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FINITE MORDELL-TORNHEIM MULTIPLE ZETA VALUES
KEN KAMANO

Abstract: We investigate a finite analogue of the Mordell-Tornheim multiple zeta values (the
finite Mordell-Tornheim multiple zeta values). These values can be expressed by a linear com-
bination of finite multiple zeta values, and its rules are described by the shuffle product. As
a corollary, we give a certain relation among finite multiple zeta values.
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1. Introduction

The multiple zeta values are defined by

1
C(kl,...,kr) = Z ﬁ

mi>->me>0 01 T e
m;EZL

for positive integers ki,...,k, with k&1 > 2. The numbers k := ky + --- + k,
and r are called the weight and the depth of ((k1, ..., k), respectively. The case
of depth 2 was studied by Euler, and general cases have been studied by many
authors from 1990’s. Many linear relations among multiple zeta values are known,
and one of the goals of the study of multiple zeta values is to determine all such
relations.

For positive integers k1, ..., k.41, the Mordell-Tornheim multiple zeta values
are defined by

1
MT
kiy... kr; kp = . 1
¢ (R +1) Z M mEr (my 4 -+ my) e (1)

mi,...,mp>1

These types of sums were first studied by Tornheim [10] and Mordell [6] and
many relations are given. Tsumura proved that the value (M7 (ky,... ki kpy1)
can be expressed as a rational linear combination of products of the Mordell-
Tornheim multiple zeta values of lower depth than r, when its depth » and weight
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k1 + -+ ky41 are of different parity. Note that Tornheim [10] proved this result
for the case r = 2. Matsumoto [7] considered the function (1) as an (r+1)-variable
complex function and proved that this function can be meromorphically continued
to the whole C™+! space.

Recently, Kaneko-Zagier introduced a finite analogue of multiple zeta values,
called finite multiple zeta values (cf. [4]). Let A =[], Z/pZ /@, Z/pZ where p
runs over all primes. The ring A naturally becomes Q-algebra.

For positive integers ki, ..., k,, finite multiple zeta values are defined by
1
Calki, ... k)= E — | €A
m o S m T
p>my1>-->me>0 71 r
m;EL p

From now on, we denote (a,), € A simply by a,. Hence the definition above is

written as 1
Callor, k)= Y

DY T
p>my>-->me>0 my my
m; EZ

Similar to the usual multiple zeta values, there are many relations among finite
multiple zeta values. For example, the following identities are known.

Proposition 1.1 ([3]). For any positive integers ki, ..., k. and k, the following
identities hold:

1 Calk,....k) =0,

2. C.A(kla" ak’r (_ )k1+m+k7‘<¢4(k’ra"'7k1)7
3. Z Calkg(1)s -+ ko(ry) = 0 where &, is the symmetric group of degree r.
ceS,.

For other relations, see [2], [3], [8] and [9].
As a finite analogue of the Mordell-Tornheim multiple zeta values, we define
the finite Mordell-Tornheim multiple zeta values by

1
ATy hyibsn) = Y — A

kr k.
g e A (g e
my+--4mp<p

for positive integers ki, ..., kq41. It is clear that (/7 (k1,0;ks) = Ca(ks, k1)

Following Hoffman [2], we introduce the algebraic setup of finite multiple zeta
values. Let 9 := Q(z,y) be the non-commutative polynomial ring over Q in two
indeterminates = and y, and $' its subring Q + $y. The shuffle product ur on $
is a Q-bilinear map $ x ) — ) satisfying

~—

wiml = lmw = w, (urwy)m(ugwse) = ug (wim(ugws)) + us((ugw )mws) (2

WV

for w,w; € H and u; = x or y (i = 1,2). We denote ¥~y by 2z for k
1, and define the Q-linear map Z4 : H' — A satisfying Za(zk, 2k, -+ - 2k, )
Calky, ko, ..., k). For example, Z4(22yxy) = Za(2322) = Ca(3,2).
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The finite Mordell-Tornheim multiple zeta values have the following expression.

Theorem 1.2. For integers k1, ..., k. = 1 andl > 0, the following identity holds:
T (ke ks ) = Za(a (21 - - mizg, ). (3)

As a main result of the paper, we will prove this type of relation in a more
general setting (see Theorem 2.1) and Theorem 1.2 is its special case. The right-
hand side of (3) can be expressed by a linear combination of finite multiple zeta
values, hence the finite Mordell-Tornheim multiple zeta values can be expressed
by a linear combination of finite multiple zeta values.

2. Finite Mordell-Tornheim multiple zeta values
and their generalization

For non-negative integers k1, ..., k;, l;, ..., with 1 < i < r, we define the function

1
Ta((kry ki) (s 1)) = | o
nzl,.g';r}l m’fl e miclNlllNZli?ll . N}J'

mi+-+my<p—1

where N := mq + --- +my, for 1 < k < r. This function contains finite multiple
zeta values and the finite Mordell-Tornheim multiple zeta values.
Indeed, Ta((k1);(0,l2,...,0.)) = Cally, ..., la, k1) and Ta((k1,...,k-); (L) =
T (ks ks ).

The following is the main result of the present paper. Note that this theorem
includes Theorem 1.2 because TA((k1,...,kr); (1) = (X7 (k1,... k1) in the
case i =T.

Theorem 2.1. Let i and r be integers with 1 < ¢ < r. For integers ky, ..., k; > 1,
li20andliyq,...,l, 2 1, we have

Tal(kr,y .oy ki); Ly oy l) = Za(z, -+ zli+1xli(zklm Ceemzg, ).

In particular, the value Ta((k1,...,ki);(li,-..,lr)) can be expressed by a linear
combination of finite multiple zeta values of weight > ' _; ks + > 1 ls-

Proof. We prove the theorem by induction on k1 4 - - - + k;. We first consider the
case (ki,...,k;) = (1,...,1). By using the partial fraction decomposition

1 1 1
= > , (4)
miy---m; m1+...+mi1<c<im1...mi

remove c-th
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we have

Ta((1,.. )5 (Lo 1)) = 3 1

my--- mlel‘ “e N,'l“'

mi,...,my21
Mt me<p—1

- . . Ii+1 arligt =
m m Nt ... N
mi,....mr21 1<e<s ;,_l/ A Ni+1 r

mi+-+m,Lp—1 1531:remove c-th

> : :

- e . Li4+1 prlitt I

m my;— i e T

M1seymp>1 1 =1 NNy - Ny
mi+-+my<p—1

By repeating this procedure, we have

Ta((1,...,0); iy .., 1)

> | 1
= 1.
1 ml(ml + mQ) e (ml 4+ 4 mi71> Nl_li+1Nil:L+11 o Nvl»r
my+-m, <p—1
=iCally, - S liga, i+ 1,1, 1),
~——

i—1

On the other hand, since zjmr- - - mz; = i! 2%, we have
—_———
i

Z-A(er R P

xli(zlm coemzy) =il ZA(z, 2 Rl 21 21))
—_—— ——_——
i i—1

= Z'CA(lrv 7li+13li + 1717"' 31)
——

i—1

Hence the assertion holds for the case (k1,...,k;) = (1,...,1).

Next we assume that the assertion holds for all (ki, ..., k;) with k1+- - -+k; = k.
Let (k1,...,k;) € N* with ky +---+k; = k+1. Without loss of generality, we may
assume that (k1,...,k;) = (k1,...,kj,1,...,1) where k1,...,k; > 2 for some j.
Then, by (4) again,

TA((kl, ey /{2)7 (lz, e 717«))
1

= E +
ki—1 ki atli+1 arlit1 I
ma,me 1 1 my NN Ny
mi+-+my<p—1
1
* Z ki kil NN
mi,...omp21 T M= Mj4r - MLV, i+1 r
mi+-Am,.<p—1
1
+ (i —J) E .
k1 k; ) ) Ui+1 arlit1 1,
mi,..ompx1 M 1Yy Myyq - m— NN - Ny

my+-tm, <p—1
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We use the notation 2{"" = zjm---mz;. Then, by the inductive assumption, we
—_——

T
have

T_A((kl, .. .,ki); (l“ . .,lr))

=Za(z, - Zli+1$l'i+l( m(i—j)))

gy —1HL - -+ H.Iij mz,

L ZA(ZZT .. Zliﬂl'l'ﬁl(zklm .. mzkjf1ﬂlziu(i7j)))

+ (i = ) Zalz, 2 2 (2 gy T TY)),

On the other hand, by (2), we have

ZA(er T Zli+1‘rli (Zklm T mqu))

= Z.A(er cee Zli+1$li+1(zkl_1m .. 'HIZ,IngIIZIiH(i_j)))

+ A+ Zalzy, Zli+1$li+1(zklm . mzkj,lmzlln(i_j)))

+@—9)Zalz, - zli+1xl"'y(zk1m .- ~mzk].mzlln(i_j_1))).

Therefore the assertion holds for (ki,...,k;) and this completes the proof. |

Remark 2.2. This method can be applied for the classical Mordell-Tornheim
multiple zeta values. For example, one can prove the identity

CMT(kla"'va;l):Z(xl(zhm"'mzkr)) (klv"'akhl>1)' (5)

Here Z : §° — R is the Q-linear map satisfying Z(z, - - - 2, ) = ((k1, . . ., k) where
H° := Q+29Hy. Bradley and Zhou [1, Theorem 1.1] proved that (M7 (ky,. .. k.;1)
can be written in the form of a linear combination of the usual multiple zeta values.
Equation (5) can be regarded as an explicit expression of their result.

Remark 2.3. Kuba [5] introduced a finite analogue T of the Mordell-Tornheim
multiple zeta values as

1
Ty = Y, R (k1 k2, ks > 1)
AN mytms?(my + mo)ks
my,ma>1

for any positive integer V. He proved an identity which expresses Ty in terms of
finite analogue of multiple zeta values ([5, Theorem 5]). In our setting (N = p—1),
his result can be written in the following form:

ki1+ko—1 Z 1
MT ST — - . g
CHT (K, b3 1) = ;; (k2_1><,4(1+z,k1+k2 i)
k1+ko—1

j—1 . ,
+ j; <k1_1)CA(l+Jak1+/€2 J)
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for k1,ke > 1 and [ > 0. This equation also follows from our Theorem 1.2 because
it hold that

k1+ko—1 Z B 1 ki+ko—1 ] N 1
R M2y = Z <k’2 _ 1) ZiZky+hg—i T Z (kl _ 1> ZjRky+hka—j-
Jj=k1

i=ko
3. Relations for finite multiple zeta values

In this section, we give some linear relations among finite multiple zeta values by
using Theorem 2.1. First we give the following lemma, which is an analogue of
Proposition 1.1 (ii).

Lemma 3.1. For integers ky, ..., k., 1 > 0, the following identity holds:

T (kyyoo o ks 1) = (=) (1 kg, o K Ky ). (7)
Proof. By changing the variables as m; — p —mq — - -+ — m, in the summation,
we have
1
AT (ky,y .o k) =
A 9 s v mh.;?w?l mlfl .”mfr(m1+,,,+mr)l
my+-+me<p—1
B 1
- Z k109, K2 k. l
sy (p=myr— = mp)Fimg® omat (p — ma)
mi+-+m,<p—1
) .
- m1 mr>1 7’7’Ll17’7’bl2c2 ...m,'k:"(ml +..._~_m7,)k1
mit--+m.<p—1
= (=) HAT (1 by, . ks k). [
Theorem 3.2. Let r be a positive integer. For positive integers ki,..., k., the
following identities hold:
Za(a (zpym- - -mzy,)) = (=) Za (e (zmzg, - omzg, ) (021). 0 (8)
Za(ziym- -z, ) = (=1)M Za(zp, (2 - - 1mzy,, ). )

Both sides of (8) and (9) can be expressed in terms of finite multiple zeta values,
hence these equations give linear relations among finite multiple zeta values.

Proof of Theorem 3.2. By Lemma 3.1, we have
C%T(kh RN} kr7 l) = (_1)k1+lC%T(l7 k27 RN} kT7 kl)

for positive integers ki, ..., k., l. Equation (8) is obtained by Theorem 1.2.
To prove (9), we consider

C%T(kh ey k’rv 0) = (_1)k1C%T(Oa k27 DI k’m kl)
= (_1)k1TA((k27 EER k7)7 (Oa kl))a
which is also obtained by Lemma 3.1. Then (9) is obtained by Theorem 2.1. W
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Remark 3.3. Equation (9) can be immediately follows from the equation (2.3)
in [4].

In the last of this paper, we give some examples.
t

—
For (ki,.... k) = (k1, ke, ... kv—y,1,...,1) (kr—y > 2), we define uy, . g,
t 4 1. For example, uz 3 = 1, uz1 = 2 and u;,1,; = 4. Then the following identity
holds:

Proposition 3.4. For positive integers k, | and r, it holds that

(71)l Z uml,...,mTC,A(l‘i’l,ml,...,mr)

mi+--+me.=k+r

= (—1)k Z Umy,...omn Ak +1,ma, ..., my).
mi+-+me=l+r

Proof. Let Y,(k,1) := Z (2! (zmy"~1)). Since

r—1 _ 2: , Cdi—1,  ia—1 in—1
2y - Uiy,...ip T yr y-oexh Ty

we have
Y,«(k,l) = Z Uig,A..,iTCA(l+i17i27--~7ir)
ity =kt —1

- Z uig,‘..,iTCA(ibiQw'-7ir)‘

iree i =hAlr—1

i1 2l+1
Hence it holds that
Y (k+1,0) = Yo (k,1+1) = S i Call + 1 in, ).
igetip=ktr—1
By putting k; = kand kg = - - = k, = 11in (8), we have Y;.(k, 1) = (=1)**Y,.(1, k).
Therefore

Z uig,...,irgA(l+137:27"'37:T‘)

gt tip=ktr—1

= (—1)k+l Z uiz,..‘,iTCA(k"" 1,7;27...,@'7‘).
iot o tip=l+r—1

By replacing » — 1 by r, we obtain the result. |
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