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Abstract: Classical Mean-Value results of Wirsing type are established under weaker than
classical constraints.
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1. Statement of results

For many studies in analytic number theory a natural object against which to
measure the mean-value of a complex-valued multiplicative arithmetic function
n — g(n) is the mean-value of its attendant function n — |g(n)|.

This reflects the decomposition n — |g(n)|exp(iarg g(n)) of a non-vanishing
completely multiplicative function into essentially a unitary character on the mul-
tiplicative group of the positive rationals, and a homomorphism n — log |g(n)| of
the positive rationals into the additive reals.

Some fifty years ago, papers of Delange [3] 1961, Wirsing [13] 1961, [14] 1967,
Halasz [9] 1968, catalysed the general study of multiplicative functions and moved
the field seriously forward.

In the present paper I re-examine the theorems of Wirsing in the light of more
recent developments and apply related ideas to the consideration of two open-
ended questions.

The following four cumulative theorems will be established, all new. Several
auxiliary propositions are also of independent interest.

Theorem 1. Let g be a non-negative multiplicative function, uniformly bounded
on the primes, for which the series > q tg(q), taken over the prime-powers q =
p* with k > 2, converges, and for which the sums y~! quyg(q) logq, y > 2,
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are uniformly bounded. Let h(n) be a complex-valued multiplicative function that
satisfies |h(n)| < g(n). Set G(z) =3, ,n"'g(n), H(z) =Y, n 'h(n), = > 1.
Then

H(z) = H<1+h;p)+h(p2)+--->(1+g§f)+g(p2)+~--> +0(1) | G(z)

p? p?

pP<T
as & — o0.
Remark. If the series > p~'(g(p) — Reh(p)) diverges or a sum Y .-, p~*h(p")
has the value —1, then the product over the primes may be omitted. Otherwise,

the product has the form AL(logz), where A is a non-zero constant and L(y)
a non-vanishing slowly oscillating function of y.

Theorem 2. Let g be a non-negative multiplicative function that is uniformly
bounded on the primes. Assume that for a positive ¢, and each b, 0 < b < 1,

- _ -1 1 S
lim inf((1 - b)log ) bz< p~g(p)logp > c.
r’<pKx

Then for some positive ¢y and all x > 2,
cox
5 :g(")207H <1+g(p)>.
log x P
n<a p<z

Remark. Under the further assumptions on g in Theorem 1, there is a similar
upper bound.

For each positive real 7, A(7) will denote a compact star-shaped region of the
complex plane that contains the origin, has a representation

{pe? 0 <0 <2m,0< p<w®)},

with average radius

2m
(2@*1/0 w(®)dd,  w(2r) = w(0),

strictly less than 7.

Theorem 3. Let the multiplicative function g satisfy the hypotheses of Theorems
1 and 2 and let h be a complez-valued multiplicative function with |h(n)| < g(n)
and values in A(c).

Set
A@) =S gm). Bl =3 hn).
Then ) )
2 2 -1
B(z) = H<1+h§f)+h§j’;)+~~>(1+g§f)+gg)+-~) +o(1) | A(z)
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Theorem 4. Let the multiplicative function g satisfy the hypotheses of Theorems
1 and 2 and let h be a complex-valued multiplicative function with |h(n)| < g(n).
Then there are two possibilities.

(i) For some real t the series Y p~t(g(p) —Reh(p)p™), taken over the primes,
converges;

Bla)=1—it) 2™ T A +nrpp" "+ )1 +g@p " +-)

p<z
+ o(A(x)), T — 00.

A(x)

(ii) There is no such t, and
B(z) = o(A(x)), T — o0.

Of particular interest in Theorems 1 and 4 is that beyond dominance by g,
there is no non-structural constraint upon the complex values of the function h.

2. Background

Two central theorems of Wirsing’s 1967 paper run as follows.

Satz 1.1. Let A(n) be a non-negative multiplicative function, uniformly bounded
on the primes, that for a positive T satisfies

Zpillogp)\(p) ~ tlogz, T — oo.

p<®

Assume further that the series Y. q '\(q), taken over the prime-powers q = p*
with k > 2, converges, and that if T < 1 then ., Mq) < z(logz)~" holds for
T > 2.

Then
—yr 2
= I(7) logz e P P

where v is Euler’s constant.

Satz 1.2. Let A(n) be a multiplicative function that satisfies the conditions of
Satz 1.1. Let \*(n) be multiplicative, with values in A(T) and satisfy |N\*(n)] <
A(n). Then

=S () (S

n<x p p n<x

as r — 0Q.
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In what follows, a product of the form

H<1+f;p)+fgf)+-~-),

p<T

when meaningful, may be denoted by H f)

The two theorems of Wirsing may be compared to the following result of Elliott
and Kish [7], subsuming ideas from Wirsing and Halasz, loc, cit.

Theorem 5. Let 3/2 <Y < z. Let g be a complex-valued multiplicative function
that for positive constants B, ¢, ¢1 satisfies |g(p)| < B,

S M) - ) 2~ Y<w<a,

w<pLT

on the primes. Suppose, further, that the series

> Mg@l(ogg)®,  k=1+cBc+p),

taken over the prime-powers q = p* with k > 2, converges.

Then with )
A= min p'(lg(p)| — Reg(p)p™),
It <T
Y <p<Le
> g(n) < alloga) " T+ o7 g)l) (exp(-Acle+ B) 1) +T12)
n<e P<T

uniformly for Y,z,T > 0, the implied constant depending at most upon f3, ¢, c1
and a bound for the sum of the series over higher prime-powers.

An extension of Theorem 5, a proof of which will be given following that for
Theorem 4, obviates the awkward condition involving the factor (logq)”.

Theorem 6. If the estimate in Theorem 5 is weakened to

> g(n) < w(loga) ™ [T (lgl) (exp(-Ace+5) ) + 777

n<x

)

)c/(3c+1)

then the condition on the prime-power values g(p*), k > 2, may be relazed to the
convergence of the series Zp k22p7k|g(pk)| and a uniform bound for the sums

Y Y rey l9(0F) | logp*, y > 2.

For the multiplicative function A\g(n) defined to be a, 8 with 0 < o < 3, on
the primes in alternate intervals (exp(2¥),exp(2¥t1)], k = —1,0,1,2,..., and to
be zero on all other prime-powers,

1
ngrolo logz)™ Zp Xo(p) logp
p<T

does not exist, eliminating direct application of Sétze 1.1 and 1.2.
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The lower bound of Theorem 2 is obtained in Elliott and Kish [7], Lemma 21,
subject to the existence of a positive constant co so that for all large x,
> p<r 9(p)logp > cox. By modifying Ag to be zero on intervals (y(log y) 2,9,

y = exp(2¥), we obtain a multiplicative function \; that will not satisfy such
a criterion for any positive cs.

Never-the-less, Theorems 1, 2 and 4 may be applied to Ay, A\; with any domi-
nated complex-valued multiplicative function, h.

3. Proof of Theorem 1

It is convenient to introduce several preliminary results.
Lemma 1. The estimate

T 10z
<
Z 9(n) < <10g;v+ (log x)? ) Z:

2<n<Lzx

with

A= sup y= 'Y glg)logq,

1<y<z o<y

where q denotes a prime-power, holds uniformly for all non-negative real multi-
plicative functions g, and all x > 2.

A proof of Lemma 1 may be found in Elliott [5], Chapter 2, Lemma 2.2. It is
immediate that

Sty <[ 1+ Y »7he0")

n<x p<x k<logx/logp

<exp [ Y g 'g(q)

gz

A proof of the following qualitative corresponding lower bound, a result first
obtained by Barban [1] using a different method, may be found in Lemma 20 of
Elliott and Kish, [7].

Lemma 2. To each positive B there is a further positive ¢(8) so that a non-trivial
non-negative multiplicative function, g, that satisfies g(p) < [ on the primes, also
satisfies

> gtnn=t = e(B) [T +p"g(p))

n<e p<T

uniformly for x > 1.
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Lemma 3. Let g be a non-trivial non-negative multiplicative function uniformly
bounded on the primes, for which the series >.q 'g(q), taken over the prime-
powers ¢ = p* with k > 2, converges, and for which the sums y~" quy g(q) logq,
y = 2, are uniformly bounded.

Then
1 1
5 g(n) log (1287 4 Zg(n)
n logu log z = n

u<n<v

uniformly for 22 <u<v< x3/2, x> 2.

Proof of Lemma 3. In view of the hypothesis on g, Lemma 1 delivers the uni-
form estimate

Y 9(p) 3/2
1+ == 2<y< ,
g g(n)<<10gy | I ( + ), y<w

n<y p<Lad/2 p

which Lemma 2 shows to be < y(logy) !G(x). The asserted result then follows
from an integration by parts. |

For better appreciation the following theorem is given in both its abelian and
tauberian aspects. A proof may be found, together with a history of the result from
Feller [8] to Stadtmiiller and Trautner [12], in Bingham, Goldie and Teugels 2],
Chapter 2, Theorem 2.10.1, pp. 116-118, and Korevaar [11], Chapter IV, Theo-
rem 10.1, pp. 197-199.

Let C(y), D(y) be non-negative real-valued functions on the non-negative reals,
non-decreasing and right continuous. To each corresponds a Laplace transform,
typically

5 — é(s) = / e Y dC(y),
0
here assumed to be defined for s > 0.

Lemma 4. Assume that for each y > 1

D*(y) = limsup D(u) ' D(uy)

U— 00

is finite, D implicitly assumed not to be identically zero.
If, for some constant A and slowly-oscillating function L(y),

C(y) = (AL(y) + o(1))D(y), y — oo,

then
C(s) = (AL(s™ ") 4+ 0(1))D(s),  s—0+.

Further, if D*(y) — 1 as y — 1+, then the converse is valid.

Remark. The non-decreasing nature of D ensures that lim D*(y), y — 1, exists.
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Completion of the proof of Theorem 1. We apply Lemma 4 to the pair
2G(e*) + Re(H(e™)), G(e®); to the pair with Im(H (e”)) in place of Re(H (e®));
and to the pair G(e*), G(e*).

Computation with Euler products shows C (s), ﬁ(s), the Laplace transforms
of the first pair, to exist for all positive s and satisfy a(s) = f(s)ﬁ(s), where

f(s)—2=Re H<1+Zp A+)p(p ><1+Zp A+9)g(p )>

p

In particular,

f(s) —2| < exp( > p ' (g(p) — Reh(p )))

so that if the series in the exponent diverges for s = 0, then f(s) — 2 as s — 0+,
and we may apply Lemma 4 with A = 2, L identically 1

We may therefore assume the series > p~!(g(p) — Reh(p)) to converge.

From the Chebyshev bound 7(y) < y(logy) ™!, integration by parts shows the
series Zp>xs p~Lexp(—logp/logx) to be bounded in terms of & alone. Since

l9(p) — h(p)|* < 29(p)(9(p) — Reh(p)),

an application of the Cauchy-Schwarz inequality, confined to the primes on which
g does not vanish, shows that

1/2
S p V05 g (p) — hip)| < (Z g<p>p-1—1/1°gf>

p>ac p>xc
1/2
(:ZE: p Ih?h( )))
p>xc
and o(1) as x — oo.
Moreover,

Dot -p VR < Y plogp/logr <,
p<as p<Te

the implied constant absolute for all values of x sufficiently large in terms of €.
Letting x — oo, € = 04, we see that as r — oo

f((logz)™') —2=TRe | Bexp Zpil Im(h(p)) +o(1),

pP<T
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with B the product of

11 (1 + Zp_kh ) ) | exp (—p~h(p H (1 + Z p"g(p™ >_1exp (»~'9(p))

D m=1

and exp(—_, p~1(g(p) —Reh(p))). Its genesis in terms of Euler products ensures
that |B| < 1; moreover, B will vanish only if for some prime p the sum 1 +
00 —kp ok ;
> heq P "h(p”) vanishes.
Note that for any 8 > 1, the above argument shows that

Z p~ ! Tm(h( Z p ' Im(g(p) — h(p))

r<p<ah r<p<xh
1/2 12
< > ! (Zp‘lg(p)—h(p)l2> = o(1)
z<p<axh p>w

as ¥ — 00, so that exp(}_ .. p~1Im(h(p))) is a slowly oscillating function of s.
In view of Lemma 3,

lim limsup G(e”)'G(e™) = 1.

y—=1+ ysco

Three applications of Lemma 4 in its Tauberian aspect, typically with A =1,

L(s) =2+ Re | Bexp Z p~ " Im(h(p)) ’

p<e®
delivers the asymptotic estimate
H(e") = (f(x_l)—i—o(l)) G(e"), T — 00,
from which Theorem 1 follows rapidly. |

4. Proof of Theorem 2

Again a preliminary result is advantageous.
Let 0 < g(p) < B for each prime, p.
If, for some 7 > 0,

> pg(p)logp ~ Tlogy, Y — oo,
Py
then for each ¢, 0 < e < 1,
.. 1 -1
hxrggf(a log z) Z p logp>T
rl-e<p<La

The converse need not be true, as may be seen from the example \g in Section 2.
However, the following converse is valid.
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Lemma 5. Assume that for ¢ > 0 and each €, 0 < € < 1, the function g(p),
uniformly bounded on the primes, satisfies

. —1 —1
hxrr_1>£f(5 log z) Z p g(p)logp > c.
zl-e<p<L

Then for each o, 0 < a < ¢, there is a subsequence of primes, r, such that

- —1 —1 _
mlirgo(log x) Z: r~g(r)logr = a.

Proof of Lemma 5. We begin with an outline of the argument. Fix a prime ¢
for which >, p~'g(p)logp > alogt.

We define a function g(p) by choosing, for each prime p, to retain g(p) or to
replace it by zero. For ease of notation Zpgy p~1g(p)logp will be denoted by
S(y).

We choose g(p) = g(p) for p < t.

The primes y; < y2 < --- are defined successively as follows. We replace g(p)
by zero on the primes following ¢ until, for the first time, S(y)/logy falls strictly
below a. The corresponding value of y is y;.

We choose g(p) = g(p) on the primes p > y; until, for the first time with
y > 41, the ratio S(y)/logy climbs above a. The corresponding value of y is ys;
and so on.

Our initial aim is to show the turning values y; not to be logarithmically far
apart.

A few preliminary remarks are helpful.

Let 0<f<1,22>23/2<y< 2?. With 0 < € < 1 — 0 determine the integer
k by 279" < 4 < 2(1=9""" = 4, so that k > 2. Assume that for all sufficiently
large values of w

> plg(p)logp > eclogw.

wl—e<pLw

By partitioning the interval (a:(l_s)k,x] into adjoining subintervals (z(1=%)"
x(lfs)m_l], m = 1,2,...,k, we see that provided 2(1-9" is sufficiently large in
terms of &,

>~ pg(p)logp > clog(x/v) > c(log(x/y) — log(/y))

>c(l—e(1—6)"")log(z/y),

since log(v/y) < log(v /11 7¢) = elog < elogax < (1 — )~ Llog(z/y).

For the purposes of proving Lemma 5 we may therefore replace its lower-bound
hypothesis by:

For eache, 0 <e <1,

> plg(p)logp = clog(z/y)

y<p<z

uniformly for 1 <y < x'=¢ and all x sufficiently large in terms of c.
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It is clear that the initial prime t exists.
As a second preliminary remark, if 2 < y < w, then

(logw)~"S(w) — (logy) "' S(y) = ((logw)‘1 — (logy) ™) S(y)
+ (logw)™ Z P g p) log p.

y<psw

Hence
|(log w) ™' S(w) — (logy)~'S(y)| < (logwlog y)‘15( ) log(w/y)

+ co(logw)™ Z ptlogp
y<p<w

c1(log(w/y) +1)(logw) ™!

with a positive constant ¢; dependent at most upon the upper bound for the g(p).
Here we have employed the elementary estimate >. _ p~llogp = logy + O(1),
y =2

In particular, if y is a prime adjacent to a turning value yj, then

PLY

S(y)/logy — S(yx)/ log yr < (|log(yr/y)| +1)/logyr < 1/logy,

since the ratio of successive increasing primes approaches 1

We now show the y; not to increase too rapidly.

Suppose that S(yx)/logyr < «, so that for the next prime p > yi, g(p) is
kept. In particular S(yx) = alogyr + O(1). If yi, < (%ykﬂ)l_a < %yk+1 and y
is sufficiently large, then %ykﬂy;l > YL,

S(3yr+1) = S(3yr+1) — S(yk) + S(yk)
> clog(ykt1yy, ') + alogyx + O(1)
= alog(3y+1) + (¢ — @) log(3yr+1y;, ) + O(1).

With w a nearest prime to %ylﬂ_h S(w)/logw > « before the next change point,

Yk+1-

Thus yi > (%yk+1)1_5.

If S(yx) > alogys, then again S(yx) = alogyr + O(1), and g(p) = 0 on the
primes in the interval (y, $y41]. Hence

S(3yr+1)(10g(3yr41)) " = S(yr) (log(5yk+1)) "
= alogyy(logyg+1) ™" + O((log yx) ).

If, now, yi < y,i_ﬁ and yy, is sufficiently large then

SEyrs1)(log(Rye+1)) "t <l — )+ O((logyr) ™),

again leading to a premature change point.
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In this case yi > y,i_ﬁ
For all large values of y, zka Yk < Yp+1. As a consequence

S(yk+1)/log yr1 — S(yx)/ log yr < log(yk+1/yk)/log yk+1 < &,

the implied constant independent of . Since S(yx)/logyr = o + O(1/logys),
S(y)/logy — a < ¢ for all sufficiently large values of y, first for prime values then
for otherwise arbitrary real values.

The construction of the function g does not depend upon the value of € and
we may apply the argument with e =27, m =1,2,3,..., in turn.

Lemma 5 is established. ]

Completion of the proof of Theorem 2. Let 0 < a < ¢ and let r run through
a sequence of primes for which >, Lg(r)logr ~ alogy, y — cc.
Define multiplicative functions g;, j = 1,2, by

~Jalp) ifp#r, _Jo if p #r,
gl(p){o if p=r, gQ(p){g(p) if p=r,

and g; (p*) = 0 on all other prime powers.
On squarefree integers g coincides with g1 * go, the Dirichlet convolution of gy

and go; hence
ZQ(”) > Z g1(u) Z 92(v).
n<x ul/T v<z/u
Satz 1.1 of Wirsing (c.f. §2) gives for a typical innersum the asymptotic estimate

—ya T

e 92(p) o/ — o0
(1 +0(1))F(a) ulog(x/u) pgu( D )  wfu oo

The doublesum thus exceeds a constant multiple of

s LL(50) 2

u<\/T

An appeal to Lemma 2 completes the proof. |

5. Proof of Theorem 3

Choose a real « to lie strictly between the average radius of A(c), and c.
Choose a subsequence of primes r for which

Zr r)logr ~ alogy, Yy — 0.
rLY
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We define multiplicative functions g;, j = 1,2, by

gl(pk){g(p’“) pEL gz(pk){g(p’“) p=r,

0 otherwise 0 otherwise.

The function g has a Dirichlet convolution representation g; * go.
We likewise define multiplicative functions hj, j = 1,2, so that h = hy * ho,
|hj| < g;, 7 =1,2. There is a representation

M = Z h(n) = Z hi(u) Z ha(v)
n<z ux v<z/u

Let 0 < & < 1/2. We remove the contribution from the terms with v < ¢ and
2'7¢ < u < . Typically, by Lemma 1,
<1+ 92(p) +>
p

Z g1(u) Z ) < Z g1(u ulog x/u) H

uLxe v<z/u uL e p<a:/u
g1(u
<
Ing]:[ u<zzs
Moreover,
> e I (1+ 2P ) < [ IT (1422
uLxe p<Las € <pKzT p

From the lower bound hypothesis on g and the construction of the sequence 7,
an integration by parts shows that

> 191() 1(C*oz)log§+0(1).

2
z°<pKT p

The contribution to M from the terms with uv < ¢ is

< e/ 23 (log )71 H (9), x — 00.
xT

For the range z'7° < u < z, v < 2° and we may invert summations, replacing
(¢ — a)/2, as the exponent of €, by «a/2.
We are reduced to the estimation of

MEZ Z hl(u) Z hQ(’U)

rE<uLal—e v<z/u

Since hy inherits its properties relative to gs from h, applied to the innersum
in M., Satz 1.2 delivers the asymptotic estimate

(I?Z;ng(gw (Hm/u(h” i (Hw/u(”))) LT

uniformly for z° < u < 2.
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Introducing factors exp(—p~1tha(p)), exp(—p~tg2(p)), respectively, the ratio

h ~th timat
Hy( 2) Hy(92) as an estimate

(B+o(W)exp [ = > p(g2(p) —h2(p)) |, y— o0,
PLY
with
-1
B=]] (Zp Fha(p*) exp(—p ™ ha(p )H (Zp "g2(p m) exp(p~ g2(p)).
P P

If the series > p~1(g2(p) — Re(ha(p))) diverges, then uniformly for 2° < u <

xlfs,

Hm/u(hz) l_Lﬁ/u(gzr1 = Hm(h2) HI(92)71 +o(1), z— oo,

since both product ratios asymptotically vanish.
If the series Y p~!(g(p) — Re(ha(p))) converges, then we may argue as in the
proof of Theorem 1. For each positive real 7, 0 < 7 < 1,

Z P~ (g2(p) — h2(p)) = 0,  x— o0,

T <pLx

and we formally obtain the same asymptotic equality of ratios.
Likewise, there is a representation

(logy) ™ [ (92) = (C +o(1)exp | 3 p~"ga(p) —aloglogy | .y — o0,
PY

with
O=T1 (S50 ) st o
p m=1
An integration by parts shows that for each 7, 0 < 7 < 1,

Z p Ltga(p p) + alogT — 0, T — 00,
T <pLT

so that
(o5 /)~ I, (92) = o) T[ (92) + o). & o0.
Altogether, the innersum of M. has the estimate
e e T 1
. h
T(a) u(logz)®  (log(z/u))—= (Hw( 2) o (Hw<92)))’ T

uniformly for 2° < u < '~
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The error terms contribute towards M,

loszz(g) Z # :O(b;CHm(g)>, T — 00,

xs<u<zl—s
within which M. has the estimate

e T IO N
T Mg L0 2 iggtaju

rE<uLal—e

Setting

an integration by parts gives a representation

ulog(a/u))l=e — (clogz)l==  ((1 —¢)loga)l=a

1—e

T H(y)
(o). y(log(a/u))>= V"

Z hl(u) . Hl(xl_a) Hl(l'g)

e <uLxl—e

provided z°, x'~¢ are not positive integers, a situation that we may avoid by
choosing a slightly larger value of x.

According to Theorem 1,

() = (T )T (907 +0() Grly),  y— o0,

Y Y
where, as above, we may replace the products H by H , uniformly for x° <
Yy T

y<zl™% z = oo.

As a consequence,

2 U(IOg}(L;:(/Z)))l‘“ = (TL, ) I (o)™ +o(1))
g1(v)

X2 e

rE<uLal—e

T — 0.

Once again, the argument is expedited by considering 2G4 (z)+Re(H1(x)), 2G1(z)+
Im(Hq(x)).
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Rewinding,

- et O
Me= 1L L]0 vy fogme L2 2 ioaia/uy=s

o ILw)
“ILOILo" Y S L™

e <uLal—e

+0(102331_[%(90
“ILw[Lw" Y aw Y gQ<v>+o<b§xnx<g))

rE<uLal—e v<z/u
=[LWIL @ "> gy +o e gn)
n<w n<x

with v = min((c — «)/2, «/2) and, for all sufficiently large values of x, an implied
constant independent of e.

A similar estimate holds for M.

Letting x — oo, € — 04 completes the proof. |

6. Proof of Theorem 4

Case (i). From the assumption that the series 35 p~" (9(p) —Re(h(p)p'*)) converges,
for each positive § the series taken over the primes p for which g(p) —Re(h(p)p*) >
0 also converges.

On the remaining primes

lg(p) — h(p)p™ > < 29(p)(9(p) — Re(h(p)p™)) < 286.

The values of h(p)p™ lie in a box about the real axis, with corners at (—(235)/2,
+(286)1/2), (B + (2B6)'/2,£(266)"/?), and area 2(238)'/2(5 + 2(285)'/?).
Assuming that 0 is sufficiently small and, in particular, that 2(265)1/2 s,
this is a region of the type A(7) with an average radius

1/2

w(f) d < <1 /2” w(0)? d0> < (47r*1(2535)1/2>1/2
0

21

1 2w
2

that can be fixed at a value as small as desired.

We may follow the proof of Theorem 3, first selecting a subsequence of primes
7 for which (logz)™" 3> . 77 'g(r)logr — a, x — oo, then removing from that
subsequence those primes for which h(p)p does not belong to a region A(«)
defined by a value of § that satisfies 47~1(23%6)'/2 < a?.
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The removal of these exceptional primes does not affect the existence or the
value of the asymptotic limit for (logz)~' Y . r~'g(r)logr.
The upshot is an asymptotic estimate

S hmynt = T (1 + b=t + ) (Hl_(g))f 3 g(n)

n<e p<x n<x

+o Zg(n) , T — o0.

n<e

We would like to integrate by parts and remove the weight ni from h(n)n®,
but have insufficient control over the values of the function h. Since, in some sense,
we are considering the ratio h(n)n*(g(n))~!, at an appropriate moment we switch
the weight n’ from h to g and consider the ratio h(n)(g(n)n=%)"1.

Following the argument for Theorem 3, the study of the sum

reduced to that of .
Ma = Z hl(u) Z hQ(U),

rE<uLal—e v<z/u

h(n) is

n<x

where Theorem 3 is applicable to the pair ho(n)n®, go(n). There is a corresponding
estimate

> ha(n)n' = L(logy) Y g2(n)+0 | D g2(n) |, y— o0,
with .
Liogy) = [T 0+t +-) (] () ~  w>2

Y
Py
Set

Ha(y) =Y ha(n)n®,  Galy) =D ga(n),  y=1/2.

n<y nLy
An integration by parts gives a representation
Yy

Z ho(n) =y~ Hy(y) + it/ w1 Hy (w) dw,

<y 1/2

provided y is not an integer. Since G2(w) < w(logw)™ ' [],(92), w > 2,

/;leQ(“” dw < Hm(92)/j(logw)1dw

< z(logz)™! Hx(gg) < Go(x), T

WV
N

Hence

> ha(n) =y " L(logy)Gal(y) + it /:, w™ " L(log w)Ga(w) dw + o(Ga(y)),

as y — 00.
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As in the proof of Theorem 3, within an acceptable error L(logw), for y* <
w < y, may be replaced by L(logy) and factored out of the representation:

Z he(n) = L(logy) <y‘”G2(y) + it /; w1 Gy (w) dw) +0(Ga(y)), y— oo.

We appeal to the asymptotic estimate
Goe) = (1 + o) S ] (). w
)= o(l) =—=———— T — 00
2 F(Ck) IOg.’E = g2), )

vouchsafed by Satz 1.1. Once again, as for Theorem 3, we employ the slow oscil-
lation of the function H (92)(log )~ to obtain a representation
x

Z ha(n) = ﬂL(log ) Hx(QQ) ( vy + it /29 (w_Zt dw)

I'(a) (logz)> \ (logy)l—« log w)1—@
+ 0(Ga(y))
e~ Hm(gg) ylit

(a) L(log {E) (log x)a (1 . Zt)(log y)l_a

T
uniformly for ¢ < y < x, as £ — 00; stepping from w to y to z.
Accordingly,

. e~ :L.lfit HI<92)

M. = ') ?itL(IOgI) (log z)«

+ 0(Ga(y)),

it
Z MwLO(G(x)), T — 00.
rE<uLxl—e

We may now formally follow the argument for Theorem 3, the role of hq(n)
there here played by hy(n)n', although on a slightly different set of primes. Even-
tually only the extra factor x=%(1 — it)~! remains.

Case (ii). The series Y p~1(g(p) — Re(h(p)p™)) diverges for every real t. The
partial sums of this series are non-decreasing in x and continuous in ¢. Divergence
of the series is uniform on every compact interval |t| < T and Theorem 3 follows
from an application of Theorem 6, depending upon whether the series >~ p~1(g(p)—
|h(p)|) converges or not. |

Remark. Under the hypothesis of Case (i) the series Y. p~t|g(p) — h(p)p®|?
converges. The series Y p~tg(p) — |h(p)||? and Y. p~tg(p)|l — e pi|?, where
h(p) = |h(p)|e*®r, then also converge.

Suppose further that, for some positive integer k, h(p)* is real. The inequality
|1 —2%| < k|1 — 2|, valid for every z in the complex unit disc, guarantees the series
S ptg(p)|1 — p?™**|? to converge.

In the present circumstances > . p~lg(p) = (c+o(1))loglogx as x — oo
and an application of Lemma 15 from Elliott and Kish [6] shows that ¢ = 0.
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A simple example is given by h(n) = g(n)x(n), where Y is a Dirichlet character.

The argument of this remark may be given a topological aspect by defining
a metric o(f,g9) = (S p~tf(p) — g(p)|?)'/? on equivalence classes of multiplicative
functions that coincide of the primes, and restricting study to those functions g
whose distance o(g, go) to a fixed multiplicative function gy is defined, i.e. finite.
The topological space of complex-valued multiplicative functions is in this manner
locally metrised and correspondingly disconnected.

7. Proof of Theorem 6

We assume the new, weaker restraints upon g. If g is exponentially multiplicative,
i.e. g(p*) = g(p)*/k!, and |g(p)| < B, then for any 7 the series

> pFlg(P")|(log p)
p,k>2

converges, so that Theorem 4 is applicable. Indeed, for such functions the original
exposition of Elliott and Kish, [7] Theorem 2, already contains a proof.

In general, we define an exponentially multiplicative function g; by g1(p) =
g(p), and a complementary multiplicative function g, by Dirichlet convolution:
g=291%*3g2.

Calculation with Euler products shows that go(p) = 0 and for k > 2,

k

92(0") = () (—g() 9 ("),

r=0

In particular,

k
lg2(P") <D () B9 k=2

r=0
As a consequence
oo
> o7 Fga@) <Y DB D p e
p,k>2 r=0 pk>2
<EB+18°) Y p P+ (1+38%) Y pMlah)l,
p,k>2
and converges.
Moreover,
o0
Do le@M)I <D T D 19
PPy r=0 ph<y,k>2

<Y ()1 Bry(logy) ! < y(logy) !
r=0

uniformly for y > 2.
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We may apply Lemma 1 and obtain for |go| the uniform estimate

> lg(n) < ylogy)™',  y=2.
ny

With § a real number to be chosen presently in the range 0 < § < 1,

= ———\ )+ T2,
o=l

as in the statement of Theorem 5, we define w = exp(p’logz), so that w is
effectively a function of = for x > 2.

It is convenient to note that we may assume p° < 1/2, otherwise Theorem 6
follows directly from Lemma 1.

Moreover, provided 2§8¢c < ¢+ 8 and Y does not exceed a certain fixed power
of x, which we may likewise assume, Y < w. For otherwise

oc
logx/logY < *5<e — A
g z/log P Xp<c+ﬁ)

< exp 5 Z “Ha(p)| | < (logz/logy)208e/(c+h),
Y <pLz

In particular, uniformly for w <y < =

min P (lg()|—Re(g(p)p™) = A=2 > p~'g(p)| = A+258log p+O(1).

[tI<T
Y <p<y w<pLT
Applied to g1 over the same range of y-values, Theorem 5 delivers an estimate

A\ —28pc/(c+B) | p-1/2
_J o c/(c T
> q1(n <<log || (lg1]) (exp< C+B)p +

n<y

Y 1-26B¢/(c+B)
Tog (lg1))p :

this last step somewhat wasteful.
We decompose the mean-value of g into two sums:

Zg(n): Z 92(b) Z 91(G)+Zg1(a) Z 92(b).

n<x b<z/w a<z/b a<w z/w<b<z/a
The first doublesum is

-1 1-268¢/(c+B)
<<b<z; lg2(b)|zb~ (log (/b)) ' T | /b (lga])pt—20Perte

< a(logz) " [T (lghp' 2P/t =2,
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The second doublesum is

< 3" lgs(@)la" log(z/a))

a<w

and w < /2, so that the bound does not exceed a constant multiple of

z(loga) ™ [T +p7"l9)) < z(ogz) ' T] (lghexp | = > p7'lg(@)]

pSw w<pLT

According to the lower bound hypothesis on |g(p)| in Theorem 5, still in force in
Theorem 6, noting that w > Y,

Z pg(p)| = ¢ Z p~ '+ 0(1) = —dclogp+ O(1).

wL<PLT w<p<T

Altogether,

> gm) < o T Uab (e + %)

with ¢y = 2Bc(c+ )71
We choose § to satisfy 1—Jcg = dc. The earlier condition 265¢ < §+c is amply
satisfied, co increases with 3 and dc descends to a limiting value ¢(3c+1)"!. W

8. Concluding remarks

The present Theorem 4, with quite different argument, improves the formally sim-
ilar 2001 Theorem of Indlekofer, Katai and Wagner [10] by appreciably weakening
its main hypothesis.

Note that since its lower bound hypothesis remains valid with max(g(p),0) in
place of g(p), the function g in Lemma 5 may be assumed non-negative. Moreover,
the argument for that lemma also allows the choice oo = c.

The hypothesis on |g| in Theorem 6 remains essentially weaker than that on g
in Theorem 4. What might a best-possible condition on g be in order to guarantee
the validity of Theorem 47

Likewise, what might the weakest hypothesis on g be in order to guarantee the
validity of the lower bound in Theorem 27

In response to a request of the referee the author adds the following remarks
concerning the possibility of giving the present results a quantitative aspect:

The present Theorem 4 (ii) is a direct application of Theorem 6, a gloss on
Theorem 5, for which the complete argument given in Elliott and Kish, [7], is
already localised.

Although employing new ideas, the argument for Theorem 4 (i) rests ultimately
upon the pioneering work of Wirsing, loc. cit. Its thorough overhaul to effect
a localisation would be an enterprise of considerable interest in itself.
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An effective estimate for modestly perturbed multiplicative functions is pro-
vided by combining the argument of Elliott and Kish [7], Theorem 2 with that of
the taxonomy section of Elliott and Kish [6]. The following serves:

Example. If g is a non-negative exponentially multiplicative function, uniformly
bounded by 8 on the primes and, for some positive constants c, ¢y, satisfying

Y pglp)— )= —a, 3/2<w<u,
w<pLT

then for any positive integer D > 2,

S =] 1+9(P)+9(pj)+...> 3 g(n)

n<z,(n,D)=1 p|D n<x
(log log 2D)#+1 I (1 N g(p)>
Qogryer LU

with 1 a complicated expression that simplifies to c(1 + 3456(3/c)?)~1 if
c < 12(28)Y2.
The implied constant depends at most upon ¢, c; and .

With adequate control over g on the higher prime-powers, g may be assumed
only multiplicative rather than exponentially multiplicative. In particular, for g
with values in the unit interval [0, 1], this widens the uniformity of the correspond-
ing Theorem 2 in the author’s 1989 paper, [4].

Moreover, the example may be combined with the present Theorem 2 to provide
an effective important particular case of the present Theorem 4.
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