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THE DYNAMICAL MORDELL-LANG PROBLEM
FOR NOETHERIAN SPACES

Jason P. Bell, Dragos Ghioca, Thomas J. Tucker

Abstract: Let X be a Noetherian space, let Φ : X −→ X be a continuous function, let Y ⊆ X
be a closed set, and let x ∈ X. We show that the set S := {n ∈ N : Φn(x) ∈ Y } is a union
of at most finitely many arithmetic progressions along with a set of Banach density zero. In
particular, we obtain that given any quasi-projective variety X, any rational map Φ : X −→ X,
any subvariety Y ⊆ X, and any point x ∈ X whose orbit under Φ is in the domain of definition
for Φ, the set S is a finite union of arithmetic progressions together with a set of Banach density
zero. This answers a question posed by Laurent Denis [7]. We prove a similar result for the
backward orbit of a point and provide some quantitative bounds.
Keywords: dynamical Mordell-Lang conjecture, Noetherian space, Banach density.

1. Introduction

Motivated by the classical Mordell-Lang problem in arithmetic geometry, the fol-
lowing Conjecture was formulated in [11].

Conjecture 1.1. Let X be any quasi-projective variety defined over C, let Y be
any subvariety of X, let α ∈ X(C), and let Φ be an endomorphism of X. Then the
set of n ∈ N such that Φn(α) ∈ Y (C) is a finite union of arithmetic progressions.

We note that for an arithmetic progression we allow the possibility that its
ratio equals 0 (in which case it is constant); so, in Conjecture 1.1 we allow the
possibility of a finite intersection (which often is the case). Also we denote by
OΦ(α) the orbit of α under Φ, i.e. the set consisting of all Φn(α) for nonnegative
integers n (as always in algebraic dynamics, we denote by Φn the n-th iterate of
Φ). In case of a rational self-map Φ we always work under the hypothesis that
OΦ(α) is entirely contained in the domain of definition for Φ.

A reformulation of Conjecture 1.1 would be that if Y is a subvariety of X
which contains infinitely many points of the form Φn(α) (with n ∈ N), then Y
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must contain a positive dimensional periodic subvariety under the action of Φ,
which has nontrivial intersection with OΦ(α). This statement is in line with the
classical Mordell-Lang problem, since in that case, if a subvariety Y of a semia-
belian variety contains infinitely many points from a finitely generated subgroup
Γ, then Y must contain a translate of an algebraic subgroup of positive dimension
which has nontrivial intersection with Γ.

Conjecture 1.1 was proved in [2] for all étale endomorphisms Φ of any quasi-
projective variety X using a p-adic approach pioneered by the first author in [1].
Only special instances of Conjecture 1.1 when the map Φ is ramified are known
(see [4, 5, 13, 23]). In almost all known ramified cases, Φ is given by the coordi-
natewise action through one-variable rational maps on (P1)m, i.e. Φ(x1, . . . , xm) =
(ϕ1(x1), . . . , ϕm(xm)) for some rational maps ϕi. In particular, very little is known
for arbitrary endomorphisms of quasi-projective varieties, besides the result of
Fakhruddin [9], who proved that the Dynamical Mordell-Lang Conjecture holds
for generic endomorphisms of Pn. In this paper we obtain a very general result for
Noetherian spaces in support of Conjecture 1.1. First we recall the definition of
Banach density for subsets of N, and then we define Noetherian topological spaces.

Definition 1.2. Let S be a subset of the natural numbers. We define the Banach
density of S to be

δ(S) := lim sup
|I|→∞

|S ∩ I|
|I|

,

where the lim sup is taken over intervals I in the natural numbers. We say that a
subset S of the natural numbers has Banach density zero if δ(S) = 0.

Definition 1.3. Let X be a topological space. We say that X is Noetherian if it
satisfies the descending chain condition for its closed subsets, i.e., there exists no
infinite descending chain of proper closed subsets.

Theorem 1.4. Let X be a Noetherian topological space, and let Φ : X −→ X be
a continuous function. Then for each x ∈ X and for each closed subset Y of X,
the set S := {n ∈ N : Φn(x) ∈ Y } is a union of at most finitely many arithmetic
progressions along with a set of Banach density zero.

In particular, Theorem 1.4 implies the following Corollary which provides ev-
idence to an extension of the Dynamical Mordell-Lang Conjecture to the case of
rational maps.

Corollary 1.5. Let X be a quasi-projective variety defined over a field K, let
Φ : X −→ X be a rational map defined over K, let x ∈ X(K) such that OΦ(x)
is contained in the domain of definition for Φ, and let Y be a K-subvariety of
X. Then the set S := {n : Φn(x) ∈ Y (K)} is a union of at most finitely many
arithmetic progressions along with a set of Banach density zero.

Theorem 1.4 yields that the Dynamical Mordell-Lang principle almost holds
for all continuous self-maps on Noetherian topological spaces. But obviously in
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this great generality it cannot always hold; we already know that if X is a com-
pact p-adic analytic manifold (endowed with the rigid analytic topology) and Φ is
an analytic homomorphism, then the set S might be infinite without containing
an infinite arithmetic progression (see [3, Proposition 7.1]). Theorem 1.4 shows
that once removing finitely many arithmetic progressions contained in S, we ob-
tain a very sparse set. The key for our proof is the following Proposition which
we state in the context of endomorphisms of quasi-projective varieties, but it is
true in the more general context of continuous maps on Noetherian spaces (see
Proposition 3.1).

Proposition 1.6. Let X be a quasi-projective variety defined over the field K, let
x ∈ X(K), and let Φ : X → X be an endomorphism defined over K. Assume Y
is a Zariski closed subset of X with the property that the set S := {n : Φn(x) ∈ Y }
has positive Banach density. Then S contains an infinite arithmetic progression.

Similar, but weaker, results were previously obtained in [7] and [3]. Denis [7]
has treated the question of the distribution of the set S when Y does not contain
a periodic subvariety. He showed, for any morphism of varieties over a field of
characteristic 0, that S cannot be very dense of order 2 (see [7, Définition 2]);
this is a weaker conclusion than being of Banach density 0 (which is the result of
our Proposition 1.6). We also note that Denis [7, Question 2] asked whether for
endomorphisms Φ of quasi-projective varieties X, either the set S (from Proposi-
tion 1.6 corresponding to a non-preperiodic point x) has Banach density 0, or the
subvariety V contains a positive dimensional periodic subvariety. Proposition 1.6
answers positively Denis’ question since if δ(S) > 0 then S contains an infinite
arithmetic progression {an + b}n∈N and then V would contain the Zariski clo-
sure of OΦa(Φb(x)) whose positive dimensional components are periodic under Φ.
On the other hand, the result of [3] yields a stronger statement in terms of the
sparseness of the set S (assuming this set does not contain an infinite arithmetic
progression); however the result of [3] applies only to endomorphisms of (P1)n

of the form (ϕ1, . . . , ϕn) where each ϕi is a rational map defined over a field of
characteristic 0.

We note that due to the general setting of our Theorem 1.4 we are able to
prove Corollary 1.5 for all rational maps on a quasi-projective variety, as opposed to
regular maps only. We also note that our results apply in positive characteristic, in
which case one knows that the Dynamical Mordell-Lang Conjecture fails (since also
the classical Mordell-Lang principle fails in positive characteristic). For example,
if G is a semiabelian variety defined over Fp, C ⊂ G is a curve of genus greater
than 1 defined over Fp, and γ ∈ C is a (generic) point not defined over Fp, then
the intersection of C with the cyclic subgroup of G generated by γ consists of all
points of the form pnγ for nonnegative integers n.

As an easy consequence of our Corollary 1.5 we obtain the following results of
Bézivin [6] and Methfessel [19].

Theorem 1.7. Let r > 1 be an integer, K be a field, let P0, . . . , Pr ∈ K[z] be
polynomials such that Pr(n) 6= 0 for all n > 0, and assume the sequence {an}n>0 ⊂
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K satisfies the recurrence relation:

Pr(n) · an+r + Pr−1(n) · an+r−1 + · · ·+ P0(n) · an = 0,

for all n > 0. Then the set Sa of nonnegative integers n such that an = 0 is a union
of at most finitely many arithmetic progressions along with a set of Banach density
equal to 0.

Proof. We define an r-by-r matrix whose entries are rational functions:

A(z) :=


0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
−P0(z)
Pr(z) −P1(z)

Pr(z) · · · · · · · · · −Pr−1(z)
Pr(z)


Then the rational map Φ : A1 × Ar 99K A1 × Ar (defined over K) by

Φ(z, v) = (z + 1, A(z) · v)

has the property that for v0 ∈ Ar(K) given by v0 := (a0, a1, · · · , ar−1), we have
Φn(0, v0) = (n, an, an+1, · · · , an+r−1).

Let Y1 := {0}×Ar−1 and let Y := A×Y1. Applying Corollary 1.5 to the variety
X := A1 × Ar, equipped with the rational self-map Φ, to the subvariety Y ⊂ X
and to the point α := (0, v0) ∈ X(K), we obtain the desired conclusion. �

If K has characteristic 0, then the same proof as above works under the weaker
hypothesis that Pr is not identically equal to 0. Indeed, at the expense of consid-
ering the sequence of an’s only for n sufficiently large, we may assume Pr(n) 6= 0
as in Theorem 1.7. If K has positive characteristic, one can easily see that the
above result fails without the hypothesis that Pr(n) 6= 0 for all n.

If each polynomial Pj is constant, then {an}n>0 is a linear recurrence sequence,
and when K has characteristic 0, the classical Skolem-Mahler-Lech theorem yields
that the above set Sa is a union of at most finitely many arithmetic progressions
along with a finite set. If K has characteristic p, then there are examples (similar
to the examples appearing in the Mordell-Lang problem in characteristic p) when
Sa is an infinite set of Banach density 0. Now, in general, if F (z) :=

∑∞
n=0 anz

n

satisfies a differential equation with polynomial coefficients, then the sequence
{an}n>0 satisfies a recurrence relation such as the one in Theorem 1.7. Rubel [21,
Problem 16] asked whether the Skolem-Mahler-Lech theorem could be extended
to such sequences {an}n>0, i.e. show that the set of all n’s such that an = 0
is a union of finitely many arithmetic progressions along with a finite set. First
Bézivin [6] (under a technical assumption) and then Methfessel [19] (in general)
answered Rubel’s question in the affirmative except possibly for a set of natural
density 0 (see Theorem 1.7). Both Bézivin and Methfessel used in their proofs
the famous theorem of Szemerédi [22] regarding the existence of arbitrarily long
arithmetic progressions in sets of positive natural density. We note that in order to
prove our Theorem 1.4 we use Lemma 2.1 which is only reminiscent of Szemerédi’s
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famous result, but which is technically different. We believe our Lemma 2.1 would
be useful for other applications as well. Another advantage of our approach is that
it provides slightly stronger results by replacing sets of natural density 0 with sets
of Banach density 0.

Using a similar approach to that of Theorem 1.4 we are able to prove a result
similar to Theorem 1.4 for the backward orbit of a point in a Noetherian space.
More precisely, for a Noetherian space X, a continuous function f : X −→ X, and
a point x ∈ X, we define a coherent backward orbit of x (with respect to f) be
a sequence {x−n}n>0 such that

x0 = x and f(x−n−1) = x−n for each n > 0.

We obtain the following result.

Theorem 1.8. Let X be a Noetherian space, let f : X −→ X be a continuous
function, let {x−n}n>0 be a coherent backward orbit of a point x ∈ X, and let
Y ⊆ X be a closed set. Then the set S := {n ∈ N : x−n ∈ Y } is a union of at most
finitely many arithmetic progressions and a set of Banach density zero.

In particular, we ask the following question for algebraic dynamical systems.

Question 1.9. Let X be a quasi-projective variety defined over C, let Φ : X −→
X be an endomorphism, let {x−n}n>0 be a coherent backward orbit of a point
x ∈ X(C) (with respect to Φ), and let Y ⊆ X be a subvariety. Is the set S :=
{n ∈ N : x−n ∈ Y (C)} a union of at most finitely many arithmetic progressions?

Question 1.9 is related to the Dynamical Manin-Mumford Conjecture (see
[24, 12]). A positive answer to Question 1.9 yields that if a subvariety Y con-
tains a Zariski dense set of points in common with a coherent backward orbit of
a point x ∈ X(C), then Y is periodic under the action of Φ. In the original formula-
tion (see [24]) of the Dynamical Manin-Mumford Conjecture, it was asked whether
a subvariety Y of a projective variety X would have to be preperiodic under the
action of a polarizable endomorphism Φ of X if Y contains a Zariski dense set of
preperiodic points (we call a point y ∈ X preperiodic if its orbit OΦ(x) is finite). If
the point x in Question 1.9 is preperiodic, then each point in a coherent backward
orbit of x is preperiodic, and thus a positive answer to Question 1.9 provides a pos-
itive answer to this special case of the Dynamical Manin-Mumford Conjecture. We
note that there are counterexamples coming from endomorphisms of CM abelian
varieties to the original formulation of the Dynamical Manin-Mumford Conjecture
(see [12]), but we do not know whether those types of counterexamples can be
found to Question 1.9.

While writing this paper we learned that, using different techniques, Clayton
Petsche proved Theorem 1.4 when Φ is an endomorphism of an affine variety X.
Petsche uses methods from topological dynamics and ergodic theory; in particular,
he uses Berkovich spaces and a strong topological version of Furstenberg’s Poincaré
Recurrence Theorem. William Gignac indicated to us that Theorem 1.4 can also
be derived using arguments that come from a deep result of ergodic theory on
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Noetherian spaces proved by Charles Favre (this is Théorème 2.5.8 in Favre’s PhD
thesis [10]); see also [15, Example A.3.2] and [16, Theorem 1.6] for an alternative
proof of Favre’s result using measure-theoretic methods. Gignac also told us that
one can prove Theorem 1.8 by employing measure-theoretic techniques similar to
those of [15, 16]. We thank both Clayton Petsche and William Gignac for useful
conversations on this topic. An advantage of our more elementary method for
proving Theorem 1.4 (and the related results such as Theorem 1.8) is that it allows
us to derive explicit bounds on the ratios of the infinite arithmetic progressions
in some cases (see Theorems 4.1 and 4.2). Moreover, our approach allows us to
derive a more precise result than Theorem 1.4 for the case of non-periodic curves.

Theorem 1.10. Let C ⊆ P` be an irreducible curve of degree d defined over
a field K, let Φ : P` −→ P` be an endomorphism of degree m defined over K, and
let x ∈ P`(K) be a non-preperiodic point. If C is not periodic, then there exists
a constant c0 depending only on d, m, and ` such that for all integers N > 2, we
have

#{1 6 n 6 N : Φn(x) ∈ C(K)} 6 c0N

log(N)
.

We now briefly sketch the plan of this paper. In Section 2, we prove the key
technical Lemma 2.1. In Section 3 we prove Proposition 3.1 (which is essentially
Proposition 1.6 for Noetherian spaces) and then deduce various consequences such
as Theorems 1.4 and 1.8. We conclude in Section 4 with some remarks on quan-
titative results, including the proofs of Theorems 4.1, 4.2 and 1.10.

2. A technical lemma

The key result for the proof of Proposition 1.6 and its related consequences is the
following Lemma.

Lemma 2.1. Let S be a set of positive integers having positive Banach density.
Let N > [1/δ(S)] + 1 be an integer, where [x] as usual denotes the greatest integer
less than or equal to x. Then there is a positive integer k and a subset Q ⊆ S such
that

1. k 6 N − 1;
2. δ(Q) > Nδ(S)−1

2N2(N−1) > 0; and
3. for all a ∈ Q, we have a+ k ∈ S.

Proof. By assumption, 1
N < δ(S). So there exist intervals In with |In| → ∞ such

that
|S ∩ In|
|In|

>
δ(S) + 1

N

2
.

Let P = {i : |{iN + 1, . . . , (i+ 1)N} ∩ S| > 2}. We claim that P has positive
Banach density. To see this, let Jn = {i : {iN+1, . . . , (i+1)N} ⊆ In}. Then |Jn| 6
|In|
N and |Jn| → ∞ as n→∞. For i ∈ Jn \ P we have S ∩ {iN + 1, . . . , (i+ 1)N}
has size at most 1 and for i ∈ P ∩ Jn we have S ∩ {iN + 1, . . . , (i+ 1)N} has size
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at most N . Since there are at most 2N elements of In that are not accounted for
by taking the union of the {iN + 1, . . . , (i+ 1)N} with i ∈ Jn, we see that(

δ(S) + 1
N

)
· |In|

2
6 |In ∩ S| 6 |Jn \ P |+N |P ∩ Jn|+ 2N.

Using the fact that |Jn| 6 |In|N , we see(
δ(S) + 1

N

)
·N |Jn|

2
6 |Jn \ P |+N |P ∩ Jn|+ 2N.

Dividing by N |Jn| now gives

δ(S) + 1
N

2
6
|Jn \ P |
N |Jn|

+
|P ∩ Jn|
|Jn|

+
2

|Jn|
.

Since |Jn \ P | 6 |Jn|, we get

δ(S) + 1
N

2
6

1

N
+
|P ∩ Jn|
|Jn|

+
2

|Jn|
,

which gives
δ(S)− 1

N

2
6
|P ∩ Jn|
|Jn|

+
2

|Jn|
.

Since |Jn| → ∞, we see that δ(P ) >
δ(S)− 1

N

2 .
For each i ∈ P , we pick ai, bi ∈ {iN+1, . . . , (i+1)N}∩S with 0 < bi−ai < N .

For j ∈ {1, . . . , N − 1}, we let Pj := {i ∈ P : bi − ai = j}. Then P = ∪N−1
j=1 Pj and

since Banach density is subadditive, we have

δ(P ) 6
N−1∑
j=1

δ(Pj).

Thus there is some k ∈ {1, . . . , N − 1} such that δ(Pk) > δ(P )
N−1 . Let Q := {ai : i ∈

Pk} ⊆ S. Then a+ k ∈ S for all a ∈ Q and a simple computation yields

δ(Q) >
δ(Pk)

N
>

Nδ(S)− 1

2N2(N − 1)
> 0,

as desired. �

We find useful (see Theorem 4.2) stating the following Corollary of Lemma 2.1.

Corollary 2.2. Let S be a set of positive integers having positive Banach density.
Then there is a positive integer k < 2

δ(S) and a subset Q ⊆ S such that

(a) δ(Q) > δ(S)3

24 ; and
(b) for all a ∈ Q, we have a+ k ∈ S.
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Proof. We let δ := δ(S), and we apply Lemma 2.1 with N =
[

2
δ

]
(which is at

least equal to
[

1
δ

]
+ 1 since δ 6 1). This shows the existence of a set Q ⊆ S

satisfying property (b) above; in addition δ(Q) > Nδ−1
2N2(N−1) . So, in order to show

that (a) holds, it suffices to prove that Nδ−1
2N2(N−1) >

δ3

24 , which is equivalent with
proving that

Nδ − 1

N − 1
>
N2δ3

12
=

2

3N
·
(
Nδ

2

)3

.

Since N =
[

2
δ

]
6 2

δ , then it suffices to show that Nδ−1
N−1 >

2
3N , which is equivalent

with showing that

δ >
5

3N
− 2

3N2
. (2.1)

Because N =
[

2
δ

]
, then 2

δ < N + 1 and so, δ > 2
N+1 . Then inequality (2.1) follows

since
2

N + 1
−
(

5

3N
− 2

3N2

)
=

N − 5

3N(N + 1)
+

2

3N2
> 0. (2.2)

Inequality 2.2 is obvious for all N > 5, while for N ∈ {2, 3, 4} the inequality can
be checked directly (note that N =

[
2
δ

]
> 2 because δ 6 1). �

3. Proof of our main results

Theorem 1.4 will follow as a consequence of the following Proposition which is a
generalization of Proposition 1.6.

Proposition 3.1. Let X be a Noetherian topological space, let Φ : X −→ X
be a continuous map, let x ∈ X, let Y be a closed subset of X, and let S :=
{n : Φn(x) ∈ Y }. If S has positive Banach density, then it contains an infinite
arithmetic progression.

Proof. Consider the set V of all closed subsets V of X with the property that
TV := {n : Φn(x) ∈ V } has positive Banach density but does not contain an infinite
arithmetic progression. If V is empty, then there is nothing to prove. Thus we may
assume, towards a contradiction, that V is non-empty. We let W be a minimal
element of V with respect to the inclusion of sets (note that such an element exists
since X is Noetherian). By Lemma 2.1, we have a positive integer k and a subset
Q ⊆ TW with δ(Q) > 0 such that a+ k ∈ TW for all a ∈ Q.

If n ∈ Q, then Φn(x) ∈ W and Φn+k(x) ∈ W . Thus Φn(x) ∈ W ∩ Φ−k(W )
whenever n ∈ Q. If Φ−k(W ) ⊇ W then TW has the property that n + k ∈ TW
whenever n ∈ TW and since TW is non-empty, it contains an infinite arithmetic
progression, which contradicts the fact that W ∈ V. Thus Z := W ∩ Φ−k(W )
is a proper closed subset of W (since Φ is continuous and W is closed) and so
we have Φn(x) ∈ Z for all n ∈ Q. Since Q has positive Banach density, we
obtain that TZ ⊇ Q also has positive Banach density and therefore TZ contains
an infinite arithmetic progression. Since TZ ⊆ TW , we see that TW contains an
infinite arithmetic progression, a contradiction. This concludes our proof. �
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Theorem 1.4 follows easily now.

Proof of Theorem 1.4. Suppose not. Let V be the collection of all closed sub-
sets V of X that have the property that there is some continuous map g : V → V ,
and some closed subset W of V , and a point y ∈ V such that {n : gn(y) ∈ W}
cannot be expressed as a finite union of arithmetic progressions along with a set
of Banach density zero.

By assumption, X ∈ V and so we may choose a minimal element V ∈ V. Then
there is some continuous map g : V −→ V , some closed subset W of V , and some
point y ∈ V such that T := {n : gn(y) ∈W} cannot be expressed as a finite union
of arithmetic progressions along with a set of Banach density zero. We necessarily
have thatWi := g−i(W ) is a proper closed subset of V (note that g is continuous),
since otherwise T would contain every integer greater than or equal to i (and thus
it would be the union of an arithmetic progression with a finite set). Moreover, by
our choice of V , W and y, it follows that δ(T ) > 0 and thus by Proposition 3.1,
there exist a, b ∈ N such that T ⊇ {an + b : n > 0}. Let Ci denote the closure of
Si := {g(an+b)(y) : n > i}. Then

C0 ⊇ C1 ⊇ · · ·

is a descending chain of closed sets and hence there is some m such that Cm =
Cm+1 = · · · . We take V0 = Cm. Then g−a(V0) ⊇ g−a(Sm+1) ⊇ Sm and since
g−a(V0) is closed we thus see it contains the closure of Sm, which is V0.

Then V0 ⊆W is closed and we have g−a(V0) ⊇ V0. We let Vj denote the closed
set g−j(V0) for j ∈ {1, . . . , a− 1}. Since Vj ⊆Wa+j ( V , we see that each Vj is a
proper subset for 0 6 j 6 a− 1. Then g−a(Vj) = g−a(g−j(V0)) = g−j(g−a(V0)) ⊇
g−j(V0) = Vj , and so for j ∈ {0, . . . , a − 1}, we have g−j+na+b(y) ∈ Vj for every
n > m. Moreover, since g−a(Vj) ⊇ Vj , we have that h := ga restricts to continuous
maps h : Vj −→ Vj for each 0 6 j 6 a − 1. We let yj := g−j+a+b(y). It follows
from the minimality of V that

Tj := {n > m : hn(yj) ∈W ∩ Vj}

is a finite union of arithmetic progressions along with a set of Banach density zero.
On the other hand,

Tj = {n > m : g−j+a(n+1)+b(y) ∈W},

for each j = 0, · · · , a− 1. Then, up to a finite set, we have

T =

a−1⋃
j=0

(aTj + b+ a− j),

where for any set U ⊆ N and any c ∈ N, we let c · U be the set {cj : j ∈ U}, and
we let c + U := U + c be the set {c + j : j ∈ U}. Hence T is a finite union of
arithmetic progressions along with a set of Banach density zero. �
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As a consequence to our main result, we can prove the following (seemingly)
stronger statement.

Theorem 3.2. Let X be a Noetherian space, let U ⊆ X be an open subset, and
let Φ : U −→ X be a continuous map. Let x ∈ X such that Φn(x) ∈ U for
each nonnegative integer n. Then for each closed set Y ⊆ X, the set S := {n ∈
N : Φn(x) ∈ Y } is a union of at most finitely many arithmetic progressions along
with a set of Banach density zero

Proof. Let Z := ∩n>0Φ−n(U); we know that Z is nonempty since x (and therefore
OΦ(x)) is contained in Z. We endow Z with the inherited topology from X; then
Z is also a Noetherian space. Furthermore, by its definition, we obtain that Φ
restricts to a self-map ΦZ : Z −→ Z. Next we show that ΦZ is continuous.

Indeed, let V ⊆ X be an open set and we need to show that Φ−1
Z (V ∩ Z) is

open in Z. This follows immediately once we prove that Φ−1
Z (V ∩Z) = Φ−1(V )∩Z

because Φ : U −→ X is continuous and so Φ−1(V ) is open in U and (because U is
an open subset ofX) it is also open inX which yields that Φ−1(V )∩Z is open in Z.
To see that Φ−1

Z (V ∩Z) = Φ−1(V )∩Z we note that for each y ∈ Φ−1
Z (V ∩Z) ⊆ Z

we have ΦZ(y) ∈ V . So, Φ(y) ∈ V and thus y ∈ Φ−1(V ) ∩ Z. Conversely, if
y ∈ Φ−1(V ) ∩ Z, then y ∈ Z and so ΦZ(y) ∈ V ∩ Z as claimed.

Therefore ΦZ : Z −→ Z is a continuous map on a Noetherian space. Hence
by Theorem 1.4, the set of all n ∈ N such that ΦnZ(x) ∈ Y ∩ Z is a union of
at most finitely many arithmetic progressions along with a set of Banach density
zero. Because Φ = ΦZ on Z then Φn(x) ∈ Y if and only if ΦnZ(x) ∈ Y ∩ Z, which
concludes our proof. �

Corollary 1.5 is an immediate consequence of Theorem 3.2. The proof for
Theorem 1.8 is similar to the proof of Theorem 1.4 and it relies on the following
result.

Proposition 3.3. Let X be a Noetherian space, let f : X −→ X be a continuous
function, let {x−n}n>0 be a coherent backward orbit of a point x ∈ X, and let
Y ⊆ X be a closed set. If the set S := {n ∈ N : x−n ∈ Y } has positive Banach
density then it contains an infinite arithmetic progression.

Proof. The proof is similar to the proof of Proposition 3.1. Consider the set V
of all closed subsets V of X with the property that TV := {n : x−n ∈ V } has
positive Banach density but does not contain an infinite arithmetic progression.
If V is empty, then there is nothing to prove. Thus we may assume, towards
a contradiction, that V is non-empty. We let W be a minimal element of V
with respect to the inclusion of sets (note that such an element exists since X is
Noetherian). By Lemma 2.1, we see that there exists a positive integer k and a set
Q ⊆ TW of positive Banach density such that if n ∈ Q then n + k ∈ TW . Thus
x−n−k ∈W ∩f−k(W ) whenever n ∈ Q. There are two cases: either f−k(W ) ⊇W
or not.

Assume now that f−k(W ) ⊇ W ; so if y ∈ W , then also fk(y) ∈ W . Then
TW has the property that n − k ∈ TW whenever n ∈ TW and n > k. Because
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Q has positive Banach density, then it is infinite, and therefore there exists j ∈
{0, . . . , k−1} such that there exist infinitely many n ∈ Q satisfying n ≡ j (mod k).
So there exists a sequence of integers ni → ∞ contained in TW such that ni ≡ j
(mod k) for each i and moreover, ni− `k ∈ TW for all ` > 0 such that ni− `k > 0.
Thus TW contains the infinite arithmetic progression {j + `k}`>0, as desired.

Assume now that W 6⊆ f−k(W ). Then Z := W ∩ f−k(W ) is a proper closed
subset of W and so we have x−n−k ∈ Z for all n ∈ Q. Since Q has positive
Banach density, we obtain that also TZ has positive Banach density (note that
δ(Q+ k) = δ(Q) > 0 and (Q+ k) ⊆ TZ). Hence TZ contains an infinite arithmetic
progression (because Z is a proper subset of W ). Since TZ ⊆ TW , we see that TW
contains an infinite arithmetic progression, a contradiction. This concludes our
proof. �

Theorem 1.8 follows from Proposition 3.3 similar to the proof of Theorem 1.4.

Proof of Theorem 1.8. Let V be the collection of all closed subsets V of X that
have the property that there is some continuous map g : V → V , and some closed
subset W of V , and a coherent backward orbit {y−n} of a point y ∈ V such that
{n : y−n ∈ W} cannot be expressed as a finite union of arithmetic progressions
along with a set of Banach density zero.

Assume, for contradiction, thatX ∈ V and so we may choose a minimal element
V ∈ V. Then there is some continuous map g : V −→ V , some closed subset W
of V , and a coherent backward orbit {y−n}n>0 of a point y ∈ V such that T :=
{n : y−n ∈ W} cannot be expressed as a finite union of arithmetic progressions
along with a set of Banach density zero.

For each i ∈ N we let Wi := g−i(W ). We claim that if Wi = V for some
i ∈ N, then T is a union of at most finitely many arithmetic progressions along
with a finite set (which obviously has Banach density zero). Indeed, for each
j ∈ {0, . . . , i − 1} we let Ti,j := {n ∈ T : n ≡ j (mod i)}. Then T = ∪i−1

j=0Ti,j .
Assume Ti,j is infinite (for some 0 6 j 6 i−1). Since Wi = V then for each n ∈ T
also n− i ∈ T and therefore n− i` ∈ T for all ` > 0 such that n− i` > 0. Because
we assumed that Ti,j is infinite, then j + i` ∈ T for all ` > 0. In conclusion, T is
indeed a union of at most finitely many arithmetic progressions (of ratio i) along
with a finite set.

So from now on assume that Wi := g−i(W ) is a proper closed subset of V
(note that g is continuous). Moreover, by our choice of V , W and y, it follows
that δ(T ) > 0 and thus by Proposition 3.3, there exist a, b ∈ N such that T ⊇
{an+ b : n > 0}. Let Ci denote the closure of Si := {y−(an+b) : n > i}. Then

C0 ⊇ C1 ⊇ · · ·

is a descending chain of closed sets and hence there is some m such that Cm =
Cm+1 = · · · . We take V0 = Cm. Then g−a(V0) ⊇ g−a(Sm) ⊇ Sm+1 and since
g−a(V0) is closed we thus see it contains the closure of Sm+1, which is V0.

Then V0 ⊆W is closed and we have g−a(V0) ⊇ V0. We let Vj denote the closed
set g−j(V0) for j ∈ {1, . . . , a − 1}. Since Vj ⊆ Wa+j ( V , we see that each Vj is
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a proper subset for 0 6 j 6 a−1. Then g−a(Vj) = g−a(g−j(V0)) = g−j(g−a(V0)) ⊇
g−j(V0) = Vj , and so for j ∈ {0, . . . , a − 1}, we have y−(na+b+j) ∈ Vj for every
n > m. Moreover, since g−a(Vj) ⊇ Vj , we have that h := ga restricts to continuous
maps h : Vj −→ Vj for each 0 6 j 6 a − 1. It follows from the minimality of V
that

Tj := {n > m : (y−(na+b+j)) ∈W ∩ Vj}

is a finite union of arithmetic progressions along with a set of Banach density zero
(since {y−j−na−b}n>0 is a coherent backward orbit of y−j−b under the action of
h). Then, up to a finite set, we have

T =

a−1⋃
j=0

(aTj + b+ j)

and hence T is a finite union of arithmetic progressions along with a set of Banach
density zero. �

4. Some quantitative results

The following result is an easy application of Lemma 2.1.

Theorem 4.1. Let X be a quasi-projective variety defined over a field K, let
Φ : X −→ X be an endomorphism defined over K, let C ⊆ X be an irreducible
curve, and let α ∈ X(K) be a point that is not preperiodic under Φ. If the set
S := {n ∈ N : Φn(α) ∈ C(K)} has Banach density δ > 0, then S contains an
infinite arithmetic progression of ratio k = 1

δ , and Φk(C) ⊆ C.

Proof. It follows from Lemma 2.1 applied with N =
[

1
δ

]
+ 1 that there exists

a positive integer k 6
[

1
δ

]
and a subset Q ⊂ S of positive density such that for

each n ∈ Q, also Φn+k(α) ∈ C(K). So Φn(α) ∈ C ∩ Φ−k(C). Hence, C ∩ Φ−k(C)
contains an infinite set of points (because α is not preperiodic under the action
of Φ). Since C is an irreducible curve, we see then that C ⊆ Φ−k(C); thus
Φk(C) ⊆ C. This yields the desired infinite arithmetic progression of ratio k 6 1

δ .
If k < 1/δ, then the existence of this arithmetic progression would imply that
δ > 1/k > δ, a contradiction. Thus, k = 1

δ . �

Applying the technique of the proof of Theorem 4.1 recursively in the case
of endomorphisms of P` one can obtain a similar result for all projective sub-
varieties of P`. This may be viewed as a weak dynamical analog of a result of
Evertse-Schlickewei-Schmidt [8, Theorem 1.2] on effective bounds for the ratios of
arithmetic progressions that arise from linear recurrence sequences.

Theorem 4.2. For each δ > 0, D > 1 real numbers, and each `, e,m ∈ N, there
exists a positive real number M := M(δ,m,D, `, e) with the following property: for
any endomorphism Φ : P` −→ P` given by homogenous polynomials of degree at
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most m defined over any algebraically closed field K, any irreducible subvariety
V ⊆ P` of dimension at most e and degree at most D, and any x ∈ P`(K), if the
set S := {n ∈ N : Φn(α) ∈ V (K)} has Banach density at least equal to δ, then S
contains an infinite arithmetic progression of ratio at most M .

Proof. One uses induction on the dimension e of V , with the base case being
Theorem 4.1; so M(δ,m,D, `, 1) = 1

δ . Assume now e > 2. If V ⊆ Φ−k(V ) for
some integer k < N :=

[
2
δ

]
, then V is periodic under Φ and moreover it contains

an infinite arithmetic progression of ratio at most
[

2
δ

]
. So, assume V ∩ Φ−k(V )

has dimension at most e − 1 for each k < N . By Corollary 2.2 applied with
N =

[
2
δ

]
, there is a set Q ⊂ S of density at least equal to δ3

24 and there is an
integer k < N such that Φn(x) ∈ V ∩ Φ−k(V ) for each n ∈ Q. Then with
the use of generalized Bézout’s Theorem (see [18, Theorem 1], for example), one
sees that the degree of V ∩ Φ−k(V ) is at most mk(`−e)D2 (since Φ−k(V ) has
degree at most mk(`−e)D). Hence, by the pigeonhole principle, there exists an
irreducible subvariety W ⊆ V ∩Φ−k(V ) of dimension at most e− 1 such that the
set SW := {n ∈ N : Φn(x) ∈ W (K)} has density at least equal to δ3

24mk(`−e)D2 .
Then the induction hypothesis yields the following recursive formula

M(δ,m,D, `, e) = M

(
δ3

24m
2(`−e)
δ D2

,m,m
2(`−e)
δ D2, `, e− 1

)
. �

We conclude by proving Theorem 1.10.

Proof of Theorem 1.10. The proof relies on the following quantitative version
of the argument from the proof of Theorem 4.1.

Lemma 4.3. Let k ∈ N, and let K, C, Φ, x, m, d be as in Theorem 1.10. Let
c1 = 2m`d2. Then we have

#{n > 1: Φn(x) ∈ C(K) and Φn+k(x) ∈ C(K)} 6 ck1 .

Proof of Lemma 4.3. Let n be a positive integer such that Φn(x) ∈ C(K) and
also Φn+k(x) ∈ C(K); then Φn(x) ∈ C∩Φ−k(C). We know that C is an irreducible
non-periodic curve; then C ∩Φ−k(C) is a proper intersection of projective curves,
and therefore, by Bézout’s Theorem (see [18, Theorem 1], for example), the number
of points in the intersection is bounded above by

deg(C) · deg(Φ−k(C)) 6
(
2m`d2

)k
= ck1 . �

Based on Lemma 4.3, the rest of the proof is a simple counting argument. We
let {nk}k>1 be the increasing sequence of positive integers n for which Φn(x) ∈
C(K). The proof of Theorem 1.10 is a simple consequence of the following lemma.

Lemma 4.4. With notation as in Lemma 4.3, let c2 = (4c1 log(c1) logc1(2c1))−1.
Then nk > c2k log(k) for each k > 1.
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Proof of Lemma 4.4. We first estimate the size of nk for k > (2c1)4c1 . Note
that c1 > 2. Then there exists a unique positive integer j such that

j∑
i=1

ci1 < k 6
j+1∑
i=1

ci1,

which, since c1 > 2, gives

k 6 2cj+1
1 , or equivalently cj1 > k/2c1. (4.1)

Using Lemma 4.3, we obtain

nk = n1 +

k−1∑
i=1

(ni+1 − ni) >
j∑
i=1

i · ci1 > jc
j
1.

Then, using Equation (4.1), we find

nk > jc
j
1 >

k

2c1
logc1(k/2c1) = k(logc1 k)

(
1− logc1(2c1)/ logc1(k)

)
2c1

>
1

4c1
k logc1(k),

(4.2)

where the last inequality follows from the fact that we are assuming for now that
k > (2c1)4c1 .

Suppose now that k 6 (2c1)4c1 . Since ni > i for every i, we see then that

nk > k >
1

4c1 logc1(2c1)
k logc1(k).

Hence we have nk > c2k log(k) for every k > 1. �

Now, for each N > 2, if k := #{1 6 n 6 N : Φn(x) ∈ C(K)} then nk 6 N .
Using Lemma 4.4 we obtain

N > nk > c2k log(k),

and therefore, k 6 c0N
log(N) with c0 := 2

c2
(which depends on d, m and ` only). �
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