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IMAGES OF POLYNOMIAL MAPS ON AMPLE FIELDS

Michiel Kosters

Abstract: In this article we study the following problem. Let k be an infinite field and let
f ∈ k[x]. Consider the evaluation map fk : k → k. Assume that fk is not surjective. Is kr fk(k)
infinite? We give a positive answer to this question when k is a perfect ample field. In fact,
we prove that |k r fk(k)| = |k|. This conclusion follows from a similar statement about finite
morphisms between normal projective curves over perfect ample fields.
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1. Introduction

1.1. Problem and results

A very natural problem is the following one.

Problem 1. Let k be an infinite field and let f ∈ k[x]. Consider the evaluation
map fk : k → k. Assume that fk is not surjective. Is k r fk(k) infinite?

This question was asked by Philipp Lampe on mathoverflow as Question 6820
in 2009. The problem is still unsolved in general. It is not hard to see that the
problem has a positive answer when k is Hilbertian. Number fields are for example
Hilbertian. Some other cases can be handled using topological arguments. In this
article we will positively answer this problem for perfect ample fields. Our proof
relies on valuation theory. Let us first define what a ample field is following [5].

Definition 1.1. A field k is called ample if every irreducible k-curve C with
a k-rational smooth point has infinitely many k-points. In literature one often
uses the word large instead of ample.

Note that ample fields are infinite. For more information on ample fields see the
survey [5]. Some examples of ample fields are R, Qp (p prime), l((t)) (where l is
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a field), infinite algebraic extensions of finite fields. Furthermore, finite extensions
of ample fields are ample. In the definition of ample field we can replace the word
smooth by normal if k is perfect [4, Corollary 4.3.33 and Lemma 8.2.21].

Problem 1 is also motivated by the case when k is a finite field. Let k be a finite
field and let f ∈ k[x] be a non constant polynomial. Assume that the evaluation
map fk : k → k is not surjective. Then one has |k r fk(k)| > |k|−1

deg(f) ([7]). This
result seems to suggest a positive answer to the problem when k is an infinite
algebraic extension of a finite field, although the author does not know how to use
the aforementioned result to prove this.

Our main theorem is the following (we follow [4] for the definition of a normal
projective curve).

Theorem 1.2. Let k be a perfect ample field. Let C,D be normal projective
curves over k. Let f : C → D be a finite morphism. Suppose that the induced map
fk : C(k)→ D(k) is not surjective. Then one has |D(k) r fk(C(k))| = |k|.

The following corollary gives a positive answer to our problem for perfect ample
fields, since ample fields are infinite.

Corollary 1.3. Let k be a perfect ample field. Then the following hold.
i. Let f ∈ k(x) such that the induced map fk : P1

k(k)→ P1
k(k) is not surjective.

Then one has |P1
k(k) r fk(P1

k(k))| = |k|.
ii. Let f ∈ k[x] such that the induced evaluation map fk : k → k is not surjec-

tive. Then one has |k r fk(k)| = |k|.

We do not know how to prove Theorem 1.2 or Corollary 1.3 when k is not
perfect.

1.2. Strategy

As mentioned before, the proof of Theorem 1.2 relies on valuation theory. More
specifically, it relies on a Galois theoretic approach to valuation theory.

We will sketch the proof of 1.3i when k is an infinite algebraic extension of
a finite field, where we exclude some of the ramification issues. Let f ∈ k(x) and
consider the map fk : P1

k(k)→ P1
k(k) which is assumed to be non surjective. This

map fk corresponds to an extension of function fields L = k(x) ⊇ K = k(f(x)). We
use Galois theory to study the extension L/K. SupposeM/K is finite normal with
group G = AutK(M) such that the G-set X = HomK(L,M) of K-embeddings
of L in M is not empty. To a rational places (or prime divisors) P of K we can
associate a Frobenius element (P,M) ∈ G up to conjugation. For a rational places
P of K the number of rational places above it in L is equal to #X(P,M), the
number of points of X which are fixed by (P,M). A rational place P of K has
no rational places above it in L iff X(P,M) = ∅. Suppose that this is the case for
a rational place P ′ of K. Hence it is enough to show that there are infinitely many
rational points Q of K with (Q,M) = (P ′,M). We parametrize the set of such Q
by the set of rational places of some geometrically irreducible curve over k. Such
a curve, by Hasse-Weil, has infinitely rational places. Hence the result follows.
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In the general case, one needs to make one conceptual adjustment: the concept
of a Frobenius element is replaced by the splitting of an exact sequence from
valuation theory.

2. Prerequisites

In this section we will give some of the prerequisites on a Galois theoretic approach
to valuation theory and give the connection with curves. Furthermore, this section
is used to fix some notation. Most statements in this section are well-known, except
for possibly Theorem 2.4ii and Proposition 2.5.

2.1. Valuations and curves

Definition 2.1. Let K be a field. Then a valuation ring on K is a subring O of
K such that for all x ∈ K∗ one has x ∈ O or x−1 ∈ O.

Such a valuation ring is a local ring and it is integrally closed in K. Instead of
writing O for a valuation ring, we often view a valuation ring as a point P , with
corresponding valuation ring OP , maximal ideal mP and residue field kP . We say
that (K,P ) is a valued field.

Let (K,P ) be a valued field. Let L be a field extension of K. A valuation
Q on L is an extension of P if OQ ∩K = OP . We denote such an extension by
(K,P ) ⊆ (L,Q). Such an extension is called finite (Galois, normal, . . . ) if L/K is
finite (Galois, normal, . . . ).

Definition 2.2. Let k be a field. A function field over k is a finitely generated
field extension of k of transcendence degree 1.

A morphism between two function fields K and L over k is a k-algebra mor-
phism τ : K → L such that L/τ(K) is a finite field extension.

Theorem 2.3. There is an anti-equivalence of categories between the category of
normal projective curves over k with finite morphisms and the category of function
fields over k. This equivalence maps a curve C to its function field k(C) and a finite
morphism C → D to the induced inclusion k(D) ⊆ k(C).

Proof. See [4, Proposition 7.3.13, Remark 7.3.14]. �

Let C be a normal projective curve over a field k. Each closed point P gives
rise to a valuation ring on k(C) which contains k but is not equal to k(C), namely
its stalk OP . Conversely, every such valuation ring corresponds to a point. This
also motivates our notations for valuation rings. The set of such valuation rings is
denoted by PK/k. We let P1

K/k ⊆ PK/k be the subset consisting of valuation ring
P which satisfy kP = k. When K = k(C), the set P1

K/k corresponds to C(k).
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2.2. Galois theory of valuations

We refer to [3] for a Galois theoretic approach to valuation theory. We recall some
of the important statements.

Let K be a field with valuation P and let M be a normal extension of K
with group G = AutK(M). Let Q be an extension of P to M . Set DQ,K =
{g ∈ G : gQ = Q} (decomposition group). Note that we have a natural map
DQ,K → AutkP (kQ). The kernel of this map is called the inertia group and is
denoted by IQ,K .

The following theorem summarizes the results from general valuation theory
which we need later on.

Theorem 2.4. Let L be an intermediate extension of M/K. The following hold:

i. The set of valuation rings extending P to M is not empty and the group G
acts transitively on this set.

ii. The sequence

0→ IQ,K → DQ,K → AutkP (kQ)→ 0

is exact. It is right split as topological groups if kQ is algebraically closed.
iii. One has DQ,L = AutL(M) ∩DQ,K and IQ,L = AutL(M) ∩ IQ,K .
iv. If L/K is normal, then the maps DQ,K → DQ|L,K and IQ,K → IQ|L,K are

surjective.

Proof. i: See [3, Proposition 5.6].
ii: See [3, Theorem 3.8 iii].
iii: Follows directly from the definitions.
iv: See [3, Theorem 3.6]. �

Let H be a group acting on a set X. Then by H\X we denote the set of orbits
of this action. For a subset S ⊆ H we denote by XS = {x ∈ X : ∀s ∈ S, s(x) = x}
the set of points which are fixed by S.

One of the reasons for assuming that k is perfect in our main theorem in the
following proposition.

Proposition 2.5. Let (K,P ) be a valued field and let L be a finite algebraic
extension of K. Assume that kP is perfect. Let (M,Q) ⊇ (K,P ) be a finite
normal extension of valued fields with group G = AutK(M) such that the G-set
X = HomK(L,M) is not empty. Then the cardinality of the set of valuation rings
P ′ on L extending P such that kP ′ = kP is equal to # (IQ,K \X)

DQ,K / IQ,K .

Proof. Note that IQ,K acts on X. The set of orbits is denoted by IQ,K \X.
The group DQ,K / IQ,K naturally acts on IQ,K \X. See [3, Corollary 3.18] for the
proof. �
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2.3. Function fields and ramification

Proposition 2.6. Let K be a function field over a perfect field k. Let k be an
algebraic closure of k in an algebraic closure of K. The following hold:

i. Let M/K be a finite normal extension. Then only finitely many primes
P ∈ PK/k have an extension Q ∈ PM/k with the property that IQ,K 6= 0.

ii. For all primes Q ∈ PkK/k one has IQ,K = 0. Furthermore, if k is al-
gebraically closed in K (k is the full constant field of K), then a prime
P ∈ PK/k has a unique extension to PkK/k̄ if and only if P ∈ P1

K/k.

Proof. i. Since valuation extend uniquely in purely inseparable field extensions,
we may assume that M/K is Galois. In that case, the statement is well-known:
only finitely many primes ramify.

ii. This follows from [6, Theorem 3.6.3]. �

3. Proofs of the theorems

Definition 3.1. Let K be a function field over a field k and let P ∈ P1
K/k. Let

K be an algebraic closure of K. Let M/K be a normal extension of K inside
K with group G = AutK(M). Let k be the algebraic closure of k inside K.
Set Γ = Autk(k). Let Q be an extension of P to M . A Frobenius map for
Q/P is a continuous morphism ϕ : Γ → G such that the diagram, where N =
Aut(M/M ∩ (kK)) and π and ψ are the restriction maps,

Γ
ϕ //

ψ **

G

π
��

Aut(k ∩M/k) ∼= Aut((M ∩ (kK))/K) =: G/N

commutes and such that im(ϕ) IQ,K = DQ,K . The set of all such Frobenius maps
is denoted by Frob(Q/P ).

For the next proposition and lemma assume thatM/K is a normal extension of
function fields over a perfect field k inside K. Let G = AutK(M). Let P ∈ P1

K/k

with Q above it in M .
Suppose ϕ ∈ Frob(Q/P ). We use the notation as in the definition of a Frobe-

nius map. Consider Graph(ϕ) = {(γ, ϕ(γ)) : γ ∈ Γ} ⊆ Γ×G/N G = Aut(kM/K),
which is a closed subgroup. Set Mϕ = (kM)Graph(ϕ). Note that Mϕ/K is a finite
extension. Furthermore, since k is perfect, k is integrally closed in Mϕ (k is the
full constant field of Mϕ). Finally, we have kMϕ = kM . We have the following
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diagram:

kM = kMϕ

Mϕ = (kM)Graph(ϕ)

Graph(ϕ)
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Proposition 3.2. There is ϕ ∈ Frob(Q/P ) such that P1
Mϕ/k is not empty.

Proof. Let Q be an extension of Q to kM . We have the following split exact
sequence (Theorem 2.4ii):

0→ IQ,K → DQ,K → Γ→ 0.

Let ϕ0 : Γ → DQ,K ⊆ Γ ×G/N G be such a splitting. Note that im(ϕ0) is the
graph of a function ϕ : Γ → DQ,K . One has im(ϕ0) IQ,K = DQ,K . This gives
im(ϕ) IQ,K = DQ,K as required (Theorem 2.4iv). The commutativity of the dia-
gram follows since Graph(ϕ) = im(ϕ0) ⊆ Γ×G/N G.

We will show Q′ = Q|Mϕ ∈ P1
Mϕ/k. By construction we have DQ,K ⊇

Graph(ϕ). Hence we obtain DQ,Mϕ = DQ,K ∩Aut((kM)/Mϕ) = Aut((kM)/Mϕ)

(Theorem 2.4iii). Hence Q is the unique prime above Q′ in kM (Theorem 2.4i)
and Q′ is rational (Proposition 2.6ii). �

Lemma 3.3. Let ϕ ∈ Frob(Q/P ). Consider the restriction map ρ : P1
Mϕ/k →

P1
K/k. Let P0 ∈ im(ρ) with the property that any extension Q0 of P0 to M satisfies

IQ0,K = 1. Then there is a prime Q′0 of M above P0 with DQ′0,K
= im(ϕ).

Proof. Let Q′′0 be a valuation on kM extending P0 such that P ′0 = Q′′0 |Mϕ ∈
P1
Mϕ/k (Theorem 2.4i). Note that IQ′′0 ,K = 1 (this follows from Proposition 2.6).

Set Q′0 = Q′′0 |M and P ′′0 = Q′′0 |kK . As P ′0 is rational, the natural injective map

DQ′′0 ,K
∩Graph(ϕ) = DQ′′0 ,M

ϕ ∼= Aut(kQ′′0 /kP ′0)→ DQ′′0 ,K
∼= Aut(kQ′′0 /k)

is surjective (Theorem 2.4iv). Hence we find DQ′′0 ,K
⊆ Graph(ϕ). The map

DQ′′0 ,K
→ DP ′′0 ,K

= Γ is surjective (Theorem 2.4iv, [6, Theorem 3.6.3]). As
Graph(ϕ) is a graph, this shows that DQ′′0 ,K

= Graph(ϕ). We deduce DQ′0,K
=

im(ϕ) (Theorem 2.4iv). �

Proof of Theorem 1.2. With the help of Theorem 2.3 we see that equivalently
we need to prove the following. Let L/K be an extension of function fields over
k. Assume that the induced map fk : P1

L/k → P
1
K/k is not surjective. Show that

|P1
K/k r im(fk)| = |k|.
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Let M be a finite normal extension of K such that X = HomK(L,M) 6= ∅.
Assume P ∈ P1

K/k, P 6∈ im(fk). Let Q be an extension of P to M . Let ϕ ∈
Frob(Q/P ) with P1

Mϕ/k 6= ∅ (Proposition 3.2). Since k is an ample field, one has
|P1
Mϕ/k| = |k| ([2, Proposition 5.4.3]). Note that we have im(ϕ) IQ,K = DQ,K . As

P 6∈ im(fk) we conclude from Proposition 2.5 that (IQ,K \X)
DQ,K / IQ,K = ∅. This

implies X im(ϕ) = ∅. Consider the restriction map ρ : P1
Mϕ/k → P

1
K/k. Let T be

the set of P0 ∈ im(ρ) such that for any extension Q0 of P0 toM one has IQ0,K = 1.
Then T has cardinality |k| as well (Propostion 2.6i, Theorem 2.4i). For P0 ∈ T
there is a prime Q0 of M above P0 with im(ϕ) = DQ0,K (Lemma 3.3). We find

(IQ0,K \X)
DQ0,K

/ IQ0,K = XDQ0,K = X im(ϕ) = ∅.

From Proposition 2.5 we conclude that P0 6∈ im(fk). This finishes the proof. �

Proof of Corollary 1.3. i: The statement is true if f is constant. Assume f ∈
k(x) is not constant. Then f induces a finite morphism P1

k → P1
k and we apply

Theorem 1.2.
ii: This follows from i, since the map sends the point at infinity to the point

at infinity. �

Remark 3.4. In the proof of Theorem 1.2 one can reduce directly to the case
that the finite morphism C → D is separable. Indeed, one can decompose C → D
into a map C → C ′ → D, with C → C ′ purely inseparable and C ′ → D separable,
by field theory. Consider the map C(k) → C ′(k). Since k is perfect, this map is
a bijection and hence we only need to consider the finite separable map C ′ → D.
We did not include this from the beginning because we hope that our slightly more
general approach one day might lead to a proof when k is not perfect.

Remark 3.5. One can also imagine a strategy to prove Corollary 1.3ii using the
following equivalent definition of ample fields from [2, Lemma 5.3.1]: k is an ample
field if and only if k is existentially closed in k((T )). This approach was suggested
in [1], following ideas of Koenigsmann.
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