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EUCLIDEAN PROOFS FOR FUNCTION FIELDS

Thomas Lachmann

Abstract: Schur proved the infinitude of primes in arithmetic progressions of the form
≡ l mod m, such that l2 ≡ 1 mod m, with non-analytic methods by ideas inspired from the
famous proof Euclid gave for the infinitude of primes. Ram Murty showed that Schur’s method
has its limits given by the assumption Schur made. We will discuss analogous for the primes in
the ring Fq [T ].
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1. Euclidean proofs

Definition 1.1. Let Fq be a finite field with q elements and F ∈ Fq[T ][X]. A prime
p ∈ Fq[T ] is called prime divisor of F if there is an element n ∈ Fq[T ] such that
p | F (n), which is denoted by p | F . We write P(F ) for the set of all prime divisors
of F .

Lemma 1.2. Each non-constant polynomial F ∈ Fq[T ][X] has infinitely many
prime divisors.

Proof. We can assume F (0) = c 6= 0, otherwise for all p ∈ Fq[T ] holds p | F (p)
already. For n ∈ Fq[T ], with deg(n) sufficiently large, it is F (n) /∈ Fq, hence F
has at least one prime divisor. Now assume that F has only finitely many prime
divisors p1, . . . , pn. Let Q = p1p2 . . . pn. It is F (QcX) = cG(X) for a polynomial
G ∈ Fq[T ][X] with G = 1 + b1X + b2X

2 + . . . and Q | bi for all i 6 deg(G). As we
have seen above we know that G has at least one prime divisor p, too. Obviously,
every prime divisor of G is also one of F . But then p - Q holds and p | 1 would be
true. Therefore p has to be another prime divisor of F - a contradiction. Hence
F has infinitely many prime divisors. �

The proof of the following generalization is based on an idea of Hornfeck
(see [5]).
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Lemma 1.3. |P(F ) ∩ P(G)| = ∞ holds for every two non-constant polynomials
F,G ∈ Fq[T ][X].

Proof. Let a resp. b be roots of F resp. G. With a result of Becker and Maclane
(see [3]), in which they show that for a field K of characteristic p with [K : Kp] = p
every extension ofK is simple, it follows that Fq(T )(a, b) = Fq(T )(c) for an element
c ∈ Fq(T ), where Fq(T ) is the algebraic closure of Fq(T ). Say H ∈ Fq(T )[X] is the
minimal polynomial of c. Therefore there are A,B ∈ Fq(T )[X] such that A(c) = a
and B(c) = b exist.

We can also assume that A and B of the kind so that A(0) = B(0) = 0 holds.
Otherwise replace for example A by

A∗(X) = A(X)− A(0)

H(0)
H(X)

and in the same way for B.
It follows:

F (A(c)) = 0 and G(B(c)) = 0

Hence H, as the minimal polynomial of c, appears as factor in F (A(X)) and
G(B(X)). We see

F (A(X)) = F ∗(X)H(X) and G(B(X)) = G∗(X)H(X)

holds for suitable F ∗, G∗ ∈ Fq(T )[X]. Denote by a, b, h ∈ Fq[T ] least common
denominator of the coefficient of A,B,H. Therefore we have

hF (A(abX)), hG(B(abX)), hH(abX) ∈ Fq[T ][X]

and

hF (A(abX)) = F ∗(abX)hH(abX) and hG(B(abX)) = G∗(abX)hH(abX).

We see that every prime divisor of hH(abX) is also a prime divisor of hF (A(abX))
and hG(B(abX)). At last, it follows that F and G have infinitely many common
prime divisors, since hH(abX) already possesses infinitely many. �

Definition 1.4. We denote by Fq[T ] < τ > the polynomial ring in the variable
τ with twisted multiplication in respect to τ . The elements in Fq[T ] < τ > are of
the form

anτ
n + . . .+ a1τ + a0 with a0, . . . , an ∈ Fq[T ].

Here the multiplication of two ring elements out of Fq[T ] < τ > is well-defined
by

τT := T qτ,

as one can verify easily.
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The Fq−homomorphism

C : Fq[T ]→ Fq[T ] < τ > with T 7→ T + τ

is called the Carlitz module and for m ∈ Fq[T ] the image under C is denoted by
Cm and is called the Carlitz module for m in Fq[T ]. Here Cm can be seen as an
endomorphism of Fq[T ] via

Cm : Fq[T ]→ Fq[T ], n 7→ Cm · n,

in which the multiplication is well-defined through

τ · n = nq.

We then also write Cm(n) instead of Cm · n.
We denote the so-called Carlitz polynomial for m in Fq[T ] by Cm(X) =

Cm ·X ∈ Fq[T ][X]. In this case τ ·X = Xq also holds.
Letm ∈ Fq[T ] be written asm = αnT

n+. . .+α1T+α0. Then we can calculate
the Carlitz module for m in the following way:

Cm = CαnTn + . . .+ Cα1T + Cα0

= CαnCTn + . . .+ Cα1
CT + Cα0

= αn(CT )n + . . .+ α1CT + α0

= αn(T + τ)n + . . .+ α1(T + τ) + α0

Therefore the associated Carlitz polynomial is

Cm(X) = (αn(CT )n + . . .+ α1CT + α0) ·X
= αn(CT )n ·X + . . .+ α1CT ·X + α0X

= αn(T + τ)n ·X + . . .+ α1(T + τ) ·X + α0X.

To calculate this correctly one has to have the special multiplication with τ within
the mapping Cm in mind: CT = T + τ, CT 2 = CTCT = (T + τ)(T + τ) =
T 2 + (T + T q)τ + τ2, etc.

One sees immediately that the linearity of Cm seen as homomorphism transfers
to the associated polynomial, since for f = αnT

n + . . .+ α1T + α0 it follows that

τk ·f = (τ ·f)k = fq
k

= (αnT
n+ . . .+α1T +α0)q

k

= αq
k

n T
nqk + . . .+αq

k

1 T
qk +αq

k

0 ,

because of the characteristic p of Fq for q = pn.

The Carlitz module is a special case of the so-called Drinfeld modules, which
are not important for us at this point. For the interested reader the book Number
Theory in Function Fields from Rosen (see [8]) can be suggested. Many of the
following result can be also found there.
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Now let Λ[m] :=
{
λ ∈ Fq(T ) | Cm(λ) = 0

}
denote the set for an arbitrary

m ∈ Fq[T ]. The extension Fq(T )(Λ[m])/Fq(T ) is Galois and

Gal(Fq(T )(Λ[m])/Fq(T )) ∼= (Fq[T ]/mFq[T ])∗

holds. It does even hold that for every σ ∈ Gal(Fq(T )(Λ[m])/Fq(T )) and a genera-
tor λm of this field extension, there exists an a ∈ Fq[T ] such that gcd(a,m) = 1 and
σ(λm) = Ca(λm). Note that this a is also the image of σ in the above mentioned
isomorphism. From now on we always assume that we consider this isomorphism
and identify the elements of (Fq[T ]/mFq[T ])∗ with the corresponding automor-
phisms. Furthermore denote the element σ in the Galois group by σa, where a is
the image under σ. (See [8, p. 202–207])

Define |m| := qdeg(m) for a polynomial 0 6= m ∈ Fq[T ] and |m| := 0 for m = 0.
We can assume without loss of generality that m is a monic polynomial, otherwise
if α 6= 1 is the leading coefficient of m, consider instead α−1m with the inverse
α−1 of α in Fq. The residue class stays obviously the same for the now monic
polynomial.

In the next result we are working with prime ideal. Therefore we need an
analogue of the ring of integers in matters of Fq(T ):

Definition 1.5. For the finite field extension K/Fq(T ) define OK := K ∩ Fq(T ).
We call OK the ring of integers of K in respect to Fq(T ).

This set is in fact a ring, even a Dedekind domain (see [8, p. 241–248]), exactly
like its analogue, the ring of integers of a number field. In addition many results
are holding for OK which are also true for the known ring of integers. We will
sometimes say that prime ideals in OK are prime ideals of K.

Theorem 1.6. Let H be a subgroup of (Fq[T ]/mFq[T ])∗ for an element 0 6= m ∈
Fq[T ]. Then there is a F ∈ Fq[T ][X] such that all prime divisors of F , with the
exception of finitely many, belong to residue classes of H.

Proof. Let Fq(T )(η) be the fixed field of H, where η = H(λm), with generator
λm of the Galois extension Fq(T )(Λ[m])/Fq(T ) and suitable H ∈ Fq[T ][X].

Let m1, . . . ,ms be coset representatives of H in (Fq[T ]/mFq[T ])∗. With them
we define ηi := H(Cmi(λm)) for i = 1, . . . , s and will show that they are pairwise
distinct. Assume they are not, then σmi(η) = σmj (η) holds for two distinct coset
representatives mi,mj of H. This would be equivalent to

η = σ−1mjσmi(η) = σ−1mjσmi(H(λm)) =

= σ−1mj (H(σmi(λm))) = σm−1
j

(H(Cmi(λm))) =

= H(Cmi(σm−1
j

(λm))) = H(Cmi(Cm−1
j

(λm))) =

= H(Cmim−1
j

(λm)) = H(σmim−1
j

(λm)) =

= σmim−1
j

(H(λm)) = σmim−1
j

(η).
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Thus σmim−1
j

fixes Fq(T )(η) and hence mim
−1
j ∈ H. This has the consequence

that mi and mj are in the same coset of H - a contradiction. It follows that all
the ηi are distinct and thus are the different conjugates of η. Now we define the
polynomial which will fulfill the conditions of the theorem:

F (X) :=

s∏
i=1

(X − ηi)

As shown above it is F ∈ Fq[T ][X]. Let p ∈ Fq[T ] be a prime divisor of F , which
divides neither m nor the discriminant D(F ) of F . By this we only exclude finitely
many prime divisors of F . Since p is a prime divisor of F there exists an a ∈ Fq[T ]
such that

p | F (a) =

s∏
i=1

(a− ηi).

Let P be a prime ideal lying over (p), the ideal generated by p. It is P | (a− ηi)
for an i ∈ {1, . . . , s}. With Fermat’s small theorem (see [8, p. 5]) and the fact that
Cp(X) is an Eisenstein polynomial at p (see [8, p. 205]) it follows Cp(a) ≡ a|p| ≡ a
mod p and thus also Cp(a) ≡ a mod P. Together with the linearity of the Carlitz
polynomial we get Cp(H(X)) = H(Cp(X)). Furthermore following congruence
hold:

H(Cmi(λm)) = ηi ≡ a ≡ Cp(a) ≡ Cp(ηi) = Cp(H(Cmi(λm)))

= H(Cp(Cmi(λm))) = H(Cpmi(λm))) mod P

Hence P | (H(Cmi(λm)) −H(Cpmi(λm)). Since p - m is gcd(pmi,m) = 1 it has
to be H(Cpmi(λm)) = ηj for a j ∈ {1, . . . , s}.

Assume it is (H(Cmi(λm)) 6= H(Cpmi(λm)). Then P | D(F ) and sinceD(F ) ∈
Fq[T ] it also follows p | D(F ). This provides a contradiction to p - D(F ). Therefore
we have H(Cmi(λm)) = H(Cpmi(λm)) and it follows that ηi is fixated by σp, thus
also the extension Fq(T )(ηi). Since Fq(T )(η) is Galois, it is Fq(T )(ηi) = Fq(T )(η).
In particular σp fixes Fq(T )(η). It follows that p belongs to one of the residue
classes of H. �

We see that in m ∈ Fq[T ] there are infinitely many primes ≡ 1 mod m, if we
are working with H = {1} in Theorem 1.6. Furthermore we see now that, like
already stated right after Lemma 1.3, all non-constant polynomials in Fq[T ][X]
possess infinitely many prime divisors of this type.

Like in the work of Murty [7] we can now say what we expect of an Euclidean
proof : To given l,m ∈ Fq[T ] we find a polynomial F ∈ Fq[T ][X] such that all its
prime divisors, with finitely many exception, are ≡ 1, l mod m. We call such a
polynomial an Euclidean polynomial if it actually possesses infinitely many prime
divisors of the form ≡ l mod m.

The Polynomial constructed in Theorem 1.6, in the case of H = {1}, is the so-
called Carlitz cyclotomic polynomial φm(X) of m which shares many properties of
the usual cyclotomic polynomial. Here Cm(X)

X takes the role of X
n−1
X−1 regarding the
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Carlitz cyclotomic polynomial. φm(X) is the irreducible polynomial of maximum
degree which divides Cm(X). Many results holding for the cyclotomic polynomial
in Z[X] are also here true and can be proven almost analogical. One of this results
is for example the presentation of φm(X):

φm(X) =
∏
d|m

(Cm
d

(X))µ(d),

where d is always monic and

µ(d) =

{
(−1)r if d is squarefree, r = |{p | p prim, p | d}|;
0 otherwise,

the Möbius function (see [1]). With this it is easy to calculate the Carlitz cyclo-
tomic polynomial to any given m.

In a converse way to Theorem 1.6 following holds:

Theorem 1.7. If the conditions are the same as in Theorem 1.6, i.e. H 6
(Fq[T ]/mFq[T ])∗ and F the to H constructed polynomial. Then every prime belong-
ing to a residue class of H is a prime divisor of F .

Proof. Let p be a prime belonging to one of the residue classes of H. Since p ∈ H,
we have that Fq(T )(η) is fixated by σp. In particular it is

Cp(η) ≡ η|p| ≡ η mod p.

Hence for every prime ideal P, dividing p, it is Cp(η) ≡ η mod P. SinceOFq(T )(η)

is a Dedekind domain OFq(T )(η)/P is a field and it follows that Cp(X)−X has at
most |p| solutions in this field. With Fermat’s small theorem we have that every
element of Fq[T ]/pFq[T ] is a solution for this polynomial. With |Fq[T ]/pFq[T ]| =
|p| we see that these are exactly all solutions. Thus there is an a ∈ Fq[T ] such
that η ≡ a mod P holds. Hence P | F (a) and because of F (a) ∈ Fq[T ] we get
p | F (a). This shows the assertion. �

For the Carlitz cyclotomic polynomials we even have a more accurate descrip-
tion of the exceptions in Theroem 1.6:

Corollary 1.8. All prime divisors of the Carlitz cyclotomic polynomial φm(X)
are ≡ 1 mod m or are divisors of m.

Proof. We have that φm is the polynomial from Theorem 1.6 if we choose
H = {1}. It holds that

D(φm) = mφ(m)
∏
p|m

p−
φ(m)
φ(p) .

This is a result you can find for example in the PhD-Thesis of Alex Samuel Ba-
munoba of the year 2014 (see [2, p. 22]). The proof is based on a known idea
which can be executed for the discriminant of the normal cyclotomic polynomial.
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We saw in theorem 1.6 that all prime divisors of φm are either ≡ 1 mod m,
divisors D(φm) or divisors of m. Since every divisor of D(φm) is also one of m,
the assertion follows. �

With all these tools we can now construct Euclidean polynomial for the arith-
metic progression to l modulo m which fulfills the condition l2 ≡ 1 mod m.

Proposition 1.9. If l2 ≡ 1 mod m then there are infinitely many primes ≡ l
mod m, provided there is at least one.

Proof. The case l ≡ 1 mod m is a direct consequence of Corollary 1.8. Now
assume l 6≡ 1 mod m, but l2 ≡ 1 mod m. This means we can apply Theorems 1.6
and 1.7 for H = {1; l} 6 (Fq[T ]/mFq[T ])∗. Let L be the fixed field of H. Define
the polynomial H(X) := (u−X)(u−Cl(X)) where u ∈ F[T ] will be chosen later.

Let m1, . . . ,ms be the coset representatives of H in (Fq[T ]/mFq[T ])∗. If we
choose u such that all H(Cmi(λm)) pairwise distinct, we get that the Cmi(λm) are
all the conjugates of λm and it is L = Fq(T )(H(λm)). Note that we only exclude
finitely many options for u this way since there are only finitely many equations
of the form H(Cmi(λm)) = H(Cmj (λm)). We apply now Theorem 1.6 on H with
η = H(λm) and get an F ∈ Fq[T ][X] for which almost all prime divisors are
≡ 1 mod m or≡ l mod m. We even can give such an F explicitly by constructing
it in the same way as in the proof for Theorem 1.6:

F (X)2 =
∏

gcd(a,m)=1

(X − (u− Ca(λm))(u− Cla(λm)))

Note that we squared F since every conjugate appears twice: For every a with
gcd(a,m) = 1 is also la co-prime to m. Furthermore we see that if we write
l2 = km+ 1 for a k ∈ Fq[T ] then the following holds:

Cl2a(λm) = CaCkm+1(λm) = Ca(Ckm + C1)(λm) = Ca(λm)

Therefore the factors for a and la are the same, hence F (X) is the product where
every of these factors appears exactly once.

One sees that it is F (0) = φm(u). We want now to choose u such that
F (0) = φm(u) ≡ 1 mod m holds. To do this we use a result which can be found,
for example, by Sangtae Jeong (see [6, p. 28] or also [2, p. 19]): For the monic
polynomial m ∈ Fq[T ] holds

φm(0) =


0 if m = 1

p if m = pe for p prime and e > 1

1 otherwise.

The case m = 1 is already excluded. If m = pe choose u = km + 1 with a
k ∈ Fq[T ] such that it is not one of the above excluded options. Otherwise
choose u = km with a 0 6= k ∈ Fq[T ] and again such that it is not one of the
above excluded options. Since φm is an Eisenstein polynomial at p m = pe
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(see [8, p. 205]) it is clear that then F (0) = φm(u) ≡ 1 mod m. With corol-
lary 1.8 we know that every prime divisor of φm is either a divisor of m or
≡ 1 mod m. It follows that every prime divisor of φm(u) = F (0) has to be
≡ 1 mod m.

Now choose a prime p ∈ Fq[T ] such that p ≡ l mod m and such that it does
not divide the discriminant D(F ) of F . With Theorem 1.7 there exists a b ∈ Fq[T ]
with p | F (b). We can even choose b such that p2 - F (b). Assume that p2 | F (b),
then we have

F (b+ p) ≡ F (b) + pF ′(b) ≡ pF ′(b) mod p2.

Since p - D(F ) it follows that F has no double roots modulo p and thus F ′(b) 6≡ 0
mod p. So F (b) ≡ 0 implies F (b + p) 6≡ 0 mod p2. Hence in this case we can
exchange b by b+ p and get a b with the desired property.

Assume now that there are only finitely many primes ≡ l mod m and denote
them by p = p1, p2, . . . , pt. Further let q1, . . . , qr be the prime divisors of D(F )
and set

Q := p2p3 . . . ptq1 . . . qr.

With the chinese remainder theorem for function fields (see [8, p. 3]) there exists
a c ∈ Fq[T ] such that

c ≡ b mod p2

c ≡ 0 mod mQ.

Hence it is also

F (c) ≡ F (b) mod p2

F (c) ≡ F (0) mod mQ.

From theorem 1.6 we see the only prime divisors of F are these which divide m,
divide the discriminant D(F ) of F or are ≡ 1, l mod m.

Since F (0) = φm(u) is only divisible by primes ≡ 1 mod m we have that F (c)
is only divisible by primes ≡ 1 mod m and p1 = p ≡ l mod m. With p2 - F (c)
follows F (c) ≡ l mod m but at the same time F (c) ≡ F (0) ≡ 1 mod m holds.
This is a contradiction to l 6≡ 1 mod m. The assertion follows. �

We were now able to provide a method to prove an analogue to the prime
number theorem of Dirichlet without tools of Analysis if we take the assumption
of l2 ≡ 1 mod m.

2. Limits of this method

We want to show that such an Euclidean polynomial exists exactly for the arith-
metic progressions looked at in the first part of this work. Murty himself was able
to show such limits in the case of Z. Keith Conrad was able to prove this result
with some other methods than Murty. The following ideas are based on some of
Conrad’s work (see [4]).
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For the function field extensionK/Fq(T ) and a polynomial F ∈ Fq[T ][X] define
the sets

Spl1(F ) : = {p ∈ Fq[T ] | ∃n ∈ Fq[T ] : p | F (n)}
= {p ∈ Fq[T ] | F (X) has a factor of degree modulo p}

and

Spl1(K) : =
{
p ∈ Fq[T ] | there is a prime ideal P ∈ K

with P | p and f(P | p) = 1
}
.

Additionally define for m ∈ Fq[T ] the sets

S1(m,F ) : =
{
b ∈ (Fq[T ]/mFq[T ])∗ | p ≡ b mod m

for infinitely many p ∈ Spl1(F )
}
,

S1(m,K) : =
{
b ∈ (Fq[T ]/mFq[T ])∗ | p ≡ b mod m

for infinitely many p ∈ Spl1(K)
}
.

For irreducible F and a root θ of F the sets Spl1(F ) and Spl1(Fq(T )(θ)) coincide,
with finitely many exceptions (if OFq(T )(θ) 6= Fq[T ][θ]). Hence it is S1(m,F ) =
S1(m,Fq(T )(θ)). (See [9, p. 86])

In the following proof we need results for the so-called Frobenius automor-
phism and the Dirichlet density. The big part of these results are the same as the
ones in the case of number fields. One can find them in the work of Rosen (see
[8, S. 115–144]).

Lemma 2.1. For every function field extension K/Fq(T ) is S1(m,K) 6
(Fq[T ]/mFq[T ])∗. Here S1(m,K) is the image of the restriction mapping

Gal(K(λm)/K)→ Gal(Fq(T )(λm)/Fq(T )).

Proof. First we classify the congruence classes of which S1(m,K) is consisting
of. We show:

S1(m,K) = {r ∈ (Fq[T ]/mFq[T ])∗ | r ∈ Spl1(K) and r ramifies not in K(λm)}
(2.1)

Here the condition on r is to be understood that r is in one of the congruence
classes of (Fq[T ]/mFq[T ])∗.

One inclusion is easy to see: Each congruence class in S1(m,K) contains in-
finitely many primes of Spl1(K) and such a class contains at least one prime which
can be chosen as representative which does not ramify in K(λm). This is be-
cause there are only finitely many primes ramifying in K(λm)/K (see for example
[8, S. 87]).
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Now for the other inclusion: Let r ∈ Spl1(K) and r not ramifying in K(λm).
We will show that infinitely many p ∈ Spl1(K) such that p ≡ r mod m exist.

Choose R ∈ K with R | r and f(R | r) = 1. Since r does not ramify in K(λm)
we have that R does not ramify in K(λm), too. Therefore we get the Frobenius
element

σ = FrR(K(λm)/K) ∈ Gal(K(λm)/K),

which, restricted to Fq(T )(λm), matches σr which again can be identified with the
residue class of r in (Fq[T ]/mFq[T ])∗. We denote this in the following way:

σ |Fq(T )(λm)≡ σr ≡ r mod m (2.2)

With the Chebotarev density theorem (see [8, p. 125]) we have for the extension
K(λm)/K that there are infinitely many P ∈ K with the following properties:

• P is unramified in K(λm)
• FrP(K(λm)/K) = σ
• fP(K/Fq(T )) = 1

The last condition follows from the positive density of the P with Frobenius σ
and the density of 1 of the primes P ∈ K(λm) residue degree 1. Latter is gotten
by the definition of the Dirichlet density for primes in K, since the set

{P ∈ K |P prime in K, fP(K/Fq(T )) = k}

for k > 1 has a density of 0 (see proof of Proposition 9.13 in [8, p. 123–125]).
Set pFq[T ] := P ∩ Fq[T ] which lies in Spl1(K) by the construction of the P,

hence it is also
σ |Fq(T )(λm)≡ p mod m. (2.3)

By comparing (2.2) and (2.3) we get p ≡ q mod m.
By that (2.1) is verified and it is left to show that S1(m,K) is the image of

Gal(K(λm)/K)→ Gal(Fq(T )(λm)/Fq(T )). Denote this image by F .
Choose a congruence class of S1(m,K) and denote it by [r]. In (2.2) we saw that

[r] identifies with the restriction of the Frobenius FrR(K(λm)/K) to Fq(T )(λm)
with R | r and f(R | r) = 1. Hence it is [r] ∈ F and therefore S1(m,K) ⊆ F .

Now pick b ∈ H and σ |Fq(T )(λm)≡ b mod m with σ ∈ Gal(K(λm)/K). It
follows, again with the Chebotarev density theorem, that σ = FrP(K(λm)/K) for
infinitely many P ∈ K with fP(K/Fq(T )) = 1. Set again pFq[T ] := P ∩ Fq[T ]
with which p ∈ Spl1(K). Then, as seen above,

σ |Fq(T )(λm)≡ σp ≡ p mod m,

hence p ≡ b mod m. Since there are infinitely many such p we get b ∈ S1(m,K).
�

With this we are now able to prove that there is actually only one Euclidean
polynomial for the arithmetic progression l modulom if we assume l2 ≡ 1 mod m.
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Theorem 2.2. Let F ∈ Fq[T ][X] be such that it has infinitely many prime divisors
≡ l mod m and |P(F )\{p ∈ Fq[T ] | p prime,p ≡ 1 mod m or p ≡ l mod m} | <
∞. Then l2 ≡ 1 mod m.

Proof. Without loss of generality we can assume that F is irreducible. Otherwise
for every p ∈ Fq[T ] with p | F = F1F2 holds then p | F1 or p | F2. Therefore F1

or F2 would also fulfill the conditions of the theorem. By proceeding further on in
this way we can finally reach a irreducible polynomial.

Using theorem 2.1 we get S1(m,F ) 6 (Fq[T ]/mFq[T ])∗ with {l} ⊆ S1(m,F ) ⊆
{1, l}, here the field K in theorem 2.1 is the field extension of Fq(T ) together with
a root of F . Hence {1, l} has to be a subgroup in (Fq[T ]/mFq[T ])∗. This implies
l2 ≡ 1 mod m immediately. �

We see that also in the case of Fq[T ] this method of Murty has its limits.
At this point one can suggest some problems in connection to this paper. In

number fields there are generalisations of this method, which can be found in the
works of Murty and Conrad. They considered a Galois number field extension
L/K. There an arithmetic progression is replaced by elements σ ∈ Gal(L/K) and
a prime ideal of L belongs to σ if σ is its Frobenius. They show that in this context
an Euclidian polynomial for σ exists iff σ ist of order 2. In the same way one could
consider arbitrary Galois function field extensions and try to find an Euclidean
proof there.

Another interesting problem would be to ask for an Euclidean proof for poly-
nomial rings in more than one variable. But already Lemma 1.3 could not be
proven in the same way since the results of Becker and Maclane show that there
are extensions which are not simple in that case. Furthermore one would need a
corresponding object to the Carlitz cyclotomic polynomial for polynomial rings in
multiple variables.

References

[1] S. Bae, S.-G. Hahn, On the ring of integers of cyclotomic function fields, Bull.
Korean Math. Soc. 29 (1992), 153–163.

[2] A.S. Bamunoba, Arithmetic of Carlitz polynomials, https://scholar.sun.ac.za/
handle/10019.1/95850 [17.02.2016].

[3] M.F. Becker, S. Maclane, The minimum number of generators for inseparable
algebraic extensions, http://projecteuclid.org/download/pdf\_1/euclid.bams/
1183502442 [17.02.2016].

[4] K. Conrad, Euclidean proofs of Dirichlet’s theorem, http://www.math.uconn.
edu/~kconrad/blurbs/gradnumthy/dirichleteuclid.pdf [17.02.2016].

[5] B. Hornfeck, Primteiler von Polynomen, J. Reine Angew. Math. 243 (1970),
120.

[6] S. Jeong, Resultants of cyclotomic polynomials over Fq[T ] and applications,
Commun. Korean Math. Soc. 28 (2013), 25–38.

[7] M.R. Murty, N. Thain, Prime numbers in certain arithmetic progressions,
Functiones et Approximatio XXXV (2006), 249–259.



116 Thomas Lachmann

[8] M. Rosen, Number Theory in Function Fields, Springer-Verlag, New York 2002.
[9] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin

Heidelberg 2009.

Address: Thomas Lachmann: TU Graz, Institut für Analysis und Zahlentheorie, 8010 Graz,
Steyrergasse 30/II, Austria.

E-mail: Lachmann@math.tugraz.at
Received: 27 March 2016; revised: 31 January 2017


