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Abstract: It is proved that Epstein’s zeta-function ζQ(s), related to a positive definite integral
binary quadratic form, has a zero 1/2+ iγ with T 6 γ 6 T +T 3/7+ε for sufficiently large positive
numbers T . This is an improvement of the result by M. Jutila and K. Srinivas (Bull. London
Math. Soc. 37 (2005) 45–53).
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1. Introduction

Let the quadratic form Q(x, y) = ax2 + bxy+ cy2 be positive definite, have integer
coefficients and let rQ(n) count the number of solutions of the equation Q(x, y) = n
in integers x and y. The Epstein zeta-function associated to Q is denoted by ζQ(s)
and is given by the series

ζQ(s) =
∑

(x,y)∈Z2−(0,0)

1

Q(x, y)
s =

∞∑
n=1

rQ(n)

ns

in the half-plane σ > 1, where (as usual) s = σ+it. Throughout the paper, we shall
write ∆ to denote the number ∆ := |4ac−b2|, the modulus of the discriminant ofQ.
ζQ(s) has many analytical properties in common with the Riemann zeta-function,
ζ(s). For example, it admits analytic continuation into the entire complex plane
except for a simple pole at s = 1 with residue 2π∆−1/2. It satisfies the following
functional equation(√

∆

2π

)s
Γ(s)ζQ(s) =

(√
∆

2π

)1−s

Γ(1− s)ζQ(1− s). (1.1)
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The analogue of Hardy’s theorem for ζ(s) also holds true for ζQ(s), i.e., ζQ(s)
admits infinitely many zeros on the critical line σ = 1/2. In fact, much more is
true. In 1934, Potter and Tichmarsh [6] showed that every interval of the type
[T, T+T 1/2+ε] contains a zero 1/2+iγ of ζQ(s) for any fixed ε and for all sufficiently
large T . Sankaranarayanan in 1995 [8] showed that the same result holds true for
intervals of the type [T, T + cT 1/2 log T ]. In 2005, Jutila and Srinivas [4] proved
that the same is true for intervals of the type [T, T + cT 5/11+ε], thus surpassing
the classical barrier of 1/2 in exponent of T . In this note we improve this result
further. More precisely, we prove the following

Theorem 1. Let Q be a positive definite binary integral quadratic form. Then
for any fixed ε > 0 and T > T (ε,Q), there is a zero 1/2 + iγ of the corresponding
Epstein zeta-function ζQ(s) with

| γ − T |6 T 3/7+ε. (1.2)

In this paper we indicate those steps in [4] which enabled us to improve the
result of Jutila and Srinivas mentioned earlier. Therefore, for technical details the
readers are urged to refer to [4] and [3]. However, for the sake of completeness, we
shall discuss the main ideas contained in [4].

The paper is organized as follows: In section 2 we describe the basic idea of
the proof, section 3 contains basic results used in the proof of the main theorem
and in section 4 we estimate a double exponential sum non-trivially, which leads
to the improvement.

2. Basic idea of the proof

Hardy and Littlewood [5] (see also §10.5, [9]) developed a beautiful method to
prove the existence of a zero of the Riemann zeta-function ζ(s) on the critical
line in a short interval. The significance of their method is that it is amenable to
generalization. We start by defining the functions f(s), γ(s) and W (t) as

f(s) = e
1
2πi(

1
2−s)

(√
4

2π

)s
Γ(s)ζQ(s) = γ(s)ζQ(s)

and
W (t) = f

(
1

2
+ it

)
.

From the functional equation (1.1), it follows that W (t) is real for real values of t.
Thus, the real zeros of W (t) coincide with the zeros of ζQ(s) on the critical line.

First, let us assume that W (t) has no zero in the interval [T −H,T +H], with
T 3ε 6 H 6 T 1/2. Let H0 = HT−ε and consider the integral

I =

∫ H

−H
W (T + u)e−(u/H0)2du.



A note on the gaps between zeros of Epstein’s zeta-functions on the critical line 237

Then by our assumption

|I| =
∫ H

−H
|W (T + u)|e−(u/H0)2du. (2.1)

If the equality in (2.1) is violated, this will establish the existence of an odd order
zero of W (t) in the interval [T − H,T + H]. This contradiction is achieved by
estimating the integral in (2.1) from below and above, provided H = T 3/7+ε.

Estimation from below is the easy step, thanks to a general result of K. Ra-
machandra [7] which states that the first power mean of a generalized Dirichlet
series satisfying certain conditions can not be too small. We need only a particular
case of this theorem which is readily available as Theorem 3 of [1], which we state
as:

Lemma 1. Let B(s) =
∑∞
n=1 bnn

−s be any Dirichlet series satisfying the following
conditions:

(i) not all bn’s are zero;
(ii) the function can be continued analytically in σ > a, |t| > t0, and in this

region B(s) = O((|t|+ 10)A).

Then for every ε > 0, we have∫ T+H

T

|B(σ + it)|dt� H

for all H > (log T )ε, T > T0(ε), and σ > a.

Thus the lower bound
|I| � H0 (2.2)

follows directly from Lemma 1.

Estimation from above is the hard part. We start with writing the integral I
as

I =

∫ H

−H
e

1
2π(T+u)

(√
4

2π

) 1
2 +i(T+u)

Γ
(

1
2 + i(T + u)

)
× ζQ

(
1
2 + i(T + u)

)
e−(u/H0)2du.

(2.3)

The zeta-function ζQ
(

1
2 + i(T + u)

)
appearing in the integrand is now replaced

with an appropriate approximate formula. Such a formula was derived in [4],
Lemma 1. We state this as

Lemma 2. Let t > 2 and t2 � X � tA, where A is an arbitrarily large positive
constant. Then we have

ζQ
(

1
2 + it

)
=
∑
n6X

rQ(n)n−1/2−it (2.4)

+ (log 2)−1
∑

X<n62X

rQ(n) log(2X/n)n−1/2−it

+ (log 2)−12π4−1/2
(

1
2 − it

)−2
((2X)1/2−it −X1/2−it) +O(tX−1/2).
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Putting X = T 3, we observe that for t � T the last two error terms in (2.4) are
O(T−1/2). Substituting the approximate formula for ζQ

(
1
2 + i(T + u)

)
in (2.3)

we, therefore, have

I =
∑
n6T 3

rQ(n)n−1/2−iT
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du

+ (log 2)−1
∑

T 3<n62T 3

rQ(n) log(2T 3/n)n−1/2−it

×
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du+O(1). (2.5)

As in [4], we extract, from the right hand side, a weighted sum of the form∑
n

η(n)rQ(n)n−1/2−it, (2.6)

where the weight function η(n) is supported in the interval [T
√
4/2π − K,

T
√
4/2π + K ], t � T and t lies close to T . The object is to show that this

sum is small in a certain sense. The remaining terms are evaluated by complex
integration technique and we shall show that their contribution is negligible.

To begin with, the smooth weight function is η(n) is defined as

η(x) =

{
1 for |x− T

√
4/2π| 6 K/2,

0 for |x− T
√
4/2π| > K

and K is chosen to satisfy the relation

HK = T 1+2ε. (2.7)

Thus, using the trivial identity 1 = η(n) + (1− η(n)) in (2.5), we obtain

I =
∑
n6T 3

|n−T
√
4/2π|>K/2

rQ(n)(1− η(n))n−1/2−iT

×
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du

+

∫ H

−H
γ(1/2 + i(T + u))

 ∑
|n−T

√
4/2π|6K

rQ(n)η(n)n−1/2−i(T+u)

e−(u/H0)2du

+ (log 2)−1
∑

T 3<n62T 3

rQ(n) log(2T 3/n)n−1/2−iT

×
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du+O(1)

= S1 + S2 + S3 +O(1). (2.8)
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Now, we break S1 into two sub-sums and estimate each of them individually.

S1 =
∑

T
√
4/2π+K/26n6T 3

rQ(n)(1− η(n))n−1/2−iT

×
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du

+
∑

16n6T
√
4/2π−K/2

rQ(n)(1− η(n))n−1/2−iT

×
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du

= S11 + S12.

Estimation of S11. The integral∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du (2.9)

is first written as a contour integral on the rectangle with vertices ±H,±H − iH0.
Now using the well-know Stirling’s formula for Γ(s) which states that in any fixed
vertical strip −∞ < α 6 σ 6 β <∞,

Γ(σ + it) = (2π)1/2tσ+it−1/2e−
π
2 t+

π
2 i(σ−1/2)−it(1 +O(1/t)) as t→∞,

we obtain,

γ(1/2 + i(T + u))n−iu

= ∆1/4 exp
{
i
(
T log

(
T
√

∆/2π
)
− T + u log

(
T
√

∆/2πn
)

+O(1)
)}

. (2.10)

On the vertical line, we have u = −H + iy,−H0 6 y 6 0; and therefore,

e−(u/H0)2 = e−(H2−y2)+2iyH/(H0)2 � e−(H/H0)2 � e−T
2ε

where as (2.10) is bounded. On the other hand on the lower horizontal side of the
rectangle, setting u = x− iH0,−H 6 x 6 H, we observe that

e−(u/H0)2 6 e−(x2−(H0)2)/(H0)2 6 e(H0)2/(H0)2 = 1

and

γ(1/2 + i(T + u))n−iu � eH0 log(T
√

∆/2πn) = e−H0 log(2πn/T
√

∆). (2.11)

For n > T
√

∆/2π+K/2, using the elementary inequality log a/b > |a− b|/(a+ b),
we see that

H0 log
(

2πn/T
√

∆
)
> H0K/2(T

√
∆/2π +K/2).
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Now,
H0K/2(T

√
∆/2π +K/2) > T ε provided H0K > T 1+ε.

The last inequality is guaranteed by the choice of K in (2.7). Therefore, from
(2.11), we get

γ(1/2 + i(T + u))n−iu � e−T
ε

Collecting all the estimates above, we have for n > T
√

∆/2π +K/2,∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2du� He−T

ε

.

Thus,

S11 � He−T
ε

∣∣∣∣∣∣
∑

T
√
4/2π+K/26n6T 3

rQ(n)(1− η(n))n−1/2−iT

∣∣∣∣∣∣
� He−T

ε ∑
T
√
4/2π+K/26n6T 3

rQ(n)n−1/2

� He−T
ε

T 3+ε(T
√
4/2π +K/2)−1/2 � 1.

(2.12)

Estimation of S12. The estimation of S12 is similar to that of S11. In this case,
the integral (2.9) is written as a contour integral over a rectangle with vertices
±H,±H + iH0. Then the integral is bounded by He−T

ε

on the vertical sides,
where as on the horizontal sides, putting u = x+ iH0,−H 6 x 6 H; we get

|γ(1/2 + i(T + u))n−iu| 6 e−H0 log(T
√

∆/2πn) � e−T
ε

.

Therefore,

|S12| � He−T
ε

|
∑

16n6T
√
4/2π−K/2

rQ(n)(1− η(n))n−1/2−iT |

� He−T
ε ∑

16n6T
√
4/2π−K/2

rQ(n)n−1/2

� He−T
ε

T 1/2+ε

� 1.

(2.13)

Estimation of S3. The estimation of S3 follows the same pattern as that of S11.
To show that the integral (2.9) is small, we want

H0 log
(

2πn/T
√

∆
)
> T ε,

that is
H0 log

(
2πn−T

√
∆

2πn+T
√

∆

)
> T ε,
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or
H0 log

(
2πT 3−T

√
∆

2πT 3+T
√

∆

)
> T ε,

which is the same as
H0 log

(
1− 2T

√
∆

2πT 3+T
√

∆

)
> T ε,

which is true if H0 > T 2ε. This is indeed the case, since our choice of H is
T 3ε 6 H 6 T 1/2. Thus we conclude that

|S3| � (log 2)−1
∑

T 3<n62T 3

T ε(log 2)T−3/2|
∫ H

−H
γ(1/2 + i(T + u))n−iue−(u/H0)2 |du

� He−T
ε

T εT 3T−3/2 � 1. (2.14)

Now it remains to estimate S2.

Estimation of S2. We have

S2 =

∫ H

−H
γ(1/2 + i(T + u))

 ∑
|n−T

√
4/2π|6K

rQ(n)η(n)n−1/2−i(T+u)

e−(u/H0)2du

=

∫ T+H

T−H
γ(1/2 + it)

 ∑
|n−T

√
4/2π|6K

rQ(n)η(n)n−1/2−it

 e−((t−T )/H0)2dt

=

∫ T+H

T−H
γ(1/2 + it)

( ∞∑
n=1

rQ(n)η(n)n−1/2−it

)
e−((t−T )/H0)2dt.

Therefore,

|S2| 6 H sup
|T−t|6H

|
∞∑
n=1

rQ(n)η(n)n−1/2−it | (2.15)

The objective now is to show that

∞∑
n=1

rQ(n)η(n)n−1/2−it � (log T )−2 (2.16)

for a suitable choice of the parameter K. Then combining this with (2.8), (2.12),
(2.13), (2.14) and (2.15), we have

|I| � H0(log T )−2.

This is a contradiction to (2.2).

In [4], the crucial sum in (2.16) was first transformed into another sum (equa-
tion (3.6) of [4]) using a transformation formula. By partial summation, this
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sum got reduced to the estimation of the following expression (for notations see
subsection 4.1):

K1/4N−1/4T−1/2

×
∑

N6Q∗(x,y)6N ′

e

(
Q∗(x, y)

(
h∆0

k
− 1

2hk∆0

)
+
t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))
(2.17)

This is equation (4.4) of [4]. The task is show that this term is O(T−ε). To
establish this, the double exponential sum, appearing above, was estimated non-
trivially in one variable using van der Corput’s method and trivial estimate was
taken in the other variable. The authors obtained the bound O(K11/12T−1/2),
which is O(T−ε), provided K = T 6/11−ε.

In the present paper we estimate the above double exponential sum non-
trivially in both variables. To show that (2.17) is O(T−ε), it is now enough to
take K = T 4/7−ε and thus the gap H = T 3/7+ε follows.

3. Preliminary lemmas

We will use the following well-known lemmas in the proof of our theorem.

Lemma 3. (Generalized Weyl differencing) Let a < b be integers, λ be a natural
number and ξ(n) be a complex valued function such that ξ(n) = 0 if n 6∈ (a, b]. If
H is a positive integer then

|
∑
n

ξ(n)|
2
6

(b− a) +H

H

∑
|h|<H

(
1− λ|h|

H

)∑
n

ξ(n)ξ(n− λh) (3.1)

Proof. For the case λ = 1, this is Lemma 2.5 of [2]. The general case can be
proved similarly. �

Lemma 4 (B-Process , Lemma 3.6 of [2]). Suppose that f has four continuous
derivatives on [a, b], and that f ′′ < 0 on this interval. Suppose further that [a, b] ⊆
[N, 2N ] and that α = f ′(b) and β = f ′(a). Assume that there is some F > 0 such
that

f (2)(x) � FN−2, f (3)(x)� FN−3, and f (4)(x)� FN−4

for x in [a, b]. Let xν be defined by the relation f ′(xν) = ν, and let φ(ν) =
−f(xν) + νxν . Then

∑
a6n6b

e(f(n)) =
∑

α6ν6β

e(−φ(ν)− 1/8)

|f ′′(xν |1/2
+O(log(FN−1 + 2) + F−1/2N). (3.2)
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Lemma 5 (van der Corput’s bound, Theorem 2.2 of [2]). Suppose that f
is a real valued function with two continuous derivatives on [a, b] where a < b are
integers. Suppose also that there is some λ > 0 and some α > 1 such that

λ 6 |f ′′(x)| 6 αλ

on [a, b]. Then ∑
a6n6b

e(f(n))� α(b− a)λ1/2 + λ−1/2. (3.3)

4. Estimation of the double exponential sum

4.1. Preparation and description of the method

First, we explain the meanings of the functions and variables occurring in (2.17).
The function Q∗(x, y) denotes a certain positive definite quadratic form (for the
details of its definition, see equation (3.4) of [4])

Q∗(x, y) = a∗x2 + b∗xy + c∗y2, a∗, b∗, c∗ ∈ Z, (4.1)

which is related to Q(x, y) and a positive integer k in a specific way. Throughout
the sequel, we denote by d the discriminant of this form, i.e.

d := (b∗)
2 − 4a∗c∗ < 0.

The form Q∗(x, y) is defined in such a way that a∗ > 0, c∗ > 0. Further, as
remarked in [4], |d| 6 ∆.

The variables in (2.17) satisfy the following conditions. We suppose that 1 6
N 6 N ′ 6 2N , N � K, ∆0, h and k are positive integers satisfying ∆0|∆,
(h∆0, k) = 1 and

K

T
�| 1√

∆
− h

k
|6 πK

T∆
,

and the sizes of k, h and the real number t are

k, h �
√
T/K, t � T.

As usual, h∆0 denotes a multiplicative inverse of h∆0 modulo k.
Finally, the function φ(x) is defined as

φ(x) = arsinh(x1/2) + (x+ x2)1/2.

Our goal is now to bound non-trivially the exponential sum in (2.17), i.e. the
exponential sum∑

x

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))
, (4.2)
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where

r :=
h∆0

k
− 1

2hk∆0

and
I(x) := {y ∈ R : N 6 Q∗(x, y) 6 N ′}.

In [4], the summation over y was evaluated using the following classical estimate
for exponential sums (Lemma 4.1 of [4]).

Lemma 6. Suppose that f is a real valued function with three continuous deriva-
tives on [a, b] where a < b are integers. Suppose also that there is some λ > 0 and
some α > 1 such that

λ 6 |f ′′′(x)| 6 αλ

on [a, b]. Then ∑
a6n6b

e(f(n))� α1/2(b− a)λ1/6 + (b− a)1/2λ−1/6.

The above lemma can be proved using Weyl differencing, Lemma 3, followed
by applying the can der Corput bound, Lemma 5.

In [4], the sum over x was treated trivially. In the present paper, we also want
to exploit cancellations in the x-sum. To this end, we explicitly carry out Weyl
differencing for the sum over y, then employ the B process, Lemma 4, re-arrange
the summation and finally apply van der Corput’s bound to the sum over x.

It is easy to see that I(x) is empty unless x ∈ J , where

J :=

[
−2
√
c∗N ′√
|d|

,
2
√
c∗N ′√
|d|

]

and that
I(x) = I(x) ∪ I ′(x),

where

I(x) :=


√√√√max

{
0,
N

c∗
− |d|

(2c∗)
2 · x2

}
,

√
N ′

c∗
− |d|

(2c∗)
2 · x2


and

I ′(x) :=

−√N ′

c∗
− |d|

(2c∗)
2 · x2,−

√√√√max

{
0,
N

c∗
− |d|

(2c∗)
2 · x2

} .
Set

J = {x ∈ J : x > 0} =

[
0,

2
√
c∗N ′√
|d|

]
.
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In the following, we estimate the partial sum∑
x∈J

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))
,

where x is positive and y runs over the interval I(x). The remaining three partial
sums with a) x > 0 and y ∈ I ′(x), b) x < 0 and y ∈ I(x), c) x < 0 and y ∈ I ′(x)
can be estimated in a similar way.

4.2. Application of Weyl differencing

We start with applying the Cauchy-Schwarz inequality, getting∣∣∣∣∣∣
∑
x∈J

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
2

�
√
N ·

∑
x∈J

∣∣∣∣∣∣
∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
2

, (4.3)

where we use |J | �
√
N . Applying Lemma 3 with λ = 2, and using |J | �

√
N

and |I(x)| �
√
N , we have

∑
x∈J

∣∣∣∣∣∣
∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
2

�
∑
x∈J

√
N

M
·

∑
06|m|6M

(
1− |2m|

M

)
·
∑

y∈Im(x)

e (fx(y + 2m)− fx(y))

�
√
N

M
·
∑

16m6M

∣∣∣∣∣∣
∑
x∈J

∑
y∈I(x)

e (fx(y +m)− fx(y −m))

∣∣∣∣∣∣+NM +
N3/2

M
,

(4.4)

where M 6 N is any natural number,

Im(x) := {y ∈ I(x) : y + 2m ∈ I(x)}

and
fx(y) := Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

)
.

We have
Q∗(x, y +m)−Q∗(x, y −m) = 2m (b∗x+ 2c∗y)

and, using Taylor series expansion,

φ

(
πQ∗(x, y +m)

2hk∆0t

)
− φ

(
πQ∗(x, y −m)

2hk∆0t

)
= 2mg′x(y) +O

(
m3 |g′′′x (y)|

)
,
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where
gx(y) := φ

(
πQ∗(x, y)

2hk∆0t

)
.

We note that the quadratic Taylor term disappears due to our treatment. This is
the reason why we chose λ = 2 in our application of Lemma 3. The absence of
a quadratic term is advantageous for us because the cubic term can be handled
easily, whereas the presence of a quadratic term would lead to difficulties.

Using

φ′(u) =
1√
u

+O(
√
u), φ′′(u) = O

(
1

u3/2

)
and φ′′′(u) = O

(
1

u5/2

)
for |u| 6 1, we calculate that

g′x(y) =
π (b∗x+ 2c∗y)

2hk∆0t
·

 1√
πQ∗(x,y)
2hk∆0t

+O

√πQ∗(x, y)

2hk∆0t


=

√
π (b∗x+ 2c∗y)√
2hk∆0tQ∗(x, y)

+O

(
NK3/2

T 3

)
and

g′′′x (y) = O

(
K1/2

NT

)
.

It follows that∑
y∈I(x)

e (fx(y +m)− fx(y −m)) =
∑
y∈I(x)

e (2mFx(y))

+O

(
mN3/2K3/2

T 2
+
m3K1/2

N1/2

)
,

(4.5)

where

Fx(y) := (b∗x+ 2c∗y) ·

(
r +

√
t√

2πhk∆0Q∗(x, y)

)
.

4.3. Application of the B process

Now we want to employ the B process, Lemma 4, to transform the exponential
sum on the right-hand side of (4.5). To this end, we calculate that

F ′x(y) = 2c∗r +

√
t|d|x2

2
√

2πhk∆0Q∗(x, y)3/2
,

F ′′x (y) = − 3
√
t|d|x2 (b∗x+ 2c∗y)

4
√

2πhk∆0Q∗(x, y)5/2
� K1/2

N
,

F ′′′x (y) = O

(
K1/2

N3/2

)
,

F ′′′′x (y) = O

(
K1/2

N2

)
.

(4.6)
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We also need to find the precise range in which F ′x(y) lies, which we do in the
following. By our assumptions on x and y, we have N 6 Q∗(x, y) 6 N ′. For fixed
x, we also have

Q∗(x, y) >
|d|
4c∗
· x2.

Hence a(x) 6 F ′x(y) 6 b(x), where

a(x) := 2c∗r +

√
t|d|x2

2
√

2πhk∆0N ′3/2

and

b(x) := 2c∗r +

√
t|d|x2

2
√

2πhk∆0 max{N, |d|x2/(4c∗)}3/2

= 2c∗r + min

{ √
t|d|x2

2
√

2πhk∆0N3/2
,

(4c∗)
3/2√

t

2
√

2π|d|hk∆0x

}
.

Now Lemma 4 yields∑
y∈I(x)

e (2mFx(y))

=
∑

2ma(x)6n62mb(x)

e (2mFx (yx,m,n)− nyx,m,n − 1/8)√
2m|F ′′x (yx,m,n)|

+O

(
log T +

N1/2

m1/2K1/4

)
,

(4.7)

where yx,m,n ∈ I(x) is the solution of 2mF ′x(yx,m,n) = n.
We compute that

Fx (yx,m,n) =

√√√√−|d|x2 + 4c∗
(

m
√
t|d|x2

√
2πhk∆0 (n− 4mc∗r)

)2/3

×

(
r +

(
(n− 4mc∗r) t

2πhk∆0|d|mx2

)1/3
)

and

nyx,m,n =
n

2c∗
·

−b∗x+

√√√√−|d|x2 + 4c∗
(

m
√
t|d|x2

√
2πhk∆0 (n− 4mc∗r)

)2/3

 .
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Putting together gives

Gm,n(x) := 2mFx (yx,m,n)− nyx,m,n

=
b∗n

2c∗
· x− 1

2c∗
·

√√√√−|d|x2 + 4c∗
(

m
√
t|d|x2

√
2πhk∆0 (n− 4mc∗r)

)2/3

×

(
(n− 4c∗mr)− 4c∗m

(
(n− 4mc∗r) t

2πhk∆0|d|mx2

)1/3
)

=
b∗n

2c∗
· x+

(n− 4c∗mr)

2c∗|d|x2
·

(
−|d|x2 + 4c∗

(
m
√
t|d|x2

√
2πhk∆0 (n− 4mc∗r)

)2/3
)3/2

=
b∗n

2c∗
· x+

1

2c∗
·
(
−(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗ · m2/3t1/3

(2πhk∆0)1/3

)3/2

.

(4.8)

Combining (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8), we get

∣∣∣∣∣∣
∑
x∈J

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
2

� N

M
·
∑

16m6M

∣∣∣∣∣∣
∑
x∈J

∑
ma(x)6n6mb(x)

e (Gm,n(x))√
|F ′′x (yx,m,n)|

∣∣∣∣∣∣
+O

(
MN3/2 +

N2

M
+
MN5/2K3/2

T 2
+M3N1/2K1/2 +

N2

M1/2K1/4

)
.

(4.9)

4.4. Application of van der Corput’s bound

Let’s first work out what the trivial estimate for the double exponential sum above
gives. We will see that we recover precisely the result in [4] in this way. Clearly,

|J | � N1/2 and b(x)− a(x) = O
(
K1/2N−1/2

)
.

Together with (4.6), this implies

N

M
·
∑

16m6M

∣∣∣∣∣∣
∑
x∈J

∑
2ma(x)6n62mb(x)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

∣∣∣∣∣∣ = O
(
M1/2N3/2K1/4

)
.

(4.10)
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Choosing M :=
[
N1/3K−1/6

]
to balance the O-term in (4.10) and the second

O-term N2/M in (4.9), using N � K, and taking the square root, we deduce that

K1/4N−1/4T−1/2

∣∣∣∣∣∣
∑
x∈J

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
= O

(
K11/12

T 1/2
+
K25/12

T 3/2

)
.

(4.11)

So if
K := T 6/11−ε,

the above is O (T−ε), as in [4].
Now we estimate the said double exponential sum non-trivially, thus obtaining

an improvement over the result in [4]. First, we re-arrange summations, getting∑
x∈J

∑
2ma(x)6n62mb(x)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

=
∑
n∈Jm

∑
Am(n)6x6Bm(n)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

,

(4.12)
where

Jm =

[
4c∗mr, 4c∗mr +

2c∗m
√
tN ′√

2πhk∆0N3/2

]
,

Am(n) := (n− 4mc∗r)
1/2 · (2πhk∆0)1/4N3/4

(m|d|)1/2t1/4

and

Bm(n) := min

{
2(c∗N ′)1/2

|d|1/2
, (n− 4mc∗r)

1/2 · (2πhk∆0)1/4N ′3/4

(m|d|)1/2t1/4
,

(4c∗)
3/2

mt1/2

(2π|d|hk∆0)1/2 (n− 4mc∗r)

}
.

Our idea is to use the van der Corput bound, Lemma 5, to estimate the inner
sum over x on the right-hand side of (4.12). To this end, we note that

|Jm| �
mK1/2

N1/2
and Bm(n)−Am(n)� N1/2 (4.13)

and compute that

G′′m,n(x) =− (n− 4c∗mr)2/3|d|1/3

6c∗x4/3

(
(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗

m2/3t1/3

(2πhk∆0)1/3

)
×
(
−(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗ · m2/3t1/3

(2πhk∆0)1/3

)−1/2

.

(4.14)
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Further, we observe that

(n− 4c∗mr)2/3|d|1/3

6c∗x4/3
� m2/3t1/3

(hk∆0)1/3N
� m2/3K1/3

N

and

(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗ · m2/3t1/3

(2πhk∆0)1/3
� m2/3t1/3

(hk∆0)1/3
� m2/3K1/3

and hence

G′′m,n(x) � m4/3K2/3

N
·
(
−(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗ · m2/3t1/3

(2πhk∆0)1/3

)−1/2

(4.15)
for n and x in the relevant summation intervals.

We first assume that n ∈ J ′m ⊆ Jm, where

J ′m :=

[
4c∗mr, 4c∗mr +

c∗m
√
t√

2πhk∆0N ′

)
,

in which case we compute that

−(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗ · m2/3t1/3

(2πhk∆0)1/3
� m2/3t1/3

(hk∆0)1/3
� m2/3K1/3

and hence, using (4.15),

G′′m,n(x) � mK1/2

N
if Am(n) 6 x 6 Bm(n). (4.16)

Now we apply partial summation to remove the factor 1/
√
F ′′x (yx,m,n) and

Lemma 5 to get∑
n∈J′m

∑
Am(n)6x6Bm(n)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

� N1/2

m1/2K1/4
·

(
mK1/2 ·

(
mK1/2

N

)1/2

+
mK1/2

N1/2
·
(
mK1/2

N

)−1/2
)

� mK1/2,

(4.17)

where we have used (4.13) and (4.16).
Next, we assume that n ∈ J ′′m ⊆ Jm, where

J ′′m := Jm \ J ′(m) =

[
4c∗mr +

c∗m
√
t√

2πhk∆0N ′
, 4c∗mr +

2c∗m
√
tN ′√

2πhk∆0N3/2

]
(4.18)
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and note that in this case

x � N1/2 if Am(n) 6 x 6 Bm(n). (4.19)

If n ∈ J ′′m ⊆ Jm, an estimate of the form |G′′m,n(x)| � λ doesn’t hold on the entire
x-interval. To make Lemma 5 applicable, we split this interval into subintervals
such that an estimate of this form holds on each of them, except for one subinterval
which is so short that it can be treated trivially. To this end, we write

Im(n) :=

(
(4c∗)

3/2
mt1/2

(2π|d|hk∆0)1/2 (n− 4mc∗r)
− 1,

(4c∗)
3/2

mt1/2

(2π|d|hk∆0)1/2 (n− 4mc∗r)

]

and

Im(n, δ) :=

(
(4c∗)

3/2
mt1/2

(2π|d|hk∆0)1/2 (n− 4mc∗r)
− 2δ,

(4c∗)
3/2

mt1/2

(2π|d|hk∆0)1/2 (n− 4mc∗r)
− δ

]

and set

Sm(n) := Im(n) ∩ [Am(n), Bm(n)] and Sm(n, δ) := Im(n, δ) ∩ [Am(n), Bm(n)].

We observe that the interval [Am(n), Bm(n)] can be split into O (log T ) intervals
of the form Sm(n) or Sm(n, δ), where

1� δ �
√
N. (4.20)

Estimating trivially gives

∑
n∈J′′m

∑
x∈Sm(n)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

� m1/2K1/4, (4.21)

where we have used (4.6) and (4.13). If x ∈ Sm(n, δ), then we compute using
(4.18), (4.19) and the mean value theorem that

−(n− 4c∗mr)2/3|d|1/3x2/3 + 4c∗ · m2/3t1/3

(2πhk∆0)1/3
� δ ·

(
m
√
t√

hk∆0N1/2

)2/3

x−1/3

� δm2/3K1/3

N1/2
.

Hence, using (4.15), it follows that

G′′m,n(x) � mK1/2

δ1/2N3/4
. (4.22)
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Again using partial summation to remove the factor 1/
√
F ′′x (yx,m,n) and

Lemma 5, we deduce that

∑
n∈J′′m

∑
x∈Sm(n,δ)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

(4.23)

� N1/2

m1/2K1/4
·

(
δmK1/2

N1/2
·
(
mK1/2

δ1/2N3/4

)1/2

+
mK1/2

N1/2
·
(
mK1/2

δ1/2N3/4

)−1/2
)

� mK1/2,

where we have employed |Sm(n, δ)| 6 δ, (4.13), (4.20) and (4.22). From (4.21) and
(4.23), it follows that

∑
n∈J′′m

∑
Am(n)6x6Bm(n)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

� mK1/2 log T. (4.24)

Now using Jm = J ′m ∪ J ′′m, (4.17) and (4.24), we get

∑
n∈Jm

∑
Am(n)6x6Bm(n)

e (Gm,n(x))√
2m|F ′′x (yx,m,n)|

� mK1/2 log T. (4.25)

Combining (4.9), (4.12) and (4.25), we deduce that∣∣∣∣∣∣
∑
x∈J

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
2

= O

(
MN3/2 +

N2

M
+
MN5/2K3/2

T 2
+M3N1/2K1/2

+
N2

M1/2K1/4
+MNK1/2 log T

)
.

(4.26)

ChoosingM :=
[
N1/2K−1/4

]
to balance the second and last O-terms above, using

N � K, and taking the square root, it follows that

K1/4N−1/4T−1/2

∣∣∣∣∣∣
∑
x∈J

∑
y∈I(x)

e

(
Q∗(x, y) · r +

t

π
· φ
(
πQ∗(x, y)

2hk∆0t

))∣∣∣∣∣∣
= O

(
K7/8

T 1/2
log T +

K17/8

T 3/2

)
.

This is O(T−ε), provided that K := T 4/7−ε, which completes the proof.
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