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MULTIPLICATIVE FUNCTION MEAN VALUES:
ASYMPTOTIC ESTIMATES
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Abstract: Classical Mean-Value results of Wirsing type are established under weaker than
classical constraints.
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1. Statement of results

For many studies in analytic number theory a natural object against which to
measure the mean-value of a complex-valued multiplicative arithmetic function
n→ g(n) is the mean-value of its attendant function n→ |g(n)|.

This reflects the decomposition n → |g(n)| exp(i arg g(n)) of a non-vanishing
completely multiplicative function into essentially a unitary character on the mul-
tiplicative group of the positive rationals, and a homomorphism n→ log |g(n)| of
the positive rationals into the additive reals.

Some fifty years ago, papers of Delange [3] 1961, Wirsing [13] 1961, [14] 1967,
Halász [9] 1968, catalysed the general study of multiplicative functions and moved
the field seriously forward.

In the present paper I re-examine the theorems of Wirsing in the light of more
recent developments and apply related ideas to the consideration of two open-
ended questions.

The following four cumulative theorems will be established, all new. Several
auxiliary propositions are also of independent interest.

Theorem 1. Let g be a non-negative multiplicative function, uniformly bounded
on the primes, for which the series

∑
q−1g(q), taken over the prime-powers q =

pk with k > 2, converges, and for which the sums y−1
∑
q6y g(q) log q, y > 2,
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are uniformly bounded. Let h(n) be a complex-valued multiplicative function that
satisfies |h(n)| 6 g(n). Set G(x) =

∑
n6x n

−1g(n), H(x) =
∑
n6x n

−1h(n), x > 1.
Then

H(x) =

∏
p6x

(
1 +

h(p)

p
+
h(p2)

p2
+ · · ·

)(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)−1

+ o(1)

G(x)

as x→∞.

Remark. If the series
∑
p−1(g(p) − Reh(p)) diverges or a sum

∑∞
k=1 p

−kh(pk)
has the value −1, then the product over the primes may be omitted. Otherwise,
the product has the form AL(log x), where A is a non-zero constant and L(y)
a non-vanishing slowly oscillating function of y.

Theorem 2. Let g be a non-negative multiplicative function that is uniformly
bounded on the primes. Assume that for a positive c, and each b, 0 < b < 1,

lim inf
x→∞

((1− b) log x)−1
∑

xb<p6x

p−1g(p) log p > c.

Then for some positive c0 and all x > 2,∑
n6x

g(n) >
c0x

log x

∏
p6x

(
1 +

g(p)

p

)
.

Remark. Under the further assumptions on g in Theorem 1, there is a similar
upper bound.

For each positive real τ , ∆(τ) will denote a compact star-shaped region of the
complex plane that contains the origin, has a representation

{ρeiθ, 0 6 θ < 2π, 0 6 ρ 6 w(θ)},

with average radius

(2π)−1

∫ 2π

0

w(θ) dθ, w(2π) = w(0),

strictly less than τ .

Theorem 3. Let the multiplicative function g satisfy the hypotheses of Theorems
1 and 2 and let h be a complex-valued multiplicative function with |h(n)| 6 g(n)
and values in ∆(c).

Set
A(x) =

∑
n6x

g(n), B(x) =
∑
n6x

h(n).

Then

B(x) =

∏
p6x

(
1 +

h(p)

p
+
h(p2)

p2
+ · · ·

)(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)−1

+ o(1)

A(x)

as x→∞.
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Theorem 4. Let the multiplicative function g satisfy the hypotheses of Theorems
1 and 2 and let h be a complex-valued multiplicative function with |h(n)| 6 g(n).

Then there are two possibilities.

(i) For some real t the series
∑
p−1(g(p)−Reh(p)pit), taken over the primes,

converges;

B(x) = (1− it)−1x−it
∏
p6x

(
1 + h(p)pit−1 + · · ·

)(
1 + g(p)p−1 + · · ·

)−1
A(x)

+ o(A(x)), x→∞.

(ii) There is no such t, and

B(x) = o(A(x)), x→∞.

Of particular interest in Theorems 1 and 4 is that beyond dominance by g,
there is no non-structural constraint upon the complex values of the function h.

2. Background

Two central theorems of Wirsing’s 1967 paper run as follows.

Satz 1.1. Let λ(n) be a non-negative multiplicative function, uniformly bounded
on the primes, that for a positive τ satisfies∑

p6x

p−1 log p λ(p) ∼ τ log x, x→∞.

Assume further that the series
∑
q−1λ(q), taken over the prime-powers q = pk

with k > 2, converges, and that if τ 6 1 then
∑
q6x λ(q) � x(log x)−1 holds for

x > 2.
Then∑

n6x

λ(n) ∼ e−γτ

Γ(τ)

x

log x

∏
p6x

(
1 +

λ(p)

p
+
λ(p2)

p2
+ · · ·

)
, x→∞,

where γ is Euler’s constant.

Satz 1.2. Let λ(n) be a multiplicative function that satisfies the conditions of
Satz 1.1. Let λ∗(n) be multiplicative, with values in ∆(τ) and satisfy |λ∗(n)| 6
λ(n). Then

∑
n6x

λ∗(n) =
e−γτ

Γ(τ)

x

log x

∏
p6x

(
1 +

λ∗(p)

p
+
λ∗(p2)

p2
+ · · ·

)
+ o

∑
n6x

λ(n)


as x→∞.
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In what follows, a product of the form∏
p6x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
,

when meaningful, may be denoted by
∏

x
(f).

The two theorems of Wirsing may be compared to the following result of Elliott
and Kish [7], subsuming ideas from Wirsing and Halász, loc, cit.

Theorem 5. Let 3/2 6 Y 6 x. Let g be a complex-valued multiplicative function
that for positive constants β, c, c1 satisfies |g(p)| 6 β,∑

w<p6x

p−1(|g(p)| − c) > −c1, Y 6 w 6 x,

on the primes. Suppose, further, that the series∑
q

q−1|g(q)|(log q)κ, κ = 1 + cβ(c+ β)−1,

taken over the prime-powers q = pk with k > 2, converges.
Then with

λ = min
|t|6T

∑
Y <p6x

p−1(|g(p)| − Re g(p)pit),

∑
n6x

g(n)� x(log x)−1
∏
p6x

(1 + p−1|g(p)|)
(

exp(−λc(c+ β)−1) + T−1/2
)

uniformly for Y, x, T > 0, the implied constant depending at most upon β, c, c1
and a bound for the sum of the series over higher prime-powers.

An extension of Theorem 5, a proof of which will be given following that for
Theorem 4, obviates the awkward condition involving the factor (log q)κ.

Theorem 6. If the estimate in Theorem 5 is weakened to∑
n6x

g(n)� x(log x)−1
∏

x
(|g|)

(
exp(−λc(c+ β)−1) + T−1/2

)c/(3c+1)

,

then the condition on the prime-power values g(pk), k > 2, may be relaxed to the
convergence of the series

∑
p,k>2 p

−k|g(pk)| and a uniform bound for the sums
y−1

∑
pk6y |g(pk)| log pk, y > 2.

For the multiplicative function λ0(n) defined to be α, β with 0 < α < β, on
the primes in alternate intervals (exp(2k), exp(2k+1)], k = −1, 0, 1, 2, . . . , and to
be zero on all other prime-powers,

lim
x→∞

(log x)−1
∑
p6x

p−1λ0(p) log p

does not exist, eliminating direct application of Sätze 1.1 and 1.2.
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The lower bound of Theorem 2 is obtained in Elliott and Kish [7], Lemma 21,
subject to the existence of a positive constant c2 so that for all large x,∑
p6x g(p) log p > c2x. By modifying λ0 to be zero on intervals (y(log y)−2, y],

y = exp(2k), we obtain a multiplicative function λ1 that will not satisfy such
a criterion for any positive c2.

Never-the-less, Theorems 1, 2 and 4 may be applied to λ0, λ1 with any domi-
nated complex-valued multiplicative function, h.

3. Proof of Theorem 1

It is convenient to introduce several preliminary results.

Lemma 1. The estimate∑
26n6x

g(n) 6

(
x

log x
+

10x

(log x)2

)
∆̃
∑
n6x

g(n)

n

with
∆̃ = sup

16y6x
y−1

∑
q6y

g(q) log q,

where q denotes a prime-power, holds uniformly for all non-negative real multi-
plicative functions g, and all x > 2.

A proof of Lemma 1 may be found in Elliott [5], Chapter 2, Lemma 2.2. It is
immediate that

∑
n6x

n−1g(n) 6
∏
p6x

1 +
∑

k6log x/ log p

p−kg(pk)


6 exp

∑
q6x

q−1g(q)

 .

A proof of the following qualitative corresponding lower bound, a result first
obtained by Barban [1] using a different method, may be found in Lemma 20 of
Elliott and Kish, [7].

Lemma 2. To each positive β there is a further positive c(β) so that a non-trivial
non-negative multiplicative function, g, that satisfies g(p) 6 β on the primes, also
satisfies ∑

n6x

g(n)n−1 > c(β)
∏
p6x

(1 + p−1g(p))

uniformly for x > 1.
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Lemma 3. Let g be a non-trivial non-negative multiplicative function uniformly
bounded on the primes, for which the series

∑
q−1g(q), taken over the prime-

powers q = pk with k > 2, converges, and for which the sums y−1
∑
q6y g(q) log q,

y > 2, are uniformly bounded.
Then ∑

u<n6v

g(n)

n
�
(

log

(
log v

log u

)
+

1

log x

)∑
n6x

g(n)

n

uniformly for x1/2 6 u 6 v 6 x3/2, x > 2.

Proof of Lemma 3. In view of the hypothesis on g, Lemma 1 delivers the uni-
form estimate∑

n6y

g(n)� y

log y

∏
p6x3/2

(
1 +

g(p)

p

)
, 2 6 y 6 x3/2,

which Lemma 2 shows to be � y(log y)−1G(x). The asserted result then follows
from an integration by parts. �

For better appreciation the following theorem is given in both its abelian and
tauberian aspects. A proof may be found, together with a history of the result from
Feller [8] to Stadtmüller and Trautner [12], in Bingham, Goldie and Teugels [2],
Chapter 2, Theorem 2.10.1, pp. 116–118, and Korevaar [11], Chapter IV, Theo-
rem 10.1, pp. 197–199.

Let C(y), D(y) be non-negative real-valued functions on the non-negative reals,
non-decreasing and right continuous. To each corresponds a Laplace transform,
typically

s→ Ĉ(s) =

∫ ∞
0

e−sy dC(y),

here assumed to be defined for s > 0.

Lemma 4. Assume that for each y > 1

D∗(y) = lim sup
u→∞

D(u)−1D(uy)

is finite, D implicitly assumed not to be identically zero.
If, for some constant A and slowly-oscillating function L(y),

C(y) = (AL(y) + o(1))D(y), y →∞,

then
Ĉ(s) = (AL(s−1) + o(1))D̂(s), s→ 0 + .

Further, if D∗(y)→ 1 as y → 1+, then the converse is valid.

Remark. The non-decreasing nature of D ensures that limD∗(y), y → 1, exists.
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Completion of the proof of Theorem 1. We apply Lemma 4 to the pair
2G(ex) + Re(H(ex)), G(ex); to the pair with Im(H(ex)) in place of Re(H(ex));
and to the pair G(ex), G(ex).

Computation with Euler products shows Ĉ(s), D̂(s), the Laplace transforms
of the first pair, to exist for all positive s and satisfy Ĉ(s) = f(s)D̂(s), where

f(s)− 2 = Re

∏
p

(
1 +

∞∑
k=1

p−k(1+s)h(pk)

)(
1 +

∞∑
m=1

p−m(1+s)g(pm)

)−1
 .

In particular,

|f(s)− 2| � exp

(
−
∑
p

p−1−s(g(p)− Reh(p))

)
,

so that if the series in the exponent diverges for s = 0, then f(s)→ 2 as s→ 0+,
and we may apply Lemma 4 with A = 2, L identically 1.

We may therefore assume the series
∑
p−1(g(p)− Reh(p)) to converge.

From the Chebyshev bound π(y)� y(log y)−1, integration by parts shows the
series

∑
p>xε p

−1 exp(− log p/ log x) to be bounded in terms of ε alone. Since

|g(p)− h(p)|2 6 2g(p)(g(p)− Reh(p)),

an application of the Cauchy-Schwarz inequality, confined to the primes on which
g does not vanish, shows that

∑
p>xε

p−1−1/ log x|g(p)− h(p)| �

(∑
p>xε

g(p)p−1−1/ log x

)1/2

×

(∑
p>xε

p−1(g(p)− Reh(p))

)1/2

and o(1) as x→∞.
Moreover, ∑

p6xε

(p−1 − p−1−1/ log x)�
∑
p6xε

p−1 log p/ log x� ε,

the implied constant absolute for all values of x sufficiently large in terms of ε.
Letting x→∞, ε→ 0+, we see that as x→∞

f
(
(log x)−1

)
− 2 = Re

B exp

∑
p6x

p−1 Im(h(p))

+ o(1),
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with B the product of

∏
p

(
1 +

∞∑
k=1

p−kh(pk)

)
exp

(
−p−1h(p)

)∏
p

(
1 +

∞∑
m=1

p−mg(pm)

)−1

exp
(
p−1g(p)

)
and exp(−

∑
p p
−1(g(p)−Reh(p))). Its genesis in terms of Euler products ensures

that |B| 6 1; moreover, B will vanish only if for some prime p the sum 1 +∑∞
k=1 p

−kh(pk) vanishes.
Note that for any β > 1, the above argument shows that∑
x<p6xβ

p−1 Im(h(p)) = −
∑

x<p6xβ

p−1 Im(g(p)− h(p))

�

 ∑
x<p6xβ

p−1

1/2(∑
p>x

p−1|g(p)− h(p)|2
)1/2

= o(1)

as x→∞, so that exp(
∑
p6es p

−1 Im(h(p))) is a slowly oscillating function of s.
In view of Lemma 3,

lim
y→1+

lim sup
u→∞

G(ex)−1G(exy) = 1.

Three applications of Lemma 4 in its Tauberian aspect, typically with A = 1,

L(s) = 2 + Re

B exp

∑
p6es

p−1 Im(h(p))

 ,

delivers the asymptotic estimate

H(ex) =
(
f(x−1) + o(1)

)
G(ex), x→∞,

from which Theorem 1 follows rapidly. �

4. Proof of Theorem 2

Again a preliminary result is advantageous.
Let 0 6 g(p) 6 β for each prime, p.
If, for some τ > 0,∑

p6y

p−1g(p) log p ∼ τ log y, y →∞,

then for each ε, 0 < ε < 1,

lim inf
x→∞

(ε log x)−1
∑

x1−ε<p6x

p−1 log p > τ.

The converse need not be true, as may be seen from the example λ0 in Section 2.
However, the following converse is valid.
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Lemma 5. Assume that for c > 0 and each ε, 0 < ε < 1, the function g(p),
uniformly bounded on the primes, satisfies

lim inf
x→∞

(ε log x)−1
∑

x1−ε<p6x

p−1g(p) log p > c.

Then for each α, 0 < α < c, there is a subsequence of primes, r, such that

lim
x→∞

(log x)−1
∑
r6x

r−1g(r) log r = α.

Proof of Lemma 5. We begin with an outline of the argument. Fix a prime t
for which

∑
p6t p

−1g(p) log p > α log t.
We define a function g(p) by choosing, for each prime p, to retain g(p) or to

replace it by zero. For ease of notation
∑
p6y p

−1g(p) log p will be denoted by
S(y).

We choose g(p) = g(p) for p 6 t.
The primes y1 < y2 < · · · are defined successively as follows. We replace g(p)

by zero on the primes following t until, for the first time, S(y)/ log y falls strictly
below α. The corresponding value of y is y1.

We choose g(p) = g(p) on the primes p > y1 until, for the first time with
y > y1, the ratio S(y)/ log y climbs above α. The corresponding value of y is y2;
and so on.

Our initial aim is to show the turning values yj not to be logarithmically far
apart.

A few preliminary remarks are helpful.
Let 0 < θ < 1, x > 2, 3/2 6 y 6 xθ. With 0 < ε < 1− θ determine the integer

k by x(1−ε)k < y 6 x(1−ε)k−1

= ψ, so that k > 2. Assume that for all sufficiently
large values of w ∑

w1−ε<p6w

p−1g(p) log p > εc logw.

By partitioning the interval (x(1−ε)k , x] into adjoining subintervals (x(1−ε)m ,

x(1−ε)m−1

], m = 1, 2, . . . , k, we see that provided x(1−ε)k is sufficiently large in
terms of ε, ∑

y<p6x

p−1g(p) log p > c log(x/ψ) > c(log(x/y)− log(ψ/y))

> c
(
1− ε(1− θ)−1

)
log(x/y),

since log(ψ/y) 6 log(ψ/ψ1−ε) = ε logψ 6 ε log x 6 ε(1− θ)−1 log(x/y).
For the purposes of proving Lemma 5 we may therefore replace its lower-bound

hypothesis by:
For each ε, 0 < ε < 1,∑

y<p6x

p−1g(p) log p > c log(x/y)

uniformly for 1 6 y 6 x1−ε and all x sufficiently large in terms of ε.
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It is clear that the initial prime t exists.
As a second preliminary remark, if 2 6 y 6 w, then

(logw)−1S(w)− (log y)−1S(y) =
(
(logw)−1 − (log y)−1

)
S(y)

+ (logw)−1
∑

y<p6w

p−1g(p) log p.

Hence ∣∣(logw)−1S(w)− (log y)−1S(y)
∣∣ 6 (logw log y)−1S(y) log(w/y)

+ c0(logw)−1
∑

y<p6w

p−1 log p

6 c1(log(w/y) + 1)(logw)−1

with a positive constant c1 dependent at most upon the upper bound for the g(p).
Here we have employed the elementary estimate

∑
p6y p

−1 log p = log y + O(1),
y > 2.

In particular, if y is a prime adjacent to a turning value yk, then

S(y)/ log y − S(yk)/ log yk � (| log(yk/y)|+ 1)/ log yk � 1/ log yk,

since the ratio of successive increasing primes approaches 1.
We now show the yj not to increase too rapidly.
Suppose that S(yk)/ log yk < α, so that for the next prime p > yk, g(p) is

kept. In particular S(yk) > α log yk + O(1). If yk < ( 1
2yk+1)1−ε < 1

2yk+1 and yk
is sufficiently large, then 1

2yk+1y
−1
k > yεk,

S( 1
2yk+1) = S( 1

2yk+1)− S(yk) + S(yk)

> c log( 1
2yk+1y

−1
k ) + α log yk +O(1)

= α log( 1
2yk+1) + (c− α) log(1

2yk+1y
−1
k ) +O(1).

With w a nearest prime to 1
2yk+1, S(w)/ logw > α before the next change point,

yk+1.
Thus yk > ( 1

2yk+1)1−ε.
If S(yk) > α log yk, then again S(yk) = α log yk + O(1), and g(p) = 0 on the

primes in the interval (yk,
1
2yk+1]. Hence

S( 1
2yk+1)(log( 1

2yk+1))−1 = S(yk)(log( 1
2yk+1))−1

= α log yk(log yk+1)−1 +O((log yk)−1).

If, now, yk < y1−ε
k+1 and yk is sufficiently large then

S( 1
2yk+1)(log( 1

2yk+1))−1 6 α(1− ε) +O((log yk)−1),

again leading to a premature change point.
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In this case yk > y1−ε
k+1.

For all large values of yk, 1
2y

1−ε
k+1 6 yk 6 yk+1. As a consequence

S(yk+1)/ log yk+1 − S(yk)/ log yk � log(yk+1/yk)/ log yk+1 � ε,

the implied constant independent of ε. Since S(yk)/ log yk = α + O(1/ log yk),
S(y)/ log y−α� ε for all sufficiently large values of y, first for prime values then
for otherwise arbitrary real values.

The construction of the function g does not depend upon the value of ε and
we may apply the argument with ε = 2−m, m = 1, 2, 3, . . . , in turn.

Lemma 5 is established. �

Completion of the proof of Theorem 2. Let 0 < α < c and let r run through
a sequence of primes for which

∑
r6y r

−1g(r) log r ∼ α log y, y →∞.
Define multiplicative functions gj , j = 1, 2, by

g1(p) =

{
g(p) if p 6= r,

0 if p = r,
g2(p) =

{
0 if p 6= r,

g(p) if p = r,

and gj(pk) = 0 on all other prime powers.
On squarefree integers g coincides with g1 ∗ g2, the Dirichlet convolution of g1

and g2; hence ∑
n6x

g(n) >
∑
u6
√
x

g1(u)
∑
v6x/u

g2(v).

Satz 1.1 of Wirsing (c.f. §2) gives for a typical innersum the asymptotic estimate

(1 + o(1))
e−γα

Γ(α)

x

u log(x/u)

∏
p6x/u

(
1 +

g2(p)

p

)
, x/u→∞.

The doublesum thus exceeds a constant multiple of

x

log x

∏
p6x

(
1 +

g2(p)

p

) ∑
u6
√
x

g1(u)

u
.

An appeal to Lemma 2 completes the proof. �

5. Proof of Theorem 3

Choose a real α to lie strictly between the average radius of ∆(c), and c.
Choose a subsequence of primes r for which∑

r6y

r−1g(r) log r ∼ α log y, y →∞.
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We define multiplicative functions gj , j = 1, 2, by

g1(pk) =

{
g(pk) p 6= r,

0 otherwise
, g2(pk) =

{
g(pk) p = r,

0 otherwise.

The function g has a Dirichlet convolution representation g1 ∗ g2.
We likewise define multiplicative functions hj , j = 1, 2, so that h = h1 ∗ h2,

|hj | 6 gj , j = 1, 2. There is a representation

M =
∑
n6x

h(n) =
∑
u6x

h1(u)
∑
v6x/u

h2(v).

Let 0 < ε < 1/2. We remove the contribution from the terms with u 6 xε and
x1−ε < u 6 x. Typically, by Lemma 1,∑

u6xε

g1(u)
∑
v6x/u

g2(v)�
∑
u6xε

g1(u)
x

u log(x/u)

∏
p6x/u

(
1 +

g2(p)

p
+ · · ·

)

� x

log x

∏
x
(g2)

∑
u6xε

g1(u)

u
.

Moreover,∑
u6xε

g1(u)

u
�
∏
p6xε

(
1 +

g1(p)

p

)
�
∏

x
(g1)

∏
xε<p6x

(
1 +

g1(p)

p

)−1

.

From the lower bound hypothesis on g and the construction of the sequence r,
an integration by parts shows that∑

xε<p6x

1

p
g1(p) >

1

2
(c− α) log

1

ε
+O(1).

The contribution to M from the terms with u 6 xε is

� ε(c−α)/2x(log x)−1
∏

x
(g), x→∞.

For the range x1−ε < u 6 x, v 6 xε and we may invert summations, replacing
(c− α)/2, as the exponent of ε, by α/2.

We are reduced to the estimation of

Mε =
∑

xε<u6x1−ε

h1(u)
∑
v6x/u

h2(v).

Since h2 inherits its properties relative to g2 from h, applied to the innersum
in Mε, Satz 1.2 delivers the asymptotic estimate

e−γα

Γ(α)

x/u

log(x/u)

(∏
x/u

(h2) + o

(∏
x/u

(g2)

))
, x→∞,

uniformly for xε 6 u 6 x1−ε.
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Introducing factors exp(−p−1h2(p)), exp(−p−1g2(p)), respectively, the ratio∏
y
(h2)

∏
y
(g2)−1 has an estimate

(B + o(1)) exp

−∑
p6y

p−1(g2(p)− h2(p))

 , y →∞,

with

B =
∏
p

( ∞∑
k=0

p−kh2(pk) exp(−p−1h2(p))

)∏
p

( ∞∑
m=0

p−mg2(pm)

)−1

exp(p−1g2(p)).

If the series
∑
p−1(g2(p) − Re(h2(p))) diverges, then uniformly for xε 6 u 6

x1−ε, ∏
x/u

(h2)
∏

x/u
(g2)−1 =

∏
x
(h2)

∏
x
(g2)−1 + o(1), x→∞,

since both product ratios asymptotically vanish.
If the series

∑
p−1(g(p) − Re(h2(p))) converges, then we may argue as in the

proof of Theorem 1. For each positive real τ , 0 < τ 6 1,∑
xτ<p6x

p−1(g2(p)− h2(p))→ 0, x→∞,

and we formally obtain the same asymptotic equality of ratios.
Likewise, there is a representation

(log y)−α
∏

y
(g2) = (C + o(1)) exp

∑
p6y

p−1g2(p)− α log log y

 , y →∞,

with

C =
∏
p

( ∞∑
m=1

p−mg2(pm)

)
exp(−p−1g2(p)).

An integration by parts shows that for each τ , 0 < τ < 1,∑
xτ<p6x

p−1g2(p) + α log τ → 0, x→∞,

so that

(log(x/u))−α
∏

x/u
(g2) = (log x)−α

∏
x
(g2) + o(1), x→∞.

Altogether, the innersum of Mε has the estimate

e−γα

Γ(α)

x

u(log x)α
· 1

(log(x/u))1−α

(∏
x
(h2) + o

(∏
x
(g2)

))
, x→∞,

uniformly for xε 6 u 6 x1−ε.
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The error terms contribute towards Mε

o

 x

log x

∏
x
(g)

∑
xε<u6x1−ε

g1(u)

u

 = o

(
x

log x

∏
x
(g)

)
, x→∞,

within which Mε has the estimate

e−γ

Γ(α)

x

(log x)α

∏
x
(h2)

∑
xε<u6x1−ε

h1(u)

u(log(x/u))1−α .

Setting

H1(y) =
∑
n6y

h1(n)n−1, G1(y) =
∑
n6y

g1(n)n−1,

an integration by parts gives a representation

∑
xε<u6x1−ε

h1(u)

u(log(x/u))1−α =
H1(x1−ε)

(ε log x)1−α −
H1(xε)

((1− ε) log x)1−α

− (1− α)

∫ x1−ε

xε

H1(y)

y(log(x/u))2−α dy,

provided xε, x1−ε are not positive integers, a situation that we may avoid by
choosing a slightly larger value of x.

According to Theorem 1,

H1(y) =
(∏

y
(h1)

∏
y
(g1)−1 + o(1)

)
G1(y), y →∞,

where, as above, we may replace the products
∏

y
by

∏
x
, uniformly for xε 6

y 6 x1−ε, x→∞.
As a consequence,

∑
xε<u6x1−ε

h1(u)

u(log(x/u))1−α =
(∏

x
(h1)

∏
x
(g1)−1 + o(1)

)
×

∑
xε<u6x1−ε

g1(u)

u(log(x/u))1−α , x→∞.

Once again, the argument is expedited by considering 2G1(x)+Re(H1(x)), 2G1(x)+
Im(H1(x)).
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Rewinding,

Mε =
∏

x
(h1)

∏
x
(g1)−1 e

−γα

Γ(α)

x

(log x)α

∏
x
(h2)

∑
xε<u6x1−ε

g1(u)

u(log(x/u))1−α

+ o

(
x

log x

∏
x
(g)

)
=
∏

x
(h)
∏

x
(g)−1

∑
xε<u6x1−ε

e−γα

Γ(α)

x

log(x/u)

∏
x/u

(g2)
g1(u)

u

+ o

(
x

log x

∏
x
(g)

)
=
∏

x
(h)
∏

x
(g)−1

∑
xε<u6x1−ε

g1(u)
∑
v6x/u

g2(v) + o

(
x

log x

∏
x
(g)

)

=
∏

x
(h)
∏

x
(g)−1

∑
n6x

g(n) +O

εν∑
n6x

g(n)


with ν = min((c− α)/2, α/2) and, for all sufficiently large values of x, an implied
constant independent of ε.

A similar estimate holds for M .
Letting x→∞, ε→ 0+ completes the proof. �

6. Proof of Theorem 4

Case (i). From the assumption that the series
∑
p−1(g(p)−Re(h(p)pit)) converges,

for each positive δ the series taken over the primes p for which g(p)−Re(h(p)pit) >
δ also converges.

On the remaining primes

|g(p)− h(p)pit|2 6 2g(p)(g(p)− Re(h(p)pit)) 6 2βδ.

The values of h(p)pit lie in a box about the real axis, with corners at (−(2βδ)1/2,
±(2βδ)1/2), (β + (2βδ)1/2,±(2βδ)1/2), and area 2(2βδ)1/2(β + 2(2βδ)1/2).

Assuming that δ is sufficiently small and, in particular, that 2(2βδ)1/2 6 β,
this is a region of the type ∆(τ) with an average radius

1

2π

∫ 2π

0

w(θ) dθ 6

(
1

2π

∫ 2π

0

w(θ)2 dθ

)1/2

6
(

4π−1(2β3δ)1/2
)1/2

that can be fixed at a value as small as desired.
We may follow the proof of Theorem 3, first selecting a subsequence of primes

r for which (log x)−1
∑
r6x r

−1g(r) log r → α, x → ∞, then removing from that
subsequence those primes for which h(p)pit does not belong to a region ∆(α)
defined by a value of δ that satisfies 4π−1(2β3δ)1/2 < α2.
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The removal of these exceptional primes does not affect the existence or the
value of the asymptotic limit for (log x)−1

∑
r6x r

−1g(r) log r.
The upshot is an asymptotic estimate∑

n6x

h(n)nit =
∏
p6x

(
1 + h(p)pit−1 + · · ·

) (∏
x
(g)
)−1 ∑

n6x

g(n)

+ o

∑
n6x

g(n)

 , x→∞.

We would like to integrate by parts and remove the weight nit from h(n)nit,
but have insufficient control over the values of the function h. Since, in some sense,
we are considering the ratio h(n)nit(g(n))−1, at an appropriate moment we switch
the weight nit from h to g and consider the ratio h(n)(g(n)n−it)−1.

Following the argument for Theorem 3, the study of the sum
∑
n6x h(n) is

reduced to that of
M̃ε =

∑
xε<u6x1−ε

h1(u)
∑
v6x/u

h2(v),

where Theorem 3 is applicable to the pair h2(n)nit, g2(n). There is a corresponding
estimate∑

n6y

h2(n)nit = L(log y)
∑
n6y

g2(n) + o

∑
n6y

g2(n)

 , y →∞,

with
L(log y) =

∏
p6y

(
1 + h2(p)pit−1 + · · ·

) (∏
y
(g2)

)−1

, y > 2.

Set
H2(y) =

∑
n6y

h2(n)nit, G2(y) =
∑
n6y

g2(n), y > 1/2.

An integration by parts gives a representation∑
n6y

h2(n) = y−itH2(y) + it

∫ y

1/2

w−it−1H2(w) dw,

provided y is not an integer. Since G2(w)� w(logw)−1
∏
w(g2), w > 2,∫ x

2

w−1G2(w) dw �
∏

x
(g2)

∫ x

2

(logw)−1 dw

� x(log x)−1
∏

x
(g2)� G2(x), x > 2.

Hence∑
n6y

h2(n) = y−itL(log y)G2(y) + it

∫ y

2

w−it−1L(logw)G2(w) dw + o(G2(y)),

as y →∞.
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As in the proof of Theorem 3, within an acceptable error L(logw), for yε 6
w 6 y, may be replaced by L(log y) and factored out of the representation:∑
n6y

h2(n) = L(log y)

(
y−itG2(y) + it

∫ y

2

w−it−1G2(w) dw

)
+o(G2(y)), y →∞.

We appeal to the asymptotic estimate

G2(x) = (1 + o(1))
e−γα

Γ(α)

x

log x

∏
x
(g2), x→∞,

vouchsafed by Satz 1.1. Once again, as for Theorem 3, we employ the slow oscil-
lation of the function

∏
x
(g2)(log x)−α to obtain a representation

∑
n6y

h2(n) =
e−γα

Γ(α)
L(log x)

∏
x
(g2)

(log x)α

(
y1−it

(log y)1−α + it

∫ y

2

w−it

(logw)1−α dw

)
+ o(G2(y))

=
e−γα

Γ(α)
L(log x)

∏
x
(g2)

(log x)α
y1−it

(1− it)(log y)1−α + o(G2(y)),

uniformly for xε 6 y 6 x, as x→∞; stepping from w to y to x.
Accordingly,

M̃ε =
e−γα

Γ(α)

x1−it

1− it
L(log x)

∏
x
(g2)

(log x)α

∑
xε<u6x1−ε

h1(u)uit

u(log x/u)1−α + o(G(x)), x→∞.

We may now formally follow the argument for Theorem 3, the rôle of h1(n)
there here played by h1(n)nit, although on a slightly different set of primes. Even-
tually only the extra factor x−it(1− it)−1 remains.

Case (ii). The series
∑
p−1(g(p)− Re(h(p)pit)) diverges for every real t. The

partial sums of this series are non-decreasing in x and continuous in t. Divergence
of the series is uniform on every compact interval |t| 6 T and Theorem 3 follows
from an application of Theorem 6, depending upon whether the series

∑
p−1(g(p)−

|h(p)|) converges or not. �

Remark. Under the hypothesis of Case (i) the series
∑
p−1|g(p) − h(p)pit|2

converges. The series
∑
p−1|g(p) − |h(p)||2 and

∑
p−1g(p)|1 − eiθppit|2, where

h(p) = |h(p)|eiθp , then also converge.

Suppose further that, for some positive integer k, h(p)k is real. The inequality
|1− zk| 6 k|1− z|, valid for every z in the complex unit disc, guarantees the series∑
p−1g(p)|1− p2ikt|2 to converge.
In the present circumstances

∑
p6x p

−1g(p) > (c + o(1)) log log x as x → ∞
and an application of Lemma 15 from Elliott and Kish [6] shows that t = 0.
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A simple example is given by h(n) = g(n)χ(n), where χ is a Dirichlet character.
The argument of this remark may be given a topological aspect by defining

a metric σ(f, g) = (
∑
p−1|f(p)−g(p)|2)1/2 on equivalence classes of multiplicative

functions that coincide of the primes, and restricting study to those functions g
whose distance σ(g, g0) to a fixed multiplicative function g0 is defined, i.e. finite.
The topological space of complex-valued multiplicative functions is in this manner
locally metrised and correspondingly disconnected.

7. Proof of Theorem 6

We assume the new, weaker restraints upon g. If g is exponentially multiplicative,
i.e. g(pk) = g(p)k/k!, and |g(p)| 6 β, then for any γ the series∑

p,k>2

p−k|g(pk)|(log pk)γ

converges, so that Theorem 4 is applicable. Indeed, for such functions the original
exposition of Elliott and Kish, [7] Theorem 2, already contains a proof.

In general, we define an exponentially multiplicative function g1 by g1(p) =
g(p), and a complementary multiplicative function g2 by Dirichlet convolution:
g = g1 ∗ g2.

Calculation with Euler products shows that g2(p) = 0 and for k > 2,

g2(pk) =

k∑
r=0

(r!)−1(−g(p))rg(pk−r).

In particular,

|g2(pk)| 6
k∑
r=0

(r!)−1βr|g(pk−r)|, k > 2.

As a consequence∑
p,k>2

p−k|g2(pk)| 6
∞∑
r=0

(r!)−1βr
∑
p,k>2

p−k|g(pk−r)|

6
(

3
2β

2 + 1
4β

3
)∑

p−2 +
(
1 + 1

2β
2
) ∑
p,k>2

p−k|g(pk)|,

and converges.
Moreover, ∑

pk6y

|g2(pk)| 6
∞∑
r=0

(r!)−1βr
∑

pk6y,k>2

|g(pk−r)|

�
∞∑
r=0

(r!)−1βry(log y)−1 � y(log y)−1

uniformly for y > 2.
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We may apply Lemma 1 and obtain for |g2| the uniform estimate∑
n6y

|g2(n)| � y(log y)−1, y > 2.

With δ a real number to be chosen presently in the range 0 < δ < 1,

ρ = exp

(
− c

c+ β
λ

)
+ T−1/2,

as in the statement of Theorem 5, we define w = exp(ρδ log x), so that w is
effectively a function of x for x > 2.

It is convenient to note that we may assume ρδ 6 1/2, otherwise Theorem 6
follows directly from Lemma 1.

Moreover, provided 2δβc < c+ β and Y does not exceed a certain fixed power
of x, which we may likewise assume, Y 6 w. For otherwise

log x/ log Y 6 ρ−δ 6 exp

(
δc

c+ β
λ

)

� exp

 δc

c+ β

∑
Y <p6x

2p−1|g(p)|

� (log x/ log Y )2δβc/(c+β).

In particular, uniformly for w < y 6 x,

min
|t|6T

∑
Y <p6y

p−1(|g(p)|−Re(g(p)pit)) > λ−2
∑

w<p6x

p−1|g(p)| > λ+2δβ log ρ+O(1).

Applied to g1 over the same range of y-values, Theorem 5 delivers an estimate∑
n6y

g1(n)� y

log y

∏
y
(|g1|)

(
exp

(
− cλ

c+ β

)
ρ−2δβc/(c+β) + T−1/2

)
� y

log y

∏
y
(|g1|)ρ1−2δβc/(c+β),

this last step somewhat wasteful.
We decompose the mean-value of g into two sums:∑

n6x

g(n) =
∑
b6x/w

g2(b)
∑
a6x/b

g1(a) +
∑
a<w

g1(a)
∑

x/w<b6x/a

g2(b).

The first doublesum is

�
∑
b6x/w

|g2(b)|xb−1(log(x/b))−1
∏

x/b
(|g1|)ρ1−2δβc/(c+β)

� x(log x)−1
∏

x
(|g|)ρ1−2δβc/(c+β)−δ.
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The second doublesum is

�
∑
a<w

|g1(a)|xa−1(log(x/a))−1

and w 6 x1/2, so that the bound does not exceed a constant multiple of

x(log x)−1
∏
p6w

(1 + p−1|g(p)|)� x(log x)−1
∏

x
(|g|) exp

− ∑
w<p6x

p−1|g(p)|

 .

According to the lower bound hypothesis on |g(p)| in Theorem 5, still in force in
Theorem 6, noting that w > Y ,∑

w<p6x

p−1|g(p)| > c
∑

w<p6x

p−1 +O(1) > −δc log ρ+O(1).

Altogether, ∑
n6x

g(n)� x

log x

∏
x
(|g|)(ρ1−δc0 + ρδc)

with c0 = 2βc(c+ β)−1 + 1.
We choose δ to satisfy 1−δc0 = δc. The earlier condition 2δβc < β+c is amply

satisfied, c0 increases with β and δc descends to a limiting value c(3c+ 1)−1. �

8. Concluding remarks

The present Theorem 4, with quite different argument, improves the formally sim-
ilar 2001 Theorem of Indlekofer, Kátai and Wagner [10] by appreciably weakening
its main hypothesis.

Note that since its lower bound hypothesis remains valid with max(g(p), 0) in
place of g(p), the function g in Lemma 5 may be assumed non-negative. Moreover,
the argument for that lemma also allows the choice α = c.

The hypothesis on |g| in Theorem 6 remains essentially weaker than that on g
in Theorem 4. What might a best-possible condition on g be in order to guarantee
the validity of Theorem 4?

Likewise, what might the weakest hypothesis on g be in order to guarantee the
validity of the lower bound in Theorem 2?

In response to a request of the referee the author adds the following remarks
concerning the possibility of giving the present results a quantitative aspect:

The present Theorem 4 (ii) is a direct application of Theorem 6, a gloss on
Theorem 5, for which the complete argument given in Elliott and Kish, [7], is
already localised.

Although employing new ideas, the argument for Theorem 4 (i) rests ultimately
upon the pioneering work of Wirsing, loc. cit. Its thorough overhaul to effect
a localisation would be an enterprise of considerable interest in itself.
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An effective estimate for modestly perturbed multiplicative functions is pro-
vided by combining the argument of Elliott and Kish [7], Theorem 2 with that of
the taxonomy section of Elliott and Kish [6]. The following serves:

Example. If g is a non-negative exponentially multiplicative function, uniformly
bounded by β on the primes and, for some positive constants c, c1, satisfying∑

w<p6x

p−1(g(p)− c) > −c1, 3/2 6 w 6 x,

then for any positive integer D > 2,∑
n6x,(n,D)=1

g(n) =
∏
p|D

(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)−1 ∑
n6x

g(n)

+O

 (log log 2D)β+1

(log x)1+η

∏
p6x

(
1 +

g(p)

p

)
with η a complicated expression that simplifies to c(1 + 3456(β/c)2)−1 if
c 6 12(2β)1/2.

The implied constant depends at most upon c, c1 and β.

With adequate control over g on the higher prime-powers, g may be assumed
only multiplicative rather than exponentially multiplicative. In particular, for g
with values in the unit interval [0, 1], this widens the uniformity of the correspond-
ing Theorem 2 in the author’s 1989 paper, [4].

Moreover, the example may be combined with the present Theorem 2 to provide
an effective important particular case of the present Theorem 4.
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