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APPROXIMATION AND GENERALIZED GROWTH
OF SOLUTIONS TO A CLASS OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

Susheel Kumar, Girja S. Srivastava

Abstract: In the present paper, we study the approximation and growth of solutions to a class of
elliptic partial differential equations. The characterizations of generalized order and generalized
type of solutions to a class of elliptic partial differential equations have been obtained in terms
of approximation errors.
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1. Introduction

Following McCoy [4] , we first give some definitions. A Helmholtz type equation
is given by

£[H] := [∂rr + r−1∂r + r−2∂θθ + F (r2)]H(r, θ) = 0. (1.1)

Here (r, θ) are polar coordinates and F is an entire function. Let H(r, θ) =
H(r, eiθ) be a regular solution of (1.1) in some sufficiently small star-shaped neigh-
borhood Ω about origin. LetR be the radius of convergence of this regular solution.
Following Bergman [1], we have

H(r, θ) = B[f(z)] =

∫ +1

−1

E(r2, t) f(σ) dµ(t) ,

where z = reiθ ∈ Ω,σ = z(1 − t2)/2 , dµ(t) = (1 − t2)−1/2dt, and the associated
function f is analytic for 2z ∈ Ω . The Taylor series expansion of the kernel E(r2, t)
is given as

E(r2, t) = 1 +

∞∑
n=1

t2nQ(2n)(r2).
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For a fixed r > 0, the kernel E(r2, t) is analytic for t ∈ [−1,+1] and for every
fixed t ∈ [−1,+1], it is entire for r > 0. The Taylor coefficients Q(2n)(r2) are entire
function solutions of the system

∂
(
Q(2)(r2)

)
∂r2

+ 2F (r2) = 0, Q(0)(r2) = 1,

(2n+ 1)
∂
(
Q(2n+2)(r2)

)
∂r2

+ 2
∂
(
r2Q(2n)(r2)

)
∂r2

+ F (r2)Q(2n)(r2)− n
∂
(
Q(2n)(r2)

)
∂r2

= 0,

Q(2n+2)(r2)|r=0 = 0, n = 1, 2, 3 . . .

McCoy [4] defined the basic set of particular solutions

Φn(r, eiθ) = [rnGn(r2)/RnGn(R2)]einθ

normalized by the conditions

Φn(r, eiθ) = einθ, n = 0, 1, 2, 3 . . .

Here

Gn(r2) =

∫ +1

−1

E(r2, t)
(
1− t2

)n
dµ(t).

This set is complete relative to compact convergence on a disk DR = {z : |z| < R}.
Let Im(DR) be the space of regular solutions of (1.1) on DR. Then H ∈ Im(DR)
has the expansion in a uniformly convergent series

H(r, eiθ) =

∞∑
n=0

anΦn(r, eiθ),

where {an} is a sequence of real numbers. If A(DR) is the space of analytic
functions on DR, then f ∈ A(DR) has the Taylor series expansion

f(z) =

∞∑
n=0

an z
n, z ∈ DR.

McCoy [4] associated H with the analytic function f by defining an integral oper-
ator as given below:

H(r, eiθ) = Tε[f(z)] =
1

2πi

∫
|ζ|=1−ε

KR(ζ)f(z/ζ)dζ/ζ, z = reiθ/R,
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where ε > 0 is arbitrarily small. The kernel for this integral operator defined over
the basis {Φn} is given by

KR(ζ) =

∞∑
n=0

ζn[Gn(r2)/Gn(R2)].

For ε > 0, there exists an integer N(ε) such that for all n > N(ε), we have

(1− ε) 6 |Gn(r2)/Gn(R2)| 6 (1 + ε).

Thus we can say that the kernel of this operator has uniformly convergent expan-
sion. The above integral operator maps the function f ∈ A(DR(1−ε)) onto regular
solution H ∈ Im(DR(1−ε)) and the disk of regularity of H coincides with the disk
of analyticity of f. The maximum modulus of H on Dr is given by

M(r,H) = max{|H(s, eiθ)| : s 6 r}.

Let H be regular on the closure ∆∗ of the unit disk ∆ = {z : |z| < 1} and define
the norm of H as

||H|| =

||H||p =
[∫∫

∆∗
|H|prdrdθ

]1/p
, 1 6 p <∞,

||H||∞ = lim
r→1−

M(r,H).

The spaces of polynomial solutions of fixed degree n = 0, 1, 2, ... are given by

Πn =

{
P : P (r, eiθ) =

n∑
k=0

ckΦk(r, eiθ), ck ∈ R

}
.

We define the approximation errors En(H) (see [4]) by

En(H) = inf
P
{||H − P || : P ∈ Πn} , n = 0, 1, 2....

The definition of order and type for regular solution H are the same as those for
the associated analytic function f (see [4], pp. 209). Hence the order ρ of regular
solution H on DR is given by

ρ = lim
r→R−

sup
ln+ ln+M(r,H)

ln[R/(R− r)]
,

where

ln+ x =

{
lnx, x > 1;

0, 0 < x 6 1.

Further, for 0 < ρ <∞ the type σ of regular solution H on DR is given by

σ = lim
r→R−

sup
ln+M(r,H)

[R/(R− r)]ρ
.
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McCoy [4] obtained the characterizations of order and type of function H in terms
of approximation errors. Later, in [5], using the concept of index, McCoy studied
the growth of entire solutions of the Helmoltz equation. Using the concept of
(p, q) growth, Kumar [3] studied the relation between the growth and Chebyshev
approximation of entire function solutions of Helmoltz equation. Srivastava and
Kumar [7] obtained the characterizations of generalized growth of function H in
terms of approximation errors and Taylor series coefficients It is clear from the
above that the definition of σ is not valid if the order ρ = ∞. For such cases,
following Janik [2] and Seremeta [6] we define the generalized order and generalized
type of function H. Hence, let L0 denote the class of functions h satisfying the
following conditions:

(i) h is defined on [a,∞) and is positive, strictly increasing, differentiable and
h(x) tends to ∞ as x→∞,

(ii) lim
x→∞

h{(1+1/ψ(x))x}
h(x) = 1, for every function ψ such that ψ(x) → ∞ as x

tends to ∞.
(iii) let Λ denote the class of functions h satisfying condition (i) and

lim
x→∞

h(cx)

h(x)
= 1, c > 0,

i.e., h is slowly increasing.
For α ∈ Λ and β ∈ L0 we define the generalized order of H as

ρ(α, β,H) = lim
r→R−

sup
α[ln+M(r,H)]

β[R/(R− r)]
. (1.2)

Further, for α, β, γ ∈ Λ and 0 < ρ <∞, we define the generalized type of H as

σ(α, β, γ,H) = lim
r→R−

sup
α[ln+M(r,H)]

β{[γ{R/(R− r)}]ρ}
. (1.3)

If ρ(α, β,H) defined as above is zero then the analytic function is of generalized
order zero and σ(α, β, γ,H) is no longer defined. For such functions we give
the modified definition of generalized order. Hence for α(x) ∈ Λ, we define the
generalized order ρ(α,H), (0 6 ρ(α,H) <∞) of H on DR as

ρ(α,H) = lim
r→R−

sup
α
[
ln+M(r,H)

]
α [ln {R/(R− r)}]

. (1.4)

Also for β(x) ∈ L0 and 1 < ρ(α,H) <∞, we define the generalized type σ(β, ρ,H)
of H on DR as

σ(β, ρ,H) = lim
r→R−

sup
β
[
ln+M(r,H)

]
(β [ln {R/(R− r)}])ρ

. (1.5)

In the present paper we have obtained the characterizations of generalized order
and type defined by (1.2) and (1.3). We have also obtained the characterizations
of generalized slow growth of function H in terms of approximation errors.
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2. Generalized (α, β)-growth

We now prove

Theorem 1. Let H be a regular solution of (1.1) having the series expansion
H(r, eiθ) =

∑∞
n=0 anΦn(r, eiθ). For α ∈ Λ, β ∈ L0 and positive numbers x and

µ1, set U(x, µ1) = β−1{µ1α(x)}. Assume that α (x/U(x, µ1)) ∼= [1 + o(x)]α(x) as
x → ∞. Then H is the restriction of a solution H1 whose disk of regularity is
DR(R > 1) and having generalized order ρ(0 < ρ <∞) if and only if

ρ = ρ(α, β,H) = lim
n→∞

sup
α(n)

β
{
n/ ln+ (En(H)Rn)

} . (2.1)

Proof. Write

η1 = lim
n→∞

sup
α(n)

β
{
n/ ln+ (En(H)Rn)

} . (2.2)

Now first we prove that η1 6 ρ. From (1.2), for µ1 > ρ and r sufficiently close to
R, we have

log+M(r,H1) 6 α−1[µ1β{R/(R− r)}].

Let ε > 0 be arbitrary such that υ = (R−1+ε) < 1. Following McCoy ([4], pp.208),
we have

Ek(H) 6
πK(ε)υk

1− υ
; k = n, n+ 1, ...,

where K(ε) is a finite positive number. Let us put r = υ−1. Then 1 < r < R. For
sufficiently small ε, r is close to R and πK(ε) 6M(r,H). Hence we have

Ek(H) 6
M(r,H)

(r − 1)rk−1
6

M(r,H1)

(r − 1)rk−1
, 1 < r < R, k > n. (2.3)

Hence for every r sufficiently close to R and large n, we get

ln+ (En(H)Rn) 6 O(1)− n ln(r/R) + α−1[µ1β{R/(R− r)}].

Putting

r = rn = R
[
1− 1/U

(
n/U(n, µ−1

1 ), µ−1
1

)]
,

we get

ln+ (En(H)Rn) 6 O(1)− n ln
[
1− 1/U

(
n/U(n, µ−1

1 ), µ−1
1

)]
+ n/U(n, µ−1

1 ).

Now using the properties of logarithm and assumptions of the theorem for α(x)
and β(x), we get for sufficiently large values of n,
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ln+ (En(H)Rn) 6 C1
n

β−1
{
µ−1

1 α(n)
} ,

where C1 is a positive constant. Hence by using the properties of β, we get

α(n)

β
{
n/ ln+ (En(H)Rn)

} 6 µ1.

Now proceeding to limits as n → ∞, we get η1 6 µ1. Since µ1 > ρ is arbitrary,
therefore we get η1 6 ρ.

Now we will prove that ρ 6 η1. Let us assume that 0 6 η1<∞ otherwise for
η1 = ∞, the inequality obviously holds. Therefore for a given ε >0 there exists
a positive integer n0 such that for all n>n0, we have

0 6
α(n)

β
{
n/ ln+ (En(H)Rn)

} 6 η1 + ε =η∗1

or

En(H)rn 6 rnR−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
. (2.4)

Now from the property of maximum modulus, we have

M(r,H) 6
∞∑
n=0

En(H)rn

or

M(r,H) 6
n0∑
n=0

En(H)rn +

∞∑
n=n0+1

rnR−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
or

M(r,H) 6 A1r
n0 +

∞∑
n=n0+1

rnR−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
, (2.5)

where A1 is a positive real constant. We take

N(r) =
[
α−1

(
η∗1β

{
[ln{R/(N + 1)r}]−1

})]
,

where [x] denotes the integer part of x > 0. Since α ∈ Λ and β ∈ L0, the integer
N(r) is well defined. Now if r is sufficiently large, then from (2.4) we have

M(r,H) 6 A1r
n0 + rN(r)

∑
n0+16n6N(r)

R−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
+

∑
n>N(r)

rnR−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]



Approximation and generalized growth 101

or

M(r,H) 6 A1r
n0 + rN(r)

∞∑
n=1

R−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
+

∑
n>N(r)

rnR−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
.

(2.6)

Now we have

lim
n→∞

sup
(
R−n exp

[
n/β−1

{
(η∗1)

−1
α(n)

}])1/n

=
1

R
< 1.

Hence the first series on right hand side of (2.6) converges to a positive real con-
stant A2. So from (2.6) we get

M(r,H) 6 A1r
n0 +A2r

N(r) +
∑

n>N(r)

rnR−n exp
[
n/β−1

{
(η∗1)

−1
α(n)

}]
or

M(r,H) 6 A1r
n0 +A2r

N(r) +
∑

n>N(r)

rnR−n exp[n ln{R/(N + 1)r}]

or

M(r,H) 6 A1r
n0 +A2r

N(r) +
∑

n>N(r)

(
1

N + 1

)n
or

M(r,H) 6 A1r
n0 +A2r

N(r) +

∞∑
n=1

(
1

N + 1

)n
. (2.7)

It can be easily seen that the series in (2.7) converges to a positive real constant
A3. Therefore from (2.7), we get

M(r,H) 6 A2r
N(r)[1 + o(1)]

or
ln+M(r,H) 6 [1 + o(1)]

[
α−1

(
η1β

{
[ln{R/(N + 1)r}]−1

})]
ln r

or
ln+M(r,H) 6 [1 + o(1)]α−1

[
{η∗1 + δ1}β

{
[ln{R/(N + 1)r}]−1

}]
,

where δ1 > 0 is suitably small. Hence

α[ln+M(r,H)] 6 {η∗1 + δ1}β
{

[1 + o(1)]−1[ln(R/r)]−1
}
.

Thus for r sufficiently close to R, we get

α[ln+M(r,H)]

β {[1 + o(1)]−1[R/(R− r)]}
6 η∗1 + δ1.
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Proceeding to limits as r → R and using the property of β, we get

lim
r→R−

sup
α[ln+M(r,H)]

β {R/(R− r)}
6 η∗1 + δ1.

Since ε and δ1 are arbitrarily small, therefore finally we get ρ 6 η1. Combining
this with the earlier inequality obtained, we get ρ = η1.

Now from (2.2), for every λ1>η1 and for sufficiently large n, we have

α(n)

β
{
n/ ln+ (En(H)Rn)

} 6 λ1

or
En(H)Rn 6 exp

[
n/β−1

{
λ−1

1 α(n)
}]
.

Hence proceeding to limits as n→∞, we get

lim
n→∞

sup(En(H)Rn)1/n 6 1.

Since η1 > 0, the sequence (En(H)Rn)n∈N is unbounded, whence

lim
n→∞

sup(En(H)Rn)1/n > 1.

Hence finally we get
lim
n→∞

sup(En(H)Rn)1/n = 1.

Thus following McCoy ([4], Theorem 1) we claim that the regular solution
H can be continuously extended to a regular solution whose disk of regularity is
DR(R > 1).

Let us put

H1(r, eiθ) =

∞∑
n=0

En(H)Φn(r, eiθ).

Now we show that H1 is the required continuation of H and ρ(α, β,H1) = η1. For
every λ1>η1 and for sufficiently large n, we have

En(H)Rn 6 exp
[
n/β−1

{
λ−1

1 α(n)
}]
.

Now as in the proof of this theorem (see (2.4) to (2.7) above), we claim that

ρ(α, β,H1) 6 λ1.

Since λ1>η1 is arbitrary, so we get

ρ(α, β,H1) 6 η1.

Also following the proof of first part given above, we get

η1 6 ρ(α, β,H1).

Hence finally we get ρ(α, β,H1) = η1. This completes the proof of Theorem 1. �
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Next we prove

Theorem 2. Let H be a regular solution of (1.1) and have the series expansion
H(r, eiθ) =

∑∞
n=0 anΦn(r, eiθ). For positive x, µ2 and ρ, we set

V (x, µ2, ρ) = γ−1{[β−1 (µ2α(x))]1/ρ}.

Assume that for α(x), β(x), γ(x) ∈ Λ,

V

(
n(ρ+ 1)

ρV (n/ρ, 1/µ2, ρ+ 1)
,

1

µ2
, ρ

)
∼= [1 + o(n)]V (n/ρ, 1/µ2, ρ+ 1) as x→∞.

Then H is the restriction of a solution H1 whose disk of regularity is DR(R > 1)
and having generalized type σ(0 < σ <∞) if and only if

σ = σ(α, β, γ,H1) = lim
n→∞

sup
α(n/ρ)

β

{[
γ

{
(ρ+ 1)

[
ρ ln+ (En(H)Rn)

1/n
]−1
}](ρ+1)

} .

Proof. Write

η2 = lim
n→∞

sup
α(n/ρ)

β

{[
γ

{
(ρ+ 1)

[
ρ ln+ (En(H)Rn)

1/n
]−1
}](ρ+1)

} . (2.8)

Now first we prove that η2 6 σ. From (1.3), for µ2 > σ and r sufficiently close to
R, we have

ln+M(r,H1) 6 α−1[µ2β{[γ{R/(R− r)}]ρ}].

Thus as in the proof of Theorem 1, here we have

ln+ (En(H)Rn) 6 O(1)− n ln(r/R) + α−1[µ2β{[γ{R/(R− r)}]ρ}].

Putting

r = rn = R

[
1−

{
V

(
n(ρ+ 1)

ρV (n/ρ, 1/µ2, ρ+ 1)
,

1

µ2
, ρ

)}−1
]
,

we get

ln+ (En(H)Rn) 6 O(1)− n ln

[
1−

{
V

(
n(ρ+ 1)

ρV (n/ρ, 1/µ2, ρ+ 1)
,

1

µ2
, ρ

)}−1
]

+ n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
µ−1

2 α(n/ρ)
}]1/(ρ+1)

}]−1

.
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Now using the properties of logarithm and assumptions of theorem, we get for
sufficiently large values of n

ln+ (En(H)Rn) 6 C2n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
µ−1

2 α(n/ρ)
}]1/(ρ+1)

}]−1

,

where C2 is a positive constant. Hence by using the properties of α, β and γ, we
get

α(n/ρ)

β

{[
γ

{
(ρ+ 1)

[
ρ ln+ (En(H)Rn)

1/n
]−1
}](ρ+1)

} 6 µ2.

Now proceeding to limits as n→∞ we get η2 6 µ2. Since µ2 > σ is arbitrary,
therefore finally we get η2 6 σ. Now we will prove that σ 6 η2. If η2 = ∞, then
there is nothing to prove. So let us assume that 0 6 η2<∞. Therefore for a given
ε >0 there exists n0 ∈ N such that for all n>n0, we have

0 6
α(n/ρ)

β

{[
γ

{
(ρ+ 1)

[
ρ log+ (En(H)Rn)

1/n
]−1
}](ρ+1)

} 6 η2 + ε =η∗2

or

En(H)Rn6 exp

{
nρ+1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
(2.9)

or

En(H)rn6 rnR−n exp

{
nρ+1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
.

Now from the property of maximum modulus, we have

M(r,H) 6
∞∑
n=0

En(H)rn

6
n0∑
n=0

En(H)rn

+

∞∑
n=n0+1

rnR−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
or

M(r,H) 6 B1r
n0 +

∞∑
n=n0+1

rnR−n

× exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
,

(2.10)
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where B1 is a positive real constant. We take

N(r) =
[
ρα−1

{
η∗2β

(
[γ{(ρ+ 1)[ρ ln{R/(N + 1)r}]−1}](ρ+1)

)}]
,

where [x] denotes the integer part of x > 0. Since α(x), β(x), γ(x) ∈ Λ, the integer
N(r) is well defined. Now if r is sufficiently close to R, then from (2.10) we have

M(r,H) 6 B1r
n0

+ rN(r)
∑

n0+16n6N(r)

R−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}

+
∑

n>N(r)

rnR−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
or

M(r,H) 6 B1r
n0

+ rN(r)
∞∑
n=1

R−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
+

∑
n>N(r)

rnR−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
.

(2.11)

Now we have

lim
n→∞

sup

(
R−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

})1/n

=
1

R
< 1.

Hence the first series in (2.11) converges to a positive real constant B2. Hence from
(2.11), we get

M(r,H) 6 B1r
n0 +B2r

N(r)

+
∑

n>N(r)

rnR−n exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(η∗2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
or

M(r,H) 6 B1r
n0 +B2r

N(r) +
∑

n>N(r)

rnR−n exp[n ln{R/(N + 1)r}]

or

M(r,H) 6 B1r
n0 +B2r

N(r) +
∑

n>N(r)

(
1

N + 1

)n
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or

M(r,H) 6 B1r
n0 +B2r

N(r) +

∞∑
n=1

(
1

N + 1

)n
. (2.12)

It can be easily seen that the series in (2.12) converges to a positive real constant
B3. Therefore from (2.12), we get

M(r,H) 6 B1r
n0 +B2r

N(r) +B3 6 B2r
N(r)[1 + o(1)]

or

ln+M(r,H) 6 [1 + o(1)]

×
[
ρα−1

{
η∗2β

(
[γ{(ρ+ 1)[ρ ln{R/(N + 1)r}]−1}](ρ+1)

)}]
ln r,

or

ln+M(r,H) 6 [1 + o(1)]

×
[
α−1

{
(η∗2 + δ2)β

(
[γ{(ρ+ 1)[ρ ln{R/(N + 1)r}]−1}](ρ+1)

)}]
,

where δ2 > 0 is suitably small. Hence

α[ln+M(r,H)] 6 (η∗2 + δ2)β
(

[γ{(ρ+ 1)[ρ ln{R/(N + 1)r}]−1}](ρ+1)
)
.

When r is sufficiently close to R, then by using properties of β and γ, we get

α[ln+M(r,H)]

β{[γ{R/(R− r)}]ρ}
6 η∗2 + δ2.

Since ε and δ2 are arbitrarily small, proceeding to limits as r → R−, we get

σ 6 η2. (2.13)

Now as in Theorem 1 we can similarly prove that the regular solution H can be
continuously extended to a regular solution whose disk of regularity is DR(R > 1).
Let us put

H1(r, eiθ) =

∞∑
n=0

En(H)Φn(r, eiθ).

Now we claim that H1 is the required continuation of H and σ(α, β, γ,H1) = η2.
From (2.8), for every λ2>η2 and for sufficiently large n, we have

En(H)Rn 6 exp

{
n
ρ+ 1

ρ

[
γ−1

{[
β−1

{
(λ2)−1α(n/ρ)

}]1/(ρ+1)
}]−1

}
.

Now as in the proof of this theorem (see (2.9) to (2.13)), we claim that

σ(α, β, γ,H1) 6 λ2.
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Since λ2>η2 is arbitrary, so finally we get

σ(α, β, γ,H1) 6 η2.

Also following the proof of first part given above, we get

η2 6 σ(α, β, γ,H1).

Hence finally we get σ(α, β, γ,H1) = η2. This completes the proof of Theorem 2.
�

3. Functions of generalized slow growth

In this section we give the characterizations of generalized order and type for
functions of slow growth. We have

Theorem 3. Let H be a regular solution of (1.1) and have the series expansion
H(r, eiθ) =

∑∞
n=0 anΦn(r, eiθ). Then for α(x) ∈ Λ, H is a restriction of a solution

H1 whose disk of regularity is DR(R > 1) and having generalized order ρ(α,H1)
if and only if

ρ(α,H1) = lim
n→∞

sup
α(n)

α
[
log+

{
n/ ln+ (En(H)Rn)

}] .
Proof. First we assume that H has an extension H1 whose disk of regularity is
DR(R > 1) and is of generalized order ρ(α,H1). We write ρ(α,H1) = ρ and

ζ1 = lim
n→∞

sup
α(n)

α
[
log+

{
n/ ln+ (En(H)Rn)

}] . (3.1)

First we prove that ζ1 6 ρ. As shown above, from (2.3) we have

Ek(H) 6
M(r,H)

(r − 1)rk−1
, 1 < r < R, k > n (3.2)

Also using (1.4), for arbitrarily small ε > 0 and r > r0(ε), we have

M(r,H) 6 exp
(
α−1 {ρ∗α [ln {R/ (R− r)}]}

)
, (3.3)

where ρ∗ = ρ+ ε. From (3.2) and (3.3), we get

ln+ (En(H)Rn) 6 − ln+(r − 1)− n ln+(r/R) + α−1 {ρ∗α [ln {R/ (R− r)}]} .

Write F (x, c1) = α−1 {c1α(x)} , where x and c1 are positive real numbers. Now
putting r = rn, where

rn = R

(
1−

[
exp

{
F
(
n/ exp

{
F
(
n, (ρ∗)

−1
)}

, (ρ∗)
−1
)}]−1

)
,
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we get

ln+ (En(H)Rn) 6 − ln+(rn − 1)

− n ln+

(
1−

[
exp

{
F
(
n/ exp

{
F
(
n, (ρ∗)

−1
)}

, (ρ∗)
−1
)}]−1

)
+ n/ exp

{
F
(
n, (ρ∗)

−1
)}

.

Now using the properties of logarithm, we get for sufficiently large value of n

ln+ (En(H)Rn) 6 {1 + o(1)}
[
n/ exp

{
F
(
n, (ρ∗)

−1
)}]

.

From the above inequality, we get

α−1
{

(ρ∗)
−1
α(n)

}
6 {1 + o(1)} ln+

{
n/ ln+ (En(H)Rn)

}
or

α(n) 6 ρ∗α
[
{1 + o(1)} ln+

{
n/ ln+ (En(H)Rn)

}]
or

α(n)

α
[
ln+

{
n/ ln+ (En(H)Rn)

}] 6 ρ∗α [{1 + o(1)} ln+
{
n/ ln+ (En(H)Rn)

}]
α
[
ln+

{
n/ ln+ (En(H)Rn)

}] .

Proceeding to limits as n → ∞ and using the properties of α(x), we get ζ1 6 ρ∗.
Since ε > 0 is arbitrarily small, we finally get ζ1 6 ρ.

Now we will prove that ρ 6 ζ1. If ζ1 = ∞, then there is nothing to prove. So
let us assume that 0 6 ζ1<∞. Therefore for a given ε >0 there exists n0 ∈ N such
that for all n>n0, we have

0 6
α(n)

α
[
log+

{
n/ log+ (En(H)Rn)

}] 6 ζ1 + ε =ζ∗1

or
En(H)Rn 6 exp

{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
(3.4)

or
En(H)rn 6 rnR−n exp

{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
.

Now from the property of maximum modulus, we have

M(r,H1) 6
∞∑
n=0

En(H)rn 6
n0∑
n=0

En(H)rn

+

∞∑
n=n0+1

rnR−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
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or

M(r,H1) 6 A1r
n0 +

∞∑
n=n0+1

rnR−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
, (3.5)

where A1 is a positive real constant. We take

W1(r) =
[
α−1

{
ζ∗1α

[
ln {ln [R/ (δ1 + 1) r]}−1

]}]
,

where δ1 > 0 is arbitrarily small and [x] denotes the integer part of x > 0. Since
α(x) ∈ Λ, the integer W1(r) is well defined. Now if r is sufficiently large, then
from (3.5), we have

M(r,H1) 6 A1r
n0 + rW1(r)

×
∑

n0+16n6W1(r)

R−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
+

∑
n>W1(r)

rnR−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
or

M(r,H1) 6 A1r
n0 + rW1(r)

∞∑
n=1

R−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
+

∑
n>W1(r)

rnR−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
.

(3.6)

Now we have

lim
n→∞

sup
(
R−n exp

{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]})1/n

=
1

R
< 1.

Hence the first series in (3.6) converges to a positive real constant A2. So from
(3.6), we get

M(r,H1) 6 A1r
n0 +A2r

W1(r)

+
∑

n>W1(r)

rnR−n exp
{
n/ exp

[
α−1

{
(ζ∗1 )

−1
α(n)

}]}
6 A1r

n0 +A2r
W1(r) +

∑
n>W1(r)

rnR−n exp[n ln{R/(δ1 + 1)r}]

6 A1r
n0 +A2r

W1(r) +
∑

n>W1(r)

[1/(δ1 + 1)]
n

or

M(r,H1) 6 A1r
n0 +A2r

W1(r) +

∞∑
n=1

[1/(δ1 + 1)]
n
. (3.7)
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It can be easily seen that the series in (3.7) converges to a positive real constant A3.
Therefore from (3.7), we get

M(r,H1) 6 A1r
n0 +A2r

W1(r) +A3 6 A2r
W1(r)[1 + o(1)]

or

ln+M(r,H1) 6 [1 + o(1)]W1(r) ln r

6 [1 + o(1)]
[
α−1

{
ζ∗1α

[
ln {ln [R/ (δ1 + 1) r]}−1

]}]
ln r

6 O(1)
[
α−1

{
ζ∗1α

[
ln {ln [R/ (δ1 + 1) r]}−1

]}]
.

Since δ1 > 0 is arbitrarily small, for r sufficiently close to R, we get

ln+M(r,H1) 6 O(1)
[
α−1 {ζ∗1α [ln {R/(R− r)}]}

]
or

α
[
ln+M(r,H1)

]
6 ζ∗1α [ln {R/(R− r)}] +O(1)

Thus for r sufficiently close to R, we get

α
[
ln+M(r,H1)

]
α [ln {R/(R− r)}]

6 ζ∗1 + o(1).

Proceeding to limits as r → R−, we get

ρ 6 ζ∗1 .

Since ε > 0 is arbitrarily small, therefore finally we get

ρ 6 ζ1. (3.8)

Now from (3.1), for every λ1>ζ1 and for sufficiently large value of n, we have

α(n)

α
[
log+

{
n/ log+ (En(H)Rn)

}] 6 λ1

or
En(H)Rn 6 exp

{
n/ exp

[
α−1

{
(λ1)

−1
α(n)

}]}
.

Now for sufficiently large value of n, we get

[En(H)Rn]
1/n 6 1.

Proceeding to limits as n→∞, we get

lim
n→∞

sup [En(H)Rn]
1/n 6 1.
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Since η1 > 0, the sequence (En(H)Rn)n∈N is unbounded, whence

lim
n→∞

sup [En(H)Rn]
1/n > 1.

Hence finally we get
lim
n→∞

sup [En(H)Rn]
1/n

= 1.

Thus following McCoy ([4], Theorem 1) we claim that the regular solutionH can be
continuously extended to a regular solution whose disk of regularity is DR(R > 1).
Let us put

H1(r, eiθ) =

∞∑
n=0

En(H)Φn(r, eiθ).

Now we claim that H1 is the required continuation of H and ρ(α,H1) = ζ1. For
every λ1>ζ1 and for sufficiently large value of n, we have

En(H)Rn 6 exp
{
n/ exp

[
α−1

{
(λ1)

−1
α(n)

}]}
.

Now as in the proof of this theorem [(3.4) to (3.8)], we claim that

ρ(α,H1) 6 λ1.

Since λ1>ζ1 is arbitrary, so we get

ρ(α,H1) 6 ζ1.

Also following the proof of first part given above, we get

ζ1 6 ρ(α,H1).

So finally we get
ρ(α,H1) = ζ1.

This completes the proof of Theorem 3. �

Next we have

Theorem 4. Let H be a regular solution of (1.1) and have the series expansion
H(r, eiθ) =

∑∞
n=0 anΦn(r, eiθ). Then for 1 < ρ <∞ and β(x) ∈ L0, H is a restric-

tion of a solution H1 whose disk of regularity is DR(R > 1) and having generalized
type σ(β, ρ,H1) if and only if

σ(β, ρ,H1) = lim
n→∞

sup
β(n)(

β
[
log+

{
n/ ln+ (En(H)Rn)

}])ρ .
Proof. The proof of the above theorem follows on the lines of proof of Theorem 2
and Theorem 3. Hence we omit the proof. �
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Next we have

Theorem 5. Let H be a regular solution of (1.1) and have the series expan-
sion H(r, eiθ) =

∑∞
n=0 anΦn(r, eiθ). Then for α(x) ∈ Λ the generalized order

ρ(α,H) (0 6 ρ(α,H) <∞) of H is given by

ρ(α,H) = lim
n→∞

sup
α(n)

α
[
ln+

{
n/ ln+ (|an|Rn)

}] .
Proof. The proof is similar to Theorem 3 above and ([7], Theorem 2.1). Hence
the proof is omitted. �

Lastly we have

Theorem 6. Let H be a regular solution of (1.1) and have the series expansion
H(r, eiθ) =

∑∞
n=0 anΦn(r, eiθ). Then for 1 < ρ <∞ and β(x) ∈ L0 the generalized

type σ(β, ρ,H) of H is given by

σ(β, ρ,H) = lim
n→∞

sup
β(n)(

β
[
ln+

{
n/ ln+ (|an|Rn)

}])ρ .
Proof. The proof is similar to Theorem 2 above and ([7], Theorem 2.2). Hence
the proof is omitted. �
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