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ANDREWS’ SINGULAR OVERPARTITIONS WITH ODD PARTS

M.S. Mahadeva Naika, S. Shivaprasada Nayaka

Abstract: Recently singular overpartitions was defined and studied by G. E. Andrews. He
showed that such partitions can be enumerated by Cδ,i(n), the number of overpartitions of n
such that no part is divisible by δ and only parts ≡ ±i (mod δ) may be overlined. In this
paper, we establish several infinite families of congruences COδ,i(n), the number of singular
overpartitions of n into odd parts such that no part is divisible by δ and only parts ≡ ±i (mod δ)
may be overlined. For example, for all n > 0 and α > 0, CO3,1(4 ·3α+3n+7 ·3α+2) ≡ 0 (mod 8).
Keywords: partitions, singular overpartitions, congruences.

1. Introduction

G.E. Andrews [2] defined combinatorial objects which he called singular overparti-
tions and proved that these singular overpartitions which depends on two param-
eters δ and i can be enumerated by the function Cδ,i(n) which gives the number
of overpartitions of n in which no part is divisible by δ and parts ≡ ±i (mod δ)
may be overlined. The generating function of Cδ,i(n) is

∞∑
n=0

Cδ,i(n)qn =
(qδ; qδ)∞(−qi; qδ)∞(−qδ−i; qδ)∞

(q; q)∞
. (1.1)

Throughout the paper, we use the standard q-series notation, and fk is defined as

fk := (qk; qk)∞ = lim
n→∞

n∏
m=1

(1− qmk).

For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined as

f (a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2. (1.2)
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Using Jacobi’s triple product identity [4, Entry 19, p. 35], the equation (1.2)
becomes

f (a, b) = (−a, ab)∞ (−b, ab)∞ (ab, ab)∞ .

The most important special cases of f (a, b) are

ϕ (q) := f (q, q) = 1 + 2

∞∑
n=1

qn
2

= (−q; q2)2
∞(q2; q2)∞ =

f5
2

f2
1 f

2
4

, (1.3)

ψ (q) := f
(
q, q3

)
=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f2

2

f1
, (1.4)

and

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞ = f1. (1.5)

Andrews [2] has found the following congruence results, for each integer n > 0,

C3,1(9n+ 3) ≡ 0 (mod 3), (1.6)

C3,1(9n+ 6) ≡ 0 (mod 3). (1.7)

Recently S-C. Chen, M.D. Hirschhorn and J.A. Sellers [5] have found some
infinite families of congruences modulo 3 for C3,1(n), C6,1(n), C6,2(n) and modulo
powers of 2 for C4,1(n). For example, for all k,m > 0,

C3,1(2k(4m+ 3)) ≡ 0 (mod 3), (1.8)

C3,1(4k(16m+ 6)) ≡ 0 (mod 3). (1.9)

The authors Z. Ahmed and N.D. Baruah [1] have found some new congru-
ences for C3,1(n) modulo 18 and 36 and C8,2(n), C12,4(n), C24,8(n) and C48,16(n)
modulo 2. For example, for all n > 0,

C3,1(48n+ 12) ≡ 0 (mod 18), (1.10)

C3,1(24n+ 22) ≡ 0 (mod 36). (1.11)

Chen [6] has also found some new congruences for C3,1(n), C4,1(n) modulo
powers of 2. For example, for all m > 0,

C3,1(6m+ 5) ≡ 0 (mod 16). (1.12)

O.X.M. Yao [11] has proved some congruences modulo 16, 32, 14 for C3,1(n).
For example, for all n > 0,

C3,1(18n+ 15) ≡ 0 (mod 32). (1.13)

M.S. Mahadeva Naika and D.S. Gireesh [9] have found some modulo 6, 12, 16,
18, 24, 48, 72 for C3,1(n). For example, for all n > 0,

C3,1(24n+ 14) ≡ 0 (mod 32). (1.14)
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Motivated by the above works, in this paper, we defined the function COδ,i(n),
the number of singular overpartitions of n into odd parts such that no part is
divisible by δ and only parts ≡ ±i (mod δ) may be overlined. The generating
function of COδ,i(n) is given by

∞∑
n=0

COδ,i(n)qn =
(qδ; q2δ)∞(−qi; qδ)∞(−qδ−i; qδ)∞

(q; q2)∞(−q2i; q2δ)∞(−q2(δ−i); q2δ)∞
, (1.15)

where 0 < i < δ.

2. Preliminaries

We list a few dissection formulas to prove our main results.

Lemma 2.1 ([4, Entry 25 p. 40]). The following 2-dissection formulas hold:

1

f2
1

=
f5

8

f5
2 f

2
16

+ 2q
f2

4 f
2
16

f5
2 f8

, (2.1)

and
1

f4
1

=
f14

4

f14
2 f4

8

+ 4q
f2

4 f
4
8

f10
2

. (2.2)

Lemma 2.2 ([10]). The following 2-dissection formula holds:

f2
3

f2
1

=
f4

4 f6f
2
12

f5
2 f8f24

+ 2q
f4f

2
6 f8f24

f4
2 f12

. (2.3)

Lemma 2.3 ([3, Lemma 2.6]). The following 3-dissection formula holds:

f4

f1
=
f12f

4
18

f3
3 f

2
36

+ q
f2

6 f
3
9 f36

f4
3 f

2
18

+ 2q2 f6f18f36

f3
3

. (2.4)

Lemma 2.4. The following 2-dissection formulas hold:

1

f1f3
=

f2
8 f

5
12

f2
2 f4f4

6 f
2
24

+ q
f5

4 f
2
24

f4
2 f

2
6 f

2
8 f12

(2.5)

f1f3 =
f2f

2
8 f

4
12

f2
4 f6f2

24

− q f
4
4 f6f

2
24

f2f2
8 f

2
12

. (2.6)

Equation (2.5) was proved by Baruah and K.K. Ojah [3]. Replace q by −q in

(2.5) and using the fact that (−q;−q)∞ =
f3

2

f1f4
, we get (2.6).

Lemma 2.5 ([8]). The following 3-dissection formula holds:

f1f2 =
f6f

4
9

f3f2
18

− qf9f18 − 2q2 f3f
4
18

f6f2
9

. (2.7)
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Lemma 2.6 ([7, Theorem 2.1]). For any odd prime p,

ψ(q) =

p−3
2∑

m=0

q
m2+m

2 f

(
q
p2+(2m+1)p

2 , q
p2−(2m+1)p

2

)
+ q

p2−1
8 ψ(qp

2

). (2.8)

Furthermore, m
2+m
2 6≡ p2−1

8 (mod p) for 0 6 m 6 p−3
2 .

Lemma 2.7 ([7, Theorem 2.2]). For any prime p > 5,

f1 =

p−1
2∑

k=− p−1
2

k 6=(±p−1)/6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 fp2 .

(2.9)

Furthermore, for −(p− 1)/2 6 k 6 (p− 1)/2 and k 6= (±p− 1)/6,

3k2 + k

2
6≡ p2 − 1

24
(mod p).

3. Congruences for CO3,1(n)

Theorem 3.1. For each integer n > 0,

CO3,1(12n+ 7) ≡ 0 (mod 8), (3.1)

CO3,1(24n+ 19) ≡ 0 (mod 16), (3.2)

CO3,1(24n+ 7) ≡ ψ(q)f4 (mod 16). (3.3)

Proof. Setting δ = 3 and i = 1 in (1.15), we find that
∞∑
n=0

CO3,1(n)qn =
(q2; q2)3

∞(q3; q3)2
∞(q12; q12)

(q6; q6)3
∞(q4; q4)∞(q; q)2

∞
. (3.4)

Substituting (2.3) into (3.4), we obtain
∞∑
n=0

CO3,1(n)qn =
f3

4 f
3
12

f2
2 f

2
6 f8f24

+ 2q
f8f24

f2f6
, (3.5)

which yields, for each n > 0,
∞∑
n=0

CO3,1(2n+ 1)qn = 2
f4f12

f1f3
. (3.6)

Employing (2.4) into (3.6), we have
∞∑
n=0

CO3,1(2n+ 1)qn = 2
f2

12f
4
18

f4
3 f

2
36

+ 2q
f2

6 f
3
9 f12f36

f5
3 f

2
18

+ 4q2 f6f12f18f36

f4
3

. (3.7)
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Extracting the terms involving q3n in the above equation and replacing q3 by q,
we get

∞∑
n=0

CO3,1(6n+ 1)qn = 2
f2

4 f
4
6

f4
1 f

2
12

. (3.8)

By the binomial theorem, it is easy to see that for positive integers k and m,

fm2k ≡ f2m
k (mod 2) (3.9)

and
f2m

2k ≡ f4m
k (mod 4). (3.10)

Using (3.10) in (3.8), we obtain
∞∑
n=0

CO3,1(6n+ 1)qn ≡ 2f2
2 (mod 8). (3.11)

Congruences (3.1) follows by extracting the terms involving q2n+1 from (3.11).
Collecting the terms involving q2n from (3.11) and replacing q2 by q, we get

∞∑
n=0

CO3,1(12n+ 1) ≡ 2f2
1 (mod 8). (3.12)

Substituting (2.2) into (3.8), we find that
∞∑
n=0

CO3,1(6n+ 1)qn = 2
f16

4 f4
6

f14
2 f4

8 f
2
12

+ 8q
f4

4 f
4
6 f

4
8

f10
2 f2

12

, (3.13)

which implies that,
∞∑
n=0

CO3,1(12n+ 7)qn = 8
f4

2 f
4
3 f

4
4

f10
1 f2

6

. (3.14)

Using (3.9) in (3.14), we get
∞∑
n=0

CO3,1(12n+ 7)qn ≡ 8f7
2 (mod 16). (3.15)

Extracting the terms involving q2n+1 from (3.15) we get (3.2).
Collecting the terms involving q2n from (3.15) and replacing q2 by q, reduces

to
∞∑
n=0

CO3,1(24n+ 7)qn ≡ 8f7
1 (mod 16), (3.16)

Using (3.9) in (3.16), we get
∞∑
n=0

CO3,1(24n+ 7)qn ≡ 8

(
f2

2

f1

)
f4 (mod 16). (3.17)

Using (1.4) in (3.17), we arrive at (3.3). �
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Theorem 3.2. For any prime p ≡ 5 (mod 6), α > 1, and n > 0, we have

∞∑
n=0

CO3,1(2p2αn+ p2α)qn ≡ 2ψ(q)ψ(q3) (mod 4). (3.18)

Proof. Using (3.9) in (3.6), we obtain

∞∑
n=0

CO3,1(2n+ 1)qn ≡ 2
f2

2 f
2
6

f1f3
(mod 4). (3.19)

Using (1.4) in (3.19), we get

∞∑
n=0

CO3,1(2n+ 1)qn ≡ 2ψ(q)ψ(q3) (mod 4). (3.20)

Define
∞∑
n=0

g(n)qn = ψ(q)ψ(q3). (3.21)

Combining (3.20) and (3.21), we find that

∞∑
n=0

CO3,1(2n+ 1)qn ≡ 2

∞∑
n=0

g(n)qn (mod 4). (3.22)

Now, we consider the congruence equation

k2 + k

2
+ 3 · m

2 +m

2
≡ 4p2 − 4

8
(mod p), (3.23)

which is equivalent to

(2k + 1)2 + 3 · (2m+ 1)2 ≡ 0 (mod p),

where 0 6 k,m 6 p−1
2 and p is a prime such that (−3

p ) = −1. Since (−3
p ) = −1 for

p ≡ 5 (mod 6), the congruence relation (3.23) holds if and only if both k = m =
p−1

2 . Therefore, if we substitute (2.8) into (3.21) and then extracting the terms in

which the powers of q are congruent to p2−1
2 modulo p and then divide by q

p2−1
2 ,

we find that
∞∑
n=0

g

(
pn+

p2 − 1

2

)
qpn = ψ(qp

2

)ψ(q3p2),

which implies that

∞∑
n=0

g

(
p2n+

p2 − 1

2

)
qn = ψ(q)ψ(q3) (3.24)
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and for n > 0,

g

(
p2n+ pi+

p2 − 1

2

)
= 0, (3.25)

where i is an integer and 1 6 i 6 p− 1. By induction, we see that for n > 0 and
α > 0,

g

(
p2αn+

p2α − 1

2

)
= g(n). (3.26)

Replacing n by p2αn+ p2α−1
2 in (3.22), we arrive at (3.18). �

Theorem 3.3. For any prime p ≡ 5 (mod 6), α > 1, and n > 0, we have

∞∑
n=0

CO3,1(24p2αn+ 7p2α) ≡ (−1)α.
±p−1

6 ψ(q)f4 (mod 16). (3.27)

Proof. Define
∞∑
n=0

a(n)qn = ψ(q)f4. (3.28)

Combining (3.3) and (3.28), we see that

∞∑
n=0

CO3,1(24n+ 7)qn ≡
∞∑
n=0

a(n)qn (mod 16). (3.29)

Now, we consider the congruence equation

k2 + k

2
+ 4 · 3m2 +m

2
≡ 7p2 − 7

24
(mod p), (3.30)

which is equivalent to

3 · (2k + 1)2 + (12m+ 2)2 ≡ 0 (mod p),

where −(p−1)
2 6 m 6 p−1

2 , 0 6 k 6 p−1
2 and p is a prime such that (−3

p ) = −1.
Since (−3

p ) = −1 for p ≡ 5 (mod 6), the congruence relation (3.30) holds if and
only if m = ±p−1

6 and k = p−1
2 . Therefore, if we substitute (2.8) and (2.9) into

(3.28) and then extracting the terms in which the powers of q are pn+ 7p2−7
24 , we

arrive at
∞∑
n=0

a

(
pn+

7p2 − 7

24

)
qpn+ 7p2−7

24 = (−1)
±p−1

6 q
7p2−7

24 ψ(qp
2

)f4p2 . (3.31)

Dividing by q
7p2−7

24 on both sides of (3.31) and on simplification, we find that

∞∑
n=0

a

(
pn+

7p2 − 7

24

)
qn = (−1)

±p−1
6 ψ(qp)f4p,
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which implies that

∞∑
n=0

a

(
p2n+

7p2 − 7

24

)
qn = (−1)

±p−1
6 ψ(q)f4 (3.32)

and for n > 0,

a

(
p2n+ pi+

7p2 − 7

24

)
= 0, (3.33)

where i is an integer and 1 6 i 6 p− 1. Combining (3.28) and (3.32), we see that
for n > 0,

a

(
p2n+

7p2 − 7

24

)
= (−1)

±p−1
6 a(n). (3.34)

By (3.34) and mathematical induction, we deduce that for n > 0 and α > 0,

a

(
p2αn+

7p2α − 7

24

)
= (−1)α.

±p−1
6 a(n). (3.35)

Replacing n by p2αn+ 7p2α−7
24 in (3.29), we arrive at (3.27). �

Theorem 3.4. For all n > 0 and α > 0,

CO3,1(36n+ 21) ≡ 0 (mod 8), (3.36)

CO3,1(36n+ 3) ≡ CO3,1(12n+ 1) (mod 8), (3.37)

CO3,1(4 · 3α+3n+ 7 · 3α+2) ≡ 0 (mod 8), (3.38)

CO3,1(36n+ 33) ≡ 0 (mod 8), (3.39)

CO3,1(18n+ 15) ≡ CO3,1(6n+ 5) (mod 8). (3.40)

Proof. Equating the coefficients of q3n+1 from both sides of (3.7), dividing by q
and then replacing q3 by q, we arrive at

∞∑
n=0

CO3,1(6n+ 3)qn = 2
f2

2 f
3
3 f4f12

f5
1 f

2
6

. (3.41)

Using (3.10) in (3.41), we obtain

∞∑
n=0

CO3,1(6n+ 3)qn ≡ 2
f4f12

f1f3
(mod 8). (3.42)

Substituting (2.4) into (3.42), we get

∞∑
n=0

CO3,1(6n+ 3)qn ≡ 2
f2

12f
4
18

f4
3 f

2
36

+ 2q
f2

6 f
3
9 f12f36

f5
3 f

2
18

+ 4q2 f6f12f18f36

f4
3

(mod 8),

(3.43)
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which implies that for all n > 0,
∞∑
n=0

CO3,1(18n+ 3)qn ≡ 2
f2

4 f
4
6

f4
1 f

2
12

(mod 8). (3.44)

Using (3.10) in (3.44), we have

∞∑
n=0

CO3,1(18n+ 3)qn ≡ 2f2
2 (mod 8). (3.45)

Equating the coefficients of q2n+1 from both sides of (3.45), dividing by q and then
replacing q2 by q, we arrive at (3.36).

Extracting the terms involving q2n from (3.45) and replacing q2 by q, we get

∞∑
n=0

CO3,1(36n+ 3)qn ≡ 2f2
1 (mod 8). (3.46)

In view of congruences (3.46) and (3.12), we obtain (3.37).
Extracting the terms involving q3n+1 from (3.43), dividing by q and then re-

placing q3 by q, we have
∞∑
n=0

CO3,1(18n+ 9)qn ≡ 2
f2

2 f
3
3 f4f12

f5
1 f

2
6

(mod 8). (3.47)

Using (3.10) in (3.47), we get

∞∑
n=0

CO3,1(18n+ 9)qn ≡ 2
f4f12

f1f3
(mod 8). (3.48)

In view of congruences (3.48) and (3.42), we get

CO3,1(18n+ 9) ≡ CO3,1(6n+ 3) (mod 8). (3.49)

Utilizing (3.49) and by mathematical induction on α, we arrive at

CO3,1(2 · 3α+2n+ 3α+2) ≡ CO3,1(6n+ 3) (mod 8). (3.50)

Using (3.36) in (3.50), we obtain (3.38).
From (3.43), we have

∞∑
n=0

CO3,1(18n+ 15)qn ≡ 4
f2f4f6f12

f4
1

(mod 8). (3.51)

Using (3.9) in (3.51), we get

∞∑
n=0

CO3,1(18n+ 15)qn ≡ 4f2f6f12 (mod 8). (3.52)
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Congruences (3.39) follows extracting the terms involving q2n+1 from (3.52).
Extracting the terms involving q3n+2 from (3.7), dividing by q2 and then re-

placing q3 by q, we obtain

∞∑
n=0

CO3,1(6n+ 5)qn = 4
f2f4f6f12

f4
1

. (3.53)

Using (3.9) in (3.53), we have

∞∑
n=0

CO3,1(6n+ 5)qn ≡ 4f2f6f12 (mod 8). (3.54)

Combining (3.52) and (3.54), we arrive at (3.40). �

Theorem 3.5. For all n > 0 and α > 0,

CO3,1(12n+ 7) ≡ 0 (mod 8), (3.55)

CO3,1(12n+ 11) ≡ 0 (mod 8), (3.56)

CO3,1(108n+ 63) ≡ 0 (mod 8), (3.57)

CO3,1(108n+ 99) ≡ 0 (mod 8), (3.58)

CO3,1(972n+ 567) ≡ 0 (mod 8), (3.59)

CO3,1(972n+ 891) ≡ 0 (mod 8), (3.60)

CO3,1(12 · 9α+2n+ 3 · 9α+2) ≡ CO3,1(108n+ 27) (mod 8). (3.61)

Proof. Substituting (2.5) into (3.6), we obtain

∞∑
n=0

CO3,1(2n+ 1)qn = 2
f2

8 f
6
12

f2
2 f

4
6 f

2
24

+ 2q
f6

4 f
2
24

f4
2 f

2
6 f

2
8

, (3.62)

which implies that

∞∑
n=0

CO3,1(4n+ 3)qn = 2
f6

2 f
2
12

f4
1 f

2
3 f

2
4

. (3.63)

Using (3.10) in (3.63), we get

∞∑
n=0

CO3,1(4n+ 3)qn ≡ 2
f2

12

f2
3

(mod 8). (3.64)

Extracting the terms involving q3n+1 and q3n+2 from (3.64) we get (3.55) and
(3.56).
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Extracting the terms involving q3n from (3.64) and replacing q3 by q, we have
∞∑
n=0

CO3,1(12n+ 3)qn ≡ 2
f2

4

f2
1

(mod 8). (3.65)

Substituting (2.4) into (3.65) and equating the terms q3n+2, we obtain
∞∑
n=0

CO3,1(36n+ 27)qn ≡ 2
f4

2 f
6
3 f

2
12

f8
1 f

4
6

(mod 8). (3.66)

Using (3.10) in (3.66), we have
∞∑
n=0

CO3,1(36n+ 27)qn ≡ 2f6
3 (mod 8). (3.67)

Congruences (3.57) and (3.58) follows extracting the terms involving q3n+1 and
q3n+2 from (3.66).

Extracting the terms involving q3n from (3.67) and replacing q3 by q, we have
∞∑
n=0

CO3,1(108n+ 27)qn ≡ 2f6
1 (mod 8), (3.68)

which implies that
∞∑
n=0

CO3,1(108n+ 27)qn ≡ 2f2
1 f

2
2 (mod 8). (3.69)

Employing (2.7) into (3.69) and equating the terms involving q3n+2, we obtain
∞∑
n=0

CO3,1(324n+ 243)qn ≡ 2f2
3 f

2
6 (mod 8). (3.70)

Using (3.10) in (3.70), we get
∞∑
n=0

CO3,1(324n+ 243)qn ≡ 2f6
3 (mod 8). (3.71)

Extracting the terms involving q3n+1 and q3n+2from (3.71), we arrive at (3.59)
and (3.60).

Extracting the terms involving q3n from (3.71) and replacing q3 by q, we obtain
∞∑
n=0

CO3,1(972n+ 243)qn ≡ 2f6
1 (mod 8). (3.72)

In view of congruences (3.72) and (3.68), we get

CO3,1(972n+ 243) ≡ CO3,1(108n+ 27) (mod 8). (3.73)

Utilizing (3.73) and by mathematical induction on α, we arrive at (3.61). �
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Theorem 3.6. For all n > 0 and α > 0,

CO3,1(24n+ 14) ≡ 0 (mod 8), (3.74)

CO3,1(4 · 3α+2n+ 2 · 3α+2) ≡ 3α+1CO3,1(12n+ 6) (mod 8), (3.75)

CO3,1(108n+ 27) ≡ 3CO3,1(24n+ 6) (mod 8), (3.76)

CO3,1(72n+ 6) ≡ 3CO3,1(24n+ 2) (mod 8), (3.77)

CO3,1(72n+ 42) ≡ 0 (mod 8), (3.78)

CO3,1(72n+ 66) ≡ 0 (mod 8), (3.79)

CO3,1(24n+ 22) ≡ 0 (mod 8), (3.80)

CO3,1(36n+ 30) ≡ CO3,1(12n+ 10) (mod 8). (3.81)

Proof. From (3.5), we have
∞∑
n=0

CO3,1(2n)qn =
f3

2 f
3
6

f2
1 f

2
3 f4f12

. (3.82)

Substituting (2.5) into (3.82) and equating the terms q2n+1,
∞∑
n=0

CO3,1(4n+ 2)qn = 2
f3

2 f
3
6

f3
1 f

3
3

. (3.83)

Using (3.10) in (3.83), we obtain
∞∑
n=0

CO3,1(4n+ 2)qn ≡ 2
f3

6

f3
3

(f1f2) (mod 8). (3.84)

Employing (2.7) into (3.84), we have
∞∑
n=0

CO3,1(4n+ 2)qn ≡ 2
f4

6 f
4
9

f4
3 f

2
18

− 2q
f3

6 f9f18

f3
3

− 4q2 f
2
6 f

4
18

f2
3 f

2
9

(mod 8), (3.85)

which implies,
∞∑
n=0

CO3,1(12n+ 2)qn ≡ 2
f4

2 f
4
3

f4
1 f

2
6

(mod 8). (3.86)

Using (3.10) in (3.86), we have
∞∑
n=0

CO3,1(12n+ 2)qn ≡ 2f2
2 (mod 8). (3.87)

Congruence (3.74) follows extracting the terms involving q2n+1 from (3.87).
Extracting the terms involving q2n from (3.87), we arrive at

∞∑
n=0

CO3,1(24n+ 2) ≡ 2f2
1 (mod 8). (3.88)



Andrews’ singular overpartitions with odd parts 207

Extracting the terms involving q3n+1 from (3.85), dividing by q and then re-
placing q3n by q, we have

∞∑
n=0

CO3,1(12n+ 6)qn ≡ 6
f3

2 f3f6

f3
1

(mod 8). (3.89)

Using (3.10) in (3.89), we get

∞∑
n=0

CO3,1(12n+ 6)qn ≡ 6(f1f2)f3f6 (mod 8). (3.90)

Substituting (2.7) into (3.90), we arrive at

∞∑
n=0

CO3,1(12n+ 6)qn ≡ 6
f2

6 f
4
9

f2
18

− 6qf3f6f9f18 − 12q2 f
2
3 f

4
18

f2
9

(mod 8), (3.91)

which implies that for all n > 0

∞∑
n=0

CO3,1(36n+ 18)qn ≡ 2f1f2f3f6 (mod 8). (3.92)

In the view of congruence (3.92) and (3.90), we have

CO3,1(36n+ 18) ≡ 3CO3,1(12n+ 6) (mod 8). (3.93)

Utilizing (3.93) and by mathematical induction on α, we arrive at (3.75).
Employing (2.6) into (3.90), we get

∞∑
n=0

CO3,1(12n+ 6)qn ≡ 6
f2

2 f
2
8 f

4
12

f2
4 f

2
24

− 6q
f4

4 f
2
6 f

2
24

f2
8 f

2
12

(mod 8). (3.94)

Extracting the terms involving q2n from (3.94) and replacing q2 by q, we obtain

∞∑
n=0

CO3,1(24n+ 6)qn ≡ 6
f2

1 f
2
4 f

4
6

f2
2 f

2
12

(mod 8). (3.95)

Using (3.10) in (3.95), we have

∞∑
n=0

CO3,1(24n+ 6)qn ≡ 6f2
1 f

2
2 (mod 8). (3.96)

Combining (3.96) and (3.69), we obtain (3.76).
Extracting the terms involving q3n from (3.91) and then replacing q3 by q, we

get
∞∑
n=0

CO3,1(36n+ 6)qn ≡ 6
f2

2 f
4
3

f2
6

(mod 8). (3.97)
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Using (3.10) in (3.97), we have

∞∑
n=0

CO3,1(36n+ 6)qn ≡ 6f2
2 (mod 8). (3.98)

Congruences (3.78) follows by extracting the terms involving q2n+1 from (3.98).
Extracting the terms involving q2n from (3.98) and then replacing q2 by q, we

get
∞∑
n=0

CO3,1(72n+ 6)qn ≡ 6f2
1 (mod 8). (3.99)

Combining the equations (3.99) and (3.88), we arrive at (3.77).
Equating the coefficients of q3n+2 from both sides of (3.91), dividing by q2 and

then replacing q3 by q, we have

∞∑
n=0

CO3,1(36n+ 30)qn ≡ 4
f2

1 f
4
6

f2
3

(mod 8). (3.100)

Using (3.9) in (3.100), we obtain

∞∑
n=0

CO3,1(36n+ 30)qn ≡ 4f2f
3
6 (mod 8). (3.101)

Extracting the terms involving q2n+1 from (3.101), we arrive at (3.79).
Equating the coefficients of q3n+2 from both sides of (3.85), dividing by q2 and

then replacing q3 by q,

∞∑
n=0

CO3,1(12n+ 10)qn ≡ 4
f2

2 f
4
6

f2
1 f

2
3

(mod 8). (3.102)

Using (3.9) in (3.102), we have

∞∑
n=0

CO3,1(24n+ 22)qn ≡ 4f2f
3
6 (mod 8). (3.103)

Congruences (3.80) follows by extracting the terms involving q2n+1 from (3.103).
In the view of congruences (3.103) and (3.101), we get (3.81). �

Theorem 3.7. For all integers n > 0,

CO3,1(12n+ 6) ≡ 0 (mod 6), (3.104)

CO3,1(12n+ 10) ≡ 0 (mod 6). (3.105)

Proof. By the binomial theorem, it is easy to see that for positive integers k and
m,

fm3k ≡ f3m
k (mod 3). (3.106)
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Using (3.106) in (3.83), we obtain

∞∑
n=0

CO3,1(4n+ 2)qn ≡ 2
f4

6

f4
3

. (3.107)

Extracting the terms involving q3n+1 and q3n+2 from (3.107), we arrive at (3.104)
and (3.105). �
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