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ON SOME FAMILIES OF INTEGRALS CONNECTED
TO THE HURWITZ ZETA FUNCTION

ALEXANDER E. PATKOWSKI

Abstract: Expressions for a family of integrals involving the Hurwitz zeta function are estab-
lished using standard properties of the Fourier transform.
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1. Introduction

The Hurwitz zeta function is defined by

1
Csia) =S —
2t

n>

for s € C, R(s) > 1, and «a is chosen appropriately so there are no singularities in
the series. ((s,a) admits the integral representation

Close) = 7 | gt (1)
s,a) = .
7 I'(s) Jo 1—e* 7

where I'(s) is Euler’s gamma function, which is valid for R(s) > 1 and R(a) > 0.
Hermite proved an interesting integral representation, which actually provides an
explicit realization of the analytic continuation to C — {1} and R(a) > 0:

((s,a) =

a=® al”® * sin(stan~!(t/a))dt
+2/0 ( (1.2)

2 +s—1 a? + t2)s/2(e27t — 1)’
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The function ((s,a) is analytic for s # 1, and direct differentiation of (1.2)
yields
, a*lna a'"flna al=s
(o) =———F— -7 ~G-12
B 2alfslna/oo sin(stan~1(t))dt
o (1+t2)5/2(e2amt — 1)
L ogl-s /°° cos(stan~1(t)) tan—1(t)dt
o (1 + £2)3/2(e2amt — 1)
- /°° sin(stan=!(¢)) In(t? + 1)dt
o (1 + t2)s/2(62a7rt _ 1) ’

where (’(s,a) denotes 9((s,a)/0s.

The work presently discussed is a continuation of [2, 4, 7] where these inte-
gral representations have been employed to evaluate interesting definite integrals.
General information about ((s,a) can be found in [1], [5] and [6].

The main result is presented next.

Theorem 1. Let n € Ng. For R(a) > 0 and 0 < 2n < R(s), define

[t sin(stan~ ! (t/a))dt
Sn(a, s) = /0 (@ )t 1)

Then
1 on
_ + m
Sn(a,s) = 571;)(_1)711 n(m>a Pi(a,m+ s —2n), (1.3)
where . -
Pi(a,s) =((s,a) — a2 - :7 T

Observe that (1.2) corresponds to the special case n = 0 in (1.3). Here we note
that S, (a, s) is analytic in the set {n € No,0 < 2n < R(s) : s —2n # 1}.

The proof of Theorem 1 is based on identifying the Fourier sine transform of
two special functions and then apply the corresponding Parseval identity. Recall
that for a function defined on the half-line, the Fourier sine transform is

(M) (w) == \/z/ooo £(t) sin(wt)dt,

provided the integral converges. The corresponding Parseval identity states that

| @i = [~ rwga (1.0
0 0

Theorem 1 is a direct consequence of Parseval’s relation applied to the functions

_ t _ t*"sin(stan~'(t/a))
ft) = 1/(62 -1) and g(t) = EENEINE
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The Fourier sine transform f(¢) comes from entry 3.951.12 of [3]. It states an
equivalent form of the identity

 sin(wt)dt 1 1 1 1
oS . 1.5
/0 e?rt — 1 2<6w1+2 w) (15)

The Fourier sine transform of g(t) is given in terms of the associated Laguerre

polynomials L¥ (x) defined by the Rodrigues representation

etx=F qn
n!  dxzm” (

LF(z) = e "R (1.6)

for n e NU{0}.
Theorem 1 is extended in Section 3 to include integrals in which the kernel
1/(e?™ — 1) is replaced by

1/(e™ +1), 1/ sinh(mt), 1/ cosh(nt).
Consider the families of integrals

° tdt
Iv(g) = /o (1 + )kt (e2nat — 1)’

o0 ¢tk tan—1 tdt
Tk(q) = /0 (627th — 1) )

R In(1 + t2)dt
Lk(Q) = /0 (6271'qt _ 1) :

The reader will find in [2] explicit expression for Ij(q) in terms of the derivatives
of the polygamma function and for T (q) and Laj11(g) remains an open problem.
It would be of interest to analyze the evaluations discussed here in relation to this
open problem.

2. The proof

The proof of Theorem 1 is based on the computation of two Fourier sine transforms.
Formula 3.951.12 in [3] states an equivalent form of the identity (1.5), which gives

the sine transform of )

f(t):ﬁ7

FUw) = —= (wl_l+;_;)

The second Fourier sine transform is that of the associated Laguerre polyno-
mials (1.6). The explicitly formula

as

e R
Bl) = 2 i @y

is employed in the derivation.
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Formula 3.769.4 of [3] contains the integral representation

/w 20 ((a — it)~* — (a+ it)~*) sin(wt)dt = P(‘l)n”@”)’
0

—2n-1
(s)eaww2n+1st;n " (aw),

(2.2)
for w > 0, R(a) > 0 and 0 < 2n < R(s). The integrand can be simplified using

(a—it)™ — (a+it)* = 2 Si?cf;? ia?;)s%/a))

Therefore (2.2) can be written as

/°° 42n sin(stan~!(t/a))
0

(a2 + 12)5/2

Or equivalently we may state that the Fourier sine transform of

(71)’”7((277’)' s—2n—1
QI‘(S)eawan-‘rl—s 2n

sin(wt)dt = (aw).  (2.3)

t*? sin(stan~'(t/a
g(t) = (a(2+t2)s/(2/ )),

is given by (D)2
- T 2T )2
S(g)(w) = 21"(S)eaww2n+1—s

Parseval’s identity (1.4) gives the next result.

L;;Z”_l(aw).

Lemma 2. For R(a),R(s) > 0,

/°° 2" sin(stan~1(t/a))dt
0 (Cl2 + t2)s/2(€2‘n—t _ 1)

(_1)n(2n)| /OO —aw,, —2n—1+sys—2n—1 1 1 1
= sps=2n R
or(s) S, ¢ N b S

The explicit formula (2.1) for the Laguerre polynomials is now employed to
evaluate the integral on the right side of Lemma 2.

/00 e—aww—Qn—l-i-ng:Ianl (aw>
0 ew — 1
2

dw

S

(=1)7(s — 1)la? /°° wsT 4T e=(athwgy,
(2n—H(s—2n—14+ )5 J, l—ew

J

Yo
(=)

—1)(s —1)la’ ‘
:j:() ((2)71,(_3')!.7?!((52n+‘7’a+1)'

In the last step we have employed the integral representation for the Hurwitz zeta
function (1.1). For the desired formula we must write 1/(e* —1) = e¥/(e¥ —1)—1.

The remaining integrals corresponding to the terms 1/2 and 1/w are elementary,
and so are omitted.
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3. Related integrals

In this section we produce results similar to Theorem 1 for a family of integrals of
the form

| toxo.
0
where the kernel 1/(e*™* — 1) in Theorem 1 is replaced by
1/(e™ +1), 1/sinh(7wt), or 1/cosh(mt).

The next lemma will be needed for future computations corresponding to these
kernels.

Lemma 3. Assume R(s) > 1 and R(a) > 0. Then

oo ts—le—at B
/0 mdt =T(s) (((s,a) -9 C(S7a/2)) _

If R(a) > 0, then

] tsflefat dt _ F 2178 2
/0 Tret ™™ (s) (—C(s,a) +2'7%¢(s,a/2)),

and

oots—le—at o 1+a a+3

These integrals are well-known variations of (1.1). Details are in [2].
Theorem 4. Let n € Ng. For ®(a) > 0 and 0 < 2n < R(s), define

oo t2n SiH(S tanfl(t/a))dt
SHn(aa S) T [) (Cl2 + t2)3/2 Slnh(ﬂ't) '

Then
1 & 2n
SHp,(a,s) = B mz_:o(—l)"”” (m>amPg(a, m+s—2n),
where

Py(a,s) = 227%¢(s,a/2) — 2¢(s,a) —a™°.

Proof. The identity

< sin(wt) 7 W

appears as entry 3.981.1 in [3].
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The value S = 7 in (3.1) shows that the Fourier sine transform of 1/ sinh(nt)
is %tanh(w/Q). Then (1.4) and (2.3) give

/°° 2" sin(stan~1(t/a))dt
0

(a2 + t2)5/2 sinh(nt)

—1)* 7 (2n)! S 1 1 1
_ M/ tanh(%)ef‘lww*Z"*”SL;;Q"_l(aw) ( + - - ) dw.
0

4T (s) ew—1 2 w
Now use 5
tanh(w/2) = —— —1
anh(w/2) = 1
and proceed as in the proof of Theorem 1. |

The next results are established along similar lines of the proof presented above.
The details are omitted. Entries 3.911.1 and 3.981.3 in [3] are

/OO sin(wt) 1 T
o eftH1l 2w 23 sinh 7’

and

/OC cos(wt) T

o cosh(Bt) 28 cosh 53
respectively. These are used instead of (3.1) in the proofs.
Theorem 5. Let n € Ng. For ®(a) > 0 and 0 < 2n < R(s), define

< 2 sin(stan~t(t/a))dt
EP,(a,s) := .
(a,s) /0 (a2 + t2)5/2(e27t 1 1)

Then
1 2n 2n
EP,(a,s) = 3 mZ_:()(-l)"”’” (m>amP1 (a,m+ s —2n),
where
al—b

Ps(a,s) = 1~ C(s,a) —27°¢(s,a/2).

Theorem 6. Let n € Ng. For R(a) > 0 and 0 < 2n < R(s), define

* 2" gin(stan~!(t/a))dt
Hpy(a,s) == )
CHy(a,s) /O (a2 + ﬁ2)8/2 Cosh(ﬂ't/?)

Then
CH,(a,s) = - i (—1)m+n (2”) a™Py(a,m + s — 2n),
2 = m
where
Pita,s) = gz (006, ) - 5D
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The final result describes integrals containing odd powers of ¢ in the integrand.
As before, the proofs are similar to that of Theorem 1, so they are omitted.

Theorem 7. Let n € Ng. For R(a) >0 and —1 < 2n+ 1 < R(s), then

2n+1

5>y

/°° t?"*cos(stan™!(t/a))dt 1
0 (a2 + 12)5/2(e2mt — 1) 9

)ampl(a,m—i—s—Qn—l),

m=0

(a? + t2)%/2 sinh(7t) 2

00 42n+1 . -1 ntl
/ t cos(stan™'(t/a))dt _ 1 Z (—1)m+n (2n+ 1)amP2(a,m+8—2n—1),
0
/°° 2"+ cos(stan™! (t/a))dt 1 Z (—1)mn
0 (a2 +12)5/2(emt + 1) 9

and if R(a) >0 and 0 < 2n < R(s) — 1,

< ¢Intlgin(stan=!(t/a))dt 1 2ol in(2n+1
/0 (a2 + 12)5/2cosh(nt/2) 2 Z (=™ n( )amP4(avm+3_2”_1)~

)ampg(a,m—i—s—Qn—l),

m=0

m=0
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