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GAUSS’ LEMMA OVER FUNCTION FIELDS

Yoshinori Hamahata

Abstract: We generalize the function field analog of Gauss’ lemma for the application of power
residue symbols. We then provide another proof of the general reciprocity law for power residue
symbols.
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1. Introduction

Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,

where
(
p
q

)
is the Legendre symbol. This result is called the quadratic reciprocity

law. To prove this law, Gauss utilized Gauss’ lemma, which is as follows. Let l be
an integer that is not divisible by a prime p. Consider the least positive residues
mod p of the following (p − 1)/2 multiples of l: l, 2l, 3l, . . . , p−1

2 l. If m is the
number of such residues that exceed p/2, then(

l

p

)
= (−1)m.

The analogies between number fields and function fields have many interesting
aspects. Artin [1] established a function field analog of the quadratic reciprocity
law, which was stated by Dedekind [6]. Schmidt [12] proved a more general reci-
procity law over function fields. Carlitz [3, 4, 5] gave another proof of the general
reciprocity law using an analog of Gauss’ lemma. For details of the general reci-
procity law over function fields, we refer to [11, 14]. Further another proof of the
reciprocity law over function fields can be found in [2, 7, 8, 9, 10].

This work was supported by JSPS KAKENHI Grant Number 15K04801.
2010 Mathematics Subject Classification: primary: 11T55; secondary: 11A15, 11G09



212 Yoshinori Hamahata

In this paper, we expand upon the work of Carlitz and generalize Gauss’ lemma
over function fields for the application of power residue symbols. We then provide
another proof of the general reciprocity law for power residue symbols.

2. Gauss’ lemma

Let A = Fq[T ] be the polynomial ring over Fq, which denotes a finite field with q
elements. Let K = Fq(T ) denote the quotient field of A, and let K∞ = Fq((1/T ))
be the completion of K at ∞ = (1/T ). We write C∞ for the completion of an
algebraic closure of K∞. Let A+ denote the set of all monic elements of A.

Let d be a positive divisor of q − 1, and let P ∈ A+ be an irreducible element
of degree k. If P does not divide a ∈ A, let { aP }d be the unique element of F∗q (the
unit groups of Fq) such that

a(qk−1)/d ≡
{ a
P

}
d

(mod P ).

If P divides a, let { aP }d = 0. The symbol { aP }d is called the d-th power residue
symbol. When d = 2, this symbol is analogous to the Legendre symbol.

Let d be a positive divisor of q − 1. Set

Hd = {εd | ε ∈ F∗q},

which is a subgroup of F∗q of order (q−1)/d. Let Rd be a set of coset representatives
of Hd in F∗q . Let P ∈ A+ be an irreducible element of degree k. Set

Sd,P = {b ∈ A \ {0} | deg b < k, sgn(b) ∈ Hd},

where sgn(b) is the leading coefficient of b. The cardinality of Sd,P is (qk − 1)/d.
We are going to establish Gauss’s lemma. Take a ∈ A that is not divisible

by P . For any b ∈ Sd,P , there exist unique b′ ∈ Sd,P and ζb ∈ Rd such that
ab ≡ ζbb

′ (mod P ). The map f : Sd,P → Sd,P defined by b 7→ b′ is bijective.
Indeed, there exists c ∈ A such that ac ≡ 1 (mod P ). For any b′ ∈ Sd,P , there exist
b′′ ∈ Sd,P and ζb′ ∈ Rd such that cb′ ≡ ζb′b′′ (mod P ). Then, ab′′ ≡ ζ−1

b′ b
′ (mod P ),

which implies that f is surjective. Hence, f is also injective. Therefore, we have

a(qk−1)/d
∏

b∈Sd,P

b ≡
∏

b∈Sd,P

ab ≡
∏

b∈Sd,P

ζbb
′ ≡

 ∏
b∈Sd,P

ζb

 ∏
b∈Sd,P

b′

 (mod P )

≡

 ∏
b∈Sd,P

ζb

 ∏
b∈Sd,P

b

 (mod P ).

Hence, { a
P

}
d
≡ a(qk−1)/d ≡

∏
b∈Sd,P

ζb (mod P ).
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Because
{
a
P

}
d
and

∏
b∈Sd,P ζb are included in F∗q ,{ a

P

}
d

=
∏

b∈Sd,P

ζb.

This establishes the following generalized Gauss’s lemma.

Theorem 1 (Generalized Gauss’ lemma). Let P ∈ A+ be an irreducible
element. For a ∈ A that is not divisible by P ,{ a

P

}
d

=
∏

b∈Sd,P

ζb.

Note that Carlitz [3] proved this theorem in the case when d = q − 1.

Example 2. Let q = 5. Then, P = T + 1 and Q = T 2 + 2 are monic irreducible
elements in A.

(1) Let d = 4. Then, H4 = {1} and we can take R4 = {1, 2, 3, 4}. We see
that S4,P = {1} and S4,Q = {T, T + 1, T + 2, T + 3, T + 4, 1}. Because
Q · 1 ≡ 3 · 1 (mod P ), we have

{
Q
P

}
4

= 3. Because

PT ≡ 1(T + 3) (mod Q), P (T + 1) ≡ 2(T + 2) (mod Q),

P (T + 2) ≡ 3T (mod Q), P (T + 3) ≡ 4(T + 4) (mod Q),

P (T + 4) ≡ 2 · 1 (mod Q), P · 1 ≡ 1(T + 1) (mod Q),

we have
{
P
Q

}
4

= 1 · 2 · 3 · 4 · 2 · 1 = 3.

(2) Let d = 2. Then, H2 = {1, 4} and we can take R2 = {1, 3}. We see
that S2,P = {1, 4} and S2,Q = {T, T + 1, T + 2, T + 3, T + 4, 4T, 4T + 1,
4T + 2, 4T + 3, 4T + 4, 1, 4}. Because Q · 1 ≡ 3 · 1 (mod P ) and Q · 4 ≡
3 · 4 (mod P ), we have

{
Q
P

}
2

= 3 · 3 = 4. Because

PT ≡ 1(T + 3) (mod Q), P (T + 1) ≡ 3(4T + 3) (mod Q),

P (T + 2) ≡ 3 · 4T (mod Q), P (T + 3) ≡ 1(4T + 1) (mod Q),

P (T + 4) ≡ 3 · 4 (mod Q), P · 1 ≡ 1(T + 1) (mod Q),

P · 4T ≡ 1(4T + 2) (mod Q), P (4T + 1) ≡ 3 · 1 (mod Q),

P (4T + 2) ≡ 1(T + 4) (mod Q), P (4T + 3) ≡ 3T (mod Q),

P (4T + 4) ≡ 3(T + 4) (mod Q), P · 4 ≡ 1(4T + 4) (mod Q),

we have
{
P
Q

}
2

= 1 · 3 · 3 · 1 · 3 · 1 · 1 · 3 · 1 · 3 · 3 · 1 = 4.
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3. The general reciprocity law

Let D0 = 1 and Dn = [n][n − 1]q · · · [1]q
n−1

for n > 0, where [n] = T q
n − T . Let

e(z) be the Carlitz exponential function defined by

e(z) =

∞∑
n=0

zq
n

Dn
,

which is entire over C∞. By definition, it holds that de(z)/dz = e′(z) = 1. The
map e : C∞ → C∞ is Fq-linear and surjective. The kernel L := Ker(e) is a
free A-module of rank one. It is easy to verify that e(z) is L-periodic; that is,
e(z + l) = e(z) for l ∈ L. Let π be a generator of L.

In the classical case, for an integer l that is not divisible by a prime p,

(
l

p

)
=

(p−1)/2∏
n=1

sin 2πln/p

sin 2πn/p
.

For the details of this result, see Serre [13]. This result has the following polynomial
analog:

Theorem 3. Let P ∈ A+ be an irreducible element. For a ∈ A that is not divisible
by P , { a

P

}
d

=
∏

b∈Sd,P

e (πab/P )

e (πb/P )
.

Proof. For any b ∈ Sd,P , there exist unique b′ ∈ Sd,P and ζb ∈ Rd such that
ab ≡ ζbb

′ (mod P ). Because P divides ab − ζbb′, e (π(ab− ζbb′)/P ) = 0. Hence,
e (πab/P ) = ζbe (πb′/P ). Applying Theorem 1,{ a

P

}
d

=
∏

b∈Sd,P

e (πab/P )

e (πb′/P )
=

∏
b∈Sd,P

e (πab/P )

e (πb/P )
. �

Note that Carlitz [5] proved this theorem in the case when d = q − 1. We will
see that this theorem yields the following general reciprocity law.

Theorem 4 (The general reciprocity law). Let P and Q be distinct irreducible
element in A+. Then it holds that{

Q

P

}
d

= (−1)
q−1
d degP degQ

{
P

Q

}
d

.

Remark 5. Carlitz [3, 4, 5] proved Theorem 4 in the case when d = q − 1 and
further proved Theorem 4 for any d by using the fact that

{
a
P

}
d

=
{
a
P

}(q−1)/d

q−1
.
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4. Proof of Theorem 4

To prove Theorem 4, we require the Carlitz module. Let π denote a generator
of L. For each a ∈ A, there exists a unique Fq-linear polynomial ρa(z) such that

ρa(e(z)) = e(az). (4.1)

Let τ = zq, and let C∞{τ} be the non-commutative ring in τ with the commutation
rule cqτ = τc (c ∈ C∞). For each Fq-linear polynomial P (z) =

∑n
i=0 aiz

qi ∈
C∞[z], we define P (τ) :=

∑n
i=0 aiτ

i. The map ρ : A → C∞{τ} (a 7→ ρa(τ)),
which is an Fq-linear ring homomorphism, is called the Carlitz module. It is known
that ρT (z) = Tz + zq. Hence, for a ∈ A \ {0}, the degree of ρa(z) is qdeg a. Let
degP = k and degQ = l. From (4.1), we have

ρQ(z) = z
∏

06=c∈A
deg c<l

(z − e (πc/Q)) .

For this equality, refer to page 239 of Rosen [11]. Using Sd,Q and Rd, ρQ(z) can
be written as

ρQ(z) = z
∏

b∈Sd,Q

∏
ζ∈Rd

(z − e (πζb/Q)) = z
∏

b∈Sd,Q

∏
ζ∈Rd

(z − ζ · e (πb/Q)) .

Note that ∏
α∈Hd
ζ∈Rd

(X − ζα) = Xq−1 − 1 =
∏
α∈Hd

(Xd − α).

Hence, ρQ(z) = z
∏
b∈Sd,Q

(
zd − e (πb/Q)

d
)
. Using Theorem 3,{

Q

P

}
d

=
∏

b∈Sd,P

ρQ (e (πb/P ))

e (πb/P )
=

∏
b∈Sd,P

∏
c∈Sd,Q

(
e (πb/P )

d − e (πc/Q)
d
)

= (−1)(qk−1)(ql−1)/d2
∏

c∈Sd,Q

∏
b∈Sd,P

(
e (πc/Q)

d − e (πb/P )
d
)

= (−1)(qk−1)(ql−1)/d2
{
P

Q

}
d

.

If q is even, then (−1)(qk−1)(ql−1)/d2 = 1 = (−1)
q−1
d kl. If q is odd, then

qk − 1

d
· q

l − 1

d
≡
(
q − 1

d

)2 (
1 + q + · · ·+ qk−1

) (
1 + q + · · ·+ ql−1

)
(mod 2)

≡
(
q − 1

d

)2

kl ≡ q − 1

d
kl (mod 2).

Hence,
(−1)(qk−1)(ql−1)/d2 = (−1)

q−1
d kl.

This completes the proof of the theorem. �
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