ANDREWS' SINGULAR OVERPARTITIONS WITH ODD PARTS

M.S. Mahadeva Naika, S. Shivaprasada Nayaka

Abstract

Recently singular overpartitions was defined and studied by G. E. Andrews. He showed that such partitions can be enumerated by $\bar{C}_{\delta, i}(n)$, the number of overpartitions of n such that no part is divisible by δ and only parts $\equiv \pm i(\bmod \delta)$ may be overlined. In this paper, we establish several infinite families of congruences $\overline{C O}_{\delta, i}(n)$, the number of singular overpartitions of n into odd parts such that no part is divisible by δ and only parts $\equiv \pm i(\bmod \delta)$ may be overlined. For example, for all $n \geqslant 0$ and $\alpha \geqslant 0, \overline{C O}_{3,1}\left(4 \cdot 3^{\alpha+3} n+7 \cdot 3^{\alpha+2}\right) \equiv 0(\bmod 8)$.

Keywords: partitions, singular overpartitions, congruences.

1. Introduction

G.E. Andrews [2] defined combinatorial objects which he called singular overpartitions and proved that these singular overpartitions which depends on two parameters δ and i can be enumerated by the function $\bar{C}_{\delta, i}(n)$ which gives the number of overpartitions of n in which no part is divisible by δ and parts $\equiv \pm i(\bmod \delta)$ may be overlined. The generating function of $\bar{C}_{\delta, i}(n)$ is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{C}_{\delta, i}(n) q^{n}=\frac{\left(q^{\delta} ; q^{\delta}\right)_{\infty}\left(-q^{i} ; q^{\delta}\right)_{\infty}\left(-q^{\delta-i} ; q^{\delta}\right)_{\infty}}{(q ; q)_{\infty}} \tag{1.1}
\end{equation*}
$$

Throughout the paper, we use the standard q-series notation, and f_{k} is defined as

$$
f_{k}:=\left(q^{k} ; q^{k}\right)_{\infty}=\lim _{n \rightarrow \infty} \prod_{m=1}^{n}\left(1-q^{m k}\right)
$$

For $|a b|<1$, Ramanujan's general theta function $f(a, b)$ is defined as

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} . \tag{1.2}
\end{equation*}
$$

The first author would like to thank DST for financial support through project no. SR/S4/MS:739/11, the second author would like to thank for UGC for providing National fellowship for higher education (NFHE), ref. no.F1-17.1/2015-16/NFST-2015-17-ST-KAR-1376.

2010 Mathematics Subject Classification: primary: 05A15; secondary: 05A17, 11P83

Using Jacobi's triple product identity [4, Entry 19, p. 35], the equation (1.2) becomes

$$
f(a, b)=(-a, a b)_{\infty}(-b, a b)_{\infty}(a b, a b)_{\infty}
$$

The most important special cases of $f(a, b)$ are

$$
\begin{align*}
& \varphi(q):=f(q, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}=\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}=\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}}, \tag{1.3}\\
& \psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=\frac{f_{2}^{2}}{f_{1}}, \tag{1.4}
\end{align*}
$$

and

$$
\begin{equation*}
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}=(q ; q)_{\infty}=f_{1} . \tag{1.5}
\end{equation*}
$$

Andrews [2] has found the following congruence results, for each integer $n \geqslant 0$,

$$
\begin{align*}
& \bar{C}_{3,1}(9 n+3) \equiv 0(\bmod 3), \tag{1.6}\\
& \bar{C}_{3,1}(9 n+6) \equiv 0(\bmod 3) . \tag{1.7}
\end{align*}
$$

Recently S-C. Chen, M.D. Hirschhorn and J.A. Sellers [5] have found some infinite families of congruences modulo 3 for $\bar{C}_{3,1}(n), \bar{C}_{6,1}(n), \bar{C}_{6,2}(n)$ and modulo powers of 2 for $\bar{C}_{4,1}(n)$. For example, for all $k, m \geqslant 0$,

$$
\begin{align*}
\bar{C}_{3,1}\left(2^{k}(4 m+3)\right) & \equiv 0(\bmod 3), \tag{1.8}\\
\bar{C}_{3,1}\left(4^{k}(16 m+6)\right) & \equiv 0(\bmod 3) \tag{1.9}
\end{align*}
$$

The authors Z. Ahmed and N.D. Baruah [1] have found some new congruences for $\bar{C}_{3,1}(n)$ modulo 18 and 36 and $\bar{C}_{8,2}(n), \bar{C}_{12,4}(n), \bar{C}_{24,8}(n)$ and $\bar{C}_{48,16}(n)$ modulo 2 . For example, for all $n \geqslant 0$,

$$
\begin{align*}
& \bar{C}_{3,1}(48 n+12) \equiv 0(\bmod 18), \tag{1.10}\\
& \bar{C}_{3,1}(24 n+22) \equiv 0(\bmod 36) . \tag{1.11}
\end{align*}
$$

Chen [6] has also found some new congruences for $\bar{C}_{3,1}(n), \bar{C}_{4,1}(n)$ modulo powers of 2 . For example, for all $m \geqslant 0$,

$$
\begin{equation*}
\bar{C}_{3,1}(6 m+5) \equiv 0(\bmod 16) . \tag{1.12}
\end{equation*}
$$

O.X.M. Yao [11] has proved some congruences modulo $16,32,14$ for $\bar{C}_{3,1}(n)$. For example, for all $n \geqslant 0$,

$$
\begin{equation*}
\bar{C}_{3,1}(18 n+15) \equiv 0(\bmod 32) \tag{1.13}
\end{equation*}
$$

M.S. Mahadeva Naika and D.S. Gireesh [9] have found some modulo 6, 12, 16, $18,24,48,72$ for $\bar{C}_{3,1}(n)$. For example, for all $n \geqslant 0$,

$$
\begin{equation*}
\bar{C}_{3,1}(24 n+14) \equiv 0(\bmod 32) \tag{1.14}
\end{equation*}
$$

Motivated by the above works, in this paper, we defined the function $\overline{C O}_{\delta, i}(n)$, the number of singular overpartitions of n into odd parts such that no part is divisible by δ and only parts $\equiv \pm i(\bmod \delta)$ may be overlined. The generating function of $\overline{C O}_{\delta, i}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{\delta, i}(n) q^{n}=\frac{\left(q^{\delta} ; q^{2 \delta}\right)_{\infty}\left(-q^{i} ; q^{\delta}\right)_{\infty}\left(-q^{\delta-i} ; q^{\delta}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(-q^{2 i} ; q^{2 \delta}\right)_{\infty}\left(-q^{2(\delta-i)} ; q^{2 \delta}\right)_{\infty}} \tag{1.15}
\end{equation*}
$$

where $0<i<\delta$.

2. Preliminaries

We list a few dissection formulas to prove our main results.
Lemma 2.1 ([4, Entry 25 p. 40]). The following 2-dissection formulas hold:

$$
\begin{equation*}
\frac{1}{f_{1}^{2}}=\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{f_{1}^{4}}=\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}} \tag{2.2}
\end{equation*}
$$

Lemma 2.2 ([10]). The following 2-dissection formula holds:

$$
\begin{equation*}
\frac{f_{3}^{2}}{f_{1}^{2}}=\frac{f_{4}^{4} f_{6} f_{12}^{2}}{f_{2}^{5} f_{8} f_{24}}+2 q \frac{f_{4} f_{6}^{2} f_{8} f_{24}}{f_{2}^{4} f_{12}} \tag{2.3}
\end{equation*}
$$

Lemma 2.3 ([3, Lemma 2.6]). The following 3-dissection formula holds:

$$
\begin{equation*}
\frac{f_{4}}{f_{1}}=\frac{f_{12} f_{18}^{4}}{f_{3}^{3} f_{36}^{2}}+q \frac{f_{6}^{2} f_{9}^{3} f_{36}}{f_{3}^{4} f_{18}^{2}}+2 q^{2} \frac{f_{6} f_{18} f_{36}}{f_{3}^{3}} \tag{2.4}
\end{equation*}
$$

Lemma 2.4. The following 2-dissection formulas hold:

$$
\begin{align*}
\frac{1}{f_{1} f_{3}} & =\frac{f_{8}^{2} f_{12}^{5}}{f_{2}^{2} f_{4} f_{6}^{4} f_{24}^{2}}+q \frac{f_{4}^{5} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2} f_{12}} \tag{2.5}\\
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{2.6}
\end{align*}
$$

Equation (2.5) was proved by Baruah and K.K. Ojah [3]. Replace q by $-q$ in (2.5) and using the fact that $(-q ;-q)_{\infty}=\frac{f_{2}^{3}}{f_{1} f_{4}}$, we get (2.6).

Lemma 2.5 ([8]). The following 3-dissection formula holds:

$$
\begin{equation*}
f_{1} f_{2}=\frac{f_{6} f_{9}^{4}}{f_{3} f_{18}^{2}}-q f_{9} f_{18}-2 q^{2} \frac{f_{3} f_{18}^{4}}{f_{6} f_{9}^{2}} \tag{2.7}
\end{equation*}
$$

Lemma 2.6 ([7, Theorem 2.1]). For any odd prime p,

$$
\begin{equation*}
\psi(q)=\sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^{2}+m}{2}} f\left(q^{\frac{p^{2}+(2 m+1) p}{2}}, q^{\frac{p^{2}-(2 m+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right) . \tag{2.8}
\end{equation*}
$$

Furthermore, $\frac{m^{2}+m}{2} \not \equiv \frac{p^{2}-1}{8}(\bmod p)$ for $0 \leqslant m \leqslant \frac{p-3}{2}$.
Lemma 2.7 ([7, Theorem 2.2]). For any prime $p \geqslant 5$,

$$
\begin{align*}
f_{1}= & \sum_{\substack{k=-\frac{p-1}{2} \\
k \neq(\pm p-1) / 6}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right) \tag{2.9}\\
& +(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}} .
\end{align*}
$$

Furthermore, for $-(p-1) / 2 \leqslant k \leqslant(p-1) / 2$ and $k \neq(\pm p-1) / 6$,

$$
\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24} \quad(\bmod p) .
$$

3. Congruences for $\overline{\mathrm{CO}}_{3,1}(n)$

Theorem 3.1. For each integer $n \geqslant 0$,

$$
\begin{align*}
\overline{C O}_{3,1}(12 n+7) & \equiv 0 \quad(\bmod 8), \tag{3.1}\\
\overline{C O}_{3,1}(24 n+19) & \equiv 0 \quad(\bmod 16), \tag{3.2}\\
\overline{C O}_{3,1}(24 n+7) & \equiv \psi(q) f_{4} \quad(\bmod 16) . \tag{3.3}
\end{align*}
$$

Proof. Setting $\delta=3$ and $i=1$ in (1.15), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(n) q^{n}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}\left(q^{3} ; q^{3}\right)_{\infty}^{2}\left(q^{12} ; q^{12}\right)}{\left(q^{6} ; q^{6}\right)_{\infty}^{3}\left(q^{4} ; q^{4}\right)_{\infty}(q ; q)_{\infty}^{2}} \tag{3.4}
\end{equation*}
$$

Substituting (2.3) into (3.4), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(n) q^{n}=\frac{f_{4}^{3} f_{12}^{3}}{f_{2}^{2} f_{6}^{2} f_{8} f_{24}}+2 q \frac{f_{8} f_{24}}{f_{2} f_{6}} \tag{3.5}
\end{equation*}
$$

which yields, for each $n \geqslant 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n+1) q^{n}=2 \frac{f_{4} f_{12}}{f_{1} f_{3}} \tag{3.6}
\end{equation*}
$$

Employing (2.4) into (3.6), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n+1) q^{n}=2 \frac{f_{12}^{2} f_{18}^{4}}{f_{3}^{4} f_{36}^{2}}+2 q \frac{f_{6}^{2} f_{9}^{3} f_{12} f_{36}}{f_{3}^{5} f_{18}^{2}}+4 q^{2} \frac{f_{6} f_{12} f_{18} f_{36}}{f_{3}^{4}} \tag{3.7}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ in the above equation and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+1) q^{n}=2 \frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{4} f_{12}^{2}} \tag{3.8}
\end{equation*}
$$

By the binomial theorem, it is easy to see that for positive integers k and m,

$$
\begin{equation*}
f_{2 k}^{m} \equiv f_{k}^{2 m} \quad(\bmod 2) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2 k}^{2 m} \equiv f_{k}^{4 m} \quad(\bmod 4) \tag{3.10}
\end{equation*}
$$

Using (3.10) in (3.8), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+1) q^{n} \equiv 2 f_{2}^{2} \quad(\bmod 8) \tag{3.11}
\end{equation*}
$$

Congruences (3.1) follows by extracting the terms involving $q^{2 n+1}$ from (3.11).
Collecting the terms involving $q^{2 n}$ from (3.11) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+1) \equiv 2 f_{1}^{2} \quad(\bmod 8) \tag{3.12}
\end{equation*}
$$

Substituting (2.2) into (3.8), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+1) q^{n}=2 \frac{f_{4}^{16} f_{6}^{4}}{f_{2}^{14} f_{8}^{4} f_{12}^{2}}+8 q \frac{f_{4}^{4} f_{6}^{4} f_{8}^{4}}{f_{2}^{10} f_{12}^{2}} \tag{3.13}
\end{equation*}
$$

which implies that,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+7) q^{n}=8 \frac{f_{2}^{4} f_{3}^{4} f_{4}^{4}}{f_{1}^{10} f_{6}^{2}} \tag{3.14}
\end{equation*}
$$

Using (3.9) in (3.14), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+7) q^{n} \equiv 8 f_{2}^{7} \quad(\bmod 16) \tag{3.15}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.15) we get (3.2).
Collecting the terms involving $q^{2 n}$ from (3.15) and replacing q^{2} by q, reduces to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+7) q^{n} \equiv 8 f_{1}^{7} \quad(\bmod 16), \tag{3.16}
\end{equation*}
$$

Using (3.9) in (3.16), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+7) q^{n} \equiv 8\left(\frac{f_{2}^{2}}{f_{1}}\right) f_{4} \quad(\bmod 16) \tag{3.17}
\end{equation*}
$$

Using (1.4) in (3.17), we arrive at (3.3).

Theorem 3.2. For any prime $p \equiv 5(\bmod 6), \alpha \geqslant 1$, and $n \geqslant 0$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}\left(2 p^{2 \alpha} n+p^{2 \alpha}\right) q^{n} \equiv 2 \psi(q) \psi\left(q^{3}\right) \quad(\bmod 4) \tag{3.18}
\end{equation*}
$$

Proof. Using (3.9) in (3.6), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n+1) q^{n} \equiv 2 \frac{f_{2}^{2} f_{6}^{2}}{f_{1} f_{3}} \quad(\bmod 4) \tag{3.19}
\end{equation*}
$$

Using (1.4) in (3.19), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n+1) q^{n} \equiv 2 \psi(q) \psi\left(q^{3}\right) \quad(\bmod 4) \tag{3.20}
\end{equation*}
$$

Define

$$
\begin{equation*}
\sum_{n=0}^{\infty} g(n) q^{n}=\psi(q) \psi\left(q^{3}\right) \tag{3.21}
\end{equation*}
$$

Combining (3.20) and (3.21), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n+1) q^{n} \equiv 2 \sum_{n=0}^{\infty} g(n) q^{n} \quad(\bmod 4) \tag{3.22}
\end{equation*}
$$

Now, we consider the congruence equation

$$
\begin{equation*}
\frac{k^{2}+k}{2}+3 \cdot \frac{m^{2}+m}{2} \equiv \frac{4 p^{2}-4}{8} \quad(\bmod p), \tag{3.23}
\end{equation*}
$$

which is equivalent to

$$
(2 k+1)^{2}+3 \cdot(2 m+1)^{2} \equiv 0 \quad(\bmod p),
$$

where $0 \leqslant k, m \leqslant \frac{p-1}{2}$ and p is a prime such that $\left(\frac{-3}{p}\right)=-1$. Since $\left(\frac{-3}{p}\right)=-1$ for $p \equiv 5(\bmod 6)$, the congruence relation (3.23) holds if and only if both $k=m=$ $\frac{p-1}{2}$. Therefore, if we substitute (2.8) into (3.21) and then extracting the terms in which the powers of q are congruent to $\frac{p^{2}-1}{2}$ modulo p and then divide by $q^{\frac{p^{2}-1}{2}}$, we find that

$$
\sum_{n=0}^{\infty} g\left(p n+\frac{p^{2}-1}{2}\right) q^{p n}=\psi\left(q^{p^{2}}\right) \psi\left(q^{3 p^{2}}\right)
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} g\left(p^{2} n+\frac{p^{2}-1}{2}\right) q^{n}=\psi(q) \psi\left(q^{3}\right) \tag{3.24}
\end{equation*}
$$

and for $n \geqslant 0$,

$$
\begin{equation*}
g\left(p^{2} n+p i+\frac{p^{2}-1}{2}\right)=0, \tag{3.25}
\end{equation*}
$$

where i is an integer and $1 \leqslant i \leqslant p-1$. By induction, we see that for $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{equation*}
g\left(p^{2 \alpha} n+\frac{p^{2 \alpha}-1}{2}\right)=g(n) \tag{3.26}
\end{equation*}
$$

Replacing n by $p^{2 \alpha} n+\frac{p^{2 \alpha}-1}{2}$ in (3.22), we arrive at (3.18).
Theorem 3.3. For any prime $p \equiv 5(\bmod 6), \alpha \geqslant 1$, and $n \geqslant 0$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}\left(24 p^{2 \alpha} n+7 p^{2 \alpha}\right) \equiv(-1)^{\alpha \cdot \frac{ \pm p-1}{6}} \psi(q) f_{4} \quad(\bmod 16) . \tag{3.27}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}=\psi(q) f_{4} \tag{3.28}
\end{equation*}
$$

Combining (3.3) and (3.28), we see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+7) q^{n} \equiv \sum_{n=0}^{\infty} a(n) q^{n} \quad(\bmod 16) \tag{3.29}
\end{equation*}
$$

Now, we consider the congruence equation

$$
\begin{equation*}
\frac{k^{2}+k}{2}+4 \cdot \frac{3 m^{2}+m}{2} \equiv \frac{7 p^{2}-7}{24} \quad(\bmod p) \tag{3.30}
\end{equation*}
$$

which is equivalent to

$$
3 \cdot(2 k+1)^{2}+(12 m+2)^{2} \equiv 0 \quad(\bmod p)
$$

where $\frac{-(p-1)}{2} \leqslant m \leqslant \frac{p-1}{2}, 0 \leqslant k \leqslant \frac{p-1}{2}$ and p is a prime such that $\left(\frac{-3}{p}\right)=-1$. Since $\left(\frac{-3}{p}\right)=-1$ for $p \equiv 5(\bmod 6)$, the congruence relation (3.30) holds if and only if $m=\frac{ \pm p-1}{6}$ and $k=\frac{p-1}{2}$. Therefore, if we substitute (2.8) and (2.9) into (3.28) and then extracting the terms in which the powers of q are $p n+\frac{7 p^{2}-7}{24}$, we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p n+\frac{7 p^{2}-7}{24}\right) q^{p n+\frac{7 p^{2}-7}{24}}=(-1)^{\frac{ \pm p-1}{6}} q^{\frac{7 p^{2}-7}{24}} \psi\left(q^{p^{2}}\right) f_{4 p^{2}} \tag{3.31}
\end{equation*}
$$

Dividing by $q^{\frac{7 p^{2}-7}{24}}$ on both sides of (3.31) and on simplification, we find that

$$
\sum_{n=0}^{\infty} a\left(p n+\frac{7 p^{2}-7}{24}\right) q^{n}=(-1)^{\frac{ \pm p-1}{6}} \psi\left(q^{p}\right) f_{4 p}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p^{2} n+\frac{7 p^{2}-7}{24}\right) q^{n}=(-1)^{\frac{ \pm p-1}{6}} \psi(q) f_{4} \tag{3.32}
\end{equation*}
$$

and for $n \geqslant 0$,

$$
\begin{equation*}
a\left(p^{2} n+p i+\frac{7 p^{2}-7}{24}\right)=0 \tag{3.33}
\end{equation*}
$$

where i is an integer and $1 \leqslant i \leqslant p-1$. Combining (3.28) and (3.32), we see that for $n \geqslant 0$,

$$
\begin{equation*}
a\left(p^{2} n+\frac{7 p^{2}-7}{24}\right)=(-1)^{ \pm p-1} 6(n) . \tag{3.34}
\end{equation*}
$$

By (3.34) and mathematical induction, we deduce that for $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{equation*}
a\left(p^{2 \alpha} n+\frac{7 p^{2 \alpha}-7}{24}\right)=(-1)^{\alpha . \frac{ \pm p-1}{6}} a(n) . \tag{3.35}
\end{equation*}
$$

Replacing n by $p^{2 \alpha} n+\frac{7 p^{2 \alpha}-7}{24}$ in (3.29), we arrive at (3.27).
Theorem 3.4. For all $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{align*}
\overline{C O}_{3,1}(36 n+21) & \equiv 0 \quad(\bmod 8), \tag{3.36}\\
\overline{C O}_{3,1}(36 n+3) & \equiv \overline{C O}_{3,1}(12 n+1) \quad(\bmod 8), \tag{3.37}\\
\overline{C O}_{3,1}\left(4 \cdot 3^{\alpha+3} n+7 \cdot 3^{\alpha+2}\right) & \equiv 0 \quad(\bmod 8), \tag{3.38}\\
\overline{C O}_{3,1}(36 n+33) & \equiv 0 \quad(\bmod 8), \tag{3.39}\\
\overline{C O}_{3,1}(18 n+15) & \equiv \overline{C O}_{3,1}(6 n+5) \quad(\bmod 8) . \tag{3.40}
\end{align*}
$$

Proof. Equating the coefficients of $q^{3 n+1}$ from both sides of (3.7), dividing by q and then replacing q^{3} by q, we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+3) q^{n}=2 \frac{f_{2}^{2} f_{3}^{3} f_{4} f_{12}}{f_{1}^{5} f_{6}^{2}} \tag{3.41}
\end{equation*}
$$

Using (3.10) in (3.41), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+3) q^{n} \equiv 2 \frac{f_{4} f_{12}}{f_{1} f_{3}} \quad(\bmod 8) \tag{3.42}
\end{equation*}
$$

Substituting (2.4) into (3.42), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+3) q^{n} \equiv 2 \frac{f_{12}^{2} f_{18}^{4}}{f_{3}^{4} f_{36}^{2}}+2 q \frac{f_{6}^{2} f_{9}^{3} f_{12} f_{36}}{f_{3}^{5} f_{18}^{2}}+4 q^{2} \frac{f_{6} f_{12} f_{18} f_{36}}{f_{3}^{4}} \quad(\bmod 8) \tag{3.43}
\end{equation*}
$$

which implies that for all $n \geqslant 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(18 n+3) q^{n} \equiv 2 \frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{4} f_{12}^{2}} \quad(\bmod 8) \tag{3.44}
\end{equation*}
$$

Using (3.10) in (3.44), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(18 n+3) q^{n} \equiv 2 f_{2}^{2} \quad(\bmod 8) \tag{3.45}
\end{equation*}
$$

Equating the coefficients of $q^{2 n+1}$ from both sides of (3.45), dividing by q and then replacing q^{2} by q, we arrive at (3.36).

Extracting the terms involving $q^{2 n}$ from (3.45) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+3) q^{n} \equiv 2 f_{1}^{2} \quad(\bmod 8) \tag{3.46}
\end{equation*}
$$

In view of congruences (3.46) and (3.12), we obtain (3.37).
Extracting the terms involving $q^{3 n+1}$ from (3.43), dividing by q and then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(18 n+9) q^{n} \equiv 2 \frac{f_{2}^{2} f_{3}^{3} f_{4} f_{12}}{f_{1}^{5} f_{6}^{2}} \quad(\bmod 8) \tag{3.47}
\end{equation*}
$$

Using (3.10) in (3.47), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(18 n+9) q^{n} \equiv 2 \frac{f_{4} f_{12}}{f_{1} f_{3}} \quad(\bmod 8) \tag{3.48}
\end{equation*}
$$

In view of congruences (3.48) and (3.42), we get

$$
\begin{equation*}
\overline{C O}_{3,1}(18 n+9) \equiv \overline{C O}_{3,1}(6 n+3) \quad(\bmod 8) \tag{3.49}
\end{equation*}
$$

Utilizing (3.49) and by mathematical induction on α, we arrive at

$$
\begin{equation*}
\overline{C O}_{3,1}\left(2 \cdot 3^{\alpha+2} n+3^{\alpha+2}\right) \equiv \overline{C O}_{3,1}(6 n+3) \quad(\bmod 8) \tag{3.50}
\end{equation*}
$$

Using (3.36) in (3.50), we obtain (3.38).
From (3.43), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(18 n+15) q^{n} \equiv 4 \frac{f_{2} f_{4} f_{6} f_{12}}{f_{1}^{4}} \quad(\bmod 8) \tag{3.51}
\end{equation*}
$$

Using (3.9) in (3.51), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(18 n+15) q^{n} \equiv 4 f_{2} f_{6} f_{12} \quad(\bmod 8) \tag{3.52}
\end{equation*}
$$

Congruences (3.39) follows extracting the terms involving $q^{2 n+1}$ from (3.52).
Extracting the terms involving $q^{3 n+2}$ from (3.7), dividing by q^{2} and then replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+5) q^{n}=4 \frac{f_{2} f_{4} f_{6} f_{12}}{f_{1}^{4}} \tag{3.53}
\end{equation*}
$$

Using (3.9) in (3.53), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(6 n+5) q^{n} \equiv 4 f_{2} f_{6} f_{12} \quad(\bmod 8) \tag{3.54}
\end{equation*}
$$

Combining (3.52) and (3.54), we arrive at (3.40).
Theorem 3.5. For all $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{align*}
\overline{C O}_{3,1}(12 n+7) & \equiv 0 \quad(\bmod 8), \tag{3.55}\\
\overline{C O}_{3,1}(12 n+11) & \equiv 0 \quad(\bmod 8), \tag{3.56}\\
\overline{C O}_{3,1}(108 n+63) & \equiv 0 \quad(\bmod 8), \tag{3.57}\\
\overline{C O}_{3,1}(108 n+99) & \equiv 0 \quad(\bmod 8), \tag{3.58}\\
\overline{C O}_{3,1}(972 n+567) & \equiv 0 \quad(\bmod 8), \tag{3.59}\\
\overline{C O}_{3,1}(972 n+891) & \equiv 0 \quad(\bmod 8), \tag{3.60}\\
\overline{C O}_{3,1}\left(12 \cdot 9^{\alpha+2} n+3 \cdot 9^{\alpha+2}\right) & \equiv \overline{C O}_{3,1}(108 n+27) \quad(\bmod 8) . \tag{3.61}
\end{align*}
$$

Proof. Substituting (2.5) into (3.6), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n+1) q^{n}=2 \frac{f_{8}^{2} f_{12}^{6}}{f_{2}^{2} f_{6}^{4} f_{24}^{2}}+2 q \frac{f_{4}^{6} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2}} \tag{3.62}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(4 n+3) q^{n}=2 \frac{f_{2}^{6} f_{12}^{2}}{f_{1}^{4} f_{3}^{2} f_{4}^{2}} \tag{3.63}
\end{equation*}
$$

Using (3.10) in (3.63), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(4 n+3) q^{n} \equiv 2 \frac{f_{12}^{2}}{f_{3}^{2}} \quad(\bmod 8) \tag{3.64}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ from (3.64) we get (3.55) and (3.56).

Extracting the terms involving $q^{3 n}$ from (3.64) and replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+3) q^{n} \equiv 2 \frac{f_{4}^{2}}{f_{1}^{2}} \quad(\bmod 8) \tag{3.65}
\end{equation*}
$$

Substituting (2.4) into (3.65) and equating the terms $q^{3 n+2}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+27) q^{n} \equiv 2 \frac{f_{2}^{4} f_{3}^{6} f_{12}^{2}}{f_{1}^{8} f_{6}^{4}} \quad(\bmod 8) \tag{3.66}
\end{equation*}
$$

Using (3.10) in (3.66), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+27) q^{n} \equiv 2 f_{3}^{6} \quad(\bmod 8) \tag{3.67}
\end{equation*}
$$

Congruences (3.57) and (3.58) follows extracting the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ from (3.66).

Extracting the terms involving $q^{3 n}$ from (3.67) and replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(108 n+27) q^{n} \equiv 2 f_{1}^{6} \quad(\bmod 8) \tag{3.68}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(108 n+27) q^{n} \equiv 2 f_{1}^{2} f_{2}^{2} \quad(\bmod 8) \tag{3.69}
\end{equation*}
$$

Employing (2.7) into (3.69) and equating the terms involving $q^{3 n+2}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(324 n+243) q^{n} \equiv 2 f_{3}^{2} f_{6}^{2} \quad(\bmod 8) \tag{3.70}
\end{equation*}
$$

Using (3.10) in (3.70), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(324 n+243) q^{n} \equiv 2 f_{3}^{6} \quad(\bmod 8) \tag{3.71}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ from (3.71), we arrive at (3.59) and (3.60).

Extracting the terms involving $q^{3 n}$ from (3.71) and replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(972 n+243) q^{n} \equiv 2 f_{1}^{6} \quad(\bmod 8) \tag{3.72}
\end{equation*}
$$

In view of congruences (3.72) and (3.68), we get

$$
\begin{equation*}
\overline{C O}_{3,1}(972 n+243) \equiv \overline{C O}_{3,1}(108 n+27) \quad(\bmod 8) \tag{3.73}
\end{equation*}
$$

Utilizing (3.73) and by mathematical induction on α, we arrive at (3.61).

Theorem 3.6. For all $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{align*}
\overline{C O}_{3,1}(24 n+14) & \equiv 0 \quad(\bmod 8), \tag{3.74}\\
\overline{C O}_{3,1}\left(4 \cdot 3^{\alpha+2} n+2 \cdot 3^{\alpha+2}\right) & \equiv 3^{\alpha+1} \overline{C O}_{3,1}(12 n+6) \quad(\bmod 8), \tag{3.75}\\
\overline{C O}_{3,1}(108 n+27) & \equiv 3 \overline{C O}_{3,1}(24 n+6) \quad(\bmod 8), \tag{3.76}\\
\overline{C O}_{3,1}(72 n+6) & \equiv 3 \overline{C O}_{3,1}(24 n+2) \quad(\bmod 8), \tag{3.77}\\
\overline{C O}_{3,1}(72 n+42) & \equiv 0 \quad(\bmod 8), \tag{3.78}\\
\overline{C O}_{3,1}(72 n+66) & \equiv 0 \quad(\bmod 8), \tag{3.79}\\
\overline{C O}_{3,1}(24 n+22) & \equiv 0 \quad(\bmod 8), \tag{3.80}\\
\overline{C O}_{3,1}(36 n+30) & \equiv \overline{C O}_{3,1}(12 n+10) \quad(\bmod 8) . \tag{3.81}
\end{align*}
$$

Proof. From (3.5), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(2 n) q^{n}=\frac{f_{2}^{3} f_{6}^{3}}{f_{1}^{2} f_{3}^{2} f_{4} f_{12}} \tag{3.82}
\end{equation*}
$$

Substituting (2.5) into (3.82) and equating the terms $q^{2 n+1}$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(4 n+2) q^{n}=2 \frac{f_{2}^{3} f_{6}^{3}}{f_{1}^{3} f_{3}^{3}} \tag{3.83}
\end{equation*}
$$

Using (3.10) in (3.83), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(4 n+2) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{3}^{3}}\left(f_{1} f_{2}\right) \quad(\bmod 8) \tag{3.84}
\end{equation*}
$$

Employing (2.7) into (3.84), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(4 n+2) q^{n} \equiv 2 \frac{f_{6}^{4} f_{9}^{4}}{f_{3}^{4} f_{18}^{2}}-2 q \frac{f_{6}^{3} f_{9} f_{18}}{f_{3}^{3}}-4 q^{2} \frac{f_{6}^{2} f_{18}^{4}}{f_{3}^{2} f_{9}^{2}} \quad(\bmod 8), \tag{3.85}
\end{equation*}
$$

which implies,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+2) q^{n} \equiv 2 \frac{f_{2}^{4} f_{3}^{4}}{f_{1}^{4} f_{6}^{2}} \quad(\bmod 8) \tag{3.86}
\end{equation*}
$$

Using (3.10) in (3.86), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+2) q^{n} \equiv 2 f_{2}^{2} \quad(\bmod 8) \tag{3.87}
\end{equation*}
$$

Congruence (3.74) follows extracting the terms involving $q^{2 n+1}$ from (3.87).
Extracting the terms involving $q^{2 n}$ from (3.87), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+2) \equiv 2 f_{1}^{2} \quad(\bmod 8) \tag{3.88}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$ from (3.85), dividing by q and then replacing $q^{3 n}$ by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+6) q^{n} \equiv 6 \frac{f_{2}^{3} f_{3} f_{6}}{f_{1}^{3}} \quad(\bmod 8) \tag{3.89}
\end{equation*}
$$

Using (3.10) in (3.89), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+6) q^{n} \equiv 6\left(f_{1} f_{2}\right) f_{3} f_{6} \quad(\bmod 8) \tag{3.90}
\end{equation*}
$$

Substituting (2.7) into (3.90), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+6) q^{n} \equiv 6 \frac{f_{6}^{2} f_{9}^{4}}{f_{18}^{2}}-6 q f_{3} f_{6} f_{9} f_{18}-12 q^{2} \frac{f_{3}^{2} f_{18}^{4}}{f_{9}^{2}} \quad(\bmod 8) \tag{3.91}
\end{equation*}
$$

which implies that for all $n \geqslant 0$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+18) q^{n} \equiv 2 f_{1} f_{2} f_{3} f_{6} \quad(\bmod 8) \tag{3.92}
\end{equation*}
$$

In the view of congruence (3.92) and (3.90), we have

$$
\begin{equation*}
\overline{C O}_{3,1}(36 n+18) \equiv 3 \overline{C O}_{3,1}(12 n+6) \quad(\bmod 8) \tag{3.93}
\end{equation*}
$$

Utilizing (3.93) and by mathematical induction on α, we arrive at (3.75).
Employing (2.6) into (3.90), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+6) q^{n} \equiv 6 \frac{f_{2}^{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{24}^{2}}-6 q \frac{f_{4}^{4} f_{6}^{2} f_{24}^{2}}{f_{8}^{2} f_{12}^{2}} \quad(\bmod 8) \tag{3.94}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (3.94) and replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+6) q^{n} \equiv 6 \frac{f_{1}^{2} f_{4}^{2} f_{6}^{4}}{f_{2}^{2} f_{12}^{2}} \quad(\bmod 8) \tag{3.95}
\end{equation*}
$$

Using (3.10) in (3.95), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+6) q^{n} \equiv 6 f_{1}^{2} f_{2}^{2} \quad(\bmod 8) \tag{3.96}
\end{equation*}
$$

Combining (3.96) and (3.69), we obtain (3.76).
Extracting the terms involving $q^{3 n}$ from (3.91) and then replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+6) q^{n} \equiv 6 \frac{f_{2}^{2} f_{3}^{4}}{f_{6}^{2}} \quad(\bmod 8) \tag{3.97}
\end{equation*}
$$

Using (3.10) in (3.97), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+6) q^{n} \equiv 6 f_{2}^{2} \quad(\bmod 8) \tag{3.98}
\end{equation*}
$$

Congruences (3.78) follows by extracting the terms involving $q^{2 n+1}$ from (3.98).
Extracting the terms involving $q^{2 n}$ from (3.98) and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(72 n+6) q^{n} \equiv 6 f_{1}^{2} \quad(\bmod 8) \tag{3.99}
\end{equation*}
$$

Combining the equations (3.99) and (3.88), we arrive at (3.77).
Equating the coefficients of $q^{3 n+2}$ from both sides of (3.91), dividing by q^{2} and then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+30) q^{n} \equiv 4 \frac{f_{1}^{2} f_{6}^{4}}{f_{3}^{2}} \quad(\bmod 8) \tag{3.100}
\end{equation*}
$$

Using (3.9) in (3.100), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(36 n+30) q^{n} \equiv 4 f_{2} f_{6}^{3} \quad(\bmod 8) \tag{3.101}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.101), we arrive at (3.79).
Equating the coefficients of $q^{3 n+2}$ from both sides of (3.85), dividing by q^{2} and then replacing q^{3} by q,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(12 n+10) q^{n} \equiv 4 \frac{f_{2}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2}} \quad(\bmod 8) . \tag{3.102}
\end{equation*}
$$

Using (3.9) in (3.102), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(24 n+22) q^{n} \equiv 4 f_{2} f_{6}^{3} \quad(\bmod 8) \tag{3.103}
\end{equation*}
$$

Congruences (3.80) follows by extracting the terms involving $q^{2 n+1}$ from (3.103).
In the view of congruences (3.103) and (3.101), we get (3.81).
Theorem 3.7. For all integers $n \geqslant 0$,

$$
\begin{align*}
\overline{C O}_{3,1}(12 n+6) & \equiv 0 \quad(\bmod 6), \tag{3.104}\\
\overline{C O}_{3,1}(12 n+10) & \equiv 0 \quad(\bmod 6) . \tag{3.105}
\end{align*}
$$

Proof. By the binomial theorem, it is easy to see that for positive integers k and m,

$$
\begin{equation*}
f_{3 k}^{m} \equiv f_{k}^{3 m} \quad(\bmod 3) \tag{3.106}
\end{equation*}
$$

Using (3.106) in (3.83), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{C O}_{3,1}(4 n+2) q^{n} \equiv 2 \frac{f_{6}^{4}}{f_{3}^{4}} \tag{3.107}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ from (3.107), we arrive at (3.104) and (3.105).

Acknowledgement. We would like to thank the anonymous referee for his/her careful reading of our manuscript and many helpful comments and suggestions.

References

[1] Z. Ahmed and N.D. Baruah, New congruences for Andrews' singular overpartitions, Int. J. Number Theory 11 (2015) 2247-2264.
[2] G.E. Andrews, Singular overpartitions, Int. J. Number Theory 5 (11) (2015) 1523-1533.
[3] N.D. Baruah and K.K. Ojah, Partitions with designated summands in which all parts are odd, Integers 15 (2015).
[4] B.C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[5] S-C. Chen, M.D. Hirschhorn and J.A. Sellers, Arithmetic properties of Andrews' singular overpartitions, Int. J. Number Theory 5 (11) (2015) 14631476.
[6] S-C. Chen, Congruences and asymptotics of Andrews' singular overpartitions, J. Number Theory (2016).
[7] S.P. Cui and N.S.S. Gu, Arithmetic properties of l-regular partitions, Adv. Appl. Math. 51 (2013), 507-523.
[8] M.D. Hirschhorn and J.A. Sellers, A congruence modulo 3 for partitions into distinct non-multiples of four, Journal of Integer Sequences 17 (2014), Article 14.9.6.
[9] M.S. Mahadeva Naika and D.S. Gireesh, Congruences for Andrews' singular overpartitions, J. Number Theory 165 (2016) 109-13.
[10] E.X.W. Xia and O.X.M. Yao, Parity results for 9 -regular partitions, Ramanujan J. 34 (2014), 109-117.
[11] O.X.M. Yao, Congruences modulo 16, 32, and 64 for Andrews' singular overpartitions, Ramanujan J. DOI: 10.1007/S11139-015-9760-2.

Address: M.S. Mahadeva Naika and S. Shivaprasada Nayaka: Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, Karnataka, India.
E-mail: msmnaika@rediffmail.com, shivprasadnayaks@gmail.com
Received: 30 April 2016; revised: 6 July 2016

