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OSCILLATIONS OF FOURIER COEFFICIENTS OF GL(m)
HECKE-MAASS FORMS AND NONLINEAR EXPONENTIAL
FUNCTIONS AT PRIMES

Yujiao Jiang, Guangshi Lü

Abstract: Let F (z) be a Hecke-Maass form for SL(m,Z) and AF (n, 1, . . . , 1) be the coeffi-
cients of L-function attached to F. We study the cancellation of AF (n, 1, . . . , 1) for twisted with
a nonlinear exponential function at primes, namely the sum∑

n6N

Λ(n)AF (n, 1, . . . , 1)e(αnθ),

where 0 < θ < 2/m. We also strengthen the corresponding previous results for holomorphic cusp
forms for SL(2,Z), and improve the estimates of Ren-Ye on the resonance of exponential sums
involving Fourier coefficients of a Maass form for SL(m,Z).

Keywords: exponential sums, Fourier coefficients, Hecke-Maass forms.

1. Introduction

Problems concerning the distribution of arithmetic function twisted some expo-
nential function over primes are very classical in analytic number theory. This
means that we have to establish estimates for the sum

Sθ(A, N) =
∑
n6N

Λ(n)a(n)e(αnθ), (1.1)

where e(x) := exp(2πix) is an additive character, Λ(n), as usual, denotes the von
Mangoldt function, a(n) is an arithmetic function and α, θ > 0.

When a(n) is the constant function, I. M. Vinogradov [15, 16] showed that for
θ = 1,

S1(1, N)� q
1
2N

1
2 + q−

1
2N +N exp

(
−1

2

√
logN

)
,
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where |α− a/q| 6 1/q2 with 1 6 a 6 q and (a, q) = 1, which played a great role
in solving the Goldbach problem with three primes; and for θ = 1/2,

S1/2(1, N)� N
7
8 +ε,

where the implied constant depends on α. It was asserted by Iwaniec and Kowalski
[4, Eq. (13.55)] that they could prove, based on Vaughan’s identity,

S1/2(1, N)� N
5
6 log4N.

Recently, Ren [10] applied Heath-Brown’s identity and got a more general and
stronger result, namely

Sθ(1, N)�
(
N

1+θ
2 +N

4
5 +N

2−θ
2

)
logAN

holds for 0 < θ < 1, where A is an absolute positive constant.
For the Fourier coefficients λf (n) of a holomorphic cusp form f , by the so-

called “principle of square-rooting”, then one may be led to believe that Sθ(f,N) =

O
(
N

1
2 +ε
)
. Surprisingly, Iwaniec, Luo and Sarnak [5] gave the asymptotic formula,

under the assumption of some extremely strong hypotheses,

S1/2(f,N) = ZfN
3
4 +O(N

5
8 +ε), (1.2)

where Zf is a non-zero constant that depends on the cusp form f . Zhao [17] first
obtained an unconditional bound and showed that

S1/2(f,N)� N
5
6 log21N, (1.3)

where the implied constant depends effectively on α in (1.1) and the cusp form f .
Later, Pi and Sun [9] used the zeros density-estimates method and proved a more
general result, which stated that,for any ε > 0,

Sθ(f,N)�
(
N

1+θ
2 +N

2θ+9
12 +N

2−θ
2

)
Nε. (1.4)

Here 0 < θ 6 9/32 or 1/2 6 θ 6 9/16. Note that the first term in the right-hand
side is ineffective in the range above. Recently, Hou [3] followed Zhao’s method
and obtained that for 0 < θ 6 1/2,

Sθ(f,N)�
(
N

5
6 +N

2−θ
2

)
logcN, (1.5)

which gave a complement for the range 9/32 < θ < 1/2. Here c > 0 is an absolute
constant.



Fourier coefficients and nonlinear exponential functions at primes 187

For the higher rank group SL(m,Z) with m > 2, let F (z) be a Hecke-Maass
form of type ν = (ν1, ν2, . . . , νm−1) for SL(m,Z). Then it has the Fourier expansion

F (z) =
∑

γ∈U(m−1,Z)\SL(m−1,Z)

∑
n1>1

· · ·
∑

nm−2>1

∑
nm−1 6=0

AF (n1, . . . , nm−1)∏m
k=1 |nk|

k(m−k)
2

×WJ



n1 . . . |nm−1|

. . .
n1

1

 ·
(
γ

1

)
z, ν, ψ1,...,1,

nm−1
|nm−1|

 ,

(1.6)
where Um−1(Z) denotes the group of (m − 1) × (m − 1) upper triangular
matrices with 1s on the diagonal and an integer entry above the diagonal,
AF (n1, . . . , nm−1) ∈ C, AF (1, . . . , 1) = 1, and WJ denotes the Jacquet Whittaker
function. The generalized Ramanujan conjecture asserts that

|AF (n, 1, . . . , 1)| 6 dm(n). (1.7)

Here dm(n) denotes the number of representations of n as the product ofm natural
numbers. The current best estimate is due to Kim and Sarnak [7] (2 6 m 6 4)
and Luo, Rudnick and Sarnak (m > 5)

|AF (n)| 6 n 7
64 d(n), |AF (n, 1)| 6 n 5

14 d3(n), |AF (n, 1, 1)| 6 n 9
22 d4(n),

|AF (n, 1, . . . , 1)| 6 n
1
2−

1
m2+1 dm(n) (m > 5).

(1.8)
In this paper, we are interested in estimating an exponential sum over primes

with square root amplitude twisted with Fourier coefficients AF (n, 1, . . . , 1). More
precisely, we want to have an estimate for the following sum

Sθ(F,N) =
∑
n6N

Λ(n)AF (n, 1, . . . , 1)e(αnθ). (1.9)

In order to state the result, we first need a technical hypothesis, i.e. the well
known Hypothesis H of Rudnick and Sarnak [13]. Then Hypothesis H states the
following.

Hypothesis H. For any fixed ν > 2,∑
p

|aF (pν)|2(log p)2

pν
<∞, (1.10)

where the arithmetic function aF (n) is defined as in (2.6).

Remark 1. For m = 2, 3, Hypothesis H follows from the Rankin-Selberg theory
[13]. The GL4(AQ) case and the symmetric fourth power sym4F of a cuspidal
representation F of GL2(AQ) were proved by Kim [8] based on his proof of the
(weak) functoriality of the exterior square ∧2F from a cuspidal representation F
of GL4(AQ).



188 Yujiao Jiang, Guangshi Lü

Theorem 1. Let F (z) be a Hecke-Maass form for SL(m,Z) and 0 < θ < 1. Then
we have

Sθ(F,N)�
(
N

5
6 +N

4+mθ
6 +N

2−θ
2

)
log

9
2 N +N

1− 2(m+1)

3(m2+1)
+ε (1.11)

unconditionally for 2 6 m 6 4 and under Hypothesis H for m > 5, where the
implied constant depends effectively on α, θ in (1.9) and F .

Remark 2. One of the ingredients in the proof of Theorem 1 is those estimates
in Lemma 2.8. This lemma improves the previous results of Ren-Ye [12, 11] on
exponential sums involving Hecke-Maass forms at integers. It is clear that The-
orem 1 gives the nontrivial bound for θ < 2/m. The range of θ is restricted by
the estimates of exponential sums in Lemma 2.8. Moreover, the condition Hypo-
thesis H is due to our requirements for the estimates of some arithmetic functions
in Lemma 2.6.

Remark 3. Let f be the holomorphic form of even integral weight k for the full
modular group SL(2,Z), and let λf (n) be the Fourier coefficients of f. Our method
implies the following result

Sθ(f,N)�
(
N

5
6 +N

2+θ
3 +N

2−θ
2

)
log

11
2 N. (1.12)

In particular, for θ = 1/2, we have

S1/2(f,N)� N
5
6 log

11
2 N. (1.13)

Obviously, it strengthens the upper bound in (1.3) on the aspect of the power of
logarithm. On the other hand, (1.12) gives an nontrivial bound for 0 < θ < 1.
Recall that the previous results only holds for 0 < θ < 9/16, if we combine (1.4)
with (1.5). Thus, we enlarge the effective range of θ.

Furthermore, if we employ the estimate of Jutila [6, Theorem 4.6] when θ > 3/4,
which gives ∑

n6N

λf (n)e(αnθ)� α
1
3N

1
2 + θ

3 +ε

for N3/4−θ � α� N3/2−θ. Then our method implies that, if θ > 3/4,

Sθ(f,N)� N
1+θ
2 +ε, (1.14)

which further improves (1.12).

One expects that the idea in the proof of Theorem 1.1 can be also used to
investigate sums of the form

Tθ(F,N) =
∑
n6N

µ(n)AF (n, 1, . . . , 1)e(αnθ). (1.15)
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In fact, using the identity

1

L(s, F )
= 2G(s)− L(s, F )M2(s) +

( 1

L(s, F )
−M(s)

)(
1− L(s, F )M(s)

)
with M(s) being as in (2.8), one can obtain an analogue of Vaughan’s identity for
µF (n), which states that any n > Y

µF (n) = −
∑∑
bc|n

b6X,c6Y

µF (b)µF (c)AF

( n
bc
, 1, . . . , 1

)
+
∑∑
bc|n

b>X,c>Y

µF (b)µF (c)AF

( n
bc
, 1, . . . , 1

)
.

Here X > 1 and Y > 1. Further we are able to prove the same estimate as in
Theorem 1.1 for the exponential sum∑

n6N

µF (n)e(nθα). (1.16)

Since the details are completely analogous we omit the proof. Nevertheless, unlike
the relation (3.1), there does not exist an explicit relation between the sum (1.15)
and the sum (1.16). So this method, in this sense, cannot work. If we use the classi-
cal Vaughan identity, the variablesm and n in Fourier coefficient AF (mn, 1, . . . , 1)
require to be separated. The multiplicative properties of AF (n, 1, . . . , 1) give us
satisfaction only for the case m = 2. Thus, we have

Theorem 2. Let F (z) be a Hecke-Maass form for SL(2,Z) and 0 < θ < 1. Then
we have

Tθ(F,N)�
(
N

5
6 +N

2+θ
3 +N

2−θ
2

)
log4N, (1.17)

where the implied constant depends effectively on α, θ and F .

Note that Hou [3] established

Tθ(F,N)�
(
N

5
6 +N

2−θ
2

)
logcN

for some effective c > 0 and 0 < θ 6 1/2.

Remark 4. Let f be the holomorphic form of even integral weight k for the
full modular group SL(2,Z), and let λf (n) be the Fourier coefficients of f. As in
Remark 3, we have∑

n6N

µ(n)λf (n)e(αnθ)�
(
N

5
6 +N

2+θ
3 +N

2−θ
2

)
log4N, (1.18)

and ∑
n6N

µ(n)λf (n)e(αnθ)� N
1+θ
2 +ε, (1.19)

if θ > 3/4.
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2. Preliminary lemmas

In this section, we quote and prove some results needed later.

2.1. Partition of the generalized von Mangoldt function

The Godement-Jacquet L-function L(s, F ) attached to F can be defined for <s > 1
by

L(s, F ) =

∞∑
n=1

AF (n, 1, . . . , 1)

ns
=
∏
p

∏
16j6m

(
1− αF (p, j)

ps

)−1

,

where the {αF (p, j)}, 1 6 j 6 m are the complex roots of the monic polynomial

Xm +

m−1∑
`=1

(−1)`AF (

`− 1 terms︷ ︸︸ ︷
1, . . . , 1 , p, 1, . . . , 1)Xm−` + (−1)m ∈ C[X]. (2.1)

From (2.1), we find that

AF (

`− 1︷ ︸︸ ︷
1, . . . , 1, p, 1, . . . , 1) =

∑
16j1<···<j`6m

αF (j1, p) . . . αF (p, j`) (2.2)

for 1 6 ` 6 m− 1.
The equivalent assertion of (1.7) says

|αF (p, j)| = 1 (2.3)

for all primes p and j = 1, . . . ,m. And (1.8) is equivalent to

|αF (p, j)| 6 pθm (2.4)

for all primes p and 1 6 j 6 m, where

θ2 :=
7

64
, θ3 :=

5

14
, θ4 :=

9

22
, θm :=

1

2
− 1

m2 + 1
(m > 5). (2.5)

Taking the logarithmic derivatives for L(s, F ), we have

−L
′

L
(s, F ) =

∞∑
n=1

ΛF (n)

ns
=

∞∑
n=1

Λ(n)aF (n)

ns
, (2.6)

where the arithmetic function aF (n) are multiplicative, and

aF (pk) =

m∑
i=1

αF (p, j)k
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for any k > 1. We define the function L−1(s, F ) as

L−1(s, F ) =

∞∑
n=1

µF (n)

ns
,

where

µF (n) =


0, pm+1|n for some prime p,∏
p`‖n

(−1)`

×
∑

16j1<···<j`6m
αF (p, j1) · · ·αF (p, j`), for all ` 6 m.

Clearly, µF (n) are multiplicative.
With notations above, the version of Vaughan’s identity for the Godement-

Jacquet L-function L(s, F ) is the following.

Lemma 2.1. Let X > 1 and Y > 1. Then for any n > Y we have

ΛF (n) =
∑
b|n
b6X

µF (b)AF

(n
b
, 1, . . . , 1

)
log
(n
b

)
−
∑∑
bc|n

b6X,c6Y

µF (b)ΛF (c)AF

( n
bc
, 1, . . . , 1

)
(2.7)

+
∑∑
bc|n

b>X,c>Y

µF (b)ΛF (c)AF

( n
bc
, 1, . . . , 1

)
.

Proof. Define

M(s) =
∑
n6X

µF (n)n−s, N(s) =
∑
n6Y

ΛF (n)n−s. (2.8)

We then have

L′

L
(s, F ) = L′(s, F )M(s) + L(s, F )M(s)N(s)

+

(
L′

L
(s, F ) +N(s)

)
(1− L(s, F )M(s))−N(s).

On picking out the coefficient of n−s on each side, one obtains the following ana-
logue of Vaughan’s identity. �

The proof of our theorems require a variant of Vaughan’s identity for the
Godement-Jacquet L-function L(s, F ).

Lemma 2.2. For N < n 6 2N , n > Nη with η 6 1/3, we have

ΛF (n) = Λ1,F (n) + Λ2,F (n) + Λ3,F (n) + Λ4,F (n),
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where

Λ1,F (n) =
∑
ab=n
b6Nη

µF (b)AF (a, 1, . . . , 1) log a, Λ2,F (n)

= −
∑
abc=n
bc6Nη

µF (b)ΛF (c)AF (a, 1, . . . , 1) ,

Λ3,F (n) = −
∑
abc=n
b,c6Nη

N1−2η<a<2N1−η

µF (b)ΛF (c)AF (a, 1, . . . , 1) ,

Λ4,F (n) =
∑
abc=n
c>Nη

Nη<b62N1−η

µF (b)ΛF (c)AF (a, 1, . . . , 1) .

Proof. We take X = Y = Nη with η 6 1/3 in Lemma 2.1 and decompose the
second term in the right-hand side of (2.7) further. The partition according to
the dichotomy of either a > 2N1−η or a < 2N1−η is obvious. The extra condition
that N1−2η < a is due to b, c 6 Nη =⇒ bc 6 N2η, together with abc = n 6 2N ,
we have N1−2η < a. Moreover, the extra condition in the fourth sum is apparent
as

abc = n 6 2N and c > Nη =⇒ ab 6 2N1−η =⇒ b 6 2N1−η.

This completes the proof of Lemma 2.2. �

2.2. The classical Vaughan identity for the Möbius function

Lemma 2.3. Let X > 1 and Y > 1. Then for any n > Y we have

µ(n) = −
∑∑
bc|n

b6X,c6Y

µ(b)µ(c) +
∑∑
bc|n

b>X,c>Y

µ(b)µ(c).

Proof. See [4, Proposition 13.5]. �

Lemma 2.4. For N < n 6 2N , n > Nη with η 6 1/3, we have

µ(n) = −
∑
abc=n
bc6Nη

µ(b)µ(c)−
∑
abc=n
b,c6Nη

N1−2η<a<2N1−η

µ(b)µ(c) +
∑
abc=n
c>Nη

Nη<b62N1−η

µ(b)µ(c).

Proof. Similar to the proof of Lemma 2.2. �

2.3. Estimates of some arithmetic functions

All results in the following are due to Rankin-Selberg theory.
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Lemma 2.5. Let F (z) be a Hecke-Maass form for SL(m,Z). For any ε > 0, we
have ∑

n1n2
2···n

m−1
m−16x

|AF (n1, n2, . . . , nm−1)|2 = cx+OF,ε

(
x
m2−1

m2+1
+ε
)
. (2.9)

where c > 0 is a constant which depends only on F.

Proof. Recall (see [2, Definition 12.1.2])
∞∑

n1=1

· · ·
∞∑

nm−1=1

|AF (n1, n2, . . . , nm−1)|2

(n1n2
2 · · ·n

m−1
m−1)s

= L(s, F × F )ζ(ms).

By [2, Theorem 12.4], we know that the Rankin-Selberg L-function L(s, F × F )
has a meromorphic continuation to all s ∈ C with a pole at s = 1 only. Then the
result follows by the refinement of Landau’s Lemma [1, Theorem 3.2]. �

Lemma 2.6. Assume that Hypothesis H holds. Let F (z) be a Hecke-Maass form
for SL(m,Z). Then for any ε > 0, we have∑

n6x

d(n)|µF (n)|2 � x log x,

∑
n6x

d(n)|AF (n, 1, · · · , 1)|2 � x log x,

∑
n6x

d(n)|aF (n)|2 � x log x,

∑
n6x

|µF (n)|2 � x,

(2.10)

where the implied constants depend on F only.

Proof. To the arithmetic function d(n)|µF (n)|2 , we attach the Dirichlet series

D(µF , s) =

∞∑
n=1

d(n)|µF (n)|2n−s. (2.11)

we shall decompose the attached Dirichlet series D(µF , s) into some functions
whose properties are well known. From the definition of µF (n), we know that it
is multiplicative. Then Dirichlet series D(µF , s) has Euler product

D(µF , s) =
∏
p

(
1 +

2|µF (p)|2

ps
+

3|µF (p2)|2

p2s
+ · · ·+ (m+ 1)|µF (pm)|2

pms

)
.

Here µF (p) = −
∑m
j=1 αF (p, j). We can treat this infinite series as a rational

function in p−s. In particular, the coefficient of p−s is

2

m∑
j=1

m∑
i=1

αF (p, j)αF (p, i).
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Recall that

L(s, F × F ) =
∏
p

∏
16j6m

∏
16i6m

(
1− αF (p, j)αF (p, i)

ps

)−1

.

Then we see that D(µF , s) has the same coefficients of p−s as L2(s, F ×F ). Write

D(µF , s) = L2(s, F × F )U(s). (2.12)

Then a straightforward calculation shows that U(s) =
∏
p Up(s) where

Up(s) = 1 +O

∑
ν>2

|aF (pν)|2

pνσ

 . (2.13)

Put ηm := 1
2 (1− 2θm− ε) > 0, where θm is given by (2.5) and ε > 0 is sufficiently

small. In view of (2.6), we see that

|aF (pν)| 6 mpθmν

for all primes p and integers ν > 1. From this we deduce that, for any σ > 1− ε,∑
ν>[1/(2ηm)]+2

∑
p

|aF (pν)|2

pνσ
�
∑
p

∑
ν>[1/(2ηm)]+2

1

pν(1−2θm−ε)

�
∑
p

∑
ν>[1/(2ηm)]+2

1

p2ηmν

�
∑
p

1

p1+2ηm

� 1.

(2.14)

Further, we derive

log |U(s)| �
∑
p

log |Up(s)|

�
∑
p

∑
ν>2

|aF (pν)|2

pνσ

�
∑

26ν6[1/(2ηm)]+2

∑
p

|aF (pν)|2

pνσ
+ 1

� 1

(2.15)

providing σ = 1 under Hypothesis H. Thus U(s) converges absolutely in Res > 1.
By a standard use of the Wiener-Ikehara Theorem, we have∑

n6x

d(n)|µF (n)|2 � x log x. (2.16)

Similar to the first assertions, we can prove the others in the same way. So we
omit here. �
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2.4. Bilinear forms and Fourier coefficients with exponentials

We shall need to estimate certain bilinear forms with exponentials. The following
lemmas suffice for our enterprise.

Lemma 2.7. Let h(x), g(x) be a real-valued functions on [M, 2M ], [N, 2N ] re-
spectively, such that h � H, g � G and |h′| > HM−1, |g′| > GN−1. Then for
any complex number βm, γn we have∑

m

∑
n

βmγne (h(m)g(n))� (HG)−
1
2 (HG+M)

1
2 (HG+N)

1
2 ‖β‖‖γ‖,

where ‖β‖2 =
∑
|βm|2 and ‖γ‖2 =

∑
|γn|2.

Proof. The proof can be found in [4, Corollary 7.4]. �

Lemma 2.8. Let F be a Hecke-Maass form on SL(m,Z). Then we have, for
θ 6= 1/m, ∑

X<n62X

AF (n, 1, · · · , 1)e
(
αnθ

)
� (αXθ)m/2 +Xσm+ε, (2.17)

and for θ = 1/m,∑
X<n62X

AF (n, 1, · · · , 1)e
(
αn1/m

)
= −Υα,θ,X

√
mX1/(2m)+1/2(−i)(m−1)/2I(m,α,X)

AF (1, · · · , 1, nα)

n
1/2−1/(2m)
α

+O(αδmX1/2−1/(2m)+ε) +O(Xσm+ε), (2.18)

where nα is the integer satisfying (α/m)m − nα ∈ (−1/2, 1/2],

I(m,α,X) =

∫ 21/m

1

tm/2−1/2e
(
(α−mn1/m

α )X1/mt
)
dt,

Υα,θ,X =

{
0, if 2 max{1, 2θ−1/m}(αθ)m > X1−θm,
1, otherwise,

δm =

 23/32, if m = 2,
29/14, if m = 3,
m− 1/2, if m > 4,

and

σm = (m2 −m)/(m2 + 1).

Remark 5. The previous values of σm in [12, 11, 14] are

σm = min{(m− 1)(1 + θm)/(m+ 1), 1− 1/m},

where θm are as in (2.5). Clearly, we improve the results before. In particular, for
fixed α and large X, (2.18) is an asymptotic formula for m 6 3.
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Proof. Ren-Ye [12, 11] and Sun-Wu [14] need to estimate the short interval sum
of AF (n, 1, · · · , 1) in their proofs, that is∑

X<n6X+X/∆

|AF (n, 1, · · · , 1)|,

where ∆ is some parameter less than X. By applying the Cauchy-Schwarz inequal-
ity, we obtain

∑
X<n6X+X/∆

|AF (n, 1, · · · , 1)| �

 ∑
X<n6X+X/∆

|AF (n, 1, · · · , 1)|2
1/2(

X

∆

)1/2

.

By inserting the estimates in Lemma 2.5, then we have

∑
X<n6X+X/∆

|AF (n, 1, · · · , 1)| � X

∆
+
X1−1/(m2+1)+ε

∆1/2
.

We use these bounds instead of the previous results, namely,∑
X<n6X+X/∆

|AF (n, 1, · · · , 1)| � min
{
X1+θm+ε/∆, X/∆1/2

}
.

Finally, we obtain that for θ 6= 1/m,∑
X<n62X

AF (n, 1, · · · , 1)e(αnθ)� (αXθ)m/2 +X(m2−m)/(m2+1)+ε.

Moreover, we have the corresponding results for θ = 1/m by applying the same
idea. �

3. Proof of Theorem 1

It follows from the definition of ΛF (n) that∑
n6N

Λ(n)AF (n, 1, . . . , 1)e(αnθ) =
∑
n6N

ΛF (n)e(αnθ)

+O

logN
∑
pk6N
k>2

(
|A(pk, 1, · · · , 1)|+ |aF (pk)|

).
We obtain from (2.2) that

A(p2, 1, · · · , 1) = A(p, 1, · · · , 1)2 −A(1, p, · · · , 1),

aF (p2) = A(p, 1, · · · , 1)2 − 2A(1, p, · · · , 1).
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Moreover, we know that∑
p26N

|A(p, 1, · · · , 1)|2 �
∑

n6N1/2

|A(n, 1, · · · , 1)|2 � N
1
2 ,

and

∑
p26N

|A(1, p, · · · , 1)| � N
1
2

 ∑
n6N1/2

|A(1, n, · · · , 1)|2
1/2

� N
3
4 .

Thus, one derives from (2.4) that∑
p26N
k>2

(
|A(pk, 1, · · · , 1)|+ |aF (pk)|

)
�N 3

4 +
∑
pk6N
k>3

(
|A(pk, 1, · · · , 1)|+ |aF (pk)|

)
�N 3

4 +N
1
3 +θm+ε.

Collecting together these estimates above, we find∑
n6N

Λ(n)AF (n, 1, . . . , 1)e(αnθ) =
∑
n6N

ΛF (n)e(αnθ) +O
(
N

3
4 +N

1
3 +θm+ε

)
.

(3.1)
Now the sum of our interest in (1.9) can be transformed into∑

n6N

ΛF (n)e(αnθ).

On applying Vaughan’s identity in Lemma 2.2, it can be decomposed and it suffices
to estimate each individual component. We have∣∣∣∣∣∣

∑
N<n62N

ΛF (n)e(αnθ)

∣∣∣∣∣∣ 6
4∑
i=1

|SF,i(N)| , (3.2)

where Si,F (N) =
∑
N<n62N Λi,F (n)e(αnθ), and Λi,F (n) are defined in Lemma 2.2.

3.1. Bilinear forms treatment

The last two sums of (3.2) are similar and can be disposed using similar means.
Toward that end, we have

Lemma 3.1. With SF,i(N) defined as before, we have

|SF,3(N)|+ |SF,4(N)| �
(
N

1+max{2η,θ}
2 +N

2−min{η,θ}
2

)
log

9
2 N,

where the implied constant depends on α, θ and F .
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Proof. Breaking the summations into dyadic intervals, it suffices to estimate, for
arithmetic functions β(m) and γ(l), sums of the following shape,∑

M<m62M

β(m)
∑

L<l62L

γ(l)e
(
α(lm)θ

)
, (3.3)

and with Nη 6 M 6 N2η, N1−2η 6 L 6 N1−η for SF,3(N), Nη 6 M 6 N1−η,
Nη 6 L 6 N1−η for SF,4(N) and ML = N . Here the value of η 6 1/3 shall be
chosen at the end of this paper, β(m) is∑

bc=m
b,c6Nη

µF (b)ΛF (c) and
∑
ac=m
c>Nη

ΛF (c)AF (a, 1, . . . , 1), (3.4)

and γ(l) is
AF (l, 1, . . . , 1) and µF (l)

for SF,3(N) and SF,4(N), respectively. We can estimate the square moments of
β(m) by Cauchy’s inequality and Lemma 2.6

∑
M<m62M

∣∣∣∣∣∣∣
∑
bc=m
b,c6Nη

µF (b)ΛF (c)

∣∣∣∣∣∣∣
2

�
∑

M<m62M

∑
bc=m

|µF (b)|2|ΛF (c)|2d(m)

� log2M
∑
b62M

d(b)|µF (b)|2

×
∑

M/b<c62M/b

d(c)|aF (c)|2

�M log5M,

(3.5)

and

∑
m6x

∣∣∣∣∣∣∣
∑
ac=m
c>Nη

ΛF (c)AF (a, 1, . . . , 1)

∣∣∣∣∣∣∣
2

�
∑

M<m62M

∑
ac=m

|AF (a, 1, . . . , 1)|2|ΛF (c)|2d(m)

� log2M
∑
a62M

d(a)|AF (a, 1, . . . , 1)|2

×
∑

M/b<c62M/b

d(c)|aF (c)|2

�M log5M. (3.6)

Recall that∑
L<l62L

|AF (l, 1, . . . , 1)|2 � L and
∑

L<l62L

|µF (l)|2 � L. (3.7)
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On using Lemma 2.7 with h(x) = g(x) = α1/2xθ, we find that the bilinear sum
(3.3) is bounded by

(
N

θ
2 +M

1
2 + L

1
2 +N

1−θ
2

) ∑
M<m62M

|β(m)|2
 1

2
 ∑
L<l62L

|γ(l)|2
 1

2

�
(
N

1+θ
2 +N

1
2M

1
2 +N

1
2L

1
2 +N

2−θ
2

)
log

5
2 N. (3.8)

On summing up all the dyadic intervals, then Lemma 3.1 follows. �

3.2. Linear sums

It still remains to estimate the other terms in (3.2) which are similar.

Lemma 3.2. With Si,F (N) defined as before, we have, if θ 6= 1/m,

|SF,1(N)|+ |SF,2(N)| � N
mθ
2 +η log

9
2 N +Nσm+η(1−σm)+ε,

and if θ = 1/m,

|SF,1(N)|+ |SF,2(N)| �
(
N

1
2 + 1

2m +N
1
2−

1
2m+

η(m+2δm+1)
2m

)
log

9
2 N

+Nσm+η(1−σm)+ε,

where the implied constant depends on α, θ and F .

Proof. By partial summation, S1,F (N) and S2,F (N) become the same type. Sim-
ilar to the beginning for the proof of bilinear forms above, we need to estimate the
following sum

∑
Q<q62Q

|β(q)|

∣∣∣∣∣∣
∑

L<l62L

AF (a, 1, . . . , 1)e
(
α(lq)θ

)∣∣∣∣∣∣ , (3.9)

with Q 6 Nη, QL = N . Here β(q) is

µF (q) and
∑
bc=q

µF (b)ΛF (c), (3.10)

for SF,1(N) and SF,2(N) respectively. Note that there is a factor logN for bound-
ing the sum S1,F (N), which appears because of partial summation.

By inserting the estimates in Lemma 2.8, we obtain that, for θ 6= 1/m, (3.9) is
majorized by∑

Q<q62Q

|β(q)|
(

(qL)
mθ
2 + Lσm+ε

)
� N

mθ
2 +η log

5
2 N +Nσm+η(1−σm)+ε, (3.11)



200 Yujiao Jiang, Guangshi Lü

and for θ = 1/m, (3.9) is bounded by

∑
Q<q62Q

|β(q)|
(
|AF (1, · · · , 1, q)|
q1/2−1/(2m)

L
1
2 + 1

2m + q
δm
m L

1
2−

1
2m + Lσm+ε

)
� N

1
2 + 1

2m log
5
2 N +N

1
2−

1
2m+

η(m+2δm+1)
2m log

5
2 N +Nσm+η(1−σm)+ε, (3.12)

where the notation σm, δm is defined as in Lemma (2.8). We use Cauchy’s inequal-
ity, (3.5) and (3.7) in the last step of (3.11) and (3.12).

�

3.3. Choosing for the parameter η

Combining Lemma 3.1 and Lemma 3.2, we have the best choice for the parameter
η in the following. We take η = (2−mθ)/3 if θ > 1/m, and η = 1/3 if θ 6 1/m.
Finally, we have∣∣∣∣∣∣

∑
N<n62N

ΛF (n)e(αnθ)

∣∣∣∣∣∣�
(
N

5
6 +N

4+mθ
6 +N

2−θ
2

)
log

9
2 N +N

1− 2(m+1)

3(m2+1)
+ε
.

(3.13)
After adding up the sum over all the dyadic intervals and combining (3.1), we
finish the proof of Theorem 1.

4. Proof of Theorem 2

Let
T ′θ(F,N) =

∑
N<n62N

µ(n)AF (n)e(αnθ). (4.1)

After applying Vaughan identity in Lemma 2.4, we have

T ′θ(F,N)

=
∑

N<n62N

−
∑
abc=n
bc6Nη

µ(b)µ(c)−
∑
abc=n
b,c6Nη

N1−2η<a<2N1−η

µ(b)µ(c) +
∑
abc=n
c>Nη

Nη<b62N1−η

µ(b)µ(c)


×AF (n)e(αnθ)

= T ′1,θ(F,N) + T ′2,θ(F,N) + T ′3,θ(F,N),
(4.2)

respectively. First, we go to estimate the sum T1,θ(F,N). Introducing the notation

αe =
∑
bc=e

µ(b)µ(c).
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Clearly, we see that

T ′1,θ(F,N) =
∑
e6Nη

αe
∑
a∼N/e

AF (ae) e
(
α(ae)θ

)
and αe satisfies the bound

|αe| 6 d(e).

By multiplicative property of Hecke eigenvalues

AF (mn) =
∑

d| gcd(m,n)

µ(d)AF

(m
d

)
AF

(n
d

)
, (4.3)

we obtain that

T ′1,θ(F,N) =
∑
e6Nη

αe
∑
l|e

µ(l)AF

(e
l

) ∑
a∼N/(el)

AF (a) e
(
α(ael)θ

)

=
∑
e6Nη

d(e)
∑
l|e

∣∣∣AF (e
l

)∣∣∣
∣∣∣∣∣∣
∑

a∼N/(el)

AF (a) e
(
α(ael)θ

)∣∣∣∣∣∣ .
(4.4)

After appealing to the estimate in Lemma 2.8, the sum is

�
∑
e6Nη

d(e)
∑
l|e

|AF (l)|

(
Nθ +

(
N

el

)σm+ε
)

� Nσm+ε +Nθ
∑
e6Nη

d(e)
∑
l|e

|AF (l)|
(4.5)

providing θ 6= 1/2. Due to the inequality d(el) 6 d(e)d(l), the classical result∑
n6N d(n)� N logN and Lemma 2.6 , we have

T ′1,θ(F,N)� Nσm+ε +Nθ
∑
e6Nη

d(e)
∑

l6Nη/e

d(l) |AF (l)|

� Nσm+ε +Nθ
∑
e6Nη

d(e)

 ∑
l6Nη/e

d(l)

 1
2
 ∑
l6Nη/e

d(l) |AF (l)|2
 1

2

� Nσm+ε +Nθ+η log3N.
(4.6)

When θ = 1/2, we similarly obtain that

T ′1,θ(F,N)� N
3
4 +ηθ2+ε +N1+

η(3+2δ2)
4 log3N +Nσ2+η(1−σ2)+ε. (4.7)

For the two other sums, namely T ′2,θ(F,N) and T ′3,θ(F,N), it suffices to estimate,
for arithmetic functions β(m) and γ(l), sums of the following shape,∑

M<m62M

β(m)
∑

L<l62L

γ(l)AF (ml) e
(
α(ml)θ

)
, (4.8)
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with Nη 6 M 6 N2η, N1−2η 6 L 6 N1−η for T ′2,θ(j,N), Nη 6 M 6 N1−η,
Nη 6 L 6 N1−η for T ′3,θ(j,N) and ML = N . Here the value of η shall be chosen
at the end of this paper, β(m) is∑

bc=m
b,c6Nη

µ(b)µ(c) and
∑
ac=m
c>Nη

µ(c), (4.9)

and γ(l) is
1 and µ(l)

for T ′2,θ(F,N) and T ′F,θ(j,N) respectively. Note that

|β(m)| 6 d(m), |γ(l)| 6 1.

By (4.3), (4.8) is equal to∑
M<m62M

β(m)
∑
d|m

µ(d)AF

(m
d

) ∑
l∼L/d

γ(ld)AF (l) e
(
α(mld)θ

)

�
∑

d�min{M,L}

|µ(d)|

∣∣∣∣∣∣
∑

m∼M/d

β(md)AF (m)
∑
l∼L/d

γ(ld)AF (l) e
(
α(mld)θ

)∣∣∣∣∣∣
�

∑
d�min{M,L}

(
N

θ
2 d−

θ
2 + L

1
2 d−

1
2 +M

1
2 d−

1
2 +N

1
2−

θ
2 d−1+ θ

2

)
|µ(d)|d(d)

×

 ∑
m∼M/d

|d(m)AF (m) |2
 1

2
 ∑
l∼L/d

|AF (l) |2
 1

2

�
(
N

1+η
2 +N

2−η
2 +N

1+θ
2 +N

2−θ
2

)
log

3
2 N. (4.10)

Here the last step is due to the estimates∑
m∼M

|d(m)AF (m) |2 � x log3 x,
∑
m∼M

|AF (m) |2 � x.

The former appeals the fact that∑
m>1

|d(m)AF (m) |2

ms
= L4(s, F × F )U(s),

where U(s) converges absolutely in Res > 1/2 + ε. The latter follows from
Lemma 2.5. Thus, we see that |T ′2,θ(F,N)|+ |T ′F,θ(j,N)| is

�
(
N1+ η

2 +N
2−η
2 +N

1+θ
2 +N

2−θ
2

)
log

5
2 N. (4.11)

On taking the same value for the parameter η as in Section 3.3 when m = 2, the
conclusion follows, that is to say,

Tθ(F,N)�
(
N

5
6 +N

2+θ
3 +N

2−θ
2

)
log4N. (4.12)
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