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ON THE j-INVARIANTS OF CM-ELLIPTIC CURVES DEFINED
OVER Zp
Andrew Fiori

Abstract: We characterize the possible reductions modulo p of the j-invariants of supersingu-
lar elliptic curves which admit complex multiplication by a (potentially non-maximal) order O
where the curve itself is defined over Zp. In particular, we show that the collection of possi-
ble j-invariants as well as some aspects of the distribution depends on which primes divide the
discriminant and conductor of the order O.
Keywords: complex multiplication, lifting, elliptic curves.

1. Introduction

There are several different ways of framing the results of this paper. Our main
object of study will be CM-elliptic curves over Zp which are supersingular at p.
The results we obtain will primarily be directed towards trying to address the
following three questions:

1. When are there elliptic curves defined over Zp, which (after base extension)
admit CM by an order O in a quadratic imaginary field K in which p is inert
and where p does not divide the conductor of O?

2. For such curves, what factors affect the possible reductions of their j-invar-
iants modulo p amongst the set of all supersingular Fp-rational j-invariants?

3. Given an Fp-rational supersingular j-invariant which admits CM by O, when
does there exist an elliptic curve defined over Zp, which (after base extension)
admits CM by O, which reduces to it.

Though they are not necissarily framed in this way, related questions are treated
in [Sta12], [Mor14] and [BM04] and some of our results can naturally be viewed
as generalizations to the context of non-maximal orders. Furthermore, there are
natural connections between some of our results and those presented in [LV15].

This work was done while the author was a Fields postdoctoral researcher at Queen’s Uni-
versity.
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We note one natural source of interest in these questions is the following ob-
servation of Ernst Kani:

Proposition. Suppose p is unramified in K and does not divide the conductor
of O. Then every Fp elliptic curve which admits CM by O lifts to Zp (with
a lifting of its CM to Zp) if and only if p does not divide the conductor of the
ring Z[j(E1), . . . , j(En)] generated by the j invariants of all elliptic curves which
admit CM by O.

Remark 1.1. This ring Z[j(E1), . . . , j(En)] is a natural order in the ring class
field of K associated to O, its structure is mysterious.

The results we will describe are in contrast to what one would obtain for
the same questions asked for elliptic curves over Zp2 , the unramified quadratic
extension of Zp. In particular, over Zp2 , we have the following answers:

1. There are always CM-elliptic curves over Zp2 which admit CM by O an order
in a quadratic imaginary field K in which p is inert, and where p does not
divide the conductor.

2. From the work of Cornut-Vatsal [CV05, CV07] and Jetchev-Kane [JK11] we
have that the reductions of the j-invariants of elliptic curves with CM by O
are equidistributed among the supersingular values in Fp2 (as we vary the
conductors O subject to certain congruence conditions). Moreover, for each
p and all but finitely many O where p is inert, the map from elliptic curves
with CM by O to supersingular j-invariants in Fp2 is surjective.

3. By the work of Deuring [Deu41] we know that given a supersingular elliptic
curve E with CM by O there always exists a lift to an elliptic curve over Zp2
with CM by O which reduces to E (along with its CM).

The results we obtain are motivated by computations, which gave results which
seemed contrary to the above. In particular if we consider only the elliptic curves
which are defined over Zp then:

• They are not always surjective onto supersingular Fp values as we vary O
among

– maximal orders subject to certain congruence conditions on the dis-
criminant;

– orders in a certain fixed K subject to certain congruence conditions on
the conductor;

– orders subject to certain congruence conditions on the conductor and
discriminant of K.

• The set of possible values, and hence the overall distributions depends on
congruence conditions on both the discriminant of K and the conductor of
O.

• For certain congruence conditions on discriminants and conductors there are
irreducible factors which always appear together, in equal numbers. So the
appearance of a given factor is not independent on the appearance of another.
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We should emphasize before proceeding that though perhaps unexpected in light of
them, the above does not actually conflict with the aforementioned equidistribution
results.

This paper is organized as follows:
• In Section 2 we introduce the relevant background.
• In Section 3 we state and prove our results.
• In Section 4 we discuss two natural questions our work leaves open.

2. Background

In this section we will be introducing the results necessary to state and prove our
theorems. Much of what we are saying is very well known, and can be found
in many references on the theory of complex multiplication. Some results which
are perhaps less well known can be found in [Sch10], [Deu41], [Ibu82], [Dor89] or
[LV15].

Convention. Throughout this paper whenever we write End(E) we shall mean
the endomorphism algebra of E over an algebraically closed field containing the
ring of definition of E.

We recall the following important facts:

Theorem 2.1. If E is an elliptic curve over a field of characteristic 0 then either:
• End(E) = Z, this is the general case.
• End(E) = O, for O ⊂ Q(

√
−D) an order in a quadratic imaginary field,

this is the so-called CM-case.

Convention. We shall say an elliptic curve E admits CM by O if End(E) ' O.
To say that E admits CM does not require that we have chosen a particular iso-
morphism of O with End(E).

We will be interested in the CM or complex multiplication case in characteristic
0, where we have the following classification result:

Theorem 2.2. The elliptic curve Eτ = C/(Z⊕ τZ) has End(E) ' O if and only
if

1. τ ∈ Q(
√
−D), that is τ generates a (complex) quadratic field, and

2. Z + τZ ⊂ Q(
√
−D) is a (projective) O-module.

Moreover, for any algebraically closed field C of characteristic 0 the collection of
elliptic curves which admit CM by O is a principal homogeneous space under the
action of C`(O) the ideal class group of O.
Remark 2.3. Note that the collection of elliptic curves E which admit CM by
O and the collection of pairs (E, ρ : O ∼→ End(E)) of E and an isomorphism of
O with End(E) of a fixed CM-type are in bijection. In most contexts this later
moduli problem is more natural. However, this moduli space never has Zp-points.
As we are primarily concerned with the field of definition of E and not the field
over which CM is obtained we shall be considering instead the “moduli" of elliptic
curves which admit CM by O.
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Theorem 2.4. If E is an elliptic curve over a field of characteristic p then either:

• End(E) = Z, this is the general case.
• End(E) = O, for O ⊂ Q(

√
−D) an order in a quadratic imaginary field in

which p splits.
• End(E) = B, for B a maximal order in a quaternion algebra over Q ramified
only at p and ∞. This is the so-called supersingular case.

From the above we see that if ever we can reduce a CM elliptic curve E at
a prime inert in K we will obtain a supersingular elliptic curve. In the character-
istic p setting it will be this case we are most interested in.

Notation 2.5. Let m ∈ Z+ be square free so that K = Q(
√
−m) is the quadratic

imaginary field of discriminant D, denote by OK its maximal order and O =
OK,f = Z + fOK an order of conductor f ∈ Z. Denote by:

PO(X) =
∏
a

(X − j(C/a)).

where the product is over a set of representatives a /O for the class group C`(O)
of O. Denote by L the splitting field of PO(X) over K.

The following facts are well known, for a reference see for example [Sch10].

• PO(X) ∈ Z[X] and is irreducible over K.
• L is abelian over K, with Gal(L/K) ' C`(O), the action being the natural

permutation action of C`(O) on the roots.
• L is galois over Q, the action of Gal(K/Q) on C`(O) being g 7→ g−1 so that

Gal(K/Q) is a generalized dihedral group.
• The action of complex conjugation on the ideals of K agrees with the action

on the set of elliptic curves which admit CM by O, which in turn agrees with
the action of Gal(K/Q).

• L/K is ramified only at primes over f, whereas L/Q is ramified only at primes
over Df.

We shall denote by N = Q(j) = Q[X]/(PO(X)) ⊂ L.
Based on the above we can conclude the following:

• If p is inert in K and p does not divide f (or equivalently that
(
−Df2

p

)
= −1)

then p splits in L/K.

• If
(
−Df2

p

)
= −1 then PO(X) factors as a product of quadratic and linear

terms over Zp.

Remark 2.6. The above agrees with the fact that the reductions of these elliptic
curves (together with their CM actions) have models over Fp2 , as they are known
to be supersingular.
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Proposition 2.7. If p is inert in K and E is an elliptic curve which admits CM by
O then the reduction of E modulo p is supersingular. In particular, End(E) = B,
where B is a maximal order in a quaternion algebra ramified only at p and infinity.
By reduction we may associate to such a curve E the pair (End(E) ⊂ End(E)).
This mapping gives a bijection between elliptic curves E, which admit CM by O,
and isomorphism classes of pairs (O ⊂ B) of O with an optimal embedding into
a maximal order B as above.

Moreover, there is a natural action of C`(O) on such pairs, that is a / O
takes the pair (O ⊂ B) to (O ⊂ aBa−1). Under this action the set of elliptic
curves which admit CM by O is a principal homogeneous space under C`(O). In
particular End(a ∗ E) = aEnd(E)a−1.

The original result of [Dor89] is corrected and generalized in [LV15].
From now on we shall be working in the setting where p is split in K and p

does not divide f. In particular we are assuming that
(
−Df2

p

)
= −1.

Proposition 2.8. If PO(X) has a linear factor over Zp, the number of such linear
factors is |Gal(L/K)[2]| the size of the two torsion of the class group.

Proof. By basic algebraic number theory we must count the size of the conjugacy
class of Frobenius. This is then a basic property to dihedral groups. �

Remark 2.9. If |Gal(L/K)[2]| = 1 then PO(X) has a unique linear factor
over Zp.

Theorem 2.10 (Deuring). If E corresponds to the data (O ⊂ B) then the re-
duction of E modulo p is defined over Fp (rather than simply Fp2) if and only if
B contains Z[

√
−p].

See [Deu41].
In [Ibu82] Ibukiyama gives a complete classification of the maximal orders B

which contain Z[
√
−p].

Notation 2.11. Fix p and q = 3 (mod 8) such that B = (−p,−q) is the quater-
nion algebra ramified only at p and ∞. Fix α, β ∈ B such that α2 = −p, β2 = −q
and αβ = −βα. Choose r ∈ Z such that r2 + p = mq for some m ∈ Z.

Denote:

O(p, q, r,m) = Z + Z
α(1 + β)

2
+ Z

1 + β

2
+ Z

(r + α)β

q

If p = 3 (mod 4) choose r′ ∈ Z such that (r′)2 + p = 4m′q for some m′ ∈ Z.
Denote:

O′(p, q, r′,m′) = Z + Z
1 + α

2
+ Zβ + Z

(r + α)β

2q
.
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Theorem 2.12 (Ibukiyama). The sets O(p, q, r,m) (and O′(p, q, r′,m′)) are
maximal orders of B, their isomorphism classes depend only on q and not on r or
m. Moreover, all pairs consisting of a maximal order in B with an embedding of
Z[
√
−p] are of the form O(p, q, r,m) (or O′(p, q, r′,m′)) with the embedding taking√
−p→ ±α.
The orders O(p, q, r,m) and O′(p, q, r′,m′) are only ever isomorphic if they

correspond to the j-invariant 1728, equivalently if they admit an embedding of
Z[
√
−3+1

2 ].

See [Ibu82].

Remark 2.13. In O(p, q, r,m) we may write:

α = 2

(
α(1 + β)

2

)
− q

(
(r + α)β

q

)
+ qr.

Remark 2.14. We can count the number of isomorphism classes of O(p, q, r,m)
(respectively O′(p, q, r′,m′)) by looking at the class numbers hp for Z[

√
−p] (and

h̃p for Z[(1 +
√
−p)/2]), we have the following standard formulas (for p 6= 3):

• The number of supersingular j invariants over Fp2 is n = b(p− 1)/12c+e0 +
e1728, where ex is 0 or 1 depending on if x is supersingular at p.

• If p = 7 (mod 8) then hp = h̃p and there are (hp + 1)/2 options for both
O(p, q, r,m) and O′(p, q, r′,m′).

• If p = 3 (mod 8) then hp = 3h̃p and there are (hp + 1)/2 options for
O′(p, q, r′,m′) and (h̃p + 1)/2 options for O′(p, q, r′,m′).

• If p = 1 (mod 4) there are hp/2 options for O(p, q, r,m).

Combining the above allows us to compute the number of Fp rational supersingular
values in terms of hp.

More generally, if we fix K = Q(
√
−D) a quadratic imaginary field of discrim-

inant −D and class number hK . Fix an order O = Z + fOK and write f =
∏
qaii

The class number of O is given by:

hO = εhK
∏
i

(
qi −

(
−D
qi

))
qai−1
i

where ε = 1 unless D = −3 or D = −4.
If D = −3 and the formula above is divisible by 3 then ε = 1

3 . If D = −4 and
the formula above is divisible by 2 then ε = 1

2 .

Theorem 2.15 (Halter-Koch). If n is the number of prime divisors of Df then:

|C`(O)[2]| =



2n−1 Df odd
2n−2 2||Df

2n−1 4||Df

2n−1 8||Df

2n 16|Df

.
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More precisely, the ring class field of O contains:

Q
(√

(−1)(q−1)/2q

)
where q is an odd prime factor of Df.

If D = −8m then the ring class field of O contains:

Q
(√

(−1)(m−1)/22

)
.

If D = 4 (mod 8) and 4|f then the ring class field of O contains:

Q
(√

2
)
.

If D is odd, and 8|f then the ring class field of O contains:

Q
(√

2
)
.

If D = 4 (mod 8), or 2|f and 2|D, or D is odd and 4|f then the ring class field
of O contains:

Q
(√
−1
)
.

The above fields generate the genus field F , moreover, this is thee maximal
subextension of the ring class field of O generated by quadratic extensions.

See [Sch10, Thm 6.1.4].

3. Results

In this section we will present our main theorems. These are primarily structured
so as to explain patterns noticed in tabulations of these values.

We will begin by looking at certain conditions onO under which there can be no
elliptic curves over Zp which admit CM by O. These first results can naturally be
viewed as generalizations of those of [Mor14] and [Sta12] which can be interpreted
as giving the conditions on the odd prime factors of the discriminants.

Theorem 3.1. Fix K = Q(
√
−D) of discriminant −D. Fix an order O = Z+fOK

of conductor f ∈ Z and suppose that
(
−Df2

p

)
= −1. There are no elliptic curves

over Zp which admit CM by O if any of the following occur:

• there is an odd prime factor q of Df with
(
−p
q

)
= −1

• p = 1 (mod 4) and 16|Df2.
• p = 3 (mod 8) and 8|D.
• p = 3 (mod 8) and 64|Df2

Otherwise there are exactly |C`(O)[2]| j-invariants for elliptic curves over Zp which
admit CM by O.
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Remark 3.2. The condition that there is an odd prime factor q of D with(
−p
q

)
= −1 implies in particular that the quaternion algebra (−p,−D) is rami-

fied at q. Though this can be used to justify the condition for those q|D, we will
not follow this strategy of proof, rather we give a proof which has a more natural
connection to class field theory.

The condition on odd primes cannot be extended to even primes by use of the
Kronecker symbol, the dependence on the behaviour at 2 is more subtle.

In order to prove the result we shall make use of a few lemmas.

Lemma 3.3. Fix K = Q(
√
−D) of discriminant −D. Fix an order O = Z+ fOK

and suppose that
(
−Df2

p

)
= −1. The polynomial PO(X) has a linear factor over

Zp if and only if N = Q(j(O)) has no quadratic subextension in which p is inert.

Proof. If there is a quadratic subextension of N which is inert at p, then all
factors of p in N have inertial degree 2, and thus there can be no linear factors.

Conversely, suppose every factor of p in N has inertial degree 2. let p be a
prime of L over p and let σ be a generator for the decomposition group of p and
let τ be a generator of Gal(L/N). Then
• σ is 2-indivisible (σ 6= x ·x for any x) with exact order 2, because this is true

of Frobp.
• σ and τ are not conjugate, since if τ were a conjugate of Frobp the field
N = Lτ would have a non-inert prime.

• σ and τ commute since σ has order 2.
• στ is in Gal(L/K) as they both act non-trivially on K.
• It follows from the above, and the basic structure of dihedral groups, that
στ is indivisible with exact order 2.

Thus we may write:
Gal(L/K) = 〈στ〉 ×H

and thus
Gal(L/Q) = 〈σ〉 × (H o 〈τ〉).

We see that G = (H o 〈τ〉) is a normal subgroup of Gal(L/Q), moreover, the field
LG is an inert quadratic subextension of N . �

Lemma 3.4. The maximal subextension of N generated by quadratic extensions
is the totally real subfield M of F the genus field of L.

Proof. It suffices to show that N has a real embedding since any composite of
quadratic extensions is either totally complex or totally real.

To see this we use the fact that:

j(a) = j(a).

It is thus sufficient to find a such that a = a, but indeed we may simply take
a = O. �
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Proof of Theorem 3.1. The idea of the proof is to show that p is inert in
a quadratic subextension of the totally real subfield N of F if and only if one
of the conditions of the theorem holds.

To show this we must find a subextension of N defined by adjoining the square
root of a positive integer which is not a square modulo p, in each of the following
cases we describe how to find such a non-square. Note that if q = 3 (mod 4) then√
Dq ∈ N whereas if q = 1 (mod 4) then √q ∈ N .
• Consider the case where p = 1 (mod 4) and 4||D. In this case there exists

odd prime factor q′ of D with
(
−p
q′

)
= −1. Moreover, D has a factor q such

that both ±q are not squares mod p.

• Suppose there is an odd prime factor q of Df with
(
−p
q

)
= −1.

– if q = p = 3 (mod 4) we obtain
(
q

p

)
= −1 and thus Dq is not a square

mod p.

– if q = 3 (mod 4), p = 1 (mod 4) and 2 - D we obtain
(
q

p

)
= 1 and

thus Dq is not a square mod p.

– if q = 1 (mod 4) we obtain
(
q

p

)
= −1 and thus q and is not a square

mod p.
• Suppose p = 3 (mod 8) and 8|D and D/8 = 3 (mod 4) then D has a factor
d congruent to 3 (mod 4) which is not a square mod p.

• Suppose p = 3 (mod 8) and 8|D and D/8 = 1 (mod 4) then 2 is not a square
mod p.

• Suppose p = 3 (mod 8) and 64|Df2 then 2 is not a square mod p.
• Suppose p = 1 (mod 4) and 16|Df2 then D has a factor q such that both ±q

are not square mod p.

The above covers all of the cases of the theorem.
To prove the converse we remark that if p is inert in N it is inert in a quadratic

subextension of one of the following types:
• Q(

√
q) where q|fD or

• Q(
√
q1q2) where both q1, q2 = 3 (mod 4) and q1q2|fD.

as such fields generate the genus field of N . Completing the proof follows a similar
case analysis to the above. �

We now shift to discussing a phenomenon whereby certain Fp reductions are
disallowed based on the ramification behavior of 2.

Remark 3.5. In the following theorem we will be distinguishing the supersingular
j-invariants in Fp by identifying them as roots of PZ[

√
−p](X) or PZ[(1+

√
−p)/2](X).

To understand the significance we recall the theorems above of Ibukiyama
which asserted that this naturally divides the supersingular values into two almost
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disjoint sets. More precisely, by [Elk87] and [Kan89] we have that for p = 3
(mod 4) these polynomials factor as (X − 1728)

∏
i(X − αi)2 whereas for p = 1

(mod 4) the factorization is
∏
i(X − αi)2. In each case the αi are distinct in Fp.

Furthermore, in the case p = 3 (mod 4) the αi for PZ[
√
−p](X) are distinct from

those for PZ[(1+
√
−p)/2](X). The polynomial for

√
−2 is precisely PZ[

√
−2](X) =

X − 8000.

Theorem 3.6. Fix K = Q(
√
−D) of discriminant −D. Fix an order O = Z+fOK

of conductor f ∈ Z and suppose that
(
−Df2

p

)
= −1. Let j be a Zp root of PO(X).

• Suppose p = 7 (mod 8)

– If 2 is unramified in K and 2 - f then j is a root of PZ[
√
−p](X).

– If 2 is unramified in K and 2|f but 8 - f then j is a root of
PZ[(1+

√
−p)/2](X).

– If 2 is unramified in K and 8|f then j is a root of PZ[
√
−p](X) or

PZ[(1+
√
−p)/2](X).

– If 2 is tamely ramified in K and 2 - f or 4|f then j is a root of PZ[
√
−p](X)

or PZ[(1+
√
−p)/2](X).

– If 2 is tamely ramified in K and 2||f then j is a root of PZ[(1+
√
−p)/2](X).

– If 2 is wildly ramified in K and 2 - f then j is a root of PZ[(1+
√
−p)/2](X).

– If 2 is wildly ramified in K and 2|f then j is a root of PZ[
√
−p](X) or

PZ[(1+
√
−p)/2](X).

• Suppose p = 3 (mod 8)

– If 2 is unramified in K and 2 - f or 4||f then j is a root of PZ[
√
−p](X).

– If 2 is unramified in K and 2||f then j is a root of PZ[(1+
√
−p)/2](X).

– If 2 is unramified in K and 8|f then there are no linear terms.

– If 2 is tamely ramified in K and 2 - f then j is a root of PZ[
√
−p](X) or

PZ[(1+
√
−p)/2](X).

– If 2 is tamely ramified in K and 2||f then j is a root of PZ[
√
−p](X).

– If 2 is tamely ramified in K and 4|f then there are no linear terms.

– If 2 is wildly ramified in K then there are no linear terms.

• Suppose p = 1 (mod 4)

– If 2 is unramified in K and 4 - f then j is a root of PZ[
√
−p](X).

– If 2 is unramified in K and 4|f then there are no linear terms.

– If 2 is tamely ramified then there are no linear terms.

– If 2 is wildly ramified in K and 2 - f then j is a root of PZ[
√
−p](X).

– If 2 is wildly ramified in K and 2|f then there are no linear terms.
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Notation 3.7. Given that any quaternion algebra A is equipped with a canonical
bilinear form, given an element α ∈ A we shall denote by α⊥ the collection of all
elements in A perpendicular to α, that is elements x ∈ A with Tr( αx) = 0.

Similarly, given a subspace such as O ⊂ A, we shall denote O⊥, the comple-
mentary subspace of A with respect to this pairing.

To prove this we will make use of the following lemma.

Lemma 3.8. If E is an elliptic curve over Zp which admits CM by O which
corresponds to a datum (O ⊂ B) then the Galois Frobenius Frobp acting on E(Qp)
over Zp induces the endomorphism Frobenius F̃robp of E. Moreover we have:
• Frobp, the Galois action of Frobenius on E, acts on O by x 7→ x.
• F̃robp, the endomorphism of E, satisfies F̃robpx = xF̃robp for x ∈ O.
• Frob2

p, the Galois action of Frobenius on E, commutes with O.

• F̃robp
2

, the endomorphism of E, satisfies F̃robp
2

= −p.

In particular F̃robp ∈ O⊥ is an element of norm p.

See [Sch10].

Proof of Theorem 3.6. We must show, using Ibukiyama’s classification of max-
imal orders containing

√
−p, that the only CM-orders in α⊥ are those satisfying

the conditions of the theorem.
We note that in selecting the values of q, r and m we may assume by replacing

r by r + aq that 8|r. With this assumption we have that pq = m (mod 8). When
selecting q, r′ and m′ we must have that r′ is odd, when p = 3 (mod 8) this then
implies that m is odd.

We observe the following important facts about α⊥ in the various cases:
1. For the maximal orders of the form O′(p, q, r′,m′) we have that α⊥ contains

no elements with odd trace.
2. For the maximal orders of the form O′(p, q, r′,m′) we have that all primitive

elements of Z[
√
−p]⊥ are of the form:

yβ + z
(r′ + α)β

2q

for some choice of y and z coprime.
The square of such an element is:

−y2q − z2m− yzr′.

Notice that if p = 3 (mod 8) this cannot be even.
3. For the maximal orders of the form O(p, q, r,m) we have that all primitive

elements of odd trace in Z[
√
−p]⊥ are of the form:

yβ + z
(r + α)β

q
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for some choice of y and z coprime, with z odd.
The square of such an element is:

−y2q − z2m− 2yzr

modulo 8 this becomes:
−q(y2 − z2p).

Notice that if this is odd, then y is even and−q(y2−z2p) = pq (mod 8). Also,
if it is even then y and z are both odd and it is divisible by (1−p)|−q(y2−z2p).

By considering each of the cases of the theorem, the above allows us to conclude
the result. �

Proposition 3.9. Suppose there exists Z[
√
−D] = O ⊂ α⊥, then PO(X) has Zp

roots.

Proof. By the above argument we note that O ⊂ α⊥ implies the existence of
a solution to:

y2q + z2m+ 2yzr = D or y2q + z2m+ yzr′ = D.

In the first case, multiplying by q we obtain:

qD = y2q2 + z2(p+ r2) + 2yzrq = z2p+ (yq + rz)2.

reducing modulo 8 and modulo all the odd prime factors of D the result then
follows from Theorem 3.1. In the second case, multiplying by 4q we obtain:

4qD = 4y2q2 + z2(p+ r2) + 2yzrq = z2p+ (2yq + rz)2

and the result follows similarly. �

Remark 3.10. Note that the above does not actually prove the converse to
Lemma 3.8 though it would provide for an alternate proof for one direction of
Theorem 3.1.

We now explain the phenomenon where in specific circumstances certain Fp
reductions always occur with the same frequency. Based on [CV07] we should
expect that this is caused by systematic collections of isogenies (coming from
Hecke relations), and in our case we should expect 2-isogenies to play a role. The
results here have a similar flavor to those of [BM04, pp. 95-96] where they consider
similar questions questions related to the orders Z[

√
−p] and Z[ 1+

√
−p

2 ].

Lemma 3.11. If √q2 ∈ α⊥ then O ' O(p, q2, r,m) or O(p, q2, r
′,m′) for some

choice of r,m or r′,m′.
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Proof. By [Ibu82, Prop 2.1 and Rmk 2.2] the conditions:

q1q2 = z2p+ (yq1 + rz)2 or 4q1q2 = z2p+ (2yq1 + rz)2

imply that q1 and q2 satisfy
O(p, q1, r1,m1) ' O(p, q2, r2,m2)

or respectively
O′(p, q1, r

′
1,m

′
1) ' O′(p, q2, r

′
2,m

′
2).

The results then follow from the proof of Proposition 3.9. �

Lemma 3.12. Fix p = 3 (mod 4). Fix K = Q(
√
−D) of discriminant −D. Fix

an order O = Z + fOK and suppose that
(
−Df2

p

)
= −1. Suppose further that 2 is

tamely ramified in K but 2 does not divide f.
Suppose that O is optimally embedded in O(p, q, r,m) and contained in α⊥.

Let a2 = (2) in O. Then aO(p, q, r,m)a−1 ' O′(p, q, r′,m′) is a maximal order
with an optimal embedding of O. Consequently, if E is an elliptic curve over Zp
which admits CM by O whose reduction has endomorphism ring O(p, q, r,m), then
the reduction of a ∗ E has endomorphism ring O′(p, q, r′,m′) with the exact same
choice of q.

Conversely, if E is an elliptic curve over Zp which admits CM by O whose
reduction has endomorphism ring O′(p, q, r′,m′), then the reduction of a∗E has en-
domorphism ring O(p, q̃, r̃, m̃) for some q̃ such that O′(p, q, r′,m′) ' O′(p, q̃, r̃′, m̃′).
Proof. Let O = Z[γ =

√
q2]. It suffices to show that aO(p, q, r,m)a−1 contains

both 1+α
2 and β.

We note that a = (2, 1 + γ) and a−1 = (1, 1−γ
2 ). It follows immediately that

β ∈ aO(p, q1, r,m)a−1.
Now we may write γ = yβ + z r+αq β with y and r even and z odd. Now, by

observing that we may write
(

1+α
2

)
as:

(1 + γ)

(
1
2 (−zm+ ry + 1) + (zm+ ry)

(
1 + β

2

)
− 1

2 (yq + zr)

(
r + α

q
β

))(
1− γ

2

)
and that this quantity is an element of aO(p, q, r,m)a−1 we conclude by Lemma 3.11
that

aO(p, q, r,m)a−1 ' O′(p, q, r′,m′).
Now suppose we start with O optimal in O′(p, q, r′,m′). Attempting to reverse

the above calculation cannot work in general as we no longer have r and m but r′
and m′. However, we observe that:(

(1 + γ)

(
1 + α

2

)(
1− γ

2

)
−
(

1 + γ2

4

)
α

)
∈ aO′(p, q, r′,m′)a−1

is perpendicular to α and has odd trace. Hence, aO′(p, q, r′,m′)a−1 ' O(p, q̃, r̃, m̃).
The result now follows. �
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Remark 3.13. Note, that we could not simply run the first part of the above
argument in the opposite direction to go from O′(p, q, r′,m′) to O(p, q, r,m), in
particular this would be impossible in any case where the class groups which
classify O′(p, q, r′,m′) and O(p, q, r,m) are not in bijection.

Theorem 3.14. Fix p = 3 (mod 4). Fix K = Q(
√
−D) of discriminant −D. Fix

an order O = Z + fOK and suppose that
(
−Df2

p

)
= −1. Suppose further that 2 is

tamely ramified in K but 2 does not divide f.
It we consider the set of supersingular values of Fp except 1728, each j-invariant

J has a partner J̃ such that, the frequency of the appearance of X − J and X − J̃
as the reduction of irreducible linear factors of PO(X) modulo p is the same.

Proof. We first observe that if E is defined over Zp then so too is a ∗ E. This
follows by observing that the collection of endomorphisms in a is Galois stable.
Moreover, in the case p = 3 (mod 4) the map from O(p, q, r,m) to O′(p, q, r′,m′)
being injective implies it is bijective as the collections have the same size.

By Lemma 3.12 it now follows that O(p, q, r,m) and O′(p, q, r′,m′) must occur
with the same frequency.

We note that j-invariant 1728 is the only one that can ever be identified with
itself through this process, and in fact it must, because the class group has odd
order. �

Remark 3.15. For p = 3 (mod 4) we obtain other less obvious relationships
between the counts for maximal orders of type O′ and of type O arising from the
fact that the map is generically 3 : 1. In particular, in general the frequency for
those of type O′ is the sum of the frequencies of a specific collection of three of
orders of type O. We note that there will be a curve which is 2-isogenous to the
one with j-invariant 1728.

We should point out that the Fp points of the 2-torsion is well understood, that
there is a unique Fp rational 2-torsion point is suggestive of the above results, but
does not show that the association is between O(p, q, r,m) and O′(p, q, r′,m′) and
certainly not that it ‘respects q’.

Theorem 3.16. Fix p = 1 (mod 4). Fix K = Q(
√
−D) of discriminant −D. Fix

an order O = Z + fOK and suppose that
(
−Df2

p

)
= −1. Suppose further that 2 is

wildly ramified in K but 2 does not divide f.
It we consider the set of supersingular values of Fp, each j-invariant J has

a partner J̃ such that, the frequency of the appearance of X − J and X − J̃ as the
reduction of irreducible linear factors of PO(X) modulo p is the same.

This partner J̃ is independent of K and O and depends only on p.

Proof. Set a2 = (2) in O. In this case we have a = (2, γ) and a−1 = (1, 1
2γ).

As in the previous case, we must only show that aO(p, q, r,m)a−1 is independent
of O.

Now set b2 = (2) in Z[
√
−p]. We have that b = (2, 1 + α).
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We recall that we have γ = yβ + z r+αq β = 1
q (yq + zr + zα)β with r even and

both y and z odd.
We claim that (1 + α) ∈ aO(p, q, r,m). Indeed, as β ∈ O(p, q, r,m) we have

yq+zr+zα = γβ ∈ aO(p, q, r,m). Since 2 ∈ a the claim then follows immediately.
Conversely, it is clear that qγ ∈ bO(p, q, r,m). As q is odd, and 2 ∈ b we also have
that γ ∈ bO(p, q, r,m). We thus have shown that aO(p, q, r,m) = bO(p, q, r,m).

It follows that aO(p, q, r,m)a−1 = bO(p, q, r,m)b−1 is independent of O. �

Remark 3.17. In this case the uniqueness of the Fp-rational 2-torsion points is
sufficient to conclude the result.

4. Further questions

Our results suggest the following natural questions:

Question 1. In Theorem 3.6 we gave necessary conditions for a datum (O ⊂ B)
to correspond to an elliptic curve over Zp. Moreover, Proposition 3.9 gives the
impression that this may be sufficient. It is natural to ask, if these conditions are
in fact sufficient.
(a) More precisely, given an elliptic curve over Fp, and an endomorphism (de-

fined over some extension) when can we lift the curve to Zp such that the
endomorphism lifts to some extension?

(b) Is it sufficient that the endomorphism be perpendicular to Frobenious in the
endomorphism algebra over Fp?

An answer to this question would shed light on the structure of the ring
Z[j(E1), . . . , j(En)] as remarked in the introduction.

Question 2. Theorems 3.14 and 3.16 give situations in which there are automatic
relationships between certain roots of PO(X). As remarked a similar result holds
for the same reason when p = 3 (mod 8).
(a) It is natural to ask if there are other situations in such relationships must

exist? In particular are there situations where the role of 2 can be replaced
by some other prime?

(b) The method of proof also suggests that we could anticipate relations between
the roots of PO(X) between two different orders in the same field whose
conductors differ by a factor of 2. Can the combinatorics of this be made
more precise?
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