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ON THE REPRESENTATION OF AN EVEN PERFECT NUMBER
AS THE SUM OF FIVE CUBES

Bakir Farhi

Abstract: The aim of this note is to show that any even perfect number, other than 6, can
be written as the sum of at most five positive integral cubes. We also conjecture that any such
number can even be written as the sum of at most three positive integral cubes.
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1. Introduction

A perfect number is a positive integer that is equal to the sum of its proper
positive divisors. There are more than twenty five centuries that mathematicians
discovered the perfect numbers and began to be interested in their study. Eucild
(about 300 B.C) showed that if (2n− 1) is prime then the number 2n−1(2n− 1) is
perfect. The converse of Euclid’s theorem is not yet proved, but Euler proved in
1747 that any even perfect number N can be written as N = 2p−1(2p − 1), where
p and (2p − 1) are both primes, that is N is of Euclid’s form (see [2]).

In this note, we are interested to the representation of an even perfect number
as the sum of a limited number of cubes. In connection with Waring’s problem
for cubes (see [1, Chap 2]), we prove that the quantity of cubes which is necessary
to represent a natural number as a sum of cubes, when this one is an even perfect
number, can be reduced to five.

2. The result

Theorem 2.1. Any even perfect number, other than 6, can be written as the sum
of at most five positive integral cubes.

Proof. The proof is based on the following identity:

2n6 − 2 =
(
n2 + n− 1

)3
+

(
n2 − n− 1

)3 (2.1)

which holds for any n ∈ Z.
2010 Mathematics Subject Classification: primary: 11A25; secondary: 11B13



278 Bakir Farhi

Now, let N be an even perfect number greater than 6. By Euler’s theorem, N
can be written as N = 2p−1(2p−1), where p and (2p−1) are both prime numbers.
Because N > 6, we have p > 2. For p = 3, we get N = 28 = 13 + 33, which is
a sum of two positive integral cubes. For p = 5, we get N = 496 = 43 + 63 + 63,
which is a sum of three positive integral cubes. For the following, assume that
p > 5. So p has one of the two forms: p = 6k + 1 or p = 6k + 5 (k ∈ N).

Case 1: (if p = 6k + 1 for some positive integer k). In this case, we have N =
2p−1(2p− 1) = 26k(26k+1− 1). Taking n = 2k in (2.1), we get 26k+1− 2 = a3 + b3,
with a = n2 + n− 1 and b = n2 − n− 1. Hence:

N = 26k
(
26k+1 − 1

)
= 26k

(
a3 + b3 + 1

)
=

(
22ka

)3
+

(
22kb

)3
+

(
22k

)3
,

which is a sum of three positive integral cubes.
Case 2: (if p = 6k + 5 for some positive integer k). In this case, we have:

N = 2p−1 (2p − 1) = 26k+4
(
26k+5 − 1

)
= 26k+3

(
26k+6 − 2

)
= 26k+3

(
64 · 26k − 2

)
.

Since 64 = 33 + 33 + 23 + 2, it follows that:

N = 26k+3
(
(33 + 33 + 23 + 2)26k − 2

)
= (22k+1)3

(
(3 · 22k)3 + (3 · 22k)3 + (2 · 22k)3 + (2 · 26k − 2)

)
(2.2)

Next, taking n = 2k in (2.1), we get 2 · 26k − 2 = a3 + b3 (with a = n2 + n− 1 and
b = n2 − n− 1), which when reported in (2.2) gives:

N = (22k+1)3
(
(3 · 22k)3 + (3 · 22k)3 + (2 · 22k)3 + a3 + b3

)
= (3 · 24k+1)3 + (3 · 24k+1)3 + (2 · 24k+1)3 + (22k+1a)3 + (22k+1b)3,

which is a sum of five positive integral cubes. This achieves the proof. �

We end this note by a conjecture, based on numerical calculations.

Conjecture 2.2. Any even perfect number, other than 6, can be written as the
sum of at most three positive integral cubes.
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