JACOBI-TYPE SUMS WITH AN EXPLICIT EVALUATION MODULO PRIME POWERS

Badria Alsulmi, Vincent Pigno, Christopher Pinner

Abstract: We show that for Dirichlet characters $\chi_{1}, \ldots, \chi_{s} \bmod p^{m}$ the sum

$$
\begin{aligned}
& \sum_{x_{1}=1}^{p^{m}} \cdots \sum_{x_{s}=1}^{p^{m}} \quad \chi_{1}\left(x_{1}\right) \cdots \chi_{s}\left(x_{s}\right), \\
& A_{1} x_{1}^{k_{1}}+\cdots+A_{s} x_{s}^{k_{s}} \equiv B \bmod p^{m}
\end{aligned}
$$

has a simple evaluation when m is sufficiently large.
Keywords: character sums, Gauss sums, Jacobi sums.

1. Introduction

For two Dirichlet characters $\chi_{1}, \chi_{2} \bmod q$ the classical Jacobi sum is

$$
\begin{equation*}
J\left(\chi_{1}, \chi_{2}, q\right):=\sum_{x=1}^{q} \chi_{1}(x) \chi_{2}(1-x) \tag{1}
\end{equation*}
$$

More generally, for s characters $\chi_{1}, \ldots, \chi_{s} \bmod q$ and an integer B, one can define a generalized Jacobi sum

$$
\begin{equation*}
J_{B}\left(\chi_{1}, \ldots, \chi_{s}, q\right):=\sum_{\substack{x_{1}=1 \\ x_{1}+\cdots+x_{s} \equiv B \bmod q}}^{q} \cdots \sum_{\substack{x_{s}=1 \\ q}} \chi_{1}\left(x_{1}\right) \cdots \chi_{s}\left(x_{s}\right) . \tag{2}
\end{equation*}
$$

A thorough discussion of $\bmod p$ Jacobi sums and their extension to finite fields can be found in Berndt, R.J. Evans and K. S. Williams [1]. W. Zhang and W. Yao [7] showed that the sums (1) have an explicit evaluation when q is a perfect square

[^0]and Zhang \& Xu [8] obtained an evaluation of the sums (2) for certain classes of squareful q (if $p \mid q$, then $p^{2} \mid q$) in the classic $B=1$ case. In [3] Long, Pigno \& Pinner extended this to more general squareful q and general B, essentially using reduction techniques of Cochrane \& Zheng [2].

Here we are interested in an even more general sum. Let $\vec{\chi}=\left(\chi_{1}, \ldots, \chi_{s}\right)$ denote s characters $\chi_{i} \bmod q$, then for an $h \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$ and $B \in \mathbb{Z}$ we can define

$$
\begin{equation*}
J_{B}(\vec{\chi}, h, q):=\sum_{\substack{x_{1}=1 \\ h\left(x_{1}, \ldots, x_{s}\right) \equiv B \bmod q}}^{q} \cdots \sum_{\substack{x_{s}=1\\}} \chi_{1}\left(x_{1}\right) \cdots \chi_{s}\left(x_{s}\right) . \tag{3}
\end{equation*}
$$

As demonstrated in Lemma 5.2 one can usually reduce such sums to the case that $q=p^{m}$ is a prime power. In this paper we will be concerned with h of the form

$$
\begin{equation*}
h\left(x_{1}, \ldots, x_{s}\right)=A_{1} x_{1}^{k_{1}}+\cdots+A_{s} x_{s}^{k_{s}}, \quad p \nmid A_{1} \cdots A_{s}, \tag{4}
\end{equation*}
$$

where the k_{i} are non-zero integers, and

$$
\begin{equation*}
J_{B}\left(\vec{\chi}, h, p^{m}\right)=\sum_{\substack{x_{1}=1 \\ A_{1} x_{1}^{k_{1}}+\cdots+A_{s} x_{s}^{k_{s}} \equiv B \bmod p^{m}}}^{p^{m}} \sum_{1}\left(x_{1}\right) \cdots \chi_{s}\left(x_{s}\right) \tag{5}
\end{equation*}
$$

As well as (2) this generalization includes the binomial character sums

$$
\begin{equation*}
\sum_{x=1}^{p^{m}} \chi_{1}(x) \chi_{2}\left(A x^{k}+B\right) \tag{6}
\end{equation*}
$$

shown to also have an explicit evaluation in [5, Theorem 3.1]. A different generalization of these sums having an explicit evaluation in certain special cases is considered in [6]. We define n to be the power of p dividing B

$$
\begin{equation*}
B=p^{n} B^{\prime}, \quad p \nmid B^{\prime} . \tag{7}
\end{equation*}
$$

The evaluation in [3] relied on expressing (2) in terms of Gauss sums

$$
\begin{equation*}
G\left(\chi, p^{m}\right):=\sum_{x=1}^{p^{m}} \chi(x) e_{p^{m}}(x) \tag{8}
\end{equation*}
$$

where $e_{k}(x)=e^{2 \pi i x / k}$. For example, if at least one of the χ_{i} is primitive $\bmod p^{m}$ and $m>n$ then $J_{B}\left(\chi_{1}, \ldots, \chi_{s}, p^{m}\right)=0$ unless $\chi_{1} \cdots \chi_{s}$ is a $\bmod p^{m-n}$ character, in which case

$$
\begin{equation*}
J_{B}\left(\chi_{1}, \ldots, \chi_{s}, p^{m}\right)=\chi_{1} \cdots \chi_{s}\left(B^{\prime}\right) p^{-(m-n)} \overline{G\left(\chi_{1} \cdots \chi_{s}, p^{m-n}\right)} \prod_{i=1}^{s} G\left(\chi_{i}, p^{m}\right) \tag{9}
\end{equation*}
$$

(see for example [3, Theorem 2.2]). In particular if $m \geqslant n+2$ and at least one of the χ_{i} is primitive we see that $J_{B}\left(\chi_{1}, \ldots, \chi_{s}, p^{m}\right)=0$ unless all the χ_{i} are
primitive with $\chi_{1} \cdots \chi_{s}$ primitive $\bmod p^{m-n}$. In this latter case (9) and a useful evaluation of the Gauss sum led in [3] to the following explicit evaluation of (2):

$$
\begin{equation*}
J_{B}\left(\chi_{1}, \ldots, \chi_{s}, p^{m}\right)=p^{\frac{1}{2}(m(s-1)+n)} \frac{\chi_{1}\left(B^{\prime} c_{1}\right) \cdots \chi_{s}\left(B^{\prime} c_{s}\right)}{\chi_{1} \cdots \chi_{s}(v)} \delta\left(\chi_{1}, \ldots, \chi_{s}\right) \tag{10}
\end{equation*}
$$

where, when p is odd,

$$
\begin{equation*}
\delta\left(\chi_{1}, \ldots, \chi_{s}\right)=\left(\frac{-2 r}{p}\right)^{m(s-1)+n}\left(\frac{v}{p}\right)^{m-n}\left(\frac{c_{1} \cdots c_{s}}{p}\right)^{m} \varepsilon_{p^{m}}^{s} \varepsilon_{p^{m-n}}^{-1} \tag{11}
\end{equation*}
$$

with an extra factor $e_{3}(r v)$ needed when $p=m-n=3, n>0$, and for a choice of primitive root $a \bmod p^{m}$, the integers r and c_{i} are defined by

$$
\begin{equation*}
a^{\phi(p)}=1+r p, \quad \chi_{i}(a)=e_{\phi\left(p^{m}\right)}\left(c_{i}\right), \quad 1 \leqslant c_{i} \leqslant \phi\left(p^{m}\right) \tag{12}
\end{equation*}
$$

as usual $\left(\frac{x}{y}\right)$ denotes the Jacobi symbol, and

$$
\varepsilon_{j}:=\left\{\begin{array}{ll}
1, & \text { if } j \equiv 1 \bmod 4, \tag{13}\\
i, & \text { if } j \equiv 3 \bmod 4,
\end{array} \quad v:=p^{-n}\left(c_{1}+\cdots+c_{s}\right)\right.
$$

The sums (6) could also be expressed in terms of Gauss sums. As we shall see in Theorem 2.1 below, our general sums (5) have a similar Gauss sum representation that can be used to give an explicit evaluation for sufficiently large m, though here we shall use an expression in terms of sums of type (2) and their evaluation (10). We define the parameters t_{i} and t by

$$
\begin{equation*}
p^{t_{i}} \| k_{i}, \quad t:=\max \left\{t_{1}, \ldots, t_{s}\right\} \tag{14}
\end{equation*}
$$

Note, it is natural to assume that $m \geqslant t+1$ (and $m \geqslant t+2$ for $p=2, m \geqslant 3$), since if $m \leqslant t_{i}$ one can replace k_{i} by k_{i} / p. We define d_{i} and D_{i} by

$$
d_{i}:=\left(k_{i}, p-1\right), \quad D_{i}:= \begin{cases}p^{t_{i}} d_{i}, & \text { if } p \text { is odd } \tag{15}\\ 2^{t_{i}+1}, & \text { if } p=2, k_{i} \text { even } \\ 1, & \text { if } p=2, k_{i} \text { odd }\end{cases}
$$

Theorem 1.1. Let p be an odd prime, $\chi_{1}, \ldots, \chi_{s}$ be $\bmod p^{m}$ characters with at least one of them primitive, and h be of the form (4). With n and t as in (7) and (14) we suppose that $m \geqslant 2 t+n+2$.

If the $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ for some primitive characters $\chi_{i}^{\prime} \bmod p^{m}$ such that $\chi_{1}^{\prime} \ldots \chi_{s}^{\prime}$ is induced by a primitive mod p^{m-n} character, and the $A_{i}^{-1} B^{\prime} c_{i}^{\prime} v^{\prime-1} \equiv \alpha_{i}^{k_{i}} \bmod$ p^{m} for some α_{i}, then

$$
\begin{equation*}
J_{B}\left(\vec{\chi}, h, p^{m}\right)=D_{1} \cdots D_{s} p^{\frac{1}{2}(m(s-1)+n)} \chi_{1}\left(\alpha_{1}\right) \cdots \chi_{s}\left(\alpha_{s}\right) \delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right) \tag{16}
\end{equation*}
$$

where the c_{i}^{\prime} define the χ_{i}^{\prime} as in (12), $v^{\prime}=p^{-n}\left(c_{1}^{\prime}+\cdots+c_{s}^{\prime}\right), \delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right)$ is as in (11) with c_{i}^{\prime} and v^{\prime} replacing the c_{i} and v.

Otherwise the sum is zero.
The corresponding $p=2$ result is given in Theorem 4.1.

2. Gauss sums

We first show that $J_{B}\left(\vec{\chi}, h, p^{m}\right)=0$ unless each χ_{i} is a k_{i}-th power. We actually consider a slightly more general sum.

Lemma 2.1. For any prime p, multiplicative characters $\chi_{1}, \ldots, \chi_{s}, \chi \bmod p^{m}$, and f, g, h in $\mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$, the sum

$$
J=\sum_{\substack{x_{1}=1 \\ h\left(x_{1}^{k_{1}}, \ldots, x_{s}^{k_{s}}\right) \equiv B \bmod p^{m}}}^{p^{m}} \cdots \sum_{x_{s}=1}^{p^{m}} \chi_{1}\left(x_{1}\right) \cdots \chi_{s}\left(x_{s}\right) \chi\left(f\left(x_{1}^{k_{1}}, \ldots, x_{s}^{k_{s}}\right)\right) e_{p^{m}}\left(g\left(x_{1}^{k_{1}}, \ldots, x_{s}^{k_{s}}\right)\right),
$$

is zero unless $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ for some mod p^{m} character χ_{i}^{\prime} for all $1 \leqslant i \leqslant s$.
Proof. Let p be a prime. If $z_{1}^{k_{1}}=1$, then the change of variables $x_{1} \mapsto x_{1} z_{1}$ gives

$$
\begin{aligned}
J & =\sum_{\substack{x_{1}=1 \\
h\left(x_{1}^{k_{1}}, \ldots, x_{s}^{k_{s}}\right) \equiv B \bmod p^{m}}}^{p^{m}} \cdots \sum_{x_{s}=1}^{p^{m}} \chi_{1}\left(x_{1} z_{1}\right) \cdots \chi_{s}\left(x_{s}\right) \chi\left(f\left(x_{1}^{k_{1}}, \ldots, x_{s}^{k_{s}}\right)\right) e_{p^{m}}\left(g\left(x_{1}^{k_{1}}, \ldots, x_{s}^{k_{s}}\right)\right) \\
& =\chi_{1}\left(z_{1}\right) J .
\end{aligned}
$$

Hence if $J \neq 0$ we must have $1=\chi_{1}\left(z_{1}\right)$. For p odd we can choose $z_{1}=$ $a^{\phi\left(p^{m}\right) /\left(k_{1}, \phi\left(p^{m}\right)\right)}$, where a is a primitive root $\bmod p^{m}$. Then $1=\chi_{1}\left(z_{1}\right)=$ $\chi_{1}(a)^{\phi\left(p^{m}\right) /\left(k_{1}, \phi\left(p^{m}\right)\right)}=e^{2 \pi i c_{1} /\left(k_{1}, \phi\left(p^{m}\right)\right)}$ and $\left(k_{1}, \phi\left(p^{m}\right)\right) \mid c_{1}$. Hence there is an integer c_{1}^{\prime} satisfying

$$
c_{1} \equiv c_{1}^{\prime} k_{1} \bmod \phi\left(p^{m}\right),
$$

and $\chi_{1}=\left(\chi_{1}^{\prime}\right)^{k_{1}}$ where χ_{1}^{\prime} is the mod p^{m} character with $\chi_{1}^{\prime}(a)=e_{\phi\left(p^{m}\right)}\left(c_{1}^{\prime}\right)$.
For $p=2$ and $m \geqslant 3$ recall that $\mathbb{Z}_{2^{m}}^{*}$ needs two generators -1 and 5 , where 5 has order 2^{m-2} (see for example [4]). Taking $z_{1}=5^{2^{m-2} /\left(k_{1}, 2^{m-2}\right)}$ we see that $\left(k_{1}, 2^{m-2}\right) \mid c_{1}$ and there exists a c_{1}^{\prime} with $c_{1}^{\prime} k_{1} \equiv c_{1} \bmod 2^{m-2}$. Setting

$$
\chi_{1}^{\prime}(-1)=\chi_{1}(-1), \quad \chi_{1}^{\prime}(5)=e_{2^{m-2}}\left(c_{1}^{\prime}\right)
$$

we have $\chi_{1}(5)=\left(\chi_{1}^{\prime}(5)\right)^{k_{1}}$. If k_{1} is odd then $\chi_{1}(-1)=\left(\chi_{1}^{\prime}(-1)\right)^{k_{1}}$. If k_{1} is even then $z_{1}=-1$ gives $\chi_{1}(-1)=1=\left(\chi_{1}^{\prime}(-1)\right)^{k_{1}}$. Hence $\chi_{1}=\left(\chi_{1}^{\prime}\right)^{k_{1}}$.

The same technique gives $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ for all $i=1, \ldots, s$.
From Lemma 2.1 we can thus assume that each χ_{i} equals a k_{i} th power, enabling us to express $J_{B}\left(\vec{\chi}, h, p^{m}\right)$, when h is of the form (4), in terms of (2) sums and hence, by (9), Gauss sums.
Theorem 2.1. Let $\chi_{1}, \ldots, \chi_{s}$ be mod p^{m} characters with $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ for some characters χ_{i}^{\prime} mod p^{m} character, and h be of the form (4). Then,

$$
\begin{equation*}
J_{B}\left(\vec{\chi}, h, p^{m}\right)=\sum_{\substack{\left(\chi_{1}^{\prime \prime}\right)^{k i}=\chi_{0} \\ i=1, \ldots, s}}\left(\prod_{j=1}^{s} \chi_{j}^{\prime} \chi_{j}^{\prime \prime}\left(A_{j}^{-1}\right)\right) J_{B}\left(\chi_{1}^{\prime} \chi_{1}^{\prime \prime}, \ldots, \chi_{s}^{\prime} \chi_{s}^{\prime \prime}, p^{m}\right) \tag{17}
\end{equation*}
$$

where χ_{0} is the principal character $\bmod p^{m}$. If $m \geqslant n+t+2$ for p odd, $m \geqslant$ $n+t+3$ for $p=2$, and at least one of the characters is primitive $\bmod p^{m}$ then $J_{B}\left(\vec{\chi}, h, p^{m}\right)=0$ unless all the χ_{i}^{\prime} are primitive $\bmod p^{m}$ with $\chi_{1}^{\prime} \ldots \chi_{s}^{\prime}$ induced by a primitive $\bmod p^{m-n}$ character, in which case

$$
\begin{equation*}
J_{B}\left(\vec{\chi}, h, p^{m}\right)=\sum_{\substack{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0} \\ i=1, \ldots, s}} \frac{\prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}\left(A_{i}^{-1} B^{\prime}\right) G\left(\chi_{i}^{\prime} \chi_{i}^{\prime \prime}, p^{m}\right)}{G\left(\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \ldots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}, p^{m-n}\right)} \tag{18}
\end{equation*}
$$

Proof. Observe that if $p \nmid u$ then the sum

$$
\sum_{\chi^{k_{i}}=\chi_{0} \bmod p^{m}} \chi(u)=D_{i}:= \begin{cases}\left(k_{i}, \phi\left(p^{m}\right)\right), & \text { if } p \text { is odd or } p^{m}=2,4 \tag{19}\\ 2\left(k_{i}, 2^{m-2}\right), & \text { if } p=2, m \geqslant 3, k_{i} \text { is even } \\ 1, & \text { if } p=2, m \geqslant 3, k_{i} \text { is odd }\end{cases}
$$

if u is a k_{i} th power (in which case $x_{i}^{k_{i}}=u$ has D_{i} solutions x_{i}) and equals zero otherwise. Hence writing $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ and making the substitution $u_{i} \mapsto A_{i}^{-1} u_{i}$, we have

$$
\begin{align*}
& J_{B}\left(\vec{\chi}, h, p^{m}\right)= \sum_{\substack{x_{1}=1 \\
p_{1} x_{1}^{k_{1}}+\cdots+A_{s} x_{s}^{k_{s}} \equiv B \bmod p^{m}}}^{p^{p_{s}=1}} \chi_{1}^{\prime}\left(x_{1}^{k_{1}}\right) \cdots \chi_{s}^{\prime}\left(x_{s}^{k_{s}}\right) \\
&= \sum_{\substack{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0} \\
i=1, \ldots, s}} \sum_{\substack{u_{1}=1 \\
p^{m}}} \cdots \sum_{u_{s}=1}^{p^{m} u_{1}+\cdots+A_{s} u_{s} \equiv B \bmod p^{m}} \chi_{1}^{\prime} \chi_{1}^{\prime \prime}\left(u_{1}\right) \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(u_{s}\right) \\
&= \sum_{\substack{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0} \\
i=1, \ldots, s}}^{\chi_{1}^{\prime} \chi_{1}^{\prime \prime}}\left(A_{1}\right) \cdots \overline{\chi_{s}^{\prime} \chi_{s}^{\prime \prime}}\left(A_{s}\right) \\
& \times \sum_{u_{1}=1}^{p^{m}} \cdots \sum_{u_{s}=1}^{p^{m}} \chi_{1}^{\prime} \chi_{1}^{\prime \prime}\left(u_{1}\right) \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(u_{s}\right), \\
& u_{1}+\cdots+u_{s} \equiv B \bmod p^{m} \tag{20}
\end{align*}
$$

and (17) is clear. Note, if χ_{i} is primitive $\bmod p^{m}$ then $\chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ must be primitive for all $\chi_{i}^{\prime \prime} \bmod p^{m}$ with $\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0}\left(\right.$ since $\left.\chi_{i}=\left(\chi_{i}^{\prime} \chi_{i}^{\prime \prime}\right)^{k_{i}}\right)$.

Hence, by (9), if $m>n$ and at least one of the χ_{i} is primitive $\bmod p^{m}$

$$
\begin{align*}
J_{B}\left(\vec{\chi}, h, p^{m}\right)= & p^{-(m-n)} \sum_{\substack{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0} \\
i=1, \ldots, s}}^{*} G\left(\prod_{j=1}^{s} \chi_{j}^{\prime} \chi_{j}^{\prime \prime}, p^{m-n}\right) \\
& \times \prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}\left(A_{i}^{-1} B^{\prime}\right) G\left(\chi_{i}^{\prime} \chi_{i}^{\prime \prime}, p^{m}\right), \tag{21}
\end{align*}
$$

where the * indicates the sum is restricted to the $\chi_{i}^{\prime \prime} \bmod p^{m}$ such that $\prod_{j=1}^{s} \chi_{j}^{\prime} \chi_{j}^{\prime \prime}$ is a $\bmod p^{m-n}$ character. Suppose further that $m \geqslant n+t+2$ and p is odd. Since $\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0}$, that is $e_{\phi\left(p^{m}\right)}\left(c_{i}^{\prime \prime} k_{i}\right)=1$, then

$$
\begin{equation*}
p^{m-t_{i}-1}\left|c_{i}^{\prime \prime} \Rightarrow p^{n+1}\right| c_{i}^{\prime \prime} \tag{22}
\end{equation*}
$$

Likewise for $p=2$, if $\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0}$ and $m \geqslant n+t+3$, we have

$$
\begin{equation*}
2^{m-t-2}\left|c_{i}^{\prime \prime} \quad \Rightarrow \quad 2^{n+1}\right| c_{i}^{\prime \prime} \tag{23}
\end{equation*}
$$

Hence $p \mid\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)$ iff $p \mid c_{i}^{\prime}$ and $p^{n} \| \sum_{i=1}^{s}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)$ iff $p^{n} \| \sum_{i=1}^{s} c_{i}^{\prime}$. That is $\chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ is primitive $\bmod p^{m}$ iff χ_{i}^{\prime} is primitive $\bmod p^{m}$ and $\prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ is primitive $\bmod p^{m-n}$ iff $\prod_{i=1}^{s} \chi_{i}^{\prime}$ is primitive $\bmod p^{m-n}$. Observing that for $k \geqslant 2$ we have $G\left(\chi, p^{k}\right)=0$ if χ is not primitive $\bmod p^{k}$ we see that all the terms in (21) will be zero unless the χ_{i}^{\prime} are all primitive $\bmod p^{m}$ with $\prod_{i=1}^{s} \chi_{i}^{\prime}$ primitive $\bmod p^{m-n}$. Observing that $\left|G\left(\chi, p^{k}\right)\right|^{2}=p^{k}$ if χ is primitive $\bmod p^{k}$ gives the form (18).

3. Proof of Theorem 1.1

Suppose that $m \geqslant n+t+2$ and at least one of the χ_{i} is primitive. From Lemma 2.1 and Theorem 2.1 we can assume that each χ_{i} equals $\left(\chi_{i}^{\prime}\right)^{k_{i}}$ for some χ_{i}^{\prime} which is primitive $\bmod p^{m}$ and that $\prod_{i=1}^{s} \chi_{i}^{\prime}$ is primitive $\bmod p^{m-n}$, else the sum is zero. As in the proof of Theorem 2.1 we know that the $\chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ are all primitive $\bmod p^{m}$ with $\prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ primitive $\bmod p^{m-n}$. Hence using (17) and the evaluation (10) from [3] we can write

$$
\begin{align*}
J_{B}\left(\vec{\chi}, h, p^{m}\right)= & p^{\frac{1}{2}(m(s-1)+n)} \\
& \times \sum_{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0}} \frac{\chi_{1}^{\prime} \chi_{1}^{\prime \prime}\left(A_{1}^{-1} B^{\prime}\left(c_{1}^{\prime}+c_{1}^{\prime \prime}\right)\right) \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(A_{s}^{-1} B^{\prime}\left(c_{s}^{\prime}+c_{s}^{\prime \prime}\right)\right)}{\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}(v)} \tilde{\delta} \tag{24}
\end{align*}
$$

where the $\chi_{i}^{\prime} \chi_{i}^{\prime \prime}(a)=e_{\phi\left(p^{m}\right)}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right), v=p^{-n} \sum_{i=1}^{s}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)$ and

$$
\tilde{\delta}=\delta\left(\chi_{1}^{\prime} \chi_{1}^{\prime \prime}, \ldots, \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\right)=\left(\frac{-2 r}{p}\right)^{m(s-1)+n}\left(\frac{v}{p}\right)^{m-n}\left(\frac{\prod_{i=1}^{s}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)}{p}\right)^{m} \varepsilon_{p^{m}}^{s} \varepsilon_{p^{m-n}}^{-1}
$$

with $\varepsilon_{p^{m}}$, and r as defined in (13) and (12), with an extra factor $e_{3}(r v)$ needed when $p=m-n=3$. From (22) we know that $p^{n+1} \mid c_{i}^{\prime \prime}$ for all i, so $c_{i}^{\prime}+c_{i}^{\prime \prime} \equiv c_{i}^{\prime}$ $\bmod p, v \equiv v^{\prime} \bmod p$, and

$$
\tilde{\delta}=\delta\left(\chi_{1}^{\prime} \chi_{1}^{\prime \prime}, \ldots, \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\right)=\delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right)
$$

and so may be pulled out of the sum straight away. Suppose now that

$$
\begin{equation*}
m \geqslant n+2 t+2 \tag{25}
\end{equation*}
$$

It is perhaps worth noting that in [5] the sums (6) genuinely required a different evaluation in the range $n+t+2 \leqslant m<n+2 t+2$ to that when $m \geqslant n+2 t+2$. Since $p^{m-1-t_{i}} \mid c_{i}^{\prime \prime}$ we certainly have $p^{m-1-t} \mid c_{i}^{\prime \prime}$ and the characters $\chi_{i}^{\prime \prime}$ and $\prod_{i=1}^{s} \chi_{i}^{\prime \prime}$ are $\bmod p^{t+1}$ characters. Condition (25) ensures $p^{t+n+1} \mid c_{i}^{\prime \prime}, v \equiv v^{\prime} \bmod p^{t+1}$ and

$$
\begin{equation*}
\chi_{i}^{\prime \prime}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)=\chi_{i}^{\prime \prime}\left(c_{i}^{\prime}\right), \quad \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime \prime}(v)=\chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime \prime}\left(v^{\prime}\right) \tag{26}
\end{equation*}
$$

We define the integers R_{j} by

$$
\begin{equation*}
a^{\phi\left(p^{j}\right)}=1+R_{j} p^{j} \tag{27}
\end{equation*}
$$

Since $\left(1+R_{i+1} p^{i+1}\right)=\left(1+R_{i} p^{i}\right)^{p}$ we readily obtain $R_{i+1} \equiv R_{i} \bmod p^{i}$ and $R_{j} \equiv R_{i} \bmod p^{i}$ for all $j \geqslant i$. Defining positive integers l_{i} with

$$
l_{i}=\left(c_{i}^{\prime}\right)^{-1}\left(c_{i}^{\prime \prime} p^{-(m-t-1)}\right) R_{m-t-1}^{-1} \bmod p^{m}
$$

and noting that $2(m-t-1) \geqslant m$ we have

$$
\begin{aligned}
c_{i}^{\prime}+c_{i}^{\prime \prime} & \equiv c_{i}^{\prime}\left(1+l_{i} R_{m-t-1} p^{m-t-1}\right) \bmod p^{m} \\
& \equiv c_{i}^{\prime}\left(1+R_{m-t-1} p^{m-t-1}\right)^{l_{i}} \bmod p^{m} \\
& \equiv c_{i}^{\prime} a^{l_{i} \phi\left(p^{m-t-1}\right)} \bmod p^{m},
\end{aligned}
$$

and $\chi_{i}^{\prime}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)=\chi_{i}^{\prime}\left(c_{i}^{\prime}\right) e_{p^{t+1}}\left(c_{i}^{\prime} l_{i}\right)$.
Since $m-t-n-1 \geqslant t+1$ we have $R_{m-t-1} \equiv R_{m-t-n-1} \bmod p^{t+1}$ and

$$
\begin{equation*}
\prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)=e_{p^{t+1}}(L) \prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}\left(c_{i}^{\prime}\right), \quad L:=R_{m-t-n-1}^{-1} \sum_{i=1}^{s} c_{i}^{\prime \prime} p^{-(m-t-1)} \tag{28}
\end{equation*}
$$

Similarly, noting that $2(m-n-t-1) \geqslant m-n$,

$$
\begin{aligned}
v & =v^{\prime}+p^{-n}\left(c_{1}^{\prime \prime}+\cdots+c_{s}^{\prime \prime}\right) \\
& \equiv v^{\prime}\left(1+\left(v^{\prime}\right)^{-1} L R_{m-n-t-1} p^{m-n-t-1}\right) \bmod p^{m} \\
& \equiv v^{\prime} a^{\left(v^{\prime}\right)^{-1} \phi\left(p^{m-t-n-1}\right) L} \bmod p^{m-n},
\end{aligned}
$$

and

$$
\begin{align*}
\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}(v) & =\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(v^{\prime}\right) e_{\phi\left(p^{m}\right)}\left(p^{n} v^{\prime}\left(v^{\prime}\right)^{-1} \phi\left(p^{m-t-n-1}\right) L\right) \\
& =\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(v^{\prime}\right) e_{p^{t+1}}(L) . \tag{29}
\end{align*}
$$

By substituting (28) and (29) in (24) we get

$$
\begin{align*}
J_{B}= & p^{\frac{1}{2}(m(s-1)+n)} \delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right) \sum_{\substack{\left(\chi_{i}^{\prime \prime}\right)_{i}=\chi_{0} \\
i=1, \ldots, s}} \frac{\chi_{1}^{\prime} \chi_{1}^{\prime \prime}\left(A_{1}^{-1} B^{\prime} c_{1}^{\prime}\right) \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(A_{s}^{-1} B^{\prime} c_{s}^{\prime}\right)}{\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(v^{\prime}\right)} \tag{30}\\
= & p^{\frac{1}{2}(m(s-1)+n)} \delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right) \prod_{j=1}^{s} \chi_{j}^{\prime}\left(A_{j}^{-1} B^{\prime} c_{j}^{\prime} v^{\prime-1}\right) \\
& \times \prod_{i=1}^{s} \sum_{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}=\chi_{0}}} \chi_{i}^{\prime \prime}\left(A_{i}^{-1} B^{\prime} c_{i}^{\prime} v^{\prime-1}\right) .
\end{align*}
$$

Clearly this sum is zero unless each $A_{i}^{-1} B^{\prime} c_{i}^{\prime} v^{\prime-1}$ is a k_{i}-th power, when

$$
J_{B}=D_{1} \cdots D_{s} p^{\frac{1}{2}(m(s-1)+n)} \delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right) \prod_{i=1}^{s} \chi_{i}^{\prime}\left(A_{i}^{-1} B^{\prime} c_{i}^{\prime} v^{\prime-1}\right)
$$

4. The case $p=2$

As shown in [3] the sums (2) still have an evaluation (10) when $p=2$ and $m-n \geqslant 5$, with δ now defined by

$$
\begin{equation*}
\delta\left(\chi_{1}, \ldots, \chi_{s}\right)=\left(\frac{2}{v}\right)^{m-n}\left(\frac{2}{c_{1} \cdots c_{s}}\right)^{m} \omega^{\left(2^{n}-1\right) v} \tag{31}
\end{equation*}
$$

where c_{i}, v, and ω are defined as

$$
\begin{equation*}
\chi_{i}(5)=e_{2^{m-2}}\left(c_{i}\right), \quad 1 \leqslant c_{i} \leqslant 2^{m-2}, \quad 1 \leqslant i \leqslant s \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
v=2^{-n}\left(c_{1}+\cdots+c_{s}\right), \quad \omega:=e^{\pi i / 4} \tag{33}
\end{equation*}
$$

Theorem 4.1. Let $\chi_{1}, \ldots, \chi_{s}$ be mod 2^{m} characters with at least one of them primitive, and h be of the form (4). Suppose that $m \geqslant 2 t+n+5$.

If the $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ for some primitive characters $\chi_{i}^{\prime} \bmod 2^{m}$ such that $\chi_{1}^{\prime} \ldots \chi_{s}^{\prime}$ is induced by a primitive mod 2^{m-n} character, and the $A_{i}^{-1} B^{\prime} c_{i}^{\prime} v^{\prime-1} \equiv \alpha_{i}^{k_{i}} \bmod$ 2^{m} for some α_{i}, then

$$
\begin{equation*}
J_{B}\left(\vec{\chi}, h, 2^{m}\right)=2^{\frac{1}{2}(m(s-1)+n)} D_{1} \cdots D_{s} \chi_{1}\left(\alpha_{1}\right) \cdots \chi_{s}\left(\alpha_{s}\right) \delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right) \tag{34}
\end{equation*}
$$

where the c_{i}^{\prime} are defined by $\chi_{i}^{\prime}(5)=e_{2^{m-2}}\left(c_{i}^{\prime}\right), v^{\prime}=2^{-n} \sum_{i=1}^{s} c_{i}^{\prime}$ and $\delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right)$ is as in (31) with c_{i}^{\prime} and v^{\prime} replacing the c_{i} and v. Otherwise the sum is zero.

Proof. Suppose first that $m \geqslant n+t+5$ and at least one of the χ_{i} primitive $\bmod 2^{m}$. From Lemma 2.1 and Theorem 2.1 we can assume that $\chi_{i}=\left(\chi_{i}^{\prime}\right)^{k_{i}}$ with χ_{i}^{\prime} primitive $\bmod 2^{m}$ and $\prod_{i=1}^{s} \chi_{i}^{\prime}$ primitive $\bmod 2^{m-n}$, else the sum is zero. As the proof in Theorem 2.1 we know that $\chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ is primitive $\bmod 2^{m}$ and $\prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ is primitive mod 2^{m-n}. Hence using (17) and the evaluation for case $p=2$ from [3] we can write

$$
\begin{align*}
J_{B}\left(\vec{\chi}, h, 2^{m}\right)= & 2^{\frac{1}{2}(m(s-1)+n)} \\
& \times \sum_{\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=\chi_{0}} \frac{\chi_{1}^{\prime} \chi_{1}^{\prime \prime}\left(A_{1}^{-1} B^{\prime}\left(c_{1}^{\prime}+c_{1}^{\prime \prime}\right)\right) \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(A_{s}^{-1} B^{\prime}\left(c_{s}^{\prime}+c_{s}^{\prime \prime}\right)\right)}{\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}(v)} \tilde{\delta} \tag{35}
\end{align*}
$$

where the $\chi_{i}^{\prime} \chi_{i}^{\prime \prime}(5)=e_{2^{m-2}}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right), v=2^{-n} \sum_{i=1}^{s}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)$ and

$$
\tilde{\delta}=\delta\left(\chi_{1}^{\prime} \chi_{1}^{\prime \prime}, \ldots, \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\right)=\left(\frac{2}{v}\right)^{m-n}\left(\frac{2}{\prod_{i=1}^{s}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)}\right)^{m} \omega^{\left(2^{n}-1\right) v}
$$

From $\left(\chi_{i}^{\prime \prime}\right)^{k_{i}}=1$ we have $e_{2^{m-2}}\left(c_{i}^{\prime \prime} k_{i}\right)=1$ and $2^{m-t-2} \mid c_{i}^{\prime \prime}$. Hence

$$
\begin{equation*}
c_{i}^{\prime}+c_{i}^{\prime \prime} \equiv c_{i}^{\prime} \quad \bmod 2^{m-t-2}, \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
v=2^{-n} \sum_{i=1}^{s}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right) \equiv 2^{-n} \sum_{i=1}^{s} c_{i}^{\prime}=v^{\prime} \quad \bmod 2^{m-n-t-2} \tag{37}
\end{equation*}
$$

So for $m \geqslant n+t+5$ we have $c_{i}^{\prime}+c_{i}^{\prime \prime} \equiv c_{i}^{\prime} \bmod 8, v \equiv v^{\prime} \bmod 8$, giving

$$
\left(\frac{2}{c_{i}^{\prime}+c_{i}^{\prime \prime}}\right)=\left(\frac{2}{c_{i}^{\prime}}\right), \quad\left(\frac{v}{p}\right)=\left(\frac{v^{\prime}}{p}\right), \quad \omega^{\left(2^{n}-1\right) v}=\omega^{\left(2^{n}-1\right) v^{\prime}},
$$

and $\tilde{\delta}=\delta\left(\chi_{1}^{\prime} \chi_{1}^{\prime \prime}, \ldots, \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\right)=\delta\left(\chi_{1}^{\prime}, \ldots, \chi_{s}^{\prime}\right)$. From $2^{m-t-2} \mid c_{i}^{\prime \prime}$ we know that the $\chi_{i}^{\prime \prime}$ are all mod 2^{t+2} characters. Suppose now that $m \geqslant 2 t+n+4$. Then (36) and (37) give $c_{i}^{\prime}+c_{i}^{\prime \prime} \equiv c_{i}^{\prime} \bmod 2^{t+2}, v \equiv v^{\prime} \bmod 2^{t+2}$, and

$$
\chi_{i}^{\prime \prime}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)=\chi_{i}^{\prime \prime}\left(c_{i}^{\prime}\right), \quad \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime \prime}(v)=\chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime \prime}\left(v^{\prime}\right)
$$

For $p=2$ we define the integers $R_{j}, j \geqslant 2$ by

$$
5^{2^{j-2}}=1+R j 2^{j} .
$$

From $R_{i+1} \equiv R_{i}+2^{i-1} R_{i}^{2}$ we have the relationship $R_{j} \equiv R_{i} \bmod 2^{i-1}$ for all $j \geqslant i \geqslant 2$. Define a positive integer $l_{i}:=\left(c_{i}^{\prime}\right)^{-1} c_{i}^{\prime \prime} 2^{-(m-t-2)} R_{m-t-2}^{-1} \bmod 2^{m}$. Since $2(m-t-2) \geqslant m$ we have

$$
\begin{array}{rlr}
c_{i}^{\prime}+c_{i}^{\prime \prime} & \equiv c_{i}^{\prime}\left(1+l_{i} R_{m-t-2} 2^{m-t-2}\right) & \bmod 2^{m} \\
& \equiv c_{i}^{\prime}\left(1+R_{m-t-2} 2^{m-t-2}\right)^{l_{i}} & \bmod 2^{m} \\
& \equiv c_{i}^{\prime} 5^{l_{i} 2^{m-t-4}} \bmod 2^{m}, &
\end{array}
$$

and $\chi_{i}^{\prime}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)=\chi_{i}^{\prime}\left(c_{i}^{\prime}\right) e_{2^{t+2}}\left(c_{i}^{\prime} l_{i}\right)$. If $m \geqslant 2 t+n+5$, then

$$
R_{m-t-2} \equiv R_{m-t-n-2} \bmod 2^{m-t-n-3} \equiv R_{m-t-n-2} \bmod 2^{t+2}
$$

giving

$$
\begin{equation*}
\prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}\left(c_{i}^{\prime}+c_{i}^{\prime \prime}\right)=e_{2^{t+2}}(L) \prod_{i=1}^{s} \chi_{i}^{\prime} \chi_{i}^{\prime \prime}\left(c_{i}^{\prime}\right), \quad L:=R_{m-t-n-2}^{-1} \sum_{i=1}^{s} c_{i}^{\prime \prime} 2^{-(m-t-2)} \tag{38}
\end{equation*}
$$

Similarly, since $2(m-n-t-2) \geqslant m-n$,

$$
\begin{aligned}
v & =v^{\prime}+2^{-n}\left(c_{1}^{\prime \prime}+\cdots+c_{s}^{\prime \prime}\right) \\
& \equiv v^{\prime}\left(1+\left(v^{\prime}\right)^{-1} L R_{m-n-t-2} 2^{m-n-t-2}\right) \\
& \equiv v^{\prime} 5^{\left(v^{\prime}\right)^{-1} 2^{m-t-n-4} L} \quad \bmod 2^{m-n}
\end{aligned}
$$

and

$$
\begin{equation*}
\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}(v)=\chi_{1}^{\prime} \chi_{1}^{\prime \prime} \cdots \chi_{s}^{\prime} \chi_{s}^{\prime \prime}\left(v^{\prime}\right) e_{2^{t+2}}(L) \tag{39}
\end{equation*}
$$

By substituting (38) and (39) in (35) we get (30) and the rest of the proof follows unchanged from p odd.

5. Imprimitive characters or non-prime power moduli

We assumed in Theorem 1.1 that at least one of the characters is primitive $\bmod p^{m}$. This is a fairly natural assumption, for example if $p \nmid k_{i}$ for at least one i and none of the χ_{i} are primitive $\bmod p^{m}$ then we can reduce to a $\bmod p^{m-1}$ sum.

Lemma 5.1. Let p be an odd prime and h be of the form (4). If $\chi_{1}, \ldots, \chi_{s}$ are imprimitive characters mod p^{m} with $p \nmid k_{i}$ for some i and $m \geqslant 2$, then

$$
J_{B}\left(\vec{\chi}, h, p^{m}\right)=p^{s-1} J_{B}\left(\vec{\chi}, h, p^{m-1}\right) .
$$

Proof. Suppose that $\chi_{1}, \ldots, \chi_{s}$ are p^{m-1} characters with $p \nmid k_{i}$ for some i. Writing $x_{i}=u_{i}+v_{i} p^{m-1}$, with $u_{i}=1, \ldots, p^{m-1}$ and $v_{i}=1, \ldots, p$ gives
where the $\chi_{i}\left(u_{i}\right)$ allow us to restrict to $\left(u_{i}, p\right)=1$. Expanding we see that

$$
\begin{equation*}
\sum_{i=1}^{s} A_{i}\left(u_{i}+v_{i} p^{m-1}\right)^{k_{i}} \equiv \sum_{i=1}^{s} A_{i} u_{i}^{k_{i}}+p^{m-1}\left(\sum_{i=1}^{s} A_{i} k_{i} u_{i}^{k_{i}-1} v_{i}\right) \equiv B \bmod p^{m} \tag{40}
\end{equation*}
$$

as long as $m \geqslant 2$. Thus the u_{i} must satisfy

$$
\begin{equation*}
\sum_{i=1}^{s} A_{i} u_{i}^{k_{i}} \equiv B \quad \bmod p^{m-1} \tag{41}
\end{equation*}
$$

and for any u_{1}, \ldots, u_{s} satisfying (41), to satisfy (40) the v_{i} must satisfy

$$
\begin{equation*}
\sum_{i=1}^{s} A_{i} k_{i} u_{i}^{k_{i}-1} v_{i} \equiv p^{-(m-1)}\left(B-\sum_{i=1}^{s} A_{i} u_{i}^{k_{i}}\right) \quad \bmod p \tag{42}
\end{equation*}
$$

If p does not divide one of the exponents, $p \nmid k_{1}$ say, then for each of the p^{s-1} choices of v_{2}, \ldots, v_{s} there will be exactly one v_{1} satisfying (42)

$$
v_{1} \equiv\left(p^{-(m-1)}\left(B-\sum_{i=1}^{s} A_{i} u_{i}^{k_{i}}\right)-\sum_{i=2}^{s} A_{i} k_{i} u_{i}^{k_{i}-1} v_{i}\right)\left(A_{1} k_{1} u_{1}^{k_{1}-1}\right)^{-1} \quad \bmod p
$$

and

$$
J_{B}\left(\vec{\chi}, h, p^{m}\right)=p^{s-1} \sum_{\substack{u_{1}, \ldots, u_{s}=1 \\ \sum_{i=1}^{s} A_{i} u_{i}^{k_{i}} \equiv B \bmod p^{m-1}}}^{p^{m-1}} \chi_{1}\left(u_{1}\right) \cdots \chi_{s}\left(u_{s}\right)=p^{s-1} J_{B}\left(\vec{\chi}, h, p^{m-1}\right) .
$$

If the χ_{i} are all imprimitive $\bmod p^{m}$ and $p \mid k_{i}$ for all i then we still reduce to a $\bmod p^{m-1}$ sum, but as with a Heilbronn sum it seems unlikely that there is a nice evaluation:

$$
J_{B}\left(\vec{\chi}, h, p^{m}\right)=p^{s} \sum_{\substack{x_{1}=1 \\ A_{1} x_{1}^{k_{1}}+\cdots+A_{s} x_{s}^{k_{s}} \equiv B \bmod p^{m}}}^{p^{m-1}} \chi_{1} \chi_{1}\left(x_{1}\right) \cdots \chi_{s}\left(x_{s}\right) .
$$

When q is composite the following lemma can be used to reduce sums of the form (3) to the case of prime power modulus.

Lemma 5.2. Suppose that $\chi_{1}, \ldots, \chi_{s}$ are mod uv characters with $(u, v)=1$. Writing $\chi_{i}=\chi_{i}^{\prime} \chi_{i}^{\prime \prime}$ for mod u and mod v characters χ_{i}^{\prime} and $\chi_{i}^{\prime \prime}$ respectively, then

$$
J_{B}(\vec{\chi}, h, u v)=J_{B}\left(\overrightarrow{\chi^{\prime}}, h, u\right) J_{B}\left(\overrightarrow{\chi^{\prime \prime}}, h, v\right) .
$$

Proof. Suppose that χ_{i} are mod $u v$ characters with $(u, v)=1$, and $\chi_{i}=\chi_{i}^{\prime} \chi_{i}^{\prime \prime}$, where χ_{i}^{\prime} is a $\bmod u$ and $\chi_{i}^{\prime \prime}$ a mod v character. Writing $x_{i}=e_{i} v v^{-1}+f_{i} u u^{-1}$, where $u u^{-1}+v v^{-1}=1$ and $e_{i}=1, \ldots, u, f_{i}=1, \ldots, v$, gives

$$
\begin{aligned}
J_{B}(\vec{\chi}, h, u v)= & \sum_{\substack{e_{1}=1 \\
h\left(e_{1} v v^{-1}+f_{1} u u^{-1}, \ldots, e_{s} v v^{-1}+f_{s} u u^{-1}\right) \equiv B \bmod u \\
h\left(e_{1} v v^{-1}+f_{1} u u^{-1}, \ldots, e_{s} v v^{-1}+f_{s} u u^{-1}\right) \equiv B \bmod v}}^{v} \cdots \sum_{e_{s}}^{u} \chi_{\chi_{1}\left(e_{1} v v^{-1}+f_{1} u u^{-1}\right) \cdots \chi_{s}\left(e_{s} v v^{-1}+f_{s} u u^{-1}\right)}=\sum_{\substack{e_{1}=1 \\
h\left(e_{1}, \ldots, e_{s}\right) \equiv B \bmod u}}^{u} \cdots \sum_{e_{s}=1}^{u} \chi_{1}^{\prime}\left(e_{1}\right) \cdots \chi_{s}^{\prime}\left(e_{s}\right) \sum_{\substack{f_{1}=1 \\
h\left(f_{1}, \ldots, f_{s}\right) \equiv B \bmod v}}^{v} \cdots \sum_{f_{s}=1}^{v} \chi_{1}^{\prime \prime}\left(f_{1}\right) \cdots \chi_{s}^{\prime \prime}\left(f_{s}\right) \\
= & J_{B}\left(\overrightarrow{\chi^{\prime}}, h, u\right) J_{B}\left(\overrightarrow{\chi^{\prime \prime}}, h, v\right) .
\end{aligned}
$$

References

[1] B.C. Berndt, R.J. Evans, and K.S. Williams, Gauss and Jacobi Sums, Canadian Math. Soc. series of monographs and advanced texts, vol. 21, Wiley, New York 1998.
[2] T. Cochrane and Z. Zheng, Pure and mixed exponential sums, Acta Arith. 91 (1999), no. 3, 249-278.
[3] M. Long, V. Pigno, and C. Pinner, Evaluating Prime Power Gauss and Jacobi Sums, arXiv:1410.6179 [math.NT].
[4] I. Niven, H.S. Zuckerman, and H. L. Montgomery, An Introduction to The Theory of Numbers, 5th edition, John Wiley \& Sons, Inc. 1991.
[5] V. Pigno and C. Pinner, Binomial Character Sums Modulo Prime Powers, J. Théor. Nombres Bordeaux 28 (2016), no. 1, 39-53.
[6] W. Zhang and T. Wang, A note on the Dirichlet characters of polynomials, Math. Slovaca 64 (2014), no. 2, 301-310.
[7] W. Zhang and W. Yao, A note on the Dirichlet characters of polynomials, Acta Arith. 115 (2004), no. 3, 225-229.
[8] W. Zhang and Z. Xu, On the Dirichlet characters of polynomials in several variables, Acta Arith. 121 (2006), no. 2, 117-124.

Addresses: Badria Alsulmi: Department of Mathematics, Umm al-Quara University, Mecca 24382, Saudi Arabia;
Vincent Pigno: Department of Mathematics \& Statistics, California State University, Sacramento, Sacramento, CA 95819, USA;
Christopher Pinner: Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA.
E-mail: bmsulmi@uqu.edu.sa, vincent.pigno@csus.edu, pinner@math.ksu.edu
Received: 7 March 2016; revised: 3 October 2016

[^0]: The second author acknowledges support of California State University, Sacramento's Provost's Research Incentive Fund.

 2010 Mathematics Subject Classification: primary: 11L10, 11L40; secondary: 11L03,11L05

