambda}^{n} C_{\varphi_{\alpha}}^{*} z^{n}=0 .
\end{aligned}
$$

Furthermore by the complex symmetry

$$
\begin{equation*}
C\left(C_{\varphi}^{*}-\bar{\lambda}^{n} I\right)=C C_{\varphi}^{*}-\lambda^{n} C=C_{\varphi} C-\lambda^{n} C=\left(C_{\varphi}-\lambda^{n} I\right) C \tag{15}
\end{equation*}
$$

and it follows from Lemma 7 that $C v_{n} \in \operatorname{Ker}\left(C_{\varphi}-\lambda^{n} I\right)$ for every $n \in \mathbb{N}$, which means that $C v_{n}$ is an eigenfunction of $C_{\varphi}-\lambda^{n} I$. Indeed,

$$
\left\|C v_{n}\right\|_{A^{2}}^{2}=\left\langle C v_{n}, C v_{n}\right\rangle_{A^{2}}=\left\langle v_{n}, v_{n}\right\rangle_{A^{2}}=\left\|v_{n}\right\|_{A^{2}}^{2} \neq 0,
$$

as noted in Remark 6. But we also have that $\varphi_{\alpha}^{n} \in \operatorname{Ker}\left(C_{\varphi}-\lambda^{n} I\right)$:

$$
\begin{aligned}
\left(C_{\varphi}-\lambda^{n} I\right) \varphi_{\alpha}^{n} & =\left(\varphi_{\alpha} \circ \varphi\right)^{n}-\lambda^{n} \varphi_{\alpha}^{n} \\
& =\left(\varphi_{\alpha} \circ \varphi_{\alpha} \circ\left(\lambda \varphi_{\alpha}\right)\right)^{n}-\lambda^{n} \varphi_{\alpha}^{n} \\
& =\lambda^{n} \varphi_{\alpha}^{n}-\lambda^{n} \varphi_{\alpha}^{n}=0 .
\end{aligned}
$$

Since $C_{\varphi}: A^{2} \rightarrow A^{2}$ has simple eigenvalues, the function $C v_{n}$ is a scalar multiple of φ_{α}^{n}, say $C v_{n}=\mu_{n} \varphi_{\alpha}^{n}$ for some nonzero constant μ_{n}. Now using Lemma 5 we get that

$$
\begin{aligned}
0 & =\left\langle v_{0}, v_{3}\right\rangle_{A^{2}}=\left\langle C v_{0}, C v_{3}\right\rangle_{A^{2}} \\
& =\mu_{0}{\overline{\mu_{3}}}\left\langle 1, \varphi_{\alpha}^{3}\right\rangle_{A^{2}}=\mu_{0} \overline{\mu_{3}}{\overline{\varphi_{\alpha}(0)}}^{3} \\
& =\mu_{0}{\overline{\mu_{3} \alpha}}^{3},
\end{aligned}
$$

which implies that $\alpha=0$, and so φ is a rotation. This contradicts the assumption and the proof is complete.

Lemma 9. Suppose $\varphi=\varphi_{\alpha} \circ\left(\lambda \varphi_{\alpha}\right)$ is an elliptic automorphism of finite order N that is not a rotation, and define $V_{n}:=\operatorname{Ker}\left(C_{\varphi}^{*}-\bar{\lambda}^{n} I\right)$ for $n \in \mathbb{N}$. Then $V_{0} \perp V_{3}$ if and only if $N \geqslant 6$.
Proof. Define $v_{n}:=C_{\varphi}^{*} z^{n}$ as in Lemma 5 and recall that $v_{n} \in V_{n}$ for every $n \in \mathbb{N}$ as shown in the proof of Theorem 8. We first prove that $V_{0} \not \perp V_{3}$ when $N<6$. If $N=1$ then φ is a rotation, so this case needs not to be considered. If $N=2$, then $\lambda^{2}=1$ and

$$
V_{2}=\operatorname{Ker}\left(C_{\varphi}^{*}-\bar{\lambda}^{2} I\right)=\operatorname{Ker}\left(C_{\varphi}^{*}-I\right)=V_{0} .
$$

Hence $v_{2} \in V_{2}=V_{0}$ and $v_{3} \in V_{3}$. But $v_{2} \not \perp v_{3}$ by Lemma 5 so $V_{0} \not \perp V_{3}$ when $N=2$. For the other cases we obtain similarly:

$$
\begin{array}{ll}
V_{0}=V_{3}, & N=3 \\
V_{0}=V_{4}, & N=4 \\
V_{0}=V_{5}, & N=5,
\end{array}
$$

and another usage of Lemma 5 shows that $V_{0} \not \perp V_{3}$ for these cases.
Now suppose that $N \geqslant 6$. Since

$$
\operatorname{Ker}\left(C_{\bar{\lambda} z}-\bar{\lambda}^{n} I\right)=\overline{\operatorname{span}}\left\{z^{k N+n}\right\}_{k \in \mathbb{N}}
$$

we have that

$$
\begin{aligned}
f \in V_{n} & \Leftrightarrow\left(C_{\varphi}^{*}-\bar{\lambda}^{n} I\right) f=\overline{0} \Leftrightarrow C_{\varphi_{\alpha}}^{*} C_{\bar{\lambda} z} C_{\varphi_{\alpha}}^{*} f-\bar{\lambda}^{n} f=\overline{0} \\
& \Leftrightarrow C_{\bar{\lambda} z} C_{\varphi_{\alpha}}^{*} f-\bar{\lambda}^{n} C_{\varphi_{\alpha}}^{*} f=\overline{0} \\
& \Leftrightarrow C_{\varphi_{\alpha}}^{*} f \in \operatorname{Ker}\left(C_{\bar{\lambda} z}-\bar{\lambda}^{n} I\right)=\overline{\operatorname{span}}\left\{z^{k N+n}\right\}_{k \in \mathbb{N}} \\
& \Leftrightarrow f \in \overline{\operatorname{span}}\left\{C_{\varphi_{\alpha}}^{*} z^{k N+n}\right\}_{k \in \mathbb{N}}=\overline{\operatorname{span}}\left\{v_{k N+n}\right\}_{k \in \mathbb{N}},
\end{aligned}
$$

and thus $V_{n}=\overline{\operatorname{span}}\left\{v_{k N+n}\right\}_{k \in \mathbb{N}}$. Now consider $v_{k N} \in V_{0}$ and $v_{j N+3} \in V_{3}$ for any $k, j \in \mathbb{N}$. Since $N \geqslant 6$ it holds that

$$
|k N-(j N+3)|=|(k-j) N-3| \geqslant 3,
$$

so Lemma 5 gives that $v_{k N} \perp v_{j N+3}$, and hence $V_{0} \perp V_{3}$.

Below we show that, as in the case of the Hardy space H^{2} (see [3, Proposition 3.3]), the class of disc self-maps which induce complex symmetric composition operators on the Bergman space A^{2} is quite sparse.

Theorem 10. Suppose φ is an elliptic automorphism of finite order $N \geqslant 6$ and is not a rotation. Then $C_{\varphi}: A^{2} \rightarrow A^{2}$ is not complex symmetric.

Proof. In order to reach a contradiction assume that $C_{\varphi}: A^{2} \rightarrow A^{2}$ is complex symmetric, with a conjugation C. By the formula (15) and Lemma 7 it follows that

$$
f \in V_{n}:=\operatorname{Ker}\left(C_{\varphi}^{*}-\bar{\lambda}^{n} I\right) \Longleftrightarrow C f \in \operatorname{Ker}\left(C_{\varphi}-\lambda^{n} I\right)
$$

Now, using the property $C^{2}=I$ we see that C maps V_{n} onto $\operatorname{Ker}\left(C_{\varphi}-\lambda^{n} I\right)$ for every $n \in \mathbb{N}$. Thus if $f \in \operatorname{Ker}\left(C_{\varphi}-I\right)$ and $g \in \operatorname{Ker}\left(C_{\varphi}-\lambda^{3} I\right)$ then there exist functions $u \in V_{0}$ and $w \in V_{3}$ such that $f=C u$ and $g=C w$. Hence since $N \geqslant 6$ from Lemma 9 it follows

$$
\langle f, g\rangle_{A^{2}}=\langle C u, C w\rangle_{A^{2}}=\langle u, w\rangle_{A^{2}}=0 .
$$

This shows that

$$
\operatorname{Ker}\left(C_{\varphi}-I\right) \perp \operatorname{Ker}\left(C_{\varphi}-\lambda^{3} I\right),
$$

and in particular $1 \perp \varphi_{\alpha}^{3}$ because $\varphi_{\alpha}^{n} \in \operatorname{Ker}\left(C_{\varphi}-\lambda^{n} I\right)$ for every $n \in \mathbb{N}$ (cf. the proof of Theorem 8). This gives the contradiction $\alpha=0$ and the proof is complete.

After summarizing what has been proven we see that if the composition operator $C_{\varphi}: A^{2} \rightarrow A^{2}$ is complex symmetric then φ has a Denjoy-Wolff point in the disc \mathbb{D}, is a rotation (and in this case $C_{\varphi}: A^{2} \rightarrow A^{2}$ is a normal operator) or is an elliptic automorphism of finite order $N=2,3,4$ or 5 . Using the following result from [8] we can solve the case $N=2$.

Theorem 11 ([8, Theorem 2]). If an operator $T: \mathcal{H} \rightarrow \mathcal{H}$ on a Hilbert space \mathcal{H} satisfies $p(T)=0$ for some polynomial of degree 2 or less, then T is complex symmetric.

Theorem 12. Suppose $\varphi=\varphi_{\alpha} \circ\left(\lambda \varphi_{\alpha}\right)$ is an elliptic automorphism of order two. Then $C_{\varphi}: A^{2} \rightarrow A^{2}$ is complex symmetric.

Proof. The n-th iterate of C_{φ} can be written as in the formula (13)

$$
C_{\varphi}^{n}=C_{\varphi_{\alpha}} C_{\lambda z}^{n} C_{\varphi_{\alpha}}=C_{\varphi_{\alpha}} C_{\lambda^{n} z} C_{\varphi_{\alpha}}, \quad n \in \mathbb{N}
$$

Using this with $n=2$ and recalling that $\lambda^{2}=1$, we see that C_{φ} satisfies a polynomial equation of order two. Indeed,

$$
C_{\varphi}^{2}=C_{\varphi_{\alpha}}^{2}=I,
$$

so $C_{\varphi}: A^{2} \rightarrow A^{2}$ is complex symmetric by Theorem 11 .

References

[1] P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997).
[2] P. S. Bourdon, Spectra of some composition operators and associated weighted composition operators, J. Operator Theory 67(2) (2012), 537-560.
[3] P. S. Bourdon and S. Waleed Noor, Complex symmetry of invertible composition operators, J. Math. Anal. Appl. 429 (2015), 105-110.
[4] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[5] P. Duren and A. Schuster, Bergman Spaces, American Mathematical Society, Providence, RI 2004.
[6] S. R. Garcia and C. Hammond, Which weighted composition operators are complex symmetric?, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl. 236, Birkhäuser/Springer, Basel 2014, 171-179.
[7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315.
[8] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065-6077.
[9] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.
[10] P. R. Hurst, Relating composition operators on different weighted Hardy spaces, Arch. Math. 68 (1997) 503-513.
[11] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.

Addresses: Ted Eklund and Mikael Lindström: Department of Mathematics, Åbo Akademi University, FI-20500 Åbo, Finland;
Paweł Mleczko: Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznań, Umultowska 87, 61-614 Poznań, Poland.

E-mail: ted.eklund@abo.fi, mikael.lindstrom@abo.fi, pml@amu.edu.pl
Received: 16 December 2017; revised: 23 January 2018

[^0]: The third author's research was supported by the National Science Centre, Poland (project no. $2015 / 17 / \mathrm{B} / \mathrm{ST} 1 / 00064$). Part of the research was done while the third author visited Abo Akademi University.

 2010 Mathematics Subject Classification: primary: 47B33; secondary: 47B32, 47B38

