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TRACTABILITY OF L2-APPROXIMATION
IN HYBRID FUNCTION SPACES

Peter Kritzer, Helene Laimer, Friedrich Pillichshammer

Abstract: We consider multivariate L2-approximation in reproducing kernel Hilbert spaces
which are tensor products of weighted Walsh spaces and weighted Korobov spaces. We study the
minimal worst-case error eL2−app,Λ(N, d) of all algorithms that use N information evaluations
from the class Λ in the d-dimensional case. The two classes Λ considered in this paper are
the class Λall consisting of all linear functionals and the class Λstd consisting only of function
evaluations.

The focus lies on the dependence of eL2−app,Λ(N, d) on the dimension d. The main results
are conditions for weak, polynomial, and strong polynomial tractability.
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1. Introduction

We consider L2-approximation of functions in certain reproducing kernel Hilbert
spaces H(K), which are embedded into L2([0, 1]d), where K denotes the reproduc-
ing kernel. To be more precise, we approximate the embedding operator

EMBd : H(K)→ L2([0, 1]d), EMBd(f) = f,

and measure the approximation error in the L2-norm. SinceH(K) is a reproducing
kernel Hilbert space it is known (cf. [16, 20]) that there is no loss of generality when
we restrict ourselves to linear approximation algorithms of the form AN,d(f) =∑N
k=1 akLk(f) with coefficients ak ∈ L2([0, 1]d) and continuous linear functionals

Lk on H(K) from a permissible class of information Λ. Here N is the number of
information evaluations.
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We study the problem in the so-called worst-case setting, i.e., we measure the
approximation error of an algorithm AN,d by means of the worst-case error,

eL2−app(AN,d) = sup
f∈H(K)
‖f‖H(K)≤1

‖EMBd(f)−AN,d(f)‖L2([0,1]d).

The N th minimal worst-case error is given by

eL2−app,Λ(N, d) = inf
AN,d

eL2−app(AN,d),

where the infimum is extended over all linear algorithms AN,d using N information
evaluations from the class Λ. We are particularly interested in the dependence of
the N th minimal worst-case error on the dimension d. To study this dependence
systematically we consider the information complexity NL2−app,Λ(ε, d), which is
the minimal number N for which there exists an algorithm using N information
evaluations from the class Λ ∈ {Λall,Λstd} with an error of at most ε.

We would like to avoid cases where the information complexity NL2−app,Λ(ε, d)
grows exponentially or even faster with the dimension d or with ε−1. To quantify
the behavior of the information complexity we use different notions of tractability,
namely strong polynomial tractability, polynomial tractability, and weak tractabil-
ity (we refer to Section 3 for the precise definitions).

The current state of the art of tractability theory is summarized in the three
volumes of the book of Novak and Woźniakowski [16, 17, 18] which we refer to for
extensive information on this subject and further references.

In previous papers, several authors have studied similar approximation prob-
lems in various reproducing kernel Hilbert spaces, see, e.g., [2, 3, 4, 12, 15, 22].
These investigations have in common that the reproducing kernel Hilbert spaces
considered are tensor products of one-dimensional spaces whose kernels are all
of the same type (but maybe equipped with different weights). In the current
paper we consider the case where the reproducing kernel is a product of kernels
of different type. We call such spaces hybrid spaces. Some results on tractabil-
ity in general hybrid spaces can be found in the literature. For example, in [17]
multivariate integration is studied for arbitrary reproducing kernels Kd without
relation to Kd+1. Here we consider as a special instance the tensor product of
Walsh and Korobov spaces. The problem of numerical integration in such spaces
was recently considered in [11]. The study of a hybrid of Korobov and Walsh
spaces could be important in view of functions which are periodic with respect to
some of the components and, for example, piece-wise constant with respect to the
remaining components. Moreover, it has been pointed out by several scientists
(see, e.g., [10, 13]) that hybrid problems may be relevant for certain applications.
Indeed, communication with the authors of [10] and [13] have motivated our idea
for considering function spaces where we may have very different properties of the
elements with respect to different components, as for example regarding smooth-
ness.
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From the analytical point of view, it is very challenging to deal with hybrid
spaces. The reason for this is the rather complex interplay between the different
analytic and algebraic structures of the kernel functions. In the present study we
are concerned with Fourier analysis carried out simultaneously with respect to the
Walsh and the trigonometric function systems. The problem is also closely related
to the study of hybrid point sets which received much attention in recent years
(see, for example, [8, 9]). Hence we also have considerable theoretical interest in
studying this problem.

The paper is organized as follows. In Section 2 we introduce the Hilbert space
under consideration. In Section 3 we specify the problem setting and state our
main result. The proofs are presented in Section 4.

2. The hybrid function space

We study a specific reproducing kernel Hilbert space, namely the tensor product
of a Korobov space and a Walsh space, that was introduced in [11]. See [1] for
general information about reproducing kernel Hilbert spaces.

Fix a prime number b and let i =
√
−1. For k ∈ N0 with b-adic expansion

k = κab
a+ · · ·+κ1b+κ0 with κj ∈ {0, . . . , b−1} we define the kth Walsh function

walk : [0, 1)→ C by

walk(x) = exp

(
2πi

ξ1κ0 + · · ·+ ξa+1κa
b

)
,

for x ∈ [0, 1) with b-adic expansion x = ξ1
b + ξ2

b2 + · · · (unique in the sense that
infinitely many of the ξi are different from b− 1). Note that a = blogb kc.

For k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs) ∈ [0, 1)s the kth s-variate
Walsh function walk : [0, 1)s → C is given by walk(x) =

∏s
j=1 walkj (xj).

Further, for l ∈ Zt we define the t-variate lth trigonometric function
el : [0, 1)t → C as

el(y) = exp(2πil · y),

where · denotes the usual Euclidean inner product.
Let now s, t ∈ N, α, β > 1 and let γ(1),γ(2) be two non-increasing sequences

γ(i) = (γ
(i)
j )j≥1 for i ∈ {1, 2}, where 0 < γ

(i)
j ≤ 1. We define two functions ρα,γ(1)

and rβ,γ(2) as follows: For k = (k1, . . . , ks) ∈ Ns0 and l = (l1, . . . , lt) ∈ Zt let

ρα,γ(1)(k) =

s∏
j=1

ρ
α,γ

(1)
j

(kj) and rβ,γ(2)(l) =

t∏
j=1

r
β,γ

(2)
j

(lj),

where

ρ
α,γ

(1)
j

(kj) =

{
1 if kj = 0,

γ
(1)
j b−αblogb(kj)c if kj 6= 0,
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and

r
β,γ

(2)
j

(lj) =

{
1 if lj = 0,

γ
(2)
j |lj |−β if lj 6= 0.

With the help of these functions one can define so-called Walsh spaces [5, 7] and
Korobov spaces [6, 14, 17].

Here we define a hybrid function space as the tensor product of the Walsh
and Korobov spaces. The hybrid space H(Ks,t,α,β,γ), where γ = (γ(1),γ(2)), is
the reproducing kernel Hilbert space with kernel function given by Ks,t,α,β,γ :
[0, 1)s+t × [0, 1)s+t → C,

Ks,t,α,β,γ((x,y), (x′,y′))

=
∑
k∈Ns0

∑
l∈Zt

ρα,γ(1)(k)rβ,γ(2)(l)walk(x)walk(x′)el(y)el(y′)

and inner product

〈f, g〉s,t,α,β,γ =
∑
k∈Ns0

∑
l∈Zt

1

ρα,γ(1)(k)

1

rβ,γ(2)(l)
f̂(k, l)ĝ(k, l),

with

f̂(k, l) =

∫
[0,1]s

∫
[0,1]t

f(x,y)walk(x)el(y) dxdy.

The space H(Ks,t,α,β,γ) is the tensor product of a Walsh space and a Korobov
space. If s = 0, then we obtain the Korobov space, if t = 0, then we obtain the
Walsh space.

Remark 1. For convenience we will in the following use the notation∫
[0,1]d

f(x,y) dxdy, where d = s+ t, by which we mean
∫

[0,1]s

∫
[0,1]t

f(x,y) dxdy.

The hybrid space H(Ks,t,α,β,γ) is the space of all absolutely convergent series f
of the form

f(x,y) =
∑

(k,l)∈Ns0×Zt
f̂(k, l)walk(x)el(y) with ‖f‖H(Ks,t,α,β,γ) <∞,

where ‖ · ‖H(Ks,t,α,β,γ) denotes the norm in H(Ks,t,α,β,γ). For further information
on the space H(Ks,t,α,β,γ) we refer to [11, Section 2.2].

3. L2-approximation

Our goal is now to approximate the embedding from the hybrid spaceH(Ks,t,α,β,γ)
to the space L2([0, 1]s+t), i.e.,

EMBs,t : H(Ks,t,α,β,γ)→ L2([0, 1]s+t), EMBs,t(f) = f.
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As already mentioned, it is enough to consider linear algorithms AN,s,t of the form

AN,s,t(f) =

N∑
k=1

akLk(f), (1)

with ak ∈ L2([0, 1]s+t) and continuous linear functionals Lk on H(Ks,t,α,β,γ) from
a permissible class of information Λ. We consider two classes:

• Λ = Λall, the class of all continuous linear functionals defined on
H(Ks,t,α,β,γ). Since H(Ks,t,α,β,γ) is a Hilbert space, for every Lk ∈ Λall

there exists a function fk from H(Ks,t,α,β,γ) such that Lk(f) = 〈f, fk〉d,α,β,γ
for all f ∈ H(Ks,t,α,β,γ).

• Λ = Λstd, the class of standard information consisting only of function
evaluations. That is, Lk ∈ Λstd if there exists (xk,yk) ∈ [0, 1]s+t such that
Lk(f) = f(xk,yk) for all f ∈ H(Ks,t,α,β,γ).

Since H(Ks,t,α,β,γ) is a reproducing kernel Hilbert space, function evaluations
are continuous linear functionals, and therefore Λstd ⊆ Λall. More precisely,

Lk(f) = f(xk,yk) = 〈f,Ks,t,α,β,γ(·, (xk,yk))〉s,t,α,β,γ

and
‖Lk‖ = ‖Ks,t,α,β,γ‖s,t,α,β,γ = K

1/2
s,t,α,β,γ((xk,yk), (xk,yk)).

The worst-case error in H(Ks,t,α,β,γ) of a linear algorithm as in (1) is

eL2−app(AN,s,t) = sup
f∈H(Ks,t,α,β,γ)
‖f‖H(Ks,t,α,β,γ )≤1

‖EMBs,t(f)−AN,s,t(f)‖L2([0,1]s+t).

The N th minimal worst-case error is given by

eL2−app,Λ(N, s, t) = inf
AN,s,t

eapp(AN,s,t),

where the infimum is extended over all linear algorithms AN,s,t using information
from the class Λ. The information complexity is given as

NL2−app,Λ(ε, s, t) := min{N : eL2−app,Λ(N, s, t) ≤ ε}.

Since Λstd ⊆ Λall, it follows that NL2−app,Λall

(ε, s, t) ≤ NL2−app,Λstd

(ε, s, t).
We say that the L2-approximation problem EMB = (EMBs,t)s,t≥1 is:
• weakly tractable, if

lim
s+t+ε−1→∞

logNL2−app,Λ(ε, s, t)

s+ t+ ε−1
= 0;

• polynomially tractable, if we can find constants C, τ1, τ2 ≥ 0 such that

NL2−app,Λ(ε, s, t) ≤ Cε−τ1(s+ t)τ2 for all ε ∈ (0, 1) and all s, t ∈ N;
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• strongly polynomially tractable, if we can find constants C, τ1 ≥ 0 such that

NL2−app,Λ(ε, s, t) ≤ Cε−τ1 for all ε ∈ (0, 1) and all s, t ∈ N. (2)

The infimum τ∗(Λ) of the real numbers τ1 such that (2) holds is called the
ε-exponent of strong polynomial tractability.

For γ = (γ(1),γ(2)) we define the sum exponent

sγ = inf

κ > 0 :

∞∑
j=1

(γ
(1)
j )κ <∞ and

∞∑
j=1

(γ
(2)
j )κ <∞

 (3)

with the convention that inf ∅ =∞.
Our main goal in this paper is to show the following theorem.

Theorem 1. Consider the approximation problem EMB. Then we have:
1. Strong polynomial tractability and polynomial tractability in the class Λall

are equivalent, and they hold if and only if sγ < ∞, where sγ is defined
in (3). In this case the exponent of strong polynomial tractability is τ∗(Λall) =
2 max(sγ ,

1
α ,

1
β ).

2. The problem is weakly tractable in the class Λall if and only if

lim
s+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+ t
= 0. (4)

3. The problem is strongly polynomially tractable in the class Λstd if
∞∑
j=1

γ
(1)
j <∞ and

∞∑
j=1

γ
(2)
j <∞.

The exponent of strong polynomial tractability in the class Λstd satisfies

τ∗(Λstd) ∈ [2 max( 1
α ,

1
β , sγ), 4 + 2 max( 1

α ,
1
β , sγ)].

4. The problem is polynomially tractable in the class Λstd if

lim sup
s→∞

∑s
j=1 γ

(1)
j

log s
<∞ and lim sup

t→∞

∑t
j=1 γ

(2)
j

log t
<∞.

5. The problem is weakly tractable in the class Λstd if and only if

lim
s+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+ t
= 0.

Remark 2. Since it can easily be verified that integration in H(Ks,t,α,β,γ) is not
harder than approximation, all sufficient conditions stated in Theorem 1 for ap-
proximation are sufficient for integration in H(Ks,t,α,β,γ) as well. These conditions
coincide with the ones given in [11] for QMC integration.
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4. Proof of Theorem 1

We recall that strong polynomial tractability implies polynomial tractability which
in turn implies weak tractability. Furthermore, all sufficient conditions for the class
Λstd are also sufficient for the class Λall with τ∗(Λall) ≤ τ∗(Λstd) in the case of
strong polynomial tractability. All necessary conditions for the class Λall are also
necessary for the class Λstd.

4.1. Proof of Item 1

In order to give a necessary and sufficient condition for strong polynomial tractabil-
ity for Λall we use a criterion from [16, Section 5.1]. Let us consider the self-adjoint
operatorWs,t := EMB∗s,tEMBs,t : H(Ks,t,α,β,γ)→ H(Ks,t,α,β,γ), which in our case
is given by

Ws,tf =
∑

(k,l)∈Ns0×Zt
ρα,γ(1)(k)rβ,γ(2)(l)f̂(k, l)walk(x)el(y).

The eigenvalues are then given by the collection of the numbers

ρα,γ(1)(k)rβ,γ(2)(l) for (k, l) ∈ Ns0 × Zt.

Furthermore, the largest eigenvalue is ρα,γ(1)(0)rβ,γ(2)(0) = 1.
From [16, Theorem 5.2] we find that the problem EMB is polynomially tractable

for Λall if and only if there exist ν > 0 and q ≥ 0 such that

sup
s,t

 ∑
(k,l)∈Ns0×Zt

(ρα,γ(1)(k)rβ,γ(2)(l))ν

1/ν

(s+ t)−q <∞. (5)

Furthermore, we have strong polynomial tractability if and only if (5) holds with
q = 0.

It is easy to check that we require ν > max( 1
α ,

1
β ) in order for (5) to hold with

q = 0. Let us now assume that ν is indeed bigger than max( 1
α ,

1
β ). For the sum

in (5) we have

∑
(k,l)∈Ns0×Zt

(ρα,γ(1)(k)rβ,γ(2)(l))ν

=

s∏
j=1

(
1 + (γ

(1)
j )νµ(αν)

) t∏
j=1

(
1 + (γ

(2)
j )ν2ζ(βν)

)
, (6)

where µ(x) = bx(b−1)
bx−b for x > 1 and ζ(x) is the Riemann zeta function.
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Now, using arguments outlined in [19] (see also [14, Section 4.5]), it is easy to
see that the existence of some ν > max( 1

α ,
1
β ) with

∞∑
j=1

(γ
(1)
j )ν <∞ and

∞∑
j=1

(γ
(2)
j )ν <∞

is a necessary and sufficient condition for (5) with q = 0 and therefore for strong
polynomial tractability of the problem EMB.

Again according to [16, Theorem 5.2], the exponent of strong polynomial
tractability is 2 max( 1

α ,
1
β , sγ), where sγ is defined in (3).

It remains to show the equivalence of strong polynomial and polynomial tract-
ability. Of course, it suffices to show that polynomial tractability implies strong
polynomial tractability. So assume that the problem EMB is polynomially tractable
for the class Λall. Then we obtain polynomial tractability also for the embedding
problem in the pure Walsh space H(Ks,0,α,β,γ) and in the pure Korobov space
H(K0,t,α,β,γ). According to [21, Theorem 2] this is equivalent to strong polyno-
mial tractability for the embedding problem in the pure Walsh space H(Ks,0,α,β,γ)
and in the pure Korobov space H(K0,t,α,β,γ). According to [3] and [12] this implies
the existence of ν1 > 0 such that

∑
j≥1(γ

(1)
j )ν1 < ∞ and the existence of ν2 > 0

such that
∑
j≥1(γ

(2)
j )ν2 < ∞. Hence we have sγ < ∞ and this in turn implies

strong polynomial tractability for the class Λall, as shown above. This completes
the proof of Item 1.

4.2. Proof of Item 2

Sufficiency of Condition (4) follows by Item 5 of the Theorem which we show in
the next section.

For showing necessity of Condition (4), we use [16, Theorem 5.3] in the follow-
ing. To keep notation simple, we shall frequently write again d instead of s + t.
Theorem 5.3 in [16] states that our approximation problem is weakly tractable for
Λall if and only if

• lim
j→∞

λd,j log2 j = 0 for all d ∈ N and

• there exists some function f : (0, 1
2 ]→ N such that

sup
η∈(0, 12 ]

1

η2
sup

d≥f(η)

sup
j≥dexp(d

√
η)e+1

λd,j log2 j <∞, (7)

where λd,j = λs+t,j denotes the jth eigenvalue of Ws,t in non-increasing order.
Let us now assume that the approximation problem is weakly tractable for

Λall. This then in particular implies that

lim
j→∞

λd,j log2 j = 0 for all d ∈ N. (8)
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We are now going to show that (8) implies (4). To this end, recall that the
eigenvalues of Ws,t are of the form

ρα,γ(1)(k)rβ,γ(2)(l) for (k, l) ∈ Ns0 × Zt.

Note that we have λd,1 = 1; furthermore, note that ρ
α,γ

(1)
j

(1) = γ
(1)
j for any

j ∈ N, and r
β,γ

(2)
i

(1) = γ
(2)
i for any i ∈ N. Hence, by choosing all components of

(k, l) ∈ Ns0×Zt but one equal to zero, and the remaining equal to one, we see that

γ
(1)
1 , . . . , γ(1)

s and γ
(2)
1 , . . . , γ

(2)
t

are eigenvalues of Ws,t. Consequently,

s∑
j=1

γ
(1)
j +

t∑
j=1

γ
(2)
j ≤

d∑
j=1

λd,j ,

and hence

lim
s+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+ t
≤ lim
d→∞

∑d
j=1 λd,j

d
.

However, due to (8), it follows that the latter limit is 0, which shows that indeed
(4) holds.

4.3. Proof of Items 3–5

Any f ∈ H(Ks,t,α,β,γ) can be displayed as

f(x,y) =
∑

(k,l)∈Ns0×Zt
f̂(k, l)walk(x)el(y).

In order to approximate f̂(k, l), we are going to use quasi-Monte Carlo algo-
rithms based on classical and on polynomial lattice point sets.

Classical lattice point sets. For N ∈ N and z = (z1, . . . , zt) ∈ ZtN , where
ZN := {z ∈ {1, . . . , N − 1} : gcd(z,N) = 1}, the lattice point set {qv}N−1

v=0 with
generating vector z is defined by

qv =
({vz1

N

}
, . . . ,

{vzt
N

})
for all 0 ≤ v ≤ N − 1.

Here {·} denotes the fractional part of a real number.
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Polynomial lattice point sets. Let Fb be the finite field of prime order b, Fb[x]
be the set of polynomials over Fb, and let Fb((x−1)) be the field of formal Laurent
series over Fb. The latter contains the field of rational functions as a subfield.
Given m ∈ N, set Gb,m := {a ∈ Fb[x] : deg(a) < m} and define a mapping
νm : Fb((x−1))→ [0, 1) by

νm

( ∞∑
l=z

tlx
−l

)
:=

m∑
l=max(1,z)

tlb
−l.

Let f ∈ Fb[x] with deg(f) = m and g = (g1, . . . , gs) ∈ Fb[x]s. The polynomial
lattice point set (pv)v∈Gb,m with generating vector g is defined by

pv :=

(
νm

(
v(x)g1(x)

f(x)

)
, . . . , νm

(
v(x)gs(x)

f(x)

))
for all v ∈ Gb,m.

Note that we can associate the polynomial v(x) =
∑m−1
r=0 vrx

r ∈ Gb,m with the
integer v =

∑m−1
r=0 vrb

r, where, with a slight abuse of notation, the element vr ∈ Fb
is associated with the integer vr ∈ {0, 1 . . . , b − 1}. In this way we can index the
points of a polynomial lattice point set by integers ranging from 0 to bm − 1.

Now suppose that N is of the form bm for some m ∈ N, and let
PL = {p0, . . . ,pN−1} ⊆ [0, 1)s be a polynomial lattice point set and
L = {q0, . . . , qN−1} ⊆ [0, 1)t be a lattice point set. We consider the point set
(PL,L) = {(p, q)v = (pv, qv) : v = 0, . . . , N − 1}.

For M ≥ 1 define the set

AM = {(k, l) ∈ Ns0 × Zt : (ρα,γ(1)(k))−1(rβ,γ(2)(l))−1 ≤M}. (9)

In order to approximate the embedding EMBs,t(f) = f for f ∈ H(Ks,t,α,β,γ)
we use the algorithm

AN,s,t,M (f)(x,y) =
∑

(k,l)∈AM

(
1

N

N−1∑
v=0

f((p, q)v)walk(pv)el(qv)

)
walk(x)el(y).

(10)

It can easily be checked that AN,s,t,M is a linear algorithm of the form (1) with

av(x,y) =
1

N

∑
(k,l)∈AM

walk(x	 pv)el(y − qv)

and

Lv(f) = f((p, q)v), 0 ≤ v ≤ N − 1.
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The error of approximation for given f ∈ H(Ks,t,α,β,γ) is then

(f −AN,s,t,M (f))(x,y)

=
∑

(k,l)/∈AM

f̂(k, l)walk(x)el(y)

+
∑

(k,l)∈AM

(
f̂(k, l)− 1

N

N−1∑
v=0

f((p, q)v)walk(pv)el(qv)

)
walk(x)el(y). (11)

We use (11) and Parseval’s identity to obtain

‖EMBs,t(f)−AN,s,t,M (f)‖2L2([0,1]s+t) = S1 + S2,

where
S1 :=

∑
(k,l)/∈AM

|f̂(k, l)|2,

and

S2 :=
∑

(k,l)∈AM

∣∣∣∣∣
∫

[0,1]s+t
f(k,l)(x,y) dxdy − 1

N

N−1∑
v=0

f(k,l)((p, q)v)

∣∣∣∣∣
2

,

with

f(k,l)(x,y) := f(x,y)walk(x)el(y).

From the definition of AM it follows easily that

S1 <
1

M
‖f‖2H(Ks,t,α,β,γ).

Let us now consider S2. The term in-between the absolute value signs in S2

is the integration error of the QMC rule using the nodes (PL,L) for the function
f(k,l)(x,y). Since the product of two Walsh functions is again a Walsh function,
and the analogue is true for trigonometric functions, it can easily be verified that
f(k,l) ∈ H(Ks,t,α,β,γ). Hence we can bound S2 by

S2 ≤ (eint(PL,L))2
∑

(k,l)∈AM

‖f(k,l)‖2H(Ks,t,α,β,γ),

where eint(PL,L) is the worst-case integration error in H(Ks,t,α,β,γ) of the QMC
rule based on the nodes (PL,L), i.e.,

eint(PL,L) = sup
f∈H(Ks,t,α,β,γ)
‖f‖H(Ks,t,α,β,γ )≤1

∣∣∣∣∣
∫

[0,1]s+t
f(x,y) dxdy − 1

N

N−1∑
v=0

f((p, q)v)

∣∣∣∣∣ .



100 Peter Kritzer, Helene Laimer, Friedrich Pillichshammer

From [11, Theorem 3] it then follows that

S2 ≤
2

N

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))

 ∑
(k,l)∈AM

‖f(k,l)‖2H(Ks,t,α,β,γ).

(12)

Next we find an estimate for ‖f(k,l)‖2H(Ks,t,α,β,γ) for (k, l) ∈ AM . From the

easily seen fact that f̂(k,l)(h,m) = f̂(k ⊕ h, l+m) we obtain

‖f(k,l)‖2H(Ks,t,α,β,γ)

=
∑
h∈Ns0

∑
m∈Zt

|f̂(k ⊕ h, l+m)|2

ρα,γ(1)(h)rβ,γ(2)(m)

=
∑
h∈Ns0

∑
m∈Zt

|f̂(k ⊕ h, l+m)|2

ρα,γ(1)(k ⊕ h)rβ,γ(2)(l+m)

ρα,γ(1)(k ⊕ h)rβ,γ(2)(l+m)

ρα,γ(1)(h)rβ,γ(2)(m)
.

Combining results from [3] and [12] we find

ρα,γ(1)(k ⊕ h)rβ,γ(2)(l+m)

ρα,γ(1)(h)rβ,γ(2)(m)
≤ 1

ρα,γ(1)(k)rβ,γ(2)(l)

t∏
j=1

max(1, 2βγ
(2)
j )

≤M
t∏

j=1

max(1, 2βγ
(2)
j ),

and hence, after applying an index shift,

‖f(k,l)‖2H(Ks,t,α,β,γ) ≤M
t∏

j=1

max(1, 2βγ
(2)
j )

∑
h∈Ns0

∑
m∈Zt

|f̂(k ⊕ h, l+m)|2

ρα,γ(1)(k ⊕ h)rβ,γ(2)(l+m)

= M‖f‖2H(Ks,t,α,β,γ)

t∏
j=1

max(1, 2βγ
(2)
j ).

Plugging this into (12) we obtain

S2 ≤
2

N

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))


× ‖f‖2H(Ks,t,α,β,γ)M |AM |

t∏
j=1

max(1, 2βγ
(2)
j ). (13)
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Next we study the cardinality of the set AM .

Lemma 1. Let θ = min(α, β). For arbitrary κ > 1/θ = max( 1
α ,

1
β ) we have

|AM | ≤Mκ
s∏
j=1

(
1 + 2ζ(θκ)(bαγ

(1)
j )κ

) t∏
j=1

(
1 + 2ζ(θκ)(γ

(2)
j )κ

)
.

Proof. For k ∈ N we have

1

ρα,γ(k)
=
bαblogb kc

γ
≥ bα(−1+logb k)

γ
=

kα

γbα
=

1

rα,γbα(k)
.

Then we have

AM =

{
(k, l) ∈ Ns0 × Zt :

1

ρα,γ(1)(k)

1

rβ,γ(2)(l)
≤M

}
⊆
{

(k, l) ∈ Ns0 × Zt :
1

rα,γ(1)bα(k)

1

rβ,γ(2)(l)
≤M

}
⊆
{

(k, l) ∈ Zs × Zt :
1

rθ,γ(1)bα(k)

1

rθ,γ(2)(l)
≤M

}
from which the result follows immediately from [12, Lemma 1]. �

Considering Lemma 1, for any κ > 1/ν we obtain

S2 ≤ cs,t,α,β,γ,κ
M1+κ

N
‖f‖2H(Ks,t,α,β,γ),

where

cs,t,α,β,γ,κ := 2

 s∏
j=1

(1 + γ
(1)
j 2µ(α))

 t∏
j=1

(1 + γ
(2)
j 4ζ(β))

 t∏
j=1

max(1, 2βγ
(2)
j )

×
s∏
j=1

(
1 + 2ζ(θκ)(bαγ

(1)
j )κ

) t∏
j=1

(
1 + 2ζ(θκ)(γ

(2)
j )κ

)
. (14)

Summing up we have

‖EMBs,t(f)−AN,s,t,M (f)‖2L2([0,1]s+t) ≤
(

1

M
+ cs,t,α,β,γ,κ

M1+κ

N

)
‖f‖2H(Ks,t,α,β,γ).

Choosing M = M(N) = (N/cs,t,α,β,γ,κ)1/(2+κ) and taking the square root we
obtain the following proposition and its corollary, which then concludes the proof
of Theorem 1.
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Proposition 1. Let κ > 1/min(α, β) and let cs,t,α,β,γ,κ be defined as in (14).
The worst-case error of the algorithm AN,s,t,M as defined in (10) using a point
set (PL,L) constructed by [11, Algorithm 1] and with M = (N/cs,t,α,β,γ,κ)1/(2+κ)

satisfies

eL2−app(AN,s,t,M ) ≤
√

2
(cs,t,α,β,γ,κ

N

) 1
4+2κ

.

Corollary 1. Consider the approximation problem EMB with information from
the class Λstd.

• If
∑∞
j=1 γ

(1)
j < ∞ and

∑∞
j=1 γ

(2)
j < ∞, then EMB is strongly polynomially

tractable with ε-exponent at most 4 + 2 max(sγ ,
1
α ,

1
β );

• if lim sups→∞
∑s
j=1

γ
(1)
j

log (s+1) <∞ and lim supt→∞
∑t
j=1

γ
(2)
j

log (t+1) <∞, then
EMB is polynomially tractable;

• if lims+t→∞

∑s
j=1 γ

(1)
j +

∑t
j=1 γ

(2)
j

s+t = 0, then EMB is weakly tractable.

Proof. Employing Proposition 1, the result follows by the same arguments as used
in [11, Section 5.2]. We only show the first item: Let κ = 1. Since log(1 + x) ≤ x
we obtain

cs,t,α,β,γ,1 ≤ 2 exp

u1(α, β)

s∑
j=1

γ
(1)
j + u2(α, β)

s∑
j=1

γ
(2)
j

 ≤ c∞,∞,α,β,γ,1 <∞,
where u1(α, β) = 2µ(α) + 2ζ(θ)bα and u2(α, β) = 4ζ(β) + 2β + 2ζ(θ). Then
Proposition 1 with κ = 1 implies that

eL2−app(N, s+ t) ≤
√

2
(c∞,∞,α,β,γ,1

N

)1/6

.

Recall that N is of the form bm. Now, for ε > 0 choose m ∈ N such that bm−1 <
d8c∞,∞,α,β,γ,1ε−6e
=: N ′ ≤ bm. Then we have eL2−app(bm, s+ t) ≤ ε and hence

NL2−app,Λstd

(ε, s+ t) ≤ bm < bN ′ = bd8c∞,∞,α,β,γ,1ε−6e.

This is strong polynomial tractability. The result for the ε-exponent can be shown
easily by similar arguments. �
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