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IMPROVED EXPLICIT BOUNDS FOR SOME FUNCTIONS
OF PRIME NUMBERS

Sadegh Nazardonyavi

Abstract: Using recent explicit asymptotic zero–free region and computations of zeros of the
Riemann zeta function, obtained by Mossinghoff & Trudgian and Gourdon, respectively, we give
an improvement for estimates of some functions related to distribution of primes, such as prime
counting function, intervals containing at least one prime, Chebyshev’s ψ and ϑ functions.
Keywords: Chebyshev’s function, prime number, Riemann hypothesis, product involving prime
number.

1. Introduction and Preliminaries

Let ϑ(x) and ψ(x) be the first and second Chebyshev’s functions respectively,
defined by

ϑ(x) =
∑
p6x

log p, ψ(x) =
∑
p,m
pm6x

log p.

In 1852 Chebyshev ([2], p. 379) proved in a beautiful way that for all x > 1

ϑ(x) <
6

5
A0x−A0x

1
2 +

5

4 log 6
log2 x+

5

2
log x+ 2,

ϑ(x) > A0x−
12

5
A0x

1
2 − 5

8 log 6
log2 x− 15

4
log x− 3,

where A0 = log(21/231/351/5301/30) ≈ 0.92129.
The following explicit formula which is due to Riemann gives a link between

nontrivial zeros of the Riemann zeta function ζ and Chebyshev’s ψ function (see
[12, p. 298] and [9]):

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− 1

x2
), (x > 1, x 6= pm), (1)
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where ρ runs over the nontrivial zeros of ζ function,
∑
ρ
xρ

ρ = limT→∞
∑
|γ|6T

xρ

ρ .

The explicit formula (1) was proved by H. von Mangoldt in 1895.
As we note in formula (1), the numerical verification of the Riemann hypothesis

(RH) and finding smaller zero–free regions for the Riemann zeta function (and
L-functions in general) are of great importance in the subject of distribution of
prime numbers; see Table 1 for a historical review of computations of zeros of
the Riemann zeta function. Following the classical result of Hadamard and de la

Table 1. Numerical verification of zeros of the zeta function ([1], p. 39)

Year Number of zeros Computed by
1859 (approx) 1 (or 3) B. Riemann
1903 15 J. P. Gram
1914 79 R. J. Backlund
1925 138 J. I. Hutchinson
1935 1041 E. C. Titchmarsh
1953 1104 A. M. Turing
1956 15,000 D. H. Lehmer
1956 25,000 D. H. Lehmer
1958 35,337 N. A. Meller
1966 250,000 R. S. Lehman
1968 3,500,000 J. B. Rosser, et al.
1977 40,000,000 R. P. Brent
1979 81,000,001 R. P. Brent
1982 200,000,001 R. P. Brent, et al.
1983 300,000,001 J. van de Lune, H. J. J. te Riele
1986 1,500,000,001 J. van de Lune, et al.
2001 10,000,000,000 J. van de Lune(unpublished)
2004 900,000,000,000 S. Wedeniwski (unpublished)
2004 1013 X. Gourdon & P. Demichel (unpublished)
2011 3.0610046× 1010 D. J. Platt [18]

Vallée-Poussin that ζ(s) does not vanish on the line <s = 1 by giving some implicit
zero–free regions, Rosser and Schoenfeld gave an explicit zero–free region for the
Riemann zeta function. More precisely, they determined that the first 3 502 500
zeros lie on the critical line <s = 1/2 and proved that there are no zeros of ζ(s)
in the region

σ > 1− 1

R1 log |t/17|
, |t| > 21, (2)

where R1 = 9.645 908 801 (see [23]). Using the verification of the RH up to
3 502 500–th zero and (2) Rosser and Schoenfeld gave explicit error terms in prime
number theorem (PNT). Later Schoenfeld [24] proved some necessary results for
the truth of the RH in terms of certain inequalities related to Chebyshev’s func-
tions. Moreover, he established the following estimate unconditionally.
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Theorem 1.1 ([24], Th. 11). Let

ε1(x) =

√
8

17π
X1/2e−X , X =

√
log x/R1,

and R1 be defined as in (2). Then

|ψ(x)− x| < xε1(x), (x > 17), |ϑ(x)− x| < xε1(x), (x > 101).

In recent years several results appeared on the improvement of zero-free region
for the Riemann zeta function and its applications, for instance see the references
in Table 1. There are some zero–free regions of different type due to Littlewood,

Table 2. Zero–free regions of the Riemann zeta function

Year R0 Computed by
1899 34.82 de la Vallée Poussin [3]
2002 8.463 K. Ford [8]
2005 5.69693 H. Kadiri [13]
2014 5.68371 Jang, Woo-Jin; Kwon, Soun-Hi [27]
2015 5.573412 M. Mossinghoff; T. Trudgian [15]

Chudakov and Ford [8]. For example Ford gives the following explicit zero–free
region

β > 1− 1

57.54(log |t|)2/3(log log |t|)1/3
, |t| > 3.

In this paper we use the zero–free region obtained by Mossinghoff and Trudgian
[15] with R0 = 5.573412. This zero-free region is better than the one defined in
(2) for |t| > 822. Note that the zero-free region obtained by Ford is better than
Mossinghoff and Trudgian’s when |t| > exp(10152).
Recall that

N(T ) = #{ρ = β + iγ : ζ(ρ) = 0, 0 < β < 1, 0 < γ 6 T},

F (T ) =
T

2π
log

T

2π
− T

2π
+

7

8
.

The other quantity that is involved in estimating explicit bounds in Chebyshev’s
function is the upper bound for the difference |N(T )−F (T )|, which is denoted by
R(T ). Rosser [20] proved that |N(T )− F (T )| < R(T ) for T > 2, where

R(T ) = 0.137 log T + 0.443 log log T + 1.588.

Recently Trudgian [25] improved this upper bound and showed that

R(T ) = 0.112 log T + 0.278 log log T + 2.510 +
0.2

T
. (3)
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Remark 1.2. During the revision of this paper we found that there is an im-
provement on R(T ) in [17], however we follow (3).

We note that the latter error term R(T ) is less than Rosser’s for T > exp(18).
In particular for

A = 2445999556030.342362641 > e28.525

which is almost the height of the 1013–th zero of the Riemann zeta function.

2. Improved explicit bounds for Chebyshev’s Functions

In this section we shall use recent developments involving the number of zeros of
the Riemann zeta function, i.e., verification of RH up to 1013-th zero by Gourdon
[10], explicit zero–free region for the Riemann zeta function given by Mossinghoff
and Trudgian [15] and the error term in (3). In the proofs of Theorems 2.3 and
2.4 we exploit the following lemma.

Lemma 2.1 ([15], Th. 1). The Riemann zeta function ζ(s) with s = σ+ it does
not vanish in the region

σ > 1− 1

R0 log |t|
, (|t| > 2, R0 = 5.573412).

2.1. Improved explicit bounds for large values of x

Using these two recent results we give better explicit bounds for Chebyshev’s
functions. The proofs of theorems in this section are essentially similar to those of
Schoenfeld [24] (and extensive calculations was done by Mathematica), therefore
we omit the proofs. To see detailed proofs and other results we refer the reader
to [16].

Recall that N(T ), F (T ) and R(T ) are defined as in Section 1. Choose A such
that F (A) = 1013. Then

A = 2 445 999 556 030.342 362 641, (4)
logA = 28.525 474 972.

Let Si(m, δ) for i = 1, 2, 3, 4 be as in page 256 of [22], see also [16]. The following
lemma is the basis of finding estimates for Chebyshev’s function in the proofs of
Rosser and Schoenfeld’s results in [22], [24].

Lemma 2.2 ([22], Lemma 8). Let T1 and T2 be non-negative real numbers. Let
m be a positive integer. Let x > 1 and 0 < δ < (x− 1)/(xm). Then

1

x

∣∣∣ψ(x)−
{
x− log 2π − 1

2
log

(
1− 1

x2

)} ∣∣∣
6

1√
x
{S1(m, δ) + S2(m, δ)}+ S3(m, δ) + S4(m, δ) +

mδ

2
.



Improved explicit bounds for some functions of prime numbers 11

For x > 1 let

X =

√
log x

R0
, R0 = 5.573412.

Note that if we replace “17” with “1” in the proof of Theorem 1.1 and adapt the
proof whenever it is necessary, we derive:

Theorem 2.3. Let
ε0(x) =

√
8/πX1/2e−X .

Then
|ψ(x)− x| < xε0(x), (x > 3)

and
|ϑ(x)− x| < xε0(x), (x > 3).

Note also that the error term in Theorem 1.1 has a coefficient
√

8/(17π), which
is less than

√
8/π of Theorem 2.3 and therefore gives a better bound for lower

values of x. However, since we employed a smaller zero–free region, a better bound
will be obtained for x > exp(234). We mention here that the above theorem is
quite similar to Corollary 1.2 of [6]. The idea of the proofs of results [6] and here are
inspired by Rosser and Schoenfeld papers in the subject with slight modification
and some update.

2.2. Improved explicit bounds for moderate values of x

In Theorem 2.3, the role of the verified height for RH –the number A defined in (4),
and coefficients in (3) was not vigorous, but it will be more effective in estimating
Chebyshev’s function for moderate values of x using the next theorem. Let

T0 =
1

δ

(
2Rm(δ)

2 +mδ

)1/m

,

G(D) =
∑

0<γ6D

1

(γ2 + 1/4)1/2
− 1

4π

{(
log

D

2π
− 1

)2

+ 1

}

+
1

D

{
0.112 logD + 0.278

(
log logD +

1

logD

)
+ 1.265 +

0.2

D
−N(D)

}
,

C(D) = 4π

(
0.112 +

0.278

logD

)
,

φm(y) = y−m−1 exp

(
− X2

log y

)
,

q(y) =
0.112 log y + 0.278

y log y log(y/2π)
.

We can give exactly the same theorem as [24, Lemma 9∗], but replaced with A
defined in (4).
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Theorem 2.4. Let T0 be defined as above and satisfy T0 > D, where 2 6 D 6 A.
Let m be a positive integer and let δ > 0. Then

S1(m, δ) + S2(m, δ) < Ω∗1,

where

Ω∗1 =
2 +mδ

4π

{(
log

T0
2π

+
1

m

)2

+
1

m2
+ 4πG(D)− mC(D)

(m+ 1)T0

}

and G(D) and C(D) are defined as above and

Ω2 = 2
Rm(δ)

δm

{
(0.159155)

∫ ∞
A

φm(y) log
y

2π
dy + (2R(Y )φm(Y )−R(A)φm(A))

}
,

where 0.159155 = 1/2π + q(A) and Y = max{A, exp
√
b/(m+ 1)R0}. If b > 1/2

and 0 < δ < (1− e−b)/m, then

|ψ(x)− x| < εx, (x > eb),

where
ε = Ω∗1e

−b/2 + Ω2 +
mδ

2
+ e−b log 2π.

Moreover, if

Ω∗3 =
1

2π
h3(T2) + e3(T2), T2 > A,

where

h3(T ) =
2 +mδ

2

∫ T

A

φ0(y) log
y

2π
dy +

Rm(δ)

δm

∫ ∞
T

φm(y) log
y

2π
dy

and

e3(T ) = q(T )

{
−2 +mδ

2

∫ T

A

φ0(y) log
y

2π
dy +

Rm(δ)

δm

∫ ∞
T

φm(y) log
y

2π
dy

}

+R(T )φ0(T )

{
2 +mδ + 2

Rm(δ)

(δT )m

}
,

then
|ψ(x)− x| < ε∗x, (x > eb),

where
ε∗ = Ω∗1e

−b/2 + Ω∗3 +
m

2
δ + e−b log 2π.

Table 3 is computed according to the above Theorem with R0 = 5.573412 and
error term (3).
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3. Improved explicit bounds for ϑ(x) and distribution of primes

Using Theorem 2.4 we get a slightly better estimate for the first Chebyshev’s
function (cf. [4, Th. 5.2]).

Proposition 3.1. Let xk > 8 · 1011. Then

|ϑ(x)− x| < η′k
x

logk x
, (x > xk),

where

k 0 1 2 3 4
η′k 0.00002316833 0.000648713234 0.0181639705534 0.5085911755 1125

Proof. Let eb 6 x < eb+1. Appealing to [4, Proposition 3.1] treating ϑ(x)− x =
ϑ(x)− ψ(x) + ψ(x)− x in the following way

ϑ(x)− x < −0.9999
√
x+ xε =

(
−0.9999

logk x√
x

+ ε logk x

)
x

logk x
(5)

and

ϑ(x)− x > −1.00007
√
x− 1.78 3

√
x− xε

=

(
−1.00007

logk x√
x
− 1.78

logk x
3
√
x2
− ε logk x

)
x

logk x
. (6)

To estimate η′k, it is enough to choose x = eb+1 in each parenthesis above. For
instance, to estimate η′1 in the interval [8 · 1011, e28), we have ε = 0.0000223228
(see calculations below Table 3), and

ϑ(x)− x <
(
−0.9999

28√
e28

+ 0.0000223228(28)

)
x

log x
< 0.000601759

x

log x
, (7)

ϑ(x)− x >
(
−1.00007

28√
e28
− 1.78

28
3
√
e2(28)

− 0.0000223228(28)

)
x

log x

> −0.000648713
x

log x
. (8)

We choose the maximum of absolute values of (7) and (8) for this interval to get
0.000648713. Continuing this process for all intervals [eb, eb+1) with b = 28, 29, . . .
up to x = e5100, we get the desired results. More precisely, to complete the table
above for each k = 1, 2, 3, 4, we did as follows:

• we fill the very beginning column with b = 28, 29, . . . , 5100 quite similar to
Table 3, with extra rows when it is necessary,
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• corresponding to each b–row find the maximum of absolute values of the
parentheses in (5) and (6) for x = eb+1,

• compare all the values in each column correspond to η′k, k = 1, 2, 3, 4 and
write the maximum of that column in our table above.

For x > exp(5100) the maximum of absolute values of (5) and (6) for all k =
1, 2, 3, 4, when ε0 is replaced by ε, is decreasing and strictly less than the values
given in the table above. �

Remark 3.2. The number 5100 in Table 3 is chosen as the last number, since
for x > e5100 we obtain ε0 < ε, therefore we can apply then Theorem 2.3. The
numbers xk in the proposition above may be determined explicitly, and they are
perhaps less than 8 · 1011.

Applying the previous proposition, we obtain estimates for π(x).

Proposition 3.3. Let x > 8 · 1011. Then

π(x) <
x

log x

(
1 +

1.0794

log x

)
,

π(x) <
x

log x

(
1 +

1

log x
+

2.265

log2 x

)
.

Proof. By Abel’s summation formula

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(y)

y log2 y
dy

<
x

log x

(
1 +

η′k
logk x

)
+

∫ x

2

1

log2 y

(
1 +

η′k
logk y

)
dy, (k = 1, 2). (9)

We are looking for inequality of this type:

π(x) < A2(x), (x > 8 · 1011),

where
A2(x) =

x

log x

(
1 +

c

log x

)
,

and c is a constant, which will be determined in the following. Let A1(x) be the
right-hand side of (9). Therefore it is enough to have A1(x) < A2(x) for x > 8·1011.
To have this inequality it is enough to have A1(x0) 6 A2(x0) with x0 = 8 · 1011

and A′1(x) < A′2(x) for x > x0. Indeed,

A′1(x) =
1

log x
+

2η′kx

logk+1 x
− η′k(−1 + x+ kx)

logk+2 x

and
A′2(x) =

1

log x
+
−1 + c

log2 x
− 2c

log3 x
.
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We apply the case η′1 in Proposition 3.1, and get for x > 8 · 1011

π(x) <
x

log x

(
1 +

1.0794

log x

)
or if we let

A2(x) =
x

log x

(
1 +

1

log x
+

c ′

log x

)
,

by a similar method we arrive at

π(x) <
x

log x

(
1 +

1

log x
+

2.265

log2 x

)
. �

Note that if the values of the function li(x) can be calculated in some way, we
could use the following formula

li(x)− li(2) =

∫ x

2

1

log y
dy =

[
y

log y
+

y

log2 y
+

2!y

log3 y
+

3!y

log4 y
+ · · ·+ j!y

logj+1 y

]x
2

+ (j + 1)!

∫ x

2

1

logj+2 y
dy, (j = 0, 1, . . .)

to calculate the integral in (9) instead of the method of differential calculus which
we applied above.

Other interesting problems in the realm of distribution of primes are determin-
ing intervals that contain at least one prime number and the difference between
consecutive prime numbers see [19], [14] and [5] for more details about effective
intervals containing primes and primes in arithmetic progressions. In this paper
we shall concern with the explicit bounds. In the next proposition we shall give
an upper bound for the length of intervals containing at least one prime.

Proposition 3.4. For all x > 492 227, there exists at least one prime p such that

x < p 6 x

(
1 +

3

100 log2 x

)
.

Note that 3/100 can be refined to 0.00290013. We informed later about the
following result of Trudgian and therefore we omitted our proof which was quite
similar to his. Note also that in our proof we did a direct computation for 492 227 6
x < 5 402 962. Trudgian [26] gives a shorter interval but for higher values of x. He
proves that for all x > 2 898 242, there is a prime in the interval[

x, x

(
1 +

1

111 log2 x

)]
One can derive the following formula for sum of reciprocal over primes using Abel’s
summation formula by (see [21, p. 74])∑
p6x

1

p
− log log x−B =

ϑ(x)− x
x log x

−
∫ ∞
x

{ϑ(t)− t}
(

1

t2 log2 t
+

1

t2 log t

)
dt, (10)
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where B is Meissel-Mertens constant (see [11, p. 23]) defined by

B = γ +
∑
p

{
log

(
1− 1

p

)
+

1

p

}
≈ 0.261497. (11)

Let
|ϑ(x)− x| < η′k

x

logk x
, (x > xk).

Then using (10) one can prove the following proposition.

Proposition 3.5. Let η′k and xk be defined as in Proposition 3.1. Then∣∣∣∣∣∣
∑
p6x

1

p
− log log x−B

∣∣∣∣∣∣ < η′k
k logk x

+

(
1 +

1

k + 1

)
η′k

logk+1 x
, (x > xk). (12)

A similar inequality can be found in the proofs of [4, Th. 6.10] and [7, Th. 5.6].

3.1. Explicit estimates for
∏

p6x(1 + 1/p)

Before starting the argument to prove the next proposition and its corollary, we
give the following lemma. Recall that

1 + t < et <
1

1− t
, (t < 1). (13)

Lemma 3.6. Let c1, c2 and k be fixed positive numbers. Then there exists a posi-
tive number x0 depending on c1, c2 and k such that for all x > x0 we have

exp

(
c1

logk x
+

c2
x log x

)
<

1

1− (c1/ logk x)
.

First, we determine some values for which we encounter later. Let

S(x) =
∑
p>x

{
log

(
1 +

1

p

)
− 1

p

}
=

∞∑
n=2

(−1)n−1

n

∑
p>x

1

pn
.

Hence, ∑
p>x

(
1

2p2
− 1

3p3

)
< −S(x) <

∑
p>x

1

2p2
.

Using Abel’s summation formula and estimates for ϑ(x) one obtains∑
p>x

1

2p2
<

1

x log x
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and ∑
p>x

(
1

2p2
− 1

3p3

)
>

1

2x log x
− 5

x log2 x
.

From ∏
p

(
1 +

1

p

)
=
∏
p

(
1− 1

p2

)
/
∏
p

(
1− 1

p

)
and definition of B in (11) we have

∑
p

{
log

(
1 +

1

p

)
− 1

p

}
= log

6

π2
+ γ −B.

Therefore,

∑
p6x

1

p
−B =

∑
p6x

log

(
1 +

1

p

)
+
∑
p>x

{
log

(
1 +

1

p

)
− 1

p

}
− log

6

π2
− γ.

Now by Proposition 3.1∣∣∣∣∣∣
∑
p6x

log

(
1 +

1

p

)
+ S(x)− log

6

π2
− γ − log log x

∣∣∣∣∣∣ < Ck(x), (14)

where Ck(x) is the right-hand side of (12). Expanding terms inside absolute value
(14), we get

∑
p6x

log

(
1 +

1

p

)
< log

6

π2
+ γ + log log x+ Ck(x)− S(x), (15)

∑
p6x

log

(
1 +

1

p

)
> log

6

π2
+ γ + log log x− Ck(x)− S(x). (16)

Note that −S(x) < 1/x log x and it is less than the order of Ck(x). We take
exponential of both sides of (15) and (16) and use Lemma 3.6 to derive the following
proposition.

Proposition 3.7. Let xk be as in Proposition 3.1. Then for all x > xk we have

∏
p6x

(
1 +

1

p

)
<

6eγ

π2

1

1− Ck(x)
log x,

∏
p6x

(
1 +

1

p

)
>

6eγ

π2
{1− Ck(x)} log x.
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Second proof of Proposition 3.7. Apart from the argument explained before
Proposition 3.7 we can treat the proof of this proposition in a different way. In
this argument we do not use the estimates for

∏
p(1 − 1/p2),

∏
p(1 − 1/p) or∏

p6x(1− 1/p).
Recall that for t > 0 we have

1

t+ 1/2
< log

(
1 +

1

t

)
<

1

2

(
1

t
+

1

t+ 1

)
.

Let

∑
p6x

{
log

(
1 +

1

p

)
− 1

2

(
1

p
+

1

p+ 1

)}
= −ax,

∑
p6x

{
log

(
1 +

1

p

)
− 1

p+ 1/2

}
= bx.

It is clear that

ax + bx =
1

2

∑
p6x

(
1

p
− 2

p+ 1/2
+

1

p+ 1

)
.

Therefore,

log
∏
p6x

(
1 +

1

p

)
=
∑
p6x

log

(
1 +

1

p

)
=

1

2

∑
p6x

(
1

p
+

1

p+ 1

)
− ax

=
∑
p6x

1

p
− 1

2

∑
p6x

1

p(p+ 1)
− ax

< log log x+B + Ck(x)− 1

2

∑
p6x

1

p(p+ 1)
− ax,

log
∏
p6x

(
1 +

1

p

)
=
∑
p6x

log

(
1 +

1

p

)
=
∑
p6x

1

p+ 1/2
+ bx

=
∑
p6x

1

p
− 1

2

∑
p6x

1

p(p+ 1/2)
+ bx

> log log x+B − Ck(x)− 1

2

∑
p6x

1

p(p+ 1/2)
+ bx.

Taking exponential of both sides in each inequality and using (13) we get the
bounds in the proposition.
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Extending this argument we arrive at

log
∏

x<p6y

(
1 +

1

p

)
< log log y − log log x+ Ck(x) + Ck(y)

− 1

2

∑
x<p6y

1

p(p+ 1)
− (ay − ax)

and

log
∏

x<p6y

(
1 +

1

p

)
> log log y − log log x− Ck(x)− Ck(y)

− 1

2

∑
x<p6y

1

p(p+ 1/2)
+ (by − bx),

which are slightly better than the bounds in Corollary 3.8. However, for simplicity,
we used the estimates just before Proposition 3.7.

We conclude this paper by the following corollary with a similar proof for the
above proposition. Note that x0 in the second inequality of the following corollary
is not necessarily equal to xk in Proposition 3.1 and might be larger than xk,
however we did not compute x0 here.

Corollary 3.8. We have

∏
x<p6y

(
1 +

1

p

)
<

log y

log x

{
1

1− Ck(x)− Ck(y)

}
, (x > xk)

and ∏
x<p6y

(
1 +

1

p

)
>

log y

log x
{1− Ck(x)− Ck(y)} , (x > x0 > xk),

where xk depends on η′k.

Remark 3.9. In Theorem 2.4 we take D = 2500. For b = log(8 · 1011) ≈ 27.4079,
we have m = 1, δ = 8.99 · 10−8 and ε = 2.8477 · 10−5.

For b = 28, we have m = 1, δ = 7.21 · 10−6 and ε = 2.23228 · 10−5.
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Table 3. |ψ(x)− x| < xε, (x > eb), for Theorem 2.4

b m δ ε b m δ ε

18.42 1 4.77(-4) 1.14768(-3) 900 22 2.07(-12) 2.38363(-11)
18.43 1 4.75(-4) 1.14315(-3) 950 21 2.15(-12) 2.34913(-11)
18.44 1 4.73(-4) 1.13863(-3) 1000 21 2.11(-12) 2.31553(-11)
18.45 1 4.71(-4) 1.13413(-3) 1050 21 2.08(-12) 2.28241(-11)
18.5 1 4.61(-4) 1.11188(-3) 1100 20 2.14(-12) 2.24818(-11)
18.7 1 4.22(-4) 1.02704(-3) 1150 20 2.11(-12) 2.21454(-11)
19.0 1 3.70(-4) 9.11453(-4) 1200 20 2.08(-12) 2.18145(-11)
19.5 1 2.96(-4) 7.46327(-4) 1250 19 2.15(-12) 2.14786(-11)
20 1 2.37(-4) 6.10463(-4) 1300 19 2.11(-12) 2.11424(-11)
21 1 1.52(-4) 4.07193(-4) 1350 19 2.08(-12) 2.08104(-11)
22 1 9.68(-5) 2.70582(-4) 1400 19 2.05(-12) 2.04844(-11)
23 1 6.17(-5) 1.79185(-4) 1450 18 2.12(-12) 2.01427(-11)
24 1 3.93(-5) 1.18300(-4) 1500 18 2.09(-12) 1.98118(-11)
25 1 2.51(-5) 7.79136(-5) 1550 18 2.05(-12) 1.94848(-11)
26 1 1.61(-5) 5.12454(-5) 1600 17 2.13(-12) 1.91489(-11)
27 1 1.06(-5) 3.37337(-5) 1650 17 2.09(-12) 1.88163(-11)
28 1 7.21(-6) 2.23228(-5) 1700 17 2.05(-12) 1.84905(-11)
29 1 5.25(-6) 1.49678(-5) 1750 17 2.02(-12) 1.81689(-11)
30 2 1.26(-6) 9.41361(-6) 1800 16 2.10(-12) 1.78269(-11)
35 2 1.22(-7) 1.05465(-6) 1850 16 2.06(-12) 1.74996(-11)
40 3 7.81(-9) 1.16281(-7) 1900 16 2.02(-12) 1.71784(-11)
45 4 5.59(-10) 1.23361(-8) 1950 15 2.11(-12) 1.68432(-11)
50 7 3.44(-11) 1.30116(-9) 2000 15 2.06(-12) 1.65151(-11)
75 26 2.20(-12) 2.96551(-11) 2100 15 1.98(-12) 1.58784(-11)
100 26 2.18(-12) 2.94369(-11) 2200 14 2.03(-12) 1.52134(-11)
150 26 2.15(-12) 2.90426(-11) 2300 13 2.08(-12) 1.45634(-11)
200 26 2.12(-12) 2.86726(-11) 2400 13 1.99(-12) 1.39241(-11)
250 25 2.18(-12) 2.83103(-11) 2500 12 2.04(-12) 1.32746(-11)
300 25 2.15(-12) 2.79499(-11) 2600 12 1.95(-12) 1.26487(-11)
350 25 2.12(-12) 2.75989(-11) 2700 11 2.00(-12) 1.19999(-11)
400 25 2.10(-12) 2.72546(-11) 3000 10 1.84(-12) 1.01468(-11)
450 24 2.15(-12) 2.69005(-11) 3200 9 1.79(-12) 8.92633(-12)
500 24 2.12(-12) 2.65560(-11) 3500 7 1.78(-12) 7.10311(-12)
550 24 2.10(-12) 2.62153(-11) 3700 6 1.70(-12) 5.95398(-12)
600 23 2.16(-12) 2.58692(-11) 4000 5 1.46(-12) 4.37393(-12)
650 23 2.13(-12) 2.55256(-11) 4500 3 1.06(-12) 2.11979(-12)
700 23 2.10(-12) 2.51874(-11) 4700 2 9.60(-13) 1.44058(-12)
750 22 2.16(-12) 2.48462(-11) 5000 2 5.22(-13) 7.83769(-13)
800 22 2.14(-12) 2.45044(-11) 5050 2 4.72(-13) 7.08228(-13)
850 22 2.10(-12) 2.41467(-11) 5100 2 4.27(-13) 6.39987(-13)
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